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Pushing the Frontier of Fully Open Models

complete data processing pipeline, rigorous ex-
perimental ablation results, and detailed train-
ing protocols for open scientific research. Our
work identifies the key ingredients for build-
ing a top-tier code LLM are: language-specific
filtering rules, file-level deduplication , high-
quality synthetic data and two-stage supervised
fine-tuning strategy. By offering high level
of openness, we aim to broaden access to all
aspects of a top-tier code LLM, with Open-
Coder serving as both a powerful model and
an open foundation to accelerate research, en-
abling reproducible advancements in code in-
telligence. The released resource is available at
https://opencoder-11m.github.io.

Figure 1: OpenCoder surpasses all previous fully open
models (i.e., with open model weights and reproducible
datasets) and other open-access models (i.e., with open
model weights only) at the 6B+ parameter scale, push-
ing the frontier of fully open models to new heights.

1 Introduction

Large Language Models (LLMs) have achieved sig-
nificant success in various domains (Wang et al.,
2023; Que et al., 2024; Liu et al., 2024a,c; Wu
et al., 2024), particularly in code-related tasks, rev-
olutionizing the current paradigm of software de-
velopment (Qian et al., 2024; Wang et al., 2024).
Code-specific LLMs have emerged as a critical area
within LLM research, with tools such as ChatGPT,
Copilot, and Cursor reshaping the workflows of
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https://opencoder-llm.github.io

developers. Despite this, the performance of open-
source LLMs focused on code (Li et al., 2023b; Tao
et al.; Lozhkov et al., 2024a) still falls short com-
pared to state-of-the-art LLMs (Hui et al., 2024;
Zhu et al., 2024), largely because these leading
models keep their training datasets—an essential
factor in LLM development—proprietary. This
lack of transparency hinders the research commu-
nity from establishing strong baselines and gaining
deeper insights into top-tier code LLMs.

To remedy the gap, we set three primary goals by
releasing OpenCoder and its development materi-
als: (i) We aim to provide scholars with a meticu-
lously curated and fully transparent strong baseline
code LLM for research on mechanical interpretabil-
ity and the data distribution of code LLMs. (ii) We
intend to conduct in-depth investigations into the
pretraining and instruction data curation pipeline
for the development of stronger code LLMs. (iii)
By enabling a detailed review of the development
of the models, we hope to unlock more diverse cus-
tomized solutions based on transparent code LLM.
Through OpenCoder, we strive to stimulate and ac-
celerate the growth of the open-source code LLM
community.

Our comprehensive set of controlled experi-
ments highlights key design choices for data cu-
ration for advanced code LLMs in different train-
ing stages. During pre-training Stage: (i) Effec-
tive data cleaning is crucial (Zhou et al., 2024),
requiring well-designed heuristic rules to process
large-scale corpora under limited resources and vi-
sualization to perceive data distribution. (ii) The
impact of deduplication is significant, with file-
level deduplication proving to be more effective
than repository-level deduplication by maintaining
data diversity and enhancing model performance
on downstream tasks (Li et al., 2023b). (iii) The in-
fluence of GitHub stars is also examined, revealing
that filtering data based on Github star count can
possibly reduce data diversity and affect the over-
all data distribution, contributing to a suboptimal
result (Allal et al., 2023). Moreover, in the anneal-
ing phase, high-quality data is crucial for further
enhancing the model’s capabilities, indicating that
data quality is more important than quantity in the
later stages of model training. Finally, during in-
struction tuning phase, a two-stage instruction
tuning strategy allows the model to acquire broad
capabilities initially and then refine them with code-
specific tasks, resulting in improved performance
on both theoretical and practical coding tasks.
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Open Model Weights & Reproducible Datasets
OpenCoder-8B 25 83
StarCoder2-15B X X 41 72
Crystal-7B X X 13 34
Open Model Weights

CodeLlama-7B X X X X 25 34
CodeGemma-7B X X X X 6.5 56
DS-Coder-V2-Lite X X X X 10.2 81
Yi-Coder-9B X X X X 6.0 85
Qwen2.5-Coder-7B X X X X 23.5 88

Table 1: Comparison of open-source resources among
code LLMs. Pipe: pretraining data cleaning pipeline;
PT-data: reproducible pretraining data; SFT-data:
large-scale SFT corpus (>1M samples); Mid-ckpt: inter-
mediate pretraining checkpoints; Tokens: total training
tokens(B);HE: HumanEval scores for chat models.

Our contribution is summarized below:

* We present OpenCoder, a top-tier code llm
archieving competitive performance with lead-
ing models across multiple benchmarks.

* We provide an full-stack open cookbook for
code LLMs, including pipeline, training sets
and middle checkpoints as detailed in Table 1.

* We identify the key ingredients for build-
ing a top-tier code LLM, including language-
specific heuristic rules, file-level duplication,
synthetic-data and two-stage SFT.

2 Pretraining Data

Pretraining data plays a crucial role in the devel-
opment of LLMs, where the scale, quality, and
diversity of the data greatly affect the model’s over-
all performance. To this end, we present how to
process massive datasets with fine-grained heuris-
tic rules under limited computational resources,
and analyze the overall data distribution through
visualization. This section will comprehensively
illustrate the data processing strategies used in the
general pretraining stage and the annealing stage.

2.1 RefineCode

Pretraining data forms the foundation for the capa-
bilities of LLM. While The Stack v2 (Lozhkov
et al., 2024a) has been a valuable resource for
training code LLMs in the open-source commu-
nity, its quality is insufficient for top-tier model
performance.
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Figure 2: Tllustration of RefineCode pipeline

To address this, we introduce RefineCode, a
high-quality, reproducible dataset of 960 billion
tokens across 607 programming languages, com-
prising raw code and code-related web data. Re-
fineCode is the first pre-training code dataset that
performs language-specific refinement, employ-
ing customized cleaning thresholds and domain-
adapted rules for each programming language. A
comparison between RefineCode and all versions
of The Stack is provided in Table 2.

S
) &
&0\"&\ $€9 Q ‘oqo‘ $&®% %$\3\
% % % % A%
The Stack vl 200 B \ 88 ~15 X
The Stack v2 900 B ~30 B 619 ~15 X
RefineCode 960B ~75B 607 ~130

Table 2: Comparison of training data between Re-
fineCode and The Stack series. “Total" represents the
total tokens, “Web" indicates tokens from web-related
texts, “Programs" refers to programming languages,
“Rules" denotes filtering rules applied, and “LS Rules"
represents the language-specific filtering rules.

2.1.1 Raw Code

We collect raw code primarily from GitHub reposi-
tories up to November 2023 and non-GitHub data
from The Stack v2. To ensure the curation of high-
quality raw code data, we have developed the code-
specific data processing pipeline including modules
of preprocessing, deduplication, transformation,
filtering, and data sampling. We briefly outline
the pipeline, with additional details provided in
Appendix A.

Preprocessing To optimize resources, we ex-
clude files larger than 8 MB, as they are typically
non-text and resource-intensive. We then filter for

files related to programming languages based on
their extensions, as defined by linguist (Linguist,
2024), and discard those with low capacity or qual-
ity. This results in a final selection of 607 distinct
programming language file types.

Deduplication Deduplication is a crucial mod-
ule in the data pipeline to enhance both pretraining
efficiency and efficacy (Lee et al., 2021). We first
perform exact deduplication using SHA256 to elim-
inate fully duplicate files, then apply fuzzy dedu-
plication. For the latter, we use MinHash (Broder,
1997) and LSH (Leskovec et al., 2014) to remove
near-identical files.

Transformation To address minor issues without
discarding entire files, we apply two transforma-
tion rules before filtering: (1) we remove repetitive
and irrelevant copyright notices from the begin-
ning of over 15% of code files; and (2) to miti-
gate privacy risks, we detect and replace Personally
Identifiable Information (PII)—such as passwords
and emails—with placeholders like “<name>" and
“<password>" using regular expressions.

Filtering The quality of code files on GitHub
varies significantly, with lower-quality code poten-
tially hindering LLM pretraining. We propose the
first heuristic filtering framework tailored to code
pretraining data by considering the unique charac-
teristics of different programming languages. This
framework provides over 130 heuristic rules with
customized weight assignments across three cate-
gories, resulting in more precise and higher-quality
data cleansing. Detailed heuristic rules and high-
level design principles are provided in Appendix B.

Data Sampling Structured data formats with spe-
cific syntax (e.g., JSON/HTML) present a unique
challenge in code pretraining. While these formats
represent a substantial portion of publicly avail-
able code corpora, their disproportionate represen-
tation in pre-training data may paradoxically under-
mine model generalization capacity through pattern
memorization. Similar to modern code process-
ing methods (Lozhkov et al., 2024a,b) we perform
downsampling on programming languages (e.g.,
HTML, Java).

2.1.2 Code-Related Web Data

Inspired by DeepSeekMath (Shao et al., 2024), we
collect high-quality code-related data corpus from

the Common Crawl dataset, Fineweb (Penedo et al.,
2024), skyPile (Wei et al., 2023a) and web part of
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Category Source # Tokens Per.
Github 755B  78.4%
Raw Code Jupyter Notes 11B 1.1%
The Stack v2 120B  12.5%
CcC 13B 1.4%
Code-related Web ~ SkyPile 3B 0.3%
FineWeb 55B 5.7%
OpenSource AutoMathText 3B 0.3%

Table 3: The Composition of RefineCode.

