Token Prepending: A Training-Free Approach for Eliciting Better
Sentence Embeddings from LLMs

Yuchen Fu* Zifeng Cheng*

Yafeng Yin

Zhiwei Jiang'
Zhengliang Li

Zhonghui Wang
Qing Gu

State Key Laboratory for Novel Software Technology, Nanjing University, China
{yuchenfu,chengzf}@smail.nju.edu.cn, jzw@nju.edu.cn
zhonghuiwang@smail .nju.edu.cn, yafeng@nju.edu.cn
1z1@smail.nju.edu.cn, gug@nju.edu.cn

Abstract

Extracting sentence embeddings from large lan-
guage models (LLMs) is a promising direction,
as LLMs have demonstrated stronger seman-
tic understanding capabilities. Previous studies
typically focus on prompt engineering to elicit
sentence embeddings from LLMs by prompt-
ing the model to encode sentence information
into the embedding of the last token. How-
ever, LLMs are mostly decoder-only models
with causal attention and the earlier tokens in
the sentence cannot attend to the latter tokens,
resulting in biased encoding of sentence in-
formation and cascading effects on the final
decoded token. To this end, we propose a
novel Token Prepending (TP) technique that
prepends each layer’s decoded sentence embed-
ding to the beginning of the sentence in the
next layer’s input, allowing earlier tokens to
attend to the complete sentence information
under the causal attention mechanism. The
proposed TP technique is a plug-and-play and
training-free technique, which means it can
be seamlessly integrated with various prompt-
based sentence embedding methods and autore-
gressive LLMs. Extensive experiments on vari-
ous Semantic Textual Similarity (STS) tasks
and downstream classification tasks demon-
strate that our proposed TP technique can sig-
nificantly improve the performance of exist-
ing prompt-based sentence embedding methods
across different LLMs, while incurring negli-
gible additional inference cost. The code are
available on our website.

1 Introduction

Sentence embeddings have a wide range of applica-
tions in real-world scenarios, such as information
retrieval, recommender systems, sentiment anal-
ysis, document clustering, and so on. Recently,
with the success of large language models (LLMs)
in zero-shot settings for various natural language
processing (NLP) tasks, some researchers have be-
gun to focus on directly extracting sentence embed-

(a) Backward Dependency is forbidden (Vanilla LLMs)

Attention on Former Token <SET>
This sentence: “ [She loves summer but dislikes the heat] " means in one word::
'
[TV S 5 Sentence Embedding Token
Attention on Later Token

(b) Backward Dependency is achieved by Token Prepending (Ours)

Token Prepending

This sentence: <PST>"“[She loves summer but dislikes the heat] " means in one word:
a '

_______________ Sentence Embedding Token

Attention on Later Tokens

Figure 1: Comparison between (a) vanilla LLMs and
(b) our proposed LLMs with token prepending.

dings from LLMs without the need for additional
fine-tuning (Liu et al., 2024a; Lei et al., 2024). This
training-free setup is both practical and promising,
as it does not require training data, avoids the costs
of fine-tuning a large-scale model, and prevents the
potential loss of general semantic understanding
capabilities caused by fine-tuning on specific data.

Different from previous encoder-only bidirec-
tional langauge model like BERT (Devlin et al.,
2019), current LLMs are mostly decoder-only mod-
els with causal attention (Touvron et al., 2023;
Brown, 2020), which make the earlier tokens in
the sentence cannot attend to the latter tokens, as
shown in Figure 1(a). To this end, recent stud-
ies (Jiang et al., 2023; Lei et al., 2024; Zhang et al.,
2024) attempt to prompt the model to encode sen-
tence information into the embedding of the last
token (i.e., the <SET> in Figure 1(a)), which can
attend to all preceding tokens, thereby avoiding
the problem of backward dependency. Among the
prompt-based methods, Jiang et al. (2023) first pro-
pose to use a simple and effective prompt (e.g., the
prompt in Figure 1(a)) to extract sentence embed-
dings from LLMs. Later, meta-task prompts (Lei
et al., 2024) and prompts with CoT and Knowledge
Enhancement (Zhang et al., 2024) are employed to
extract sentence embeddings.

3168

Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 3168-3181

July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

https://github.com/fuyuchenIfyw/token_prepending.git

However, even if the last token is able to attend to
all tokens in the sentence under the causal attention
mechanism, the earlier tokens in the sentence still
cannot attend to the later tokens (i.e., the backward
dependency in Figure 1). This results in biased
encoding of sentence information and cascading
effects on the last token. To address this problem,
some previous work (Springer et al., 2024) has at-
tempted to achieve backward dependency through
repetition. They point out that processing the input
twice allows LLMs to have a deeper understanding
of the sentence and improves performance on vari-
ous tasks. Nonetheless, repetition significantly in-
creases the sequence length and substantially alters
the sentence structure, leading to higher inference
costs and less ideal performance.

In this paper, we propose a simple yet effective
technique called Token Prepending (TP). As shown
in Figure 1(b), our core idea is to prepends each
layer’s decoded sentence embedding to the begin-
ning of the sentence in the next layer’s input, allow-
ing earlier tokens to attend to the complete sentence
information under the causal attention mechanism.
Notably, the TP technique is entirely training-free,
as it introduces no additional learnable parameters.
Specifically, although TP is applicable to all layers,
we find that it is not necessary to perform the TP
operation across all layers. Instead, performing
this operation only in the early layers of the model
yields better performance. Therefore, we discon-
tinue the TP operation after several early layers and
revert to standard forward propagation. Addition-
ally, considering that the final layer of LLMs is
primarily used for token generation and contains
less semantic information (Liu et al., 2024b; Jin
et al., 2024b), we propose an early-exit strategy
that outputs embeddings from intermediate layers,
rather than the final layer, to serve as sentence em-
beddings.