AutoMathText Dataset (Zhang et al., 2024b). Due
to the lack of open-source fine-gained code corpus,
we first annotate 500k high-quality code-like data
from CommonCrawl using the Autonomous Data
Selection (Zhang et al., 2024b) method as seed.

2.2 Annealing Data

Following the training strategy in MiniCPM (Hu
et al., 2024), our model undergoes a rapid learn-
ing rate annealing phase after the general pretrain-
ing stage, where very high-quality training data is
used to further enhance the model’s capabilities.
In addition to the RefineCode from the original
distribution, we further incorporated the Algorith-
mic Corpus and synthetic data during the annealing
phase.

RefineCode During the annealing stage, we
maintain distribution consistency with the pre-
training phase to prevent catastrophic forget-
ting (Hu et al., 2024; Shen et al., 2024). 84% of
the annealing data is drawn from the original Re-
fineCode.

Algorithmic Corpus Algorithmic code files ex-
hibit strong code logic and minimal dependency
on external files, demonstrating excellent self-
containment. They align well with the smaller,
independent tasks typical of real-world interactive
scenarios. Therefore, we extract a subset of the
pretraining data containing keywords like "def so-
lution" or "class solution" to construct this corpus.
We also use model-based method, the results in
section shows that rule is better.

High Quality Code Snippet Inspired by the syn-
thetic CodeExercises dataset in Gunasekar et al.
(2023), we utilized the algorithmic corpus as seeds
and employed LLM to synthesize self-contained in-
dependent functions along with corresponding test
cases. We only retained the data that successfully
passed the test cases. We extend this pipeline to

support multiple program languages.

Code Textbook Pretraining data with a clear se-
mantic mapping between code and natural lan-
guage is scarce. (Song et al., 2024). To address
this issue, we utilize a powerful LLM to extract
and elaborate on abstract code knowledge from
high-quality datasets like HQCode (Yuxiang630,
2024). This approach is designed to help the model
learn code from diverse perspectives.

Category Dataset # Token
Original Data RefineCode 83.94 B
& Algorithmic Corpus 1244 B

. High Quality Code Snippet 271B
Synthetic Data o Textbooks 091 B

Table 4: Detailed data mixture for annealing data.

2.3 Visual Inspection

The pretraining data processing pipeline (e.g., dedu-
plication, filtering) involves numerous hyperparam-
eters, making ablation studies for each economi-
cally infeasible. Instead, we use PCA to visualize
embeddings extracted from CodeBERT (Feng et al.,
2020) and perform spot checks on outliers, provid-
ing an effective way to understand the distribution
of cleaned pretraining data.

Interestingly, visualization reveals the quality
gap between RefineCode and The Stack v2 even
before pretraining. As shown in Figure 3, The
Stack V2 data shows a greater number of out-
liers, while the embeddings of RefineCode appear
more tightly clustered. Besides, after analyzing
the outlier data, we observe the outliers usually
show many low-quality patterns, such as pure text
comments, hexadecimal-only data, and excessively
short code lacking computational logic, which can
distort the distribution of the pretraining dataset
and ultimately hurt the efficiency of pretraining.

3 Pretraining

3.1 Model Architecture

OpenCoder follows the architecture of LLaMA
3 (Dubey et al., 2024) and is in two sizes: 1.5B and
8B parameters. The 1.5B model features 24 layers,
a hidden size of 2240, and 14 attention heads, with
a context window size of 4096. The 8B model has
32 layers, a hidden size of 4096, 32 attention heads,
and grouped query attention with 8 key-value heads.
Both models employ SwiGLU (Shazeer, 2020) and
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Figure 3: Visualization on the python of RefineCode
and The Stack v2.

utilize the tokenizer proposed by INF-Team (2024).
Detailed configurations are presented in Table 5.

1.5B 8B
Layers 24 32
Model Dimension 2240 4096
Attention Heads 14 32
Key / Value Heads 14 8
Activation Function SwiGLU
Vocab Size 96640
Positional Embedding () 10,000 500,000
Context Window Size 4096 8192

Table 5: Overview of the key hyperparameters of Open-
Coder, including 1.5B and 8B. RoPE is selected for
Positional Embedding.

3.2 Training Details

Optimizer Both models employ the WSD learn-
ing schedule (Hu et al., 2024). The schedule in-
clude a warm-up phase of 2,000 steps over 8B
tokens, followed by a peak learning rate of 3e-4,
which remained constant after the warm-up. Dur-
ing the final 100B token annealing phase, the learn-
ing rate decayed exponentially from 3e-4 to le-5.

Training Framework The training for both mod-
els was conducted using Megatron-LM (Shoeybi
et al., 2020) with distributed optimization and DDP
gradient overlap. The 1.5B model was trained on 2
trillion tokens from scratch with a sequence length
of 4096, a micro-batch size of 4, and a global batch
size of 1024. The training process was conducted
on a cluster of 256 H800 GPUs over a duration of
109.5 hours, totaling 28,034 GPU hours. For the
8B model, training was performed on 2.5 trillion
tokens from scratch with a sequence length of 8192,
a micro-batch size of 1, tensor parallelism (TP) of

2, and a global batch size of 1024. This training
was executed on 512 H100 GPUs over 187.5 hours,
resulting in a total of 96,000 GPU hours.

4 Post Training

We constructed a diverse dataset of over 1 million
instructions to fine-tune opencoder. In addition to
open-source data, we employ multiple synthetic
approaches to construct code instruction datasets.
Full details are provided in appendix H.

4.1 Data Collection

Open-source Training Data We curate a col-
lection of high-quality open-source code instruc-
tion datasets, including Evol-Instruct (Luo et al.,
2024), Infinity-Instruct (BAAI, 2024), and McE-
val (Chai et al., 2024). Furthermore, we extract real
user queries from WildChat (Zhao et al., 2024) and
Code-290k-ShareGPT (Computations, 2023), and
employ LLM to identify code-related dialogue his-
tories, followed by rigorous data cleaning. The re-
sulting dataset, termed RealUser-Instruct, not only
demonstrates high diversity but also closely mir-
rors real-world problem complexity, aligning to
authentic scenarios.

Verified Instruction Synthesis Following oss-
instruct (Wei et al., 2023b), we utilizes raw code
as initial seed to generate question-answer pairs.
To further enhance code quality, we implement a
rigorous verification process through test case ex-
ecution. Our methodology involves: (1) sampling
high-quality code from RefineCode; (2) using a
teacher model to generate question-answer pairs
with chain-of-thought reasoning and multiple test
cases for code segments; (3) executing these test
cases using code interpreter. (4) retain codes pass-
ing over 80% test executions.

Package Instruction Synthesis Package instruc-
tion data are generated to further enhance profi-
ciency of code LLM with common packages. Our
methodology involves a four-step process: (1) ex-
tracting high-quality code snippets using packages
from RefineCode; (2) retrieving the corresponding
API documentation and usage guidelines from Py-
Doc; (3) prompting a teacher model to generate
QA data based on the snippets and documentation;
(4) prompting a strong model to verify if the QA
data adhere to the API usage guidelines. While
used for Python data, it is important to clarify that
this method generalizes easily to other languages
via their API references.
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Large-scale Diverse Instruction Synthesis Pre-
training web corpus contains a vast and diverse col-
lection of reasoning data (Yue et al., 2024). We de-
velop a large-scale instruction framework compris-
ing four key components: (1) Context refinement,
where an LLM filters irrelevant web content and
extracts meaningful sentences as question seeds;
(2) Task specification, which defines programming
languages, difficulty levels, and task types through
a configurable module, with prompt engineering
generating diverse, context-rich templates; (3) Con-
tent generation, where an advanced LLM produces
both questions and corresponding answers, vali-
dated through automated code execution and unit
testing; (4) Response refinement, where an LLM
enhances outputs with code comments and detailed
explanations.

4.2 Two-Stage Training Strategy

To develop a language model proficient in both the-
oretical and practical aspects of computer science,
we implement a two-stage instruction fine-tuning
process. In the first stage, we enhance the model’s
theoretical understanding with a comprehensive
and diverse set of domain-specific question-answer
pairs. This stage covers a wide range of topics,
including algorithms, and data structures, enabling
the model to provide accurate responses to complex
theoretical queries that span both computer science
theory and real-world user scenarios. The second
stage is more focused, concentrating on practical
downstream tasks by refining the model’s code gen-

eration and error correction capabilities to ensure
strong performance in real-world applications.

Stage  Data Source # Examples
RealUser-Instruct 0.7M
Stagel  Large-scale Instruct 2.3 M
Infinity-Instruct 1.0M
McEval-Instruct 36 K
Stage? Evol-Instruct 111K
£ Verified-Instruct 110K
Package-Instruct 110K

Table 6: Detailed data composition of Two-Stage SFT.

5 Experimental Results

This section contains evaluations led to OpenCoder
with many more multilingual evaluation details pro-
vided in appendix G.

Base Evaluation In Table 7 we benchmark
OpenCoder-base series on common downstream
tasks. We find that OpenCoder series achieve
the best performance among fully open models
(green lines), pushing the frontier of open-source
code llm. On the widely-used code benchmarks
HumanEval(+) and MBPP(+), OpenCoder-base
achieve state-of-the-art performance, surpassing
leading industrial code llms.