Our main contributions are as follows:

* We propose a novel TP technique for eliciting
sentence embeddings from LLMs. This plug-
and-play technique neither introduces new pa-
rameters nor alters the existing ones, allow-
ing it to be seamlessly integrated with various
prompt-based sentence embedding methods
and autoregressive LLLMs. Moreover, it adds
only a single token to the original sentence,
resulting in minimal additional inference over-
head.

* We perform an in-depth exploration of the TP

technique and identify the most effective ways
to utilize it, including the optimal layer scope
of operation and the early exit strategy.

* We conduct extensive experiments on vari-
ous Semantic Textual Similarity (STS) bench-
marks and downstream classification tasks.
The results demonstrate that our proposed TP
technique can significantly improve the per-
formance of existing prompt-based sentence
embedding methods across different LLMs.

2 Related Work

Sentence Embeddings Sentence embedding is
a fundamental task in natural language processing,
aiming to map the semantic information of sen-
tences into fixed-size vector representations. Pre-
vious research often employs unsupervised or su-
pervised contrastive learning to fine-tune smaller
pre-trained models to enhance sentence embed-
dings (Gao et al., 2021; Jiang et al., 2022; Ni
et al., 2022b; Chanchani and Huang, 2023; Su et al.,
2023). For example, Sentence-TS (Ni et al., 2022b)
explores three strategies to extract TS5 (Raffel et al.,
2020) sentence representations and uses two-stage
training to refine TS sentence embeddings. Unlike
these methods, we focus on sentence embeddings
extracted by large language models without the
need for fine-tuning.

LLMs for Sentence Embeddings Recently, a
series of studies focus on enhancing the sen-
tence embedding of LLMs with causal attention
mechanism through fine-tuning (Li and Li, 2024;
BehnamGhader et al., 2024; Lee et al., 2024; Muen-
nighoff et al., 2024). Due to the limited representa-
tion learning capability of unidirectional attention
in LLMs, these methods mostly replace it with
bidirectional attention and fine-tune LLMs using
contrastive learning. For example, BeLLM (Li and
Li, 2024) converts the last attention layer from uni-
directional to bidirectional and uses SIimCSE (Gao
et al., 2021) to fine-tune LLMs. However, fine-
tuning LLMs is very expensive and inevitably re-
sults in the loss of their other general capabilities.
Thus, this paper focuses on extracting sentence
embeddings from LLMs without fine-tuning.
Extracting Sentence Embeddings from
LLMs Existing methods on extracting sentence
embeddings from LLMs mainly focus on design-
ing prompts to improve sentence embeddings.
PromptEOL (Jiang et al., 2023) demonstrates
the potential of LLMs in generating sentence

3169

embeddings by leveraging prompt engineering.
Echo embeddings (Springer et al., 2024) repeats
the input twice within the context and extracts
embeddings from the second occurrence, allowing
early token embeddings to encode information
about subsequent tokens. MetaEOL (Lei et al.,
2024) designs meta-task prompts via ChatGPT-4 to
guide LLMs to consider sentence representations
from multiple perspectives. Pretended CoT (Zhang
et al., 2024) uses CoT to inspire the model to out-
put better embeddings. Knowledge Enhancement
(Zhang et al., 2024) provides explicit guidance to
the model by conveying human experience in text
summarization through prompts. CP (Cheng et al.,
2025) introduces an extra auxiliary prompt to
elicit better sentence embedding. In this paper, we
propose a plug-and-play technique TP to improve
the various prompt-based methods with negligible
additional inference cost.

3 Preliminary

Previous work mainly focused on eliciting sentence
embeddings from LLMs through prompt engineer-
ing. This process does not interfere with the in-
ternal operations of the LL.Ms but simply guides
their behavior through different prompts. As shown
in Figure 2(a), PromptEOL (Jiang et al., 2023) in-
troduces a widely adopted template for extracting
sentence embeddings from LLMs:

This sentence: “[Text]” means in one word:

where [Text] denotes the placeholder for the input
sentence and the last token “ is used to decode the
Sentence Embedding Token (SET). The phrase “in
one word” is a constraint that can prevent LLMs
from generating long sentences, limiting a sentence
to being represented by the embedding of a single
word.

Formally, given the input T = [ty,...,15]
wrapped in a template, we first obtain the em-
beddings h® = [hY,--- , k0] through the embed-
ding layer, and then pass them into the L Trans-
former layers of LLMs. The previous work (e.g.,
PromptEOL) use the last layer’s hidden state for
the sentence embedding token hﬁ as the output
sentence embedding. Specifically,

h% = LLM"“%(h")

4 Proposed Method

4.1 Overview

Different from previous work that only focuses on
prompt engineering, our proposed method slightly
intervenes in the internal operations of the LL.Ms.
Our core idea is to prepend the decoded sentence
embedding token from the previous layer to the sen-
tence in the next layer’s input, making the seman-
tics of the sentence perceptible to all tokens in the
target sentence. As shown in Figure 2(b), we per-
form the token prepending (TP) operation within
the layer scope of the first few layers, which is de-
noted in yellow. For the input layer, we prepend
a special <PST> token to the input sentence (i.e.,
[Text]) in prompt. For the intermediate layers, we
perform the TP operation between two layers by
replacing the embedding of the <PST> token with
the sentence embedding decoded from the last to-
ken of prompt. By repeating this operation across
several layers, the embedding of the <PST> token
may contain sufficient sentence information, or all
tokens of the target sentence may perceive enough
sentence information. After that, we will discon-
tinue the TP operation. Finally, considering that
the last layer of LLMs is primarily used for token
generation, we will choose a sentence embedding
from an intermediate layer as the output sentence
embedding.

4.2 Token Prepending

Our proposed TP technique is a plug-and-play oper-
ation primarily used to adjust context dependency
by intervening in the inputs of LLM layers. From
the perspective of its operating layer, it can be de-
scribed in detail from the following three aspects.

4.2.1 Initial Token Prepending

We first conduct initial token prepending opera-
tion that prepends the sentence embedding token
to the input text as shown in Figure 2(b). Since
the sentence embedding token is not available at
this stage, we prepend a custom token “<PST>",
which is not included in the LLM’s vocabulary,
serving as a placeholder for sentence embedding
token. We randomly initialize the parameters of
this token and incorporate it into the input for
the first Transformer layer. Consequently, the
modified embedding layer output is denoted as
hO = [n9,--- Y [B0 RO, RO, where hO
represents the initialized embedding of the <PST>
token.

3170

SET

—

Text] Input Sent Ve
= 0npu o Ijn(::‘ £ .S [Last layer] [(i+1)-th layer }
utput embedding of Sentence p
SET| Ermbedding Token (SET) [14 0o EENOO
Token Prependin
[k-th layer] i d 2
SET 7 *
1 | Cotanrapmane | | :
[} O] IesT @ @ @ [O] SEA
[Eeo oyl] N (i-th layer]
[] b Commmpening | | | y
[2nd layer]
[2nd layer] - <PST> Prepended Sentence embedding Token
X Intermediate layer embedding of SET
st st
[SHEE] [SHEE] Intermediate layer embedding of PST
t t f t t t t tt f t t t ot Prepending-Enhanced Layers

This sentence: “ [Text] " means in one word: “

(a) Vanilla LLMs

This sentence: <PST>“[Text] " means in one word: “

(b) LLMs with Token Prepending (Ours)

Figure 2: Illustration of extracting sentence embeddings from (a) vanilla LLMs and (b) LLMs with Token Prepend-

ing.

4.2.2 Intermediate Token Prepending

After initial token prepending, the input passes
through the pretending-enhanced layers, where
each layer consists of a standard Transformer
layer and a specially designed intermediate token
prepending. For intermediate token prepending,
we pretend the sentence embedding token <SET>
to replace <PST> as input to the subsequent layer.
Prepending the <SET> aims to refine the sentence
embedding so that subsequent tokens can better
capture the sentence’s semantics. This procedure
is formalized as follows:

h! = LLMTY(F(hY), 1 e [2,k]
hli1 = [ha_17 T 7h§*_17 e 7h§;1]7l € [2’ k]
f(hlil) = [hll_la e 7h£1717 e 7h£:1]’l € [2’ k]

where f(h) represents the function that operates on
h. k € [2, L] denotes the ending layer for the in-
termediate token prepending and ¢* is the position
index of the <PST> token.

4.2.3 Layer Scope for Token Prepending

After passing through the prepending-enhanced lay-
ers, all tokens in the sentence are contextualized
and can perceive the complete semantic meaning
of the sentence. Therefore, we do not use inter-
mediate token prepending in the later layers and
directly feed the hidden states into the standard
Transformer layers of LLMs to obtain the sentence
embedding. Specifically,

h!*™! = LLMY(h)),1 € [k, M]

where M is the exit layer, which can be either an
intermediate layer or the last layer of the LLM.

4.3 Early-Exit from Intermediate Layers

Recent studies (Liu et al., 2024c; Jin et al., 2024a)
demonstrate that each layer of LLMs plays a differ-
ent role, and the embeddings from the last layer are
primarily used for prediction and contain weaker
semantic information. Thus, we propose the early-
exit strategy, which uses embeddings from inter-
mediate layers instead of the last layer to serve as
sentence embeddings. We use the validation set to
determine which layer of embedding to use, and
the overhead of this process is light. Another ad-
vantage of the early-exit strategy is that we can
obtain sentence embeddings more quickly during
the testing phase.

S Experiments

5.1 Datasets and Experimental Settings

We evaluate sentence embeddings on seven se-
mantic textual similarity (STS) datasets, including
STS 2012-2016 (Agirre et al., 2012, 2013, 2014,
2015, 2016), STS-B (Cer et al., 2017), and SICK-
R (Marelli et al., 2014). Each sentence pair in the
STS datasets is annotated with a pairwise semantic
similarity score from O to 5. We use Spearman
correlation as evaluation metric, which measures
the rank correlation between the predicted similar-
ity scores and annotated similarity scores using a
monotonic function. We use cosine similarity to
compute the predicted similarity scores.