Chat Evaluation In Table 8 we benchmark
OpenCoder-instruct series on common tasks.
OpenCoder-1.5B-instruct maintains leading perfor-
mance among all 1.5B models. In BigCodeBench,
a benchmark reflecting the comprehensive capabil-
ities of code llms, OpenCoder shows strong per-
formance. OpenCoder-8B was trained on a total
of 2.5 T tokens, significantly fewer than industrial
codellm (e.g., Yi-Coder-9B: 6.0T; Qwen2.5-Coder-
7B:23.5T). At 8B scale, OpenCoder’s performance
remains in the top tier and maintains a leading po-
sition among fully open-source models.

6 Ablation Study

File-level deduplication outperforms repo-level
deduplication for code corpus Data deduplica-
tion improves efficiency and reduces overfitting,
with both file-level and repo-level methods being
applied for code data (Lee et al., 2021; Lozhkov
et al., 2024a; Guo et al., 2024). We conduct a
detailed comparison of deduplication levels, with
experiments details in Appendix C and key findings
listed below: (i) File-level deduplication leads to
better training efficiency despite more aggressive
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Model Size HumanEval MBPP BigCodeBench
HE HE+ | MBPP MBPP+ 3-shot | Full Hard
1B+ Models
DeepSeek-Coder-1.3B-Base 1.3B | 348 26.8 55.6 46.9 46.2 | 26.1 34
Yi-Coder-1.5B 1.5B | 41.5 329 27.0 222 51.6 | 235 34
CodeGemma-2B 2B | 31.1 165 51.1 43.1 454 | 239 7.4
Qwen2.5-Coder-1.5B 1.5B | 439 36.6 69.2 58.6 59.2 | 34.6 9.5
StarCoder2-3B 3B | 31.7 274 60.2 49.1 464 | 214 4.7
OpenCoder-1.5B-Base 1.5B | 543 494 70.6 58.7 51.8 24.5 5.4
6B+ Models
CodeLlama-7B 7B | 335 262 55.3 46.8 414 | 28.7 54
CodeGemma-7B 7B | 39.0 323 50.5 40.7 55.0 | 383 10.1
DS-Coder-6.7B-Base 6.7B | 47.6  39.6 70.2 56.6 60.6 | 41.1 11.5
DS-Coder-V2-Lite-Base (MoE)  16B | 40.9 34.1 71.9 59.4 62.6 | 30.6 8.1
CodeQwen1.5-7B 7B | 51.8 457 72.2 60.2 61.8 | 45.6 15.6
Yi-Coder-9B 9B | 53.7 463 48.4 40.7 694 | 429 14.2
Qwen?2.5-Coder-7B 7B | 61.6 53.0 76.9 62.9 68.8 | 45.8 16.2
Crystal-7B 7B | 22.6 20.7 38.6 31.7 31.0 | 10.8 4.1
StarCoder2-7B 7B | 354 299 54.4 45.6 552 | 27.7 8.8
StarCoder2-15B 15B | 463 37.8 66.2 53.1 152 | 384 12.2
OpenCoder-8B-Base 8B | 66.5 63.4 79.9 70.4 60.6 | 40.5 9.5

Table 7: Performance of various base models on HumanEval, MBPP, and the “complete” task of BigCodeBench.
Models trained on reproducible datasets are marked with

Model Size HumanEval MBPP BigCodeBench | LiveCodeBench
HE HE+ | MBPP MBPP+ | Full Hard Avg
1B+ Models
DS-coder-1.3B-Instruct 1.3B | 652 61.6 61.6 52.6 22.8 34 9.3
Qwen2.5-Coder-1.5B-Instruct  1.5B | 70.7  66.5 69.2 59.4 32.5 6.8 15.7
Yi-Coder-1.5B-Chat 1.5B | 67.7 63.4 68.0 59.0 24.0 6.8 11.6
OpenCoder-1.5B-Instruct 1.5B | 72.5 67.7 72.7 61.9 34.6 11.5 12.8
6B+ Models
DS-Coder-V2-Lite-Instruct 16B | 81.1 75.0 82.3 68.8 36.8 16.2 24.3
CodeLlama-7B-Instruct 7B | 4577 39.6 39.9 33.6 21.9 34 2.8
CodeGemma-7B-It 7B | 59.8 47.0 69.8 59.0 32.3 7.4 14.7
DS-Coder-6.7B-Instruct 6.7B | 78.6  70.7 75.1 66.1 35.5 10.1 20.5
Yi-Coder-9B-Chat 9B | 823 72.6 81.5 69.3 38.1 11.5 23.4
CodeQwen1.5-7B-Chat 7B | 86.0 79.3 83.3 714 39.6 18.9 20.1
Qwen?2.5-Coder-7B-Instruct 7B | 884 84.1 83.5 71.7 41.0 18.2 37.6
CrystalChat-7B 7B | 34.1 31.7 39.1 32.7 26.7 2.3 6.1
StarCoder2-15B-Instruct-v0.1  15B | 72.6  63.4 75.2 61.2 37.6 12.2 20.4
OpenCoder-8B-Instruct 8B | 83.5 78.7 79.1 69.0 42.9 16.9 23.2

Table 8: Performance of various chat models on HumanEval, MBPP, the “instruct” task of BigCodeBench and
LiveCodeBench. Models trained on reproducible datasets are marked with

token reduction. File-level dedup retains only a  exhibits complete character-level equivalence with
third of the tokens compared to repo-level dedu-  another file. When conducting file-level dedup as
plication but results in higher training efficiency, post-processing step, 68B tokens (68%) could be
as shown in Table 9. (ii) Repo-level dedup leaves  further deduplicated. The performance trending
high redundancy. With further analysis of repo-  can be found in Figure 5(a).

level dedup results, we find that 52B tokens (52%)
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Dedup Level  Token(ratio) HE MBPP
File-Level 32.7(2.4%) 18.9 19.4
Repo-Level 99.5(7.3%) 17.0 13.6

Table 9: Token counts and benchmark results us-
ing different deduplication strategies on RefineCode
Python(1364B). HE/MBPP are obtained by training a
1.5B model for one epoch on all deduplicated tokens.

High-quality code data in annealing significantly
boosts performance We compared the impact of
high-quality data (the Algorithmic Corpus and Syn-
thetic Data) during the annealing phase. From Fig-
ure 5(b), we observe that the performance drops a
lot when the high-quality training data is removed,
which demonstrates the effectiveness of our con-
structed high-quality data in the annealing phase.

GitHub star filtering limits diversity, reduc-
ing effectiveness Github stars deteriorate perfor-
mance (Allal et al., 2023). We further validate
this conclusion and provide analysis from a visu-
alization perspective. Specifically, we train two
1.5B LLMs, where one is trained original data
and another is trained by data filtered by stars
(stars>=5). As shown in Figure 5(c), star filter
leads to decreased performance. We attribute this
performance decline to the star filter’s potential
reduction of data diversity. As dedicated in Fig-
ure 5(d) and Figure 5(e), data applied star filter
reflects a lower training loss and a more concen-
trated distribution, indicating that star filter signif-
icantly compromises data diversity. Upon closer
examination of the filtered data, we find that it still
contains a considerable amount of well-structured,
algorithmically rich code. Therefore, we argue that
using stars as a filtering criterion is not an optimal
choice.

Two-Stage SFT Strategy: First Broaden Knowl-
edge, Then Sharpen Skills Stagel data ex-
hibits significant diversity, while stage2 data shows
higher quality. We believe this two-stage strat-
egy enables the acquisition of broad capabilities
in Stage 1, followed by targeted enhancement of
code-related tasks in Stage 2. Besides, separating
high-quality data can also prevent the gradient di-
Iution problem that occurs when mixing datasets,
maximizing the utilization of high-quality data. As
shown in table 10, two-stage SFT strategy can bring
consistent improvement in both public benchmarks
and real-word scenarios.

HE(+) MBPP(+) BCB Arena
S1 52.4(48.1) 68.7(57.4) 22.1 5.8
S2 69.1(64.0)  69.5(60.3)  32.6 53
SI1+S2  72.5(67.7) 72.7(61.9) 34.6 6.9
Mix  55.5(512) 52.0(58.7) 23.9 38

Table 10: Performance of different training strategies
across benchmarks. Mix Training refers to the process
of combining and shuffling the data from Stage 1 and
Stage 2 for joint training.