Unless otherwise specified, we use the STS-B de-
velopment set to determine hyperparameters for TP
across all prompt and backbone configurations. In
all prompts, the placeholder token <PST> is placed

3171

Method Params STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg. Time
BERT avg 110M 30.87 59.89 47.73 60.29 63.73 47.29 58.22 52.57

BERT prompt 110M 60.96 73.83 62.18 71.54 68.68 70.60 67.16 67.85

ST5-Enc avg 4.8B 34.97 60.19 47.59 66.40 70.62 62.83 63.57 58.02 -
LLaMA2 avg 7B 35.49 53.15 40.12 55.35 53.26 42.10 49.96 47.06 1.00x
LLaMA2 echo 7B 52.40 72.40 61.24 72.67 73.51 65.73 64.39 66.05 1.67x
PromptEOL 7B 58.81 77.01 66.34 73.22 73.56 71.66 69.64 70.03 1.00x
PromptEOL + TP (Ours) 7B 66.90 1 8.09 83.1216.11 74311797 79.8716.65 80.0316.47 80.6719.01 75401576 77.19717.16 1.04x
MetaBOL 7B 64.16 81.61 73.09 81.11 78.94 77.96 74.86 75.96 8.17x
MetaEOL + TP (Qurs) 7B 66.15 17 1.99 82.3710.76 74.89 1 1.80 83.7712.66 81.4912.55 81.4613.50 75271041 77911195 8.29%
Pretended CoT 7B 67.45 83.89 74.14 79.47 80.76 78.95 73.33 76.86 1.18x
Pretended CoT + TP (Qurs) 7B 68.52 1 1.07 8344 045 752371.09 79.36 . 0.11 81.3310.57 80371142 74511 1.18 77.54710.68 1.20x
Knowledge 7B 65.60 82.82 74.48 80.75 80.13 80.34 75.89 77.14 1.17x
Knowledge + TP (Ours) 7B 66.03 1043 83431061 745070.02 80.94710.19 8128 11.15 80451 0.11 76.1310.24 77.54710.40 1.20x

Table 1: Results on STS tasks (Spearman correlation scaled by 100x) using LLaMA2-7B as backbone. The Time
column refers to the ratio of inference time for various prompt methods relative to PromptEOL on the STS-B test

dataset, ensuring the same output layer.

before “[Text]” in the template. We use the output
from the 27-th layer for PromptEOL, MetaEOL,
and Pretended CoT, and from the penultimate layer
for Knowledge Enhancement. After the 8-th layer,
we do not perform token prepending.

5.2 Baselines

We combine our method with some baselines to
demonstrate effectiveness. BERT avg (Devlin
et al., 2019), ST5-Enc avg (Ni et al., 2022a),
and LLaMA2 avg (Touvron et al., 2023) aver-
age token embeddings to obtain sentence em-
beddings using different backbones. LLaMA2
echo (Springer et al., 2024) utlizes the strategy of
repetition to obtain sentence embeddings. BERT
prompt (Jiang et al., 2022) proposes a simple and
effective prompt to extract sentence embeddings
from BERT. PromptEOL (Jiang et al., 2023) first
proposes a simple and effective prompt to extract
sentence embeddings from LLMs. MetaEOL (Lei
et al., 2024) leverages a diverse set of meta-task
prompts to capture multiple representations of
sentences from distinct perspectives. Pretended
CoT (Zhang et al., 2024) uses CoT to inspire the
model to extract sentence embeddings. Knowl-
edge (Zhang et al., 2024) explicitly infuses the
model with human insights into text summariza-
tion.

53

The results of our method on the STS tasks are pre-
sented in Table 1. Our method consistently outper-
forms all baselines and non-prompt-based methods
perform worse than prompt-based ones. Among
all prompt-based methods across all datasets on
LLaMAZ2-7B, our model shows improvement in 26
out of 28 cases. This shows our method can be

Main Results

seamlessly integrated with various prompt-based
methods without training. Notably, our method
achieves the most significant improvement with
PromptEOL, enhancing performance by 7.16.

The significant improvement in PromptEOL may
be because the other three baselines incorporate
prior knowledge to understand sentences, whereas
PromptEOL relies more on modeling backward
dependency to grasp semantics. Moreover, our
method effectively narrows the performance gap
between different prompts, improving the model’s
robustness to prompts.

Another advantage of TP technology is that it
introduces minimal additional inference time com-
pare to prompt-based methods. We evaluate the in-
ference time by running the LLaMA?2-7B model on
the STS-Benchmark test dataset, fixing the batch
size to 1. To mitigate the impact of repeatedly
loading the prompt prefix, we employ KV cache.
The comparison results are shown in the Time
column of Table 1. We observe that Pretended
CoT, Knowledge Enhancement, and MetaEOL in-
cur 1.18, 1.17 and 8.17 times the inference time of
PromptEOL, respectively. In contrast, the inference
time of prompt-based methods with TP technology
is within 1.04 times of the original, adding negligi-
ble overhead.

5.4 [Evaluation of Different Backbones

Table 2 highlights the performance across various
model backbones. In addition to the 7B and 13B
versions of LLaMA?2 , we evaluate our method on
several state-of-the-art decoder-only large language
models, including Qwen2-7B (Yang et al., 2024),
LLaMA3-8B (Dubey et al., 2024), and Gemma2-
9B (Team et al., 2024), using Pretended CoT as the
prompt template.

3172

Method Backbone STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.

Pretended CoT LLaMA2-7B 67.45 83.89 74.14 79.47 80.76 78.95 73.33 76.86
Pretended CoT + TP (Ours) LLaMA2-7B 68.52 1 1.07 83.44 | 045 752371 1.09 79.36 | 0.11 81.3310.57 80.37 1 1.42 74511 1.18 77.5410.68
Pretended CoT LLaMA2-13B 64.27 78.61 69.93 76.37 79.28 75.88 69.04 73.34
Pretended CoT + TP (Ours) LLaMA2-13B 65.65 | 1.38 79.50 1 0.89 71.01 1 1.08 77.27 1 0.90 80.07 1 0.79 77.36 1 1.48 71.51 1247 74.6211.28
Pretended CoT LLaMA3-8B 66.65 82.60 72.40 79.36 80.86 77.09 73.66 76.09
Pretended CoT + TP (Qurs) LLaMA3-8B 66.94 1 0.29 83.20 1 0.60 73.33 71093 79.81 1045 81.72 1086 784671 1.37 73991033 76.78 1 0.69
Pretended CoT Qwen2-7B 61.64 78.24 70.14 74.44 76.63 76.22 73.30 72.94

Pretended CoT + TP (Qurs) Qwen2-7B 65.02 1 3.38 79.50 1 1.26 71.64 "

1.50 7794135 79.151252 78471225 74.0510.75 75.11712.17

Pretended CoT Gemma2-9B 69.50 82.71 74.18 79.64 80.60 78.89 73.60 77.02

Pretended CoT + TP (Ours) Gemma2-9B 69.48 0.02 83.391 0.68 74.321

0.14 80.717 1.07 81.241 0.64 79.241 0.35 74.261 0.66 77.521 0.50

Table 2: Results on STS tasks (Spearman correlation scaled by 100x) using different backbones. Since MetaEOL
uses multiple prompts, we use the simple and effective Pretended CoT for our experiments.

Prompt Template STS Avg.
This sentence : <PST> “[Text]” means in one word: “ 77.19
<PST> This sentence : “[Text]” means in one word: “ 76.35
This sentence : “<PST> [Text]” means in one word: “ 76.71
This sentence : “ [Text]” <PST> means in one word: “ 75.54
After thinking step by step , this sentence : <PST> “[Text]” means in one word: 77.54
After thinking step by step , <PST> this sentence : “[Text]” means in one word: 77.81
After thinking step by step , this sentence : “<PST> [Text]” means in one word: 77.51
After thinking step by step , this sentence : “ [Text]” <PST> means in one word: “ 77.44

Table 3: Influence of the <PST> token’s position in the sentence. We use PromptEOL and Pretended CoT as the

prompt.

78.25

i
78.00 | w/o <PST> before Intermediate TP
w/o <PST> after Intermediate TP

~
N
\,
o

77.50

77.25

Spearman Correlation

~ ~
o N
~ o
o =]

76.50

76.25

PromptEOL Pretended CoT Knowledge MetaEOL

Figure 3: Ablation of <PST> token before and after
intermediate token prepending.

The results demonstrate that our method adapts
effectively to a range of large language models,
delivering performance gains across different back-
bones. Notably, on the Qwen2-7B model, our
model achieves an improvement of 2.17 points. In
addition, LLaMA2-13B and LLaMA3-8B do not
achieve better performance than LLaMA2-7B.

5.5 Analysis of <PST> Token

In this section, we analyze the prepended <PST>
token in detail using LLaMA2-7B.

Effects of the position of <PST> We employ
PromptEOL and Pretended CoT as the prompt tem-
plate to examine how the placement of the <PST>

token at different positions in the sentence affects
performance on STS tasks, as shown in Table 3.
The performance is worst when <PST> token is in-
serted right after the input text. When <PST> token
is placed before the text, performance fluctuation is
small. The optimal position of <PST> token varies
depending on the prompt, typically positioning it
close to the text. To avoid the additional overhead
of searching the position, we simply place <PST>
token after the colon for all prompts.

Effectiveness of retaining the <PST> token be-
fore and after intermediate TP We ablate the
<PST> token before and after intermediate token
prepending to show the effectiveness of retaining
the <PST> token. Ablating the <PST> token before
the intermediate token prepending is equivalent to
removing the initial token prepending and directly
performing intermediate token prepending.

The results as shown in Figure 3. Without <PST>
before intermediate token prepending generally re-
sults in a slight decrease in performance across
most prompts. This is because the initial <PST>
token does not carry semantic information, and
its main purpose is to maintain the same input se-
quence length across all layers. In contrast, ab-
lating the <PST> token after intermediate token
prepending has a more pronounced negative im-
pact. This may be because the representations are

3173

e e

—e— PromptEOL

Pretended CoT
—— Knowledge
—¥— MetakOL

Spearman Correlation
Spearman Correlation

Spearman Correlation

<

~

2

7

Spearman Correlation

3 7 3 7 0 i

8 9
Layer Index

(b)

4 5
Layer Index

(a)

3 7 23 24 25 26 27 28 29 30 31 32

Layer Index

(d)

8 9
Layer Index

(c)

Figure 4: Effects of layer scope for intermediate token prepending and early-exit layer. The reported Spearman
correlation is the average across the seven STS tasks. (a) The influence of start layer for the intermediate token
prepending. (b) The influence of end layer k for the intermediate token prepending. (c) The token prepending
ending layer k on different backbones. (d) The influence of exit layer M for sentence embeddings.