7 Related Work

Open Large Language Models. Recently, numer-
ous open-sourced LLMs, such as LLaMA (Tou-
vron et al., 2023), Mistral (Jiang et al., 2023),
and Qwen (Bai et al.,, 2023), have empow-
ered the research community, fostering inno-
vation. Open datasets like RedPajama (Com-
puter, 2023) and SlimPajama (Soboleva et al.,
2023), Map-Neo (Zhang et al., 2024a) along-
side chat datasets such as WildChat (Zhao et al.,
2024), further accelerate LLM advancements. No-
tably, fully open LLMs like OLMo (Groeneveld
et al., 2024), OLMoE (Muennighoff et al., 2024b),
and LLM360 (Liu et al., 2023b) provide com-
prehensive reproduction details, including data
pipelines and checkpoints. In the realm of code
LLMs, StarCoder (Allal et al., 2023) and Star-
CoderV2 (Lozhkov et al., 2024a) share their data
piplines and high-quality pretraining corpora.
Code Large Language Models. The rapid ad-
vancement of generative language models has led
to significant progress in Al-assisted software engi-
neering (Radford et al., 2019; Brown et al., 2020;
Touvron et al., 2023; Sun et al., 2024). Proprietary
models (Achiam et al., 2023; Chen et al., 2021;
Chowdhery et al., 2023) have achieved strong
performance across various code-related bench-
marks (Chen et al., 2021; Hendrycks et al., 2020),
yet the lack of accessible model weights limits
reproducibility and downstream innovation. In
response, the community has introduced several
open-source alternatives, such as CodeGen (Ni-
jkamp et al., 2023b,a), StarCoder (Li et al., 2023b;
Lozhkov et al., 2024b), CodeLlama (Roziere et al.,
2023), and DeepSeekCoder (Guo et al., 2024; Zhu
et al., 2024), which support broader experimenta-
tion and development.

Code Benchmarks. Many benchmark datasets
have been proposed to comprehensively assess
code large language models, covering diverse tasks
such as code generation (Chen et al., 2021; Austin
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(b) Impact of High Quality Data
in Annealing Stage

(a) Impact of Deduplication
Strategies

(c) Impact of Star-based
Data Filtering

(d) Training Loss of Using
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(e) Impact of Star-based
Data Filtering
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Figure 5: (a-c) shows 1.5B Code LLM performance across applying different ablation settings. (d) shows the
comparison of training loss using star-based data filtering or not. (e) shows the distribution of data processed

star-based data filtering or not.

et al., 2021; Athiwaratkun et al., 2023; Gu et al.,
2024; Lai et al., 2023; Chai et al., 2024; Muen-
nighoff et al., 2024a), code retrieval (Husain et al.,
2019; Lu et al., 2021), translation (Yan et al.,
2023), and efficiency (Du et al., 2024). Particularly,
repository-level code completion has emerged as
a challenging yet critical benchmark (Liu et al.,
2023a; Shrivastava et al., 2023; Zhang et al., 2023;
Deng et al., 2024; Liu et al., 2024b).

8 Conclusion

In this paper, we present OpenCoder, an open
LLM specialized in code intelligence that achieves
top-tier performance. To advance research trans-
parency and reproducibility, we release our com-
plete training materials, including: the complete
data processing pipeline, the reproducible pretrain-
ing dataset, the synthetic dataset, the open code
SFT dataset, rigorous experimental ablation results,
detailed training protocols and intermediate check-
points. The performance of OpenCoder is on par
with leading proprietary models, and it surpasses
most previous open-source models at the 1B+ and
6B+ parameter scale. We hope the release of Open-
Coder can democratize access to all aspects of a top-
tier code LLM, serving as both a powerful model
and an open foundation to accelerate research and
enable reproducible advancements in code Al

9 Limitations

Although OpenCoder has explored the entire work-
flow for building a code LLM, our project still has
several limitations. First, during the pretraining
data filtering process, we focused exclusively on
developing rule-based filtering rules but did not
explore model-based filtering approaches. In addi-
tion, due to resource constraints, we only utilized
raw code and code-related text data in the training
process, without considering the potential promo-

tion of general natural language data on the perfor-
mance of code LLMs. Finally, in the post-training
phase, we performed only supervised fine-tuning
(SFT) on the base model, without considering rein-
forcement learning from human feedback (RLHF)
for better alignment with human preferences.
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A Raw Code Processing

In this section, we delve into the details of the data
processing pipeline in RefineCode. Specifically,
we focus on on the design and considerations of
two crucial modules: deduplication and filtering,
and talk about their orders.

A.1 Processing Details

Deduplication Owing to the extremely high repe-
tition of the source code in Github, we adopt an ag-
gressive file-level deduplication strategy (see elabo-
rate analysis in Appendix C). More specifically, we
leverage both exact deduplication and fuzzy dedu-
plication methods to eliminate documents contain-
ing identical or near-identical code content shown
as follows:

Exact Deduplication: Due to the prevalence
of forking and copy-pasting within the codebase,
nearly 75% of files are completely duplicated. On
account of this, differing from general deduplica-
tion process, Identity removal is applied towards
code data at the first step in this module. We com-
pute the SHA256 hash value for each document,
where files with identical hash values are compared,
and only the code files with the highest star count as
well as the latest commit time are retained, in order
to preserve the highest quality and most up-to-date
files.

Fuzzy Deduplication: This step aim to dedupli-
cate those near-identical files. We split the raw text
into 5-gram pieces, and then calculate the 2048
MinHash functions (Broder, 1997). Additionally,
we utilize LSH (Leskovec et al., 2014) by setting
bands to 16 and rows to 128, to retain only those
distinct files with the highest stars and latest com-
mit time. This process removes 6% file volume.

Filtering Given the distinct nature of code com-
pared to natural language, the criteria for high-
quality code differ significantly from those for natu-
ral language. Furthermore, different programming
languages also exhibit distinct properties. Based
on this, we believe that designing a set of detailed
heuristic filtering rules tailored specifically to the
characteristics of pretraining data is important to
enhance the model’s capabilities. Drawing inspira-
tion from the principles of high-quality code data
proposed in Gunasekar et al. (2023), we consider
the following guidelines when designing our filters:
1) Filter out files with poor self-containment;
2) Filter out files with poor or minimal logical

structure; 3) Remove files that deviate signifi-
cantly from standard formatting.

Based on these guidelines and the characteristics
of our dataset, our work presents the first heuris-
tic filtering framework by considering the unique
characteristics of different programming languages.
Based on RedPajama (Computer, 2023), this frame-
work extends and refines the existing rules from
StarCoder (Li et al., 2023b) to better align with
the unique properties of code datasets, resulting in
more precise and higher-quality data cleansing. We
developed the following three categories of filtering
rules:

1. Natural Language Filtering Rules: These
rules filter data based on common properties
for all text files, such as file size, number of
lines, and other general metrics. Both text and
code files share these filtering rules.

2. General Code Filtering Rules: These rules
apply to all code files by filtering data based
on general code characteristics, such as the
number of variables, average function length,
and other common features.

3. Language-Specific Filtering Rules: These
rules are designed according to the unique
characteristics of specific programming lan-
guages, such as the frequency of “pass” state-
ments in Python or the use of “goto” state-
ments in C. We have developed these rules for
the following eight commonly used program-
ming languages: Python, C, C++, C#, Java,
JavaScript, Go, and HTML.

Heuristic rules involve extensive threshold set-
ting. When defining these rules and determining
thresholds, we consistently follow a guiding prin-
ciple: to remove harmful data as much as possi-
ble, while ensuring the overall distribution of the
dataset is not significantly affected. We outline
our motivations for rule design in Appendix B.1,
along with a detailed explanation of the tuning pro-
cess for the corresponding thresholds. Besides, we
show the details of several representative rules in
Appendix B.2.

A.2 Processing Order

Most LLM data processing pipelines adopt a strat-
egy where filtering is applied first, followed by
deduplication. In contrast, our approach prioritizes
deduplication before filtering, which offers advan-
tages from two perspectives:
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* Processing Cost and Efficiency: As men-
tioned earlier, over 90% of files in raw code
are exact duplicates. Performing deduplica-
tion upfront helps avoid the computational
overhead costing by filtering redundant files
in the subsequent filtering phase. Addition-
ally, the filtering rules are subject to frequent
revisions, which means that both the filter-
ing phase and the stages following it would
need to be repeated. By conducting deduplica-
tion before filtering, we can mitigate the extra
computational demands that arise from these
repeated adjustments.

* Data Intuition: The effectiveness of the fil-
tering stage must be evaluated based on the
distribution of the processed data. Therefore,
when filtering is applied last, the resulting
data distribution directly reflects the distribu-
tion used during training, allowing for more
intuitive and rapid adjustments to the filtering
rules. In contrast, if filtering is applied before
deduplication, the final data distribution used
for training will be altered by the deduplica-
tion process, making it difficult to adjust the
filtering rules based solely on the post-filtered
data distribution.

Given these considerations, we argue that per-
forming deduplication before filtering is a more
rational choice for code pretraining data.

B Filtering Rules
B.1 Design of Filtering Rules

Designing heuristic filtering rules is inherently chal-
lenging, often requiring iterative refinement and
experimentation to ultimately develop an effective
set of rules. Given this complexity, in addition to
providing detailed explanations of our designed
rules, we will also share the general insights and
methodologies we have accumulated throughout
the designing process. We believe that this section
will offer valuable guidance for designing heuristic
filtering rules applicable to any dataset, thereby sig-
nificantly enhancing the efficiency of constructing
an effective data cleaning pipeline.

Heuristic rules filter data based on specific char-
acteristics of a file, which, for each file, are ulti-
mately expressed as a score representing the file’s
attribute and a corresponding threshold set by the
rule. During the rule design process, we found that
understanding the distribution of scores and the

impact of different threshold settings on data filter-
ing is critical to creating effective rules. Therefore,
based on the approach used in RedPajama (Com-
puter, 2023), we decompose the heuristic filtering
process into two steps: quality signal computa-
tion and filtering execution. The quality signal
computation calculates the scores for all rules for
each file, while the filtering execution module de-
cides whether a file is retained based on its quality
signal scores and the corresponding thresholds.