Initialization Method STS Avg.
AllO 77.54
All'l 77.54
Uniform 77.53
Gaussian 77.54
Existing token 717.55

Table 4: Influence of the <PST> token’s initialization
method.

aligned with this input pattern, and modifying the
input could lead to a decrease in performance.
Influence of <PST> token initialization = We use
Pretended CoT to investigate the effect of various
initialization methods for the <PST> token param-
eters in the embedding layer. We evaluate five
initialization techniques: all 0, all 1, uniform distri-
bution within the range [0,1], Gaussian distribution,
and using existing token parameters. For the exist-
ing token initialization, we select the embedding of
the space character, allowing the model to interpret
the <PST> token as a space, thereby minimizing
its impact on the whole sentence’s meaning.

As shown in Table 4, the variation among differ-
ent initialization is minimal, with the maximum
performance difference in STS tasks being just
0.01. This suggests that our method remains ro-
bust regardless of the <PST> token’s initialization.

5.6 Analysis of Layer Scope for TP

In this section, we analyze the effects of layer scope
for token prepending in detail.

Influence of start and end layer for TP In Fig-
ure 4(a) and (b), we explore the impact of the start
and end layer for intermediate token prepending on
LLaMA2-7B.

As illustrated in Figure 4(a), performance is sub-
optimal if intermediate token prepending does not
begin at the second layer. This is because the
<PST> token is randomly initialized and lacks se-

mantic information. Thus, we need to replace it
with semantically meaningful tokens at the early
layers of the LLMs to mitigate this issue.

Furthermore, our results indicate that halting
token prepending after the 8-th layer yields the
best performance across all prompts used.
Influence of end layer for intermediate TP on dif-
ferent backbones We further examine the optimal
layer to terminate token prepending across differ-
ent backbones. As shown in Figure 4(c), for the
LLaMA2-7B and LLaMA2-13B models, stopping
token prepending at the 8-th yields the best perfor-
mance. While for the Qwen2-7B and Gemma2-9B
models, the optimal ending layer is 7-th. This sug-
gests that, for most decoder-only LLMs, modeling
shallow-layer backward dependencies is crucial for
enhancing sentence comprehension. The best layer
for ending token prepending is similar across dif-
ferent backbones, typically falling within the 7-th
to 8-th layer range.

5.7 Influence of Exit Layers

We examine the impact of exit layers in LLaMA2-
7B using Pretended CoT and Knowledge Enhance-
ment. As illustrated in Figure 4(d), our model con-
sistently improves both Pretended CoT and Knowl-
edge Enhancement across all layers and configura-
tions. Furthermore, Pretended CoT and Knowledge
Enhancement exhibit greater variability in perfor-
mance across different layers compared to ours.
This implies that the our method offers a more sta-
ble representational quality across layers.
Notably, employing the output of the model’s
last layer is consistently suboptimal for STS tasks,
consistent with prior research (Li and Li, 2024;
Lei et al., 2024). Pretended CoT achieves optimal
performance at the sixth-to-last layer, while Knowl-
edge Enhancement peaks at the second-to-last layer.
This variation suggests that the optimal layer can

3174

Method MR CR SUBJ MPQA SST2 TREC MRPC Avg.
PromptEOL 90.63 92.87 96.32 91.19 95.00 95.40 75.19 90.94
PromptEOL + TP (Ours) 90.90 93.35 96.58 91.51 95.50 96.00 76.12 91.42
Pretended CoT 90.10 92.24 96.32 91.54 95.11 94.20 75.77 90.75
Pretended CoT + TP (Qurs) 90.45 92.61 96.52 91.59 95.77 96.00 76.81 91.39
Knowledge 89.84 93.03 96.21 91.54 94.78 97.20 73.91 90.93
Knowledge + TP (Qurs) 90.39 93.32 96.31 91.56 94.51 97.60 76.06 91.39

Table 5: Results (accuracy scaled by 100x) on transfer learning tasks using LLaMA2-7B.

shift depending on the prompt.

5.8 Transfer Learning Tasks

We further evaluate the performance of our model
on transfer learning tasks. We use standard trans-
fer learning tasks provided by SentEval, includ-
ing MR (Pang and Lee, 2005), CR (Hu and Liu,
2004), SUBJ (Pang and Lee, 2004), MPQA (Wiebe
et al., 2005), SST-2 (Socher et al., 2013), TREC
(Voorhees and Tice, 2000), and MRPC (Dolan and
Brockett, 2005). For each task, we use the sentence
embeddings generated by the model as features to
train logistic regression classifiers.

The results for the transfer tasks, shown in Ta-
ble 5, demonstrate that our method consistently
outperforms all baselines, with improvements in 20
out of 21 cases across all datasets. This indicates
that TP cultivates generalized sentence embeddings
that perform outstandingly across various tasks.
Pretended CoT and Knowledge Enhancement do
not surpass the performance of PromptEOL, indi-
cating that they are not consistently effective in
enhancing performance across tasks.

Additionally, we find that ending token prepend-
ing at deeper layers typically between layer index
14 and 21, enhances performance on transfer tasks.
This phenomenon differs significantly from the op-
timal layer for STS tasks, suggesting that transfer
tasks benefit from additional layers to effectively
model backward dependencies.