Additionally, we recommend placing the heuris-
tic filtering process as late as possible in the overall
data pipeline. Unlike other, more fixed stages of
the data processing pipeline, this stage requires fre-
quent adjustments based on the final quality of the
data. Placing it later in the process allows for more
precise control over the data and minimizes the
need to repeat subsequent steps after this filtering
module.

The specific steps for designing our heuristic
filtering rules are as follows:

1. Quality Signals Designing: Based on the def-
inition of low-quality data and the attributes
of the dataset, we firstly design a series of
quality signals that describe the attributes con-
tributing to file quality.

2. Coarse Threshold Tuning: Referring to the
definition of low-quality data and the distri-
bution of quality signal scores, we roughly
set filtering thresholds for all rules at once.
We then apply the filters to obtain an initial
version of the filtered dataset.

3. Fine-grained Threshold Tuning: For each
rule, we focus on the data that was exclusively
affected by that specific rule, meaning it did
not trigger other filters. This part of the data is
directly influenced by the current rule, so we
can examine whether the retention or removal
of this data under different threshold settings
aligns with the intended purpose of the rule.
If a rule is effective in improving data quality
based on its target attribute, we select the opti-
mal threshold; otherwise, the rule is discarded.
After evaluating each rule, we apply the filters
again to obtain a more refined filtered dataset.

4. Data Quality Inspection: We then assess
whether the filtered dataset meets our expec-
tations for the quality of pretraining data. In
addition to traditional manual inspection, we
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introduce a perplexity (PPL)-based method
for data quality evaluation. Specifically, we
randomly sample a set of data from the fil-
tered dataset and use a high-performing LLM
to compute the PPL on these samples. We
then examine the top-N and bottom-N sam-
ples based on PPL. Generally, extremely low
PPL suggests that the data is overly simplistic,
containing limited valuable knowledge, while
extremely high PPL indicates that the data
may lack learnable patterns. Both of them are
advisable to be filtered out. We closely inspect
both sets of samples and, based on their char-
acteristics, decide whether to add new rules or
adjust existing thresholds. This process can be
repeated until the dataset reaches the desired
quality.

B.2 Examples of Filtering Rules

We elaborate several representative examples about
general code filtering rules in Table 11 and
language-specific filtering rules in Table 12 and
explain their rationale. It is essential to note that
for general code filtering rules, the threshold values
may be slightly adjusted depending on the program-
ming language of the file. For specific threshold
values, please refer to our implementation details
of the data processing pipeline.

C Analysis on Chunk-level Deduplication

During pretraining, data is first randomly concate-
nated and segmented into chunks of context length,
followed by full-attention computation within each
chunk. We further explored chunk-level dedupli-
cation. Specifically, the pretraining data was ran-
domly concatenated and segmented into chunks
of 4096 tokens, followed by MinHash and LSH
deduplication on these chunks. Additionally, we
applied chunk-level deduplication after file-level
and repo-level deduplication.

From the results in Table 13, We observe that
chunk-level deduplication alone was even less ef-
fective than repo-level deduplication, and applying
chunk-level deduplication after file-level removed
only an additional 0.04B of data. This indicates
that chunk-level deduplication is not an effective
approach. We pre-trained three 1.5B models on the
data retained under file-level, repo-level, and repo-
level + chunk-level deduplication strategies. The
benchmark results are shown in Figure 6. It is evi-
dent that file-level deduplication achieves the high-
est training efficiency, while repo-level + chunk-
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Figure 6: Comparison of Pass@ 1 performance on Hu-
manEval & MBPP for different dedup strategies (File-
Level, Repo-Level, and Repo-level + Chunk-Level)
across RefineCode Python corpus.

level deduplication outperforms repo-level alone.
We attribute the superior performance of file-level
deduplication to its higher degree of data removal.
Overall, we conclude that file-level deduplication
is the most suitable method for GitHub data.

D Extra Data Processing

D.1 Code-Related Data from Web Corpus

As mentioned in Section 2.1.2, we recall code-
related data from web corpus referring to the
method proposed in DeepSeekMath (Shao et al.,
2024). The concrete steps are shown in the follow-
ing:

1. Annotation: We annotate 500k high-quality
code-like data from CommonCrawl using the
Autonomous Data Selection method (Zhang
et al., 2024b) as seed.

2. Fasttext Training: We train a fasttext model
using annotated data to identify whether those
documents from web data are code-related or
not.

3. Common Crawl Recall: We retrieve code-
related web pages from Common Crawl using
the trained fasttext model.

4. Domain Discovery: Domains (e.g., stack-
overflow.com) are identified based on URL
statistics, and those domain including over
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Table 11: Examples of general code filtering rules.

Description Explanation Filtering Quota
The proportion of lines in strings with a Files with too many long strings score > (.2
word count exceeding. indicate a lack of code logic.
The proportion of characters in words from  String variables containing long score > 0.4
strings with a character count exceeding 20.  sequences of characters are often

indicative of meaningless content

such as base64 data, Hash encoding,

url, etc.
The proportion of hexadecimal characters. Files with two many hexadecimal score > 0.4

characters indicate a lack of code

logic.
The proportion of lines like "you code We found that these elements tend score > (.01
here", "TODOQO" or "FIXME". to be excessively repeated in the

dataset, which increases the likeli-

hood that the model, during code

completion, will output placehold-

ers like the ones mentioned above

instead of generating actual code.
The proportion of lines containing an "as- Files containing a large number of score > 0.4

sert" statement.

“assert’ statements are often test files,

which tend to have relatively simple
and repetitive code patterns.

Table 12: Examples of python-specific filtering rules.

Description Explanation

Filtering Quota

The proportion of the number of python
functions to the total number of lines.

A higher number of Python func-
tions in a file may indicate that the

score > 0.2

functions are overly simple, with
limited code logic, or have a bad

code format.

Whether the file can be parsed into an
python abstract syntax tree (AST).

Files that cannot be parsed into
an AST contain syntax errors and

score == False

should be filtered out.

The proportion of lines that are "import"
statements.

A file with exceeding prportion of
"import" statements indicates to have

score > 0.3

sparse code logic.

10% code-related pages are classified as code-
related.

5. URL Annotation: We manually annotate
code-related URL patterns (e.g., stackover-
flow.com/questions) and iteratively include
misclassified but relevant pages into the seed
corpus, and repeat the process from step 2.

We iterate this process three times and finally
obtain 75 billion code-related tokens.

D.2 Chinese Code-Like Domains Annotation

The manual annotation of the URLs of the website
is presented as shown in Table 14. For future new
CC datasets, we can sample pages in these domains
as initial seed corpus.

D.3 Code-Related Data from Github Text
Files

Github Text files primarily consist of content writ-
ten in natural languages, which includes abundant
code-related knowledge. However, we observed
that a substantial portion of the dataset is unrelated
to code, which is detrimental to the model’s ability
to learn code-related knowledge. Therefore, we
employed the following strategies to extract and re-
tain the code-relevant portions before our filtering
module. Firstly, following the strategy used in star-
coder (Li et al., 2023b), we retained the files with
"requirement” in the lowercased filename, or if the
filename without the extension is one of "readme",
"notes", "todo", "description", "cmakelists", in or-
der to ensure that only text files pertinent to coding
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Table 13: Comparison of deduplication strategies on Python data. At the file-level, "Lines" refers to the number
of lines in individual files; at the repo-level, it indicates the line count of aggregated strings; Note that for all
deduplication strategies involving the Chunk level, "Lines" specifically refers to 4096-token chunks.

Dedup Level \ # Total Samples  # Retained Samples  # Retained Tokens
Chunk 333,007,812 79,272,460 32470 B
File 485,817,123 30,488,834 32.74B
File+Chunk 333,007,812 7,993,164 32.70 B
Repo 11,037,352 7,480,488 99.47 B
Repo+Chunk 333,007,812 17,675,781 7240B

contexts are preserved. This strategy recalled 3%
volume of the whole text part. Additionally, we
trained a fasttext model to recall code-related text
files and recalled extra 7% file volume from the
original text data.

D.4 Jupyter Notebooks

Our Jupyter notebook data is sourced from GitHub
and Meta Kaggle code (Plotts and Risdal, 2023).
We converted this type of data into the Jupyter-
structured format used in StarCoder (Li et al.,
2023b), which consists of a triplet of consecutive
markdown, code, and code execution results. How-
ever, we discarded the Jupyter-script format men-
tioned in StarCoder. Because the code files gen-
erated from Jupyter notebook conversions tend to
have poor overall code writing standards, and the
content in Jupyter-script and Jupyter-structured
formats is highly redundant, making it sufficient to
retain only one format.

E Programming Languages Categories

E.1 Included Programming Languages

Included programming languages can be categoried
into three classes: code, data and text. Among
them, the "code" category represents files rich in
code logic, while the "data" category primarily con-
sists of files with structured data, and the "text" cat-
egory refers to files dominated by natural language
content. The threshold settings for the filtering
rules vary slightly depending on the data type.

Code(470 types): 1C Enterprise, 4D, ABAP,
ABAP CDS, AIDL, AL, AMPL, ANTLR, API
Blueprint, APL, ASL, ASP.NET, ATS, Action-
Script, Ada, Agda, Alloy, Alpine Abuild, An-
gelScript, Apex, Apollo Guidance Computer, Ap-
pleScript, Arc, Aspect], Assembly, Astro, Asymp-
tote, Augeas, AutoHotkey, Autolt, Awk, BA-
SIC, BOQN, Ballerina, Batchfile, Beef, Befunge,
Berry, Bikeshed, Bison, BitBake, Blade, BlitzBa-

sic, BlitzMax, Bluespec, Boo, Boogie, Brain-
fuck, Brightscript, C, C#, C++, C2hs Haskell,
CAP CDS, CLIPS, CMake, COBOL, CUE, Ca-
dence, Cairo, CameLIGO, Cap’n Proto, Ceylon,
Chapel, Charity, ChucK, Circom, Cirru, Clar-
ion, Clarity, Classic ASP, Clean, Click, Clojure,
Closure Templates, CodeQL, CoffeeScript, Cold-
Fusion, ColdFusion CFC, Common Lisp, Com-
mon Workflow Language, Component Pascal,
Coq, Crystal, Csound, Csound Document, Csound
Score, Cuda, Curry, Cycript, Cypher, Cython, D,
D2, DIGITAL Command Language, DM, Dafny,
Dart, DataWeave, Dhall, Diff, Dockerfile, Doge-
script, Dylan, E, ECL, EJS, EQ, Earthly, Edge,
EdgeQL, Elixir, Elm, Elvish, Emacs Lisp, Em-
berScript, Erlang, F#, F*, FIRRTL, FLUX, Fac-
tor, Fancy, Fantom, Faust, Fennel, Filebench
WML, Fluent, Forth, Fortran, Fortran Free Form,
FreeBasic, Futhark, GAML, GAMS, GAP, GDB,
GLSL, GSC, Game Maker Language, Genero
4¢l, Genero per, Genshi, Gentoo Ebuild, Gen-
too Eclass, Gherkin, Gleam, Glimmer JS, Glyph,
Go, Golo, Gosu, Grace, Grammatical Frame-
work, Groovy, Groovy Server Pages, HCL, HLSL,
HTML, HTML+ECR, HTML+EEX, HTML+ERB,
HTML+PHP, HTML+Razor, Hack, Haml, Han-
dlebars, Harbour, Haskell, Haxe, HiveQL, HolyC,
Hy, IDL, IGOR Pro, Idris, ImageJ Macro, Imba,
Inform 7, Ink, Inno Setup, lo, Ioke, Isabelle, Is-
abelle ROOT, J, JCL, JFlex, JSONiq, Janet, Jas-
min, Java, Java Server Pages, JavaScript, Jet-
Brains MPS, Jinja, Jison, Jison Lex, Jolie, Json-
net, Julia, Just, KRL, Kaitai Struct, Kakoune-
Script, KerboScript, Kit, Kotlin, LFE, LLVM,
LOLCODE, LSL, LabVIEW, Latte, Lean, Less,
Lex, LigoLANG, LilyPond, Limbo, Liquid, Liter-
ate Agda, Literate CoffeeScript, Literate Haskell,
LiveScript, Logos, Logtalk, LookML, Lua, Luau,
M, M4, M4Sugar, MATLAB, MAXScript, MLIR,
MQL4, MQL5, MTML, MUF, Macaulay2, Make-
file, Mako, Marko, Mask, Mathematica, Mercury,
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Table 14: We manually annotate code-like and math-like Chinese domains, utilizing the *%’ symbol as a wildcard
in our pattern matching. For example, the URL ’https://my.oschina.net/u/4/blog/11’ is matched by the pattern

’%my.oschina.net%blog%’.

Domain Prefix Tag

cloud.tencent.com %cloud.tencent.com/developer/article% Code
cloud.tencent.com %cloud.tencent.com/ask % Code
cloud.tencent.com %cloud.tencent.com/developer/information% Code
cloud.tencent.com %cloud.tencent.com/document% Code
my.oschina.net J%my.oschina.net%blog% Code
ask.csdn.net Yoask.csdn.net/questions% Code
www.cnblogs.com Jowww.cnblogs.com% Code
forum.ubuntu.org.cn Yoforum.ubuntu.org.cn% Code
g.cnblogs.com 9q.cnblogs.com/q% Code
segmentfault.com %segmentfault.com/q% Code
segmentfault.com Yosegmentfault.com/a% Code
woshipm.com Jowoshipm.com/data-analysis% Code
zgserver.com Yozgserver.com/server% Code
zgserver.com Jozgserver.com/linux% Code
zgserver.com %zgserver.com/ubuntu% Code
juejin.cn Yojuejin.cn/post% Code
jiqizhixin.com %jiqizhixin.com/articles% Code
help.aliyun.com Yohelp.aliyun.com/zh% Code
jyeoo.com %jyeoo.com% Math
www.haihongyuan.com 9Yhaihongyuan.com%shuxue% Math
www.03964.com Jowww.03964.com% Math
www.nbhkdz.com %www.nbhkdz.com% Math
9512.net %9512.net% Math
lanxicy.com Ylanxicy.com% Math
bbs.emath.ac.cn 9obbs.emath.ac.cn% Math
math.pro %math.pro% Math
mathschina.com Jomathschina.com% Math
shuxue.chazidian.com %shuxue.chazidian.com% Math
shuxue.ht88.com Joshuxue.ht88.com% Math

Mermaid, Meson, Metal, MiniD, Mint, Mirah,
Modelica, Modula-3, Module Management Sys-
tem, Mojo, Monkey, MoonScript, Motorola 68K
Assembly, Move, Mustache, Myghty, NASL, NSIS,
NWScript, Nearley, Nemerle, NetLinx, NetLogo,
Nextflow, Nim, Nit, Nix, Nu, NumPy, Nunjucks,
OCaml, Oberon, Objective-C++, Objective-J, Om-
grofl, Opa, Opal, Open Policy Agent, OpenCL,
OpenQASM, OpenSCAD, Ox, Oxygene, Oz, P4,
PDDL, PEG.js, PHP, PLSQL, PLpgSQL, Pact,
Pan, Papyrus, Parrot, Parrot Assembly, Parrot In-
ternal Representation, Pascal, Pawn, Pep8, Perl,
PigLatin, Pike, PogoScript, Polar, Pony, Portugol,
PowerBuilder, PowerShell, Praat, Processing, Proc-
file, Prolog, Promela, Propeller Spin, Pug, Pup-
pet, PureScript, Prover9, Pyret, Python, Q#, QML,

QMake, Qt Script, Quake, R, RAML, REALDbasic,
REXX, RPGLE, RUNOFF, Racket, Ragel, Raku,
Rascal, ReScript, Reason, ReasonL.IGO, Rebol,
Red, Redcode, RenderScript, Ring, Riot, Robot-
Framework, Roc, Rouge, Ruby, Rust, SAS, SMT,
SQF, SQL, Sage, SaltStack, Sass, Scala, Scaml,
Scenic, Scheme, Scilab, Self, Shell, ShellSession,
Shen, Sieve, Singularity, Slash, Slim, Slint, SmPL,
Smali, Smalltalk, Smarty, Smithy, Snakemake,
SourcePawn, Squirrel, Stan, Standard ML, Starlark,
Stata, Stylus, SugarSS, Svelte, Sway, Swift, Sys-
temVerilog, TI Program, TL-Verilog, TLA, TSX,
TXL, Talon, Tcl, Tcsh, Tea, Terraform Template,
Thrift, Toit, Turing, Twig, TypeScript, Typst, Uni-
fied Parallel C, Uno, UnrealScript, UrWeb, V, VBA,
VBScript, VCL, VHDL, Vala, Velocity Template
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Language, Verilog, Vim Script, Vim Snippet, Vi-
sual Basic .NET, Visual Basic 6.0, Volt, Vue, Vyper,
WDL, WGSL, WebAssembly, WebIDL, Whiley,
Witcher Script, Wollok, Wren, X10, XC, XProc,
XQuery, XS, XSLT, Xojo, Xonsh, Xtend, YARA,
YASnippet, Yacc, Yul, ZAP, ZIL, Zeek, ZenScript,
Zephir, Zig, Zimpl, eC, fish, hoon, kvlang, mIRC
Script, mcfunction, mupad, nesC, ooc, templ, wisp,
xBase