5.9 Evaluation of Capturing Dependencies in
Contexts

We quantitatively analyse whether our proposed
method enhances the ability of LLMs to capture
dependencies in contexts on the STS-B test set
using LLaMA2-7B. For both models, we follow
Ethayarajh (2019) by selecting the last token as the
pivot token. We then compute the Spearman corre-
lation between the pivot token and the remaining
tokens in each sentence to assess their dependency-
capturing capabilities. The results are shown in a
box plot in Figure 5.

Spearman Correlation
o
N
(6,]

b

o o
o

LLaMA2-7B LLaMA2-7B+TP

Figure 5: Box plot of the sentence-level Spearman cor-
relation on the STS-B test set using Pretended CoT
prompt.

The average sentence-level Spearman score for
LLaMAZ2-7B and LLaMA2-7B+TP are 23.97 and
25.11, respectively. The results indicate that our
method achieves an improved capability to cap-
ture backward dependencies compared to vanilla
LLaMA2-7B model. This suggests that token
prepending offers benefits for enhancing the ability
of LLMs to capture dependencies in contexts.

6 Conclusion

In this paper, we introduce Token Prepending tech-
nique, a plug-and-play approach for deriving high-
quality sentence embeddings from autogressive
LLMs without requiring any training and data. By
intervening in the inputs to Transformer layers, TP
enhances the ability of autoregressive LLMs to
capture backward dependencies. Moreover, TP
involves simply prepending a single token to the
sentence, which adds negligible inference cost and
can seamlessly integrate with prompt-based meth-
ods. Our extensive experiments demonstrate that
TP technique can effectively and generally elicit
sentence embeddings across a range of LLMs with
varying architectures and parameter sizes, achiev-
ing outstanding performance on both STS datasets
and transfer learning tasks. We find that starting
TP from the first layer yields optimal results, and
the best stopping point is typically around the 7th
or 8th layer for LLMs with about 7B parameters.

3175

Limitations

Although Token Prepending is a training-free tech-
nique, it requires tuning two hyperparameters (i.e.,
end layer for intermediate token prepending and
exit layer) to achieve optimal sentence embeddings.
Our results show that the best hyperparameters for
TP vary based on the model, dataset, and prompt,
which may increase adaptation costs when apply-
ing it to new scenarios.

Acknowledgments

We would like to thank the anonymous reviewers
for their insightful comments. This work is sup-
ported by the National Natural Science Foundation
of China under Grants Nos. 62441225, 61972192,
62172208, 61906085. This work is partially sup-
ported by Collaborative Innovation Center of Novel
Software Technology and Industrialization. This
work is supported by the Fundamental Research
Funds for the Central Universities under Grant
No.14380001.

References

Eneko Agirre, Carmen Banea, Claire Cardie, Daniel M.
Cer, Mona T. Diab, Aitor Gonzalez-Agirre, Weiwei
Guo, Ifiigo Lopez-Gazpio, Montse Maritxalar, Rada
Mihalcea, German Rigau, Larraitz Uria, and Janyce
Wiebe. 2015. Semeval-2015 task 2: Semantic textual
similarity, english, spanish and pilot on interpretabil-
ity. In Proceedings of the 9th International Work-
shop on Semantic Evaluation, SemEval@NAACL-
HLT 2015, pages 252-263. The Association for Com-
puter Linguistics.

Eneko Agirre, Carmen Banea, Claire Cardie, Daniel M.
Cer, Mona T. Diab, Aitor Gonzalez-Agirre, Weiwei
Guo, Rada Mihalcea, German Rigau, and Janyce
Wiebe. 2014. Semeval-2014 task 10: Multilingual
semantic textual similarity. In Proceedings of the
8th International Workshop on Semantic Evaluation,
SemEval@COLING 2014, pages 81-91. The Associ-
ation for Computer Linguistics.

Eneko Agirre, Carmen Banea, Daniel M. Cer, Mona T.
Diab, Aitor Gonzalez-Agirre, Rada Mihalcea, Ger-
man Rigau, and Janyce Wiebe. 2016. Semeval-2016
task 1: Semantic textual similarity, monolingual
and cross-lingual evaluation. In Proceedings of the
10th International Workshop on Semantic Evaluation,
SemEval @ NAACL-HLT 2016, pages 497-511. The
Association for Computer Linguistics.

Eneko Agirre, Daniel M. Cer, Mona T. Diab, and Aitor
Gonzalez-Agirre. 2012. Semeval-2012 task 6: A pi-
lot on semantic textual similarity. In Proceedings of

the 6th International Workshop on Semantic Evalua-
tion, SemEval @ NAACL-HLT 2012, pages 385-393.
The Association for Computer Linguistics.

Eneko Agirre, Daniel M. Cer, Mona T. Diab, Aitor
Gonzalez-Agirre, and Weiwei Guo. 2013. *sem 2013
shared task: Semantic textual similarity. In Proceed-
ings of the Second Joint Conference on Lexical and
Computational Semantics, *SEM 2013, pages 32-43.
Association for Computational Linguistics.

Parishad BehnamGhader, Vaibhav Adlakha, Marius
Mosbach, Dzmitry Bahdanau, Nicolas Chapados, and
Siva Reddy. 2024. Lim2vec: Large language models
are secretly powerful text encoders. arXiv preprint
arXiv:2404.05961.

Tom B Brown. 2020. Language models are few-shot
learners. arXiv preprint ArXiv:2005.14165.