Data(115 types): ABNF, ASN.1, Adobe Font
Metrics, Altium Designer, Ant Build System,
ApacheConf, Avro IDL, BibTeX, Browserslist,
CIL, CODEOWNERS, CSON, CSS, Cabal Con-
fig, Caddyfile, CartoCSS, Cloud Firestore Secu-
rity Rules, CoNLL-U, DNS Zone, Darcs Patch,
Debian Package Control File, Dotenv, EBNF,
Eagle, Easybuild, Ecere Projects, EditorConfig,
Edje Data Collection, FIGlet Font, Formatted,
GEDCOM, GN, Gemfile.lock, Gerber Image, Git
Attributes, Git Config, Glyph Bitmap Distribu-
tion Format, Go Checksums, Go Module, Go
Workspace, Godot Resource, Gradle, Gradle Kotlin
DSL, GraphQL, Graphviz (DOT), HAProxy, HO-
CON, HTTP, HXML, INI, Ignore List, JAR Mani-
fest, JSON, JSON with Comments, Jest Snapshot,
Kusto, Lark, Linker Script, Maven POM, NEON,
NL, NPM Config, Nginx, Ninja, ObjDump, Object
Data Instance Notation, OpenStep Property List,
OpenType Feature File, Option List, PlantUML,
PostCSS, Prisma, Protocol Buffer, Protocol Buffer
Text Format, Python traceback, RBS, RON, Read-
line Config, Record Jar, Redirect Rules, Regular
Expression, SCSS, SELinux Policy, SPARQL, SSH
Config, STAR, STON, ShellCheck Config, Sim-
ple File Verification, Soong, Spline Font Database,
TOML, TextMate Properties, Turtle, Type Lan-
guage, Valve Data Format, Wavefront Material,
Web Ontology Language, WebAssembly Interface
Type, Wget Config, Windows Registry Entries,
X BitMap, X Font Directory Index, XCompose,
XML, XML Property List, XPages, YAML, YANG,
cURL Config, crontab, desktop, dircolors, edn,
nanorc

Text(22 types): AsciiDoc, Creole, Gemini, Get-
text Catalog, MDX, Markdown, Muse, Org, Pod,
Pod 6, RDoc, RMarkdown, Rich Text Format, Roff,
SRecode Template, Sweave, TeX, Texinfo, Text,
Textile, Wikitext, reStructuredText

E.2 Excluded Programming Languages

2-Dimensional Array, AGS Script, Adblock Fil-
ter List, Bicep, COLLADA, CSV, Checksums, Di-
rectX 3D File, E-mail, G-code, Git Revision List,
Gnuplot, IRC log, KiCad Layout, KiCad Legacy
Layout, KiCad Schematic, Lasso, Linux Kernel
Module, Max, Microsoft Developer Studio Project,
Microsoft Visual Studio Solution, POV-Ray SDL,
Pic, Pickle, PostScript, Public Key, Pure Data, Pure-
Basic, Raw token data, Roff Manpage, STL, SVG,
SubRip Text, TSV, Unity3D Asset, Wavefront Ob-
ject, WebVTT, X PixMap, robots.txt

F Raw Code Data Composition

Figure 15 shows the composition of raw code
data for top 85 programming languages in the Re-
fineCode dataset, both after deduplication and fil-
tering process, and Figure 7 unveil the training
data compsition trending without data sampling.
It can be observed that, after filtering, the propor-
tion of data for different programming languages
has shifted significantly, with a notable increase in
the representation of commonly used programming
languages.

G Benchmark
G.1 Code Benchmark

In this section, we will present the code bench-
marks used for model evaluation and supplement
the complete results.

G.1.1 Benchmark for Base Models

HumanEval & MBPP We selected two widely
used code completion benchmarks to evaluate
OpenCoder, HumanEval (Chen et al., 2021)and
MBPP (Austin et al., 2021). To further enhance the
accuracy of the evaluation, EvalPlus (Liu et al.,
2024d) extends HumanEval and MBPP to Hu-
manEval Plus and MBPP Plus by adding unique
and challenging test cases and correcting for inac-
curate ground truth solutions. These results can
be used to indicate the model’s ability to under-
stand and apply basic Python data structures and
knowledge of algorithms. For HumanEval, we
report the 0-shot results. For MBPP, we report 3-
shots’ results on 500 questions in the test split from
MBPP (Austin et al., 2021), while the base and the
plus results following EvalPlus (Liu et al., 2024d)
report results on 378 questions in the sanitized part.
Therefore, these results are not comparable and
evaluated based on different data splits.
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BigCodeBench BigCodeBench (Zhuo et al.,
2024) is a challenging benchmark for code comple-
tion, designed to assess the models’ ability to han-
dle complex instructions and make accurate func-
tion calls across diverse external libraries. In the
Completion setup, models are provided with a func-
tion signature, related documentation to generate
appropriate code, and a unit test for the completed
function. Covering a range of practical program-
ming tasks, it evaluates the ability of the models
to handle real-world scenarios involving complex,
task-specific libraries.

G.1.2 Benchmark for Instruct Model

LiveCodeBench LiveCodeBench is a compre-
hensive, contamination-free benchmark assessing
highly complex algorithmic tasks’ reasoning and
problem-solving abilities. The benchmark is con-
tinuously updated with new problems from plat-
forms such as LeetCode, AtCoder, and CodeForces,
ensuring the challenges remain current and diverse.
LiveCodeBench provides a robust measure of a
model’s ability to handle sophisticated logical pro-
cesses, which is essential in competitive program-
ming contexts. The instruct models are evaluated
on the 2305-2409 data split.

We follow the Qwencoder evaluation code * to
systematically measure performance in MultiPL-
E (Cassano et al., 2022), providing insight into
the adaptability and precision of the generation of
LLM codes in Table 16. In addition, we evaluate
our model using two more comprehensive bench-
marks: McEval (Chai et al., 2024) in Table 8, and
MdEval (Liu et al., 2024e) in Table 9.

MultiPL-E  MultiPL-E extends the HumanEval
benchmark to evaluate the code generation capa-
bilities of large language models across multiple
languages. MultiPL-E translates tasks into lan-
guages such as C++, Java, PHP, TypeScript, C#,
Bash, and JavaScript, providing a consistent basis
for assessing how models apply their programming
skills across different syntaxes and paradigms. We
follow the evaluation code of Qwencoder' to sys-
tematically measure performance in each language,
providing insights into the adaptability and code
generation accuracy of LLMs in a multilingual con-
text.

McEval The comprehensive multilingual code
evaluation benchmark McEval (Chai et al., 2024)

*https://github.com/QwenlLM/Qwen2.5-Coder
Thttps ://github.com/QwenLM/Qwen2.5-Coder

employed a detailed assessment of OpenCoder’s
programming capabilities across 40 languages. In
contrast to MultiPL-E, this benchmark is not de-
rived from HumanEval or MBPP. Figure 8 depicts
the results of the multilingual generation task for
OpenCoder-8B-Instruct, which comprises nearly
2,000 samples. The figure illustrates that the model
exhibits superior multilingual performance com-
pared to other open-source models of comparable
size.

MdEval OpenCoder is also evaluated on the com-
prehensive multilingual code debugging bench-
mark MdEval (Liu et al., 2024e) across 18 lan-
guages. In contrast to McEval, this benchmark
focuses on the assessment of code debugging, espe-
cially for language-specific bugs. Figure 9 shows
the results of the multilingual automated program
repair task for OpenCoder-8B-Instruct, which com-
prises nearly 1.2K samples, which demonstrates
that OpenCoder can effectively find the bugs and
fix them compared to other open-source models of
comparable size.

G.2 Comparison of OpenCoder with
Reasoning Models

We also compared OpenCoder against several
strong open-source reasoning models of similar
sizes, including DeepSeek-R1-Distill-Llama-8B,
DeepSeek-R1-Distill-Qwen-7B, and DeepSeek-R1-
Distill-Qwen-1.5B (Guo et al., 2025). As shown in
Table 17, OpenCoder performs competitively and
often surpasses reasoning models on tasks like Hu-
manEval, MBPP which require less complex rea-
soning. Additionally, BigCodeBench is designed to
evaluate diverse function calls and complex code in-
structions. OpenCoder builts Package-Instruct and
Real-Instruct for package usage and real-world cod-
ing, outperforming reasoning models in complex
tasks like function calls. However, on more logic-
intensive benchmarks such as LiveCodeBench, rea-
soning models exhibit stronger performance due to
their enhanced inference capabilities, showing their
potential in this area. Overall, considering the scale
of OpenCoder model family, it demonstrates strong
and competitive performance in the code domain,
and remains highly effective even compared to top
open-source reasoning models.

G.3 Performance on General Benchmark

To provide a more comprehensive view of
the model’s capabilities on general tasks such
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as instruction-following and chat, we con-
ducted additional evaluations using the OpenCom-
pass (Contributors, 2023). Specifically, we com-
pared OpenCoder-8B-Instruct against DeepSeek-
6.7B-Instruct, StarCoder2-15B-Instruct-v0.1, and
Qwen?2.5-Coder-7B on a range of general-purpose
metrics including BBH (Suzgun et al., 2022),
GSMS8K (Cobbe et al., 2021), IFEVAL (Zhou
et al., 2023), MATH (Hendrycks et al., 2021),
MMLU (Hendrycks et al., 2020), CMMLU (Li
et al., 2023a).

As shown in Table 18, OpenCoder-8B-Instruct
achieves comparable performance to models
trained from scratch for code, including DeepSeek-
6.7B-Instruct and StarCoder2-15B-Instruct-v0.1,
and demonstrates particularly strong performance
on instruction-following tasks (e.g., IFEVAL), indi-
cating better alignment with user intent. Compared
to Qwen2.5-Coder-7B, built on Qwen2.5-7B with
18T training tokens, OpenCoder performs lower on
general metrics. This is expected because Open-
Coder focuses more on code-related learning and
uses less general-domain data. This design leads
to high efficiency and strong performance on code-
centric tasks.

H Prompts For SFT Synthetic Data

Prompts for generating synthetic code SFT data are
shown below.
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Table 15: Overview of the data composition of in RefineCode. The items in the table are sorted in descending order

according to the file volume after filtering.

Language After deduplication After filtering

# Files Vol(GB) Ratio(%) #Files Vol(GB) Ratio(%)
html 141,081,897 3,175.4 8.56 | 45,100,466 582.4 18.08
java 215,177,833 706.8 1.90 | 124,751,295 474.3 14.72
python 109,725,362 493.3 1.33 | 58,640,346 271.1 8.41
csharp 88,825,202 364.2 0.98 | 57,910,485 232.4 7.21
javascript 190,670,421 1,925.0 5.19 | 69,579,517 226.9 7.04
php 84,378,361 374.4 1.01 60,089,397 222.7 6.91
cpp 51,362,503 375.2 1.01 38,037,406 176.9 5.49
g0 35,649,865 301.1 0.81 | 26,723,829 153.7 4.77
typescript 40,211,985 287.4 0.77 | 20,621,755 140.4 4.35
ruby 15,735,042 244.5 0.66 8,285,561 122.7 3.81
perl 16,354,543 121.7 0.33 9,532,620 65.6 2.04
rust 10,605,421 63.6 0.17 6,086,150 39.9 1.24
r 6,132,978 92.5 0.25 4,803,109 34.7 1.08
swift 4,238,754 479 0.13 2,938,498 31.8 0.99
kotlin 4,493,548 56.4 0.15 3,123,156 29.8 0.94
dart 4,087,329 33.0 0.09 2,161,462 18.5 0.57
java-pages 6,174,654 31.0 0.08 4,145,336 15.4 0.48
css 39,822,744 241.5 0.65 15,771,061 15.3 0.47
lua 4,027,221 116.0 0.31 2,538,234 144 0.45
xml 61,171,289  1,934.2 5.21 3,173,128 12.8 0.40
scala 5,897,567 19.7 0.05 4,204,979 11.7 0.36
shell 12,054,632 23.0 0.06 6,043,070 11.2 0.35
pascal 1,306,130 27.8 0.07 960,497 9.5 0.29
fortran 2,274,663 39.7 0.10 1,218,491 8.6 0.27
perl6 1,943,430 16.4 0.04 1,034,748 8.6 0.27
rmarkdown 1,317,760 14.0 0.04 827,951 7.9 0.25
html+erb 7,618,377 114 0.03 4,452,355 7.8 0.24
smali 3,457,531 379 0.10 1,408,274 7.4 0.23
e 18,061,278 35.6 0.10 7,705,822 7.4 0.23
gettext catalog 1,100,044 51.3 0.14 442,385 6.3 0.19
haskell 1,746,444 24.0 0.06 1,218,491 6.8 0.27
tcl 253,345 4.2 0.01 136,171 1.0 0.03
gradle 2,431,985 2.9 0.01 724,609 1.0 0.03
scheme 357,909 4.7 0.01 201,170 1.0 0.03
gml 354,756 1.8 0.01 252,621 1.0 0.03
mdx 795,525 6.4 0.17 222,013 1.0 0.03
classic asp 220,344 2.8 0.08 141,236 0.9 0.03
xbase 192,780 2.5 0.07 80,396 0.9 0.03
ini 7,232,136 19.1 0.05 1,517,099 1.3 0.04
objective-c++ 197,416 2.4 0.01 149,223 1.3 0.04
motorola68k 1,066,095 26.5 0.07 220,218 1.2 0.04
gap 752,261 2.6 0.01 510,420 1.2 0.04
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Programming Language Distribution (Sorted by File Size)
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Figure 7: The distribution of top program languages in RefineCode (before data sampling).
Model Size | Python Java C++ C# TS IS PHP Bash | Average
1B+ Models

DS-Coder-1.3B-Instruct 1.3B | 652 519 453 551 59.7 522 453 127 48.4

Yi-Coder-1.5B-Chat 1.5B | 67.7 519 49.1 57.6 579 59.6 522 19.0 51.9

Qwen2.5-Coder-1.5B-Instruct  1.5B | 71.2 557 509 64.6 61.0 621 59.0 29.1 56.7

OpenCoder-1.5B-Instruct 1.5B| 725 64.6 509 614 635 621 553 29.7 57.5

6B+ Models

DS-Coder-6.7B-Instruct 6.7B | 78.6 684 634 728 672 727 689 36.7 66.1

DS-Coder-V2-Lite-Instruct 16B | 81.1 76.6 758 76.6 805 77.6 745 43.0 73.2

CodeLlama-7B-Instruct 7B | 457 322 286 329 39.0 435 31.7 10.1 33.0

CodeGemma-7B-It 7B | 59.8 48.1 46.6 519 547 540 46.6 10.1 46.5

CodeQwen1.5-7B-Chat 7B | 835 709 720 759 767 716 739 41.8 71.6

Yi-Coder-9B-Chat 9B | 854 76.0 67.7 76.6 723 789 72.1 45.6 71.8

Qwen2.5-Coder-7B-Instruct 7B | 87.8 76,5 75.6 803 81.8 83.2 783 48.7 76.5

OpenCoder-8B-Instruct 8B | 835 722 615 759 78.0 795 733 443 71.0

Table 16: Performance of various chat models on the MultiPL-E benchmark across different programming languages.

Model Si HumanEval MBPP BigCodeBench | LiveCodeBench
ode | HE HE+ | MBPP MBPP+ | Full  Hard Avg
1B+ Models
DeepSeek-R1-Distill-Qwen-1.5B  1.5B | 48.7 45.1 51.8 439 7.0 0.0 16.9
OpenCoder-1.5B-Instruct 1.5B | 72.5 67.7 72.7 61.9 34.6 11.5 12.8
6B+ Models
DeepSeek-R1-Distill-Qwen-7B 7B | 73.9 69.5 69.3 61.1 10.6 34 37.6
DeepSeek-R1-Distill-Llama-8B 8B | 743 65.8 68.7 57.6 17.5 2.0 39.6
OpenCoder-8B-Instruct 8B | 83.5 78.7 79.1 69.0 42.9 16.9 232

Table 17: Comparison of OpenCoder with reasoning models on HumanEval, MBPP, the “instruct” task of Big-
CodeBench and LiveCodeBench.
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Figure 8: The McEval performance of OpenCoder-8B-Instruct in comparison to other open-source code models of
comparable size.
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Figure 9: The MdEval performance of OpenCoder-8B-Instruct in comparison to other open-source code models of
comparable size.
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Model Size ‘ BBH GSMS8K IFEVAL MATH MMLU CMMLU

DeepSeek-6.7B-Instruct 6.7B | 45.60  34.80 21.70 3.12 3791 37.94
Starcoder2-15B-Instruct-v0.1 ~ 15B | 21.58  53.15 45.92 14.46 44.12 44.76
Qwen2.5-Coder-7B 7B | 60.60  80.82 70.62 43.40 66.11 66.29
OpenCoder-8B-Instruct 8B | 46.10  34.95 54.44 9.58 41.96 38.85

Table 18: Performance of various chat models on common general benchmarks.

Prompt for Educational Instruction Synthesis

You are a teaching assistant helping to create a Python programming task from a given code
snippet. You must provide the best response to the Python programming task, including reasoning
thought, reference solutions, explanation of test cases, and test code.

[Code Snippet]

{Code}

Your response must have these parts:

[Task]
{Create an independent and detailed Python programming task}

[Analysis]
{ Analyze the task and reason about the given task step by step}

[Solution]
{ Write a high-quality reference solution in a self-contained script that solves the task}

[Test]
{Provide ten assert statements to check the correctness of your solution}
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Prompt for Package-related Instruction Synthesis

You are exceptionally skilled at crafting high-educational level problems and offering precise
solutions. Please gain inspiration from the following code snippet to create a high-quality
programming problem, which is beneficial for learning the use of corresponding libraries. Present
your output in two distinct sections: [Problem Description] and [Solution].

[Code Snippet]
{Code}

[Library Api Requirements]
{ Api Requirements}

[Library Api Doc]
{Api Doc}

Guidelines for each section:

1. [Problem Description]: This should be **completely self-contained**, providing all the
contextual information one needs to understand and solve the problem. Assume common
programming knowledge, but ensure that any specific context, variables, or code snippets pertinent
to this problem are explicitly included. This problem should be **educational for learning the
provided Library api, and please explicitly request the use of the relevant package in the question.
This question should only concern the writing of **one function**, and you need to be clear about
the function name and role of this function.

2. [Solution]: Offer a comprehensive, **correct™* solution that addresses the [Problem Descrip-
tion] you provided. This solution should follow the standard of corresponding Library Api doc.
Please ensure that the Solution only involves answering the Problem, **without addressing the
requirements I provided!** Please provide essential explanation abouth this solution, especially
the use of requiremed Library Api.

Prompt for Large-scale Diverse Instruction Synthesis

You are an expert in designing high-quality programming questions based on the given text.

[Guidelines]

- You can draw inspiration from the given text to create the programming questions.

- The created question should be a self-contained question, which does not depend on any external
context.

- The created response must contain the complete code snippet.

[Given Text]
{Given Text}

[Created Question]
{Created Question}
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