Daniel M. Cer, Mona T. Diab, Eneko Agirre, Ifigo
Lopez-Gazpio, and Lucia Specia. 2017. Semeval-
2017 task 1: Semantic textual similarity - multilin-
gual and cross-lingual focused evaluation. CoRR,
abs/1708.00055.

Sachin Chanchani and Ruihong Huang. 2023.
Composition-contrastive learning for sentence em-
beddings. In Proceedings of the 61st Annual Meeting
of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 15836—15848.
Association for Computational Linguistics.

Zifeng Cheng, Zhonghui Wang, Yuchen Fu, Zhiwei
Jiang, Yafeng Yin, Cong Wang, and Qing Gu. 2025.
Contrastive prompting enhances sentence embed-
dings in llms through inference-time steering. arXiv
preprint arXiv:2505.12831.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language

Technologies, NAACL-HLT 2019, pages 4171-4186.

Bill Dolan and Chris Brockett. 2005. Automati-
cally constructing a corpus of sentential paraphrases.
In Third international workshop on paraphrasing

(IWP2005).

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Kawin Ethayarajh. 2019. How contextual are contex-
tualized word representations? comparing the ge-
ometry of bert, elmo, and gpt-2 embeddings. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 55-65.

3176

https://doi.org/10.18653/V1/S15-2045
https://doi.org/10.18653/V1/S15-2045
https://doi.org/10.18653/V1/S15-2045
https://doi.org/10.3115/V1/S14-2010
https://doi.org/10.3115/V1/S14-2010
https://doi.org/10.18653/V1/S16-1081
https://doi.org/10.18653/V1/S16-1081
https://doi.org/10.18653/V1/S16-1081
https://aclanthology.org/S12-1051/
https://aclanthology.org/S12-1051/
https://aclanthology.org/S13-1004/
https://aclanthology.org/S13-1004/
https://arxiv.org/abs/1708.00055
https://arxiv.org/abs/1708.00055
https://arxiv.org/abs/1708.00055
https://doi.org/10.18653/V1/2023.ACL-LONG.882
https://doi.org/10.18653/V1/2023.ACL-LONG.882
https://doi.org/10.18653/V1/N19-1423
https://doi.org/10.18653/V1/N19-1423
https://doi.org/10.18653/V1/N19-1423

Tianyu Gao, Xingcheng Yao, and Dangi Chen. 2021.
Simcse: Simple contrastive learning of sentence em-
beddings. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 6894—6910.

Minqging Hu and Bing Liu. 2004. Mining and summa-
rizing customer reviews. In Proceedings of the tenth
ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pages 168-177.

Ting Jiang, Shaohan Huang, Zhongzhi Luan, Deqing
Wang, and Fuzhen Zhuang. 2023. Scaling sentence
embeddings with large language models. arXiv
preprint arXiv:2307.16645.

Ting Jiang, Jian Jiao, Shaohan Huang, Zihan Zhang,
Deqing Wang, Fuzhen Zhuang, Furu Wei, Haizhen
Huang, Denvy Deng, and Qi Zhang. 2022. Prompt-
bert: Improving BERT sentence embeddings with
prompts. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing,
EMNLP 2022, pages 8826-8837.

Mingyu Jin, Qinkai Yu, Jingyuan Huang, Qingcheng
Zeng, Zhenting Wang, Wenyue Hua, Haiyan Zhao,
Kai Mei, Yanda Meng, Kaize Ding, Fan Yang,
Mengnan Du, and Yongfeng Zhang. 2024a. Ex-
ploring concept depth: How large language mod-
els acquire knowledge at different layers? CoRR,
abs/2404.07066.

Mingyu Jin, Qinkai Yu, Jingyuan Huang, Qingcheng
Zeng, Zhenting Wang, Wenyue Hua, Haiyan Zhao,
Kai Mei, Yanda Meng, Kaize Ding, et al. 2024b. Ex-
ploring concept depth: How large language models
acquire knowledge and concept at different layers?
arXiv preprint arXiv:2404.07066.

Chankyu Lee, Rajarshi Roy, Mengyao Xu, Jonathan
Raiman, Mohammad Shoeybi, Bryan Catanzaro, and
Wei Ping. 2024. Nv-embed: Improved techniques for
training llms as generalist embedding models. CoRR,
abs/2405.17428.

Yibin Lei, Di Wu, Tianyi Zhou, Tao Shen, Yu Cao,
Chongyang Tao, and Andrew Yates. 2024. Meta-task
prompting elicits embedding from large language
models. arXiv preprint arXiv:2402.18458.

Xianming Li and Jing Li. 2023. Angle-optimized text
embeddings. arXiv preprint arXiv:2309.12871.

Xianming Li and Jing Li. 2024. Bellm: Backward
dependency enhanced large language model for sen-
tence embeddings. In Proceedings of the 2024 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies (Volume 1: Long Papers), pages
792-804.

Tian Yu Liu, Matthew Trager, Alessandro Achille, Pra-
muditha Perera, Luca Zancato, and Stefano Soatto.
2024a. Meaning representations from trajectories in
autoregressive models. In The Twelfth International
Conference on Learning Representations.

Zhu Liu, Cunliang Kong, Ying Liu, and Maosong Sun.
2024b. Fantastic semantics and where to find them:
Investigating which layers of generative llms reflect
lexical semantics. arXiv preprint arXiv:2403.01509.

Zhu Liu, Cunliang Kong, Ying Liu, and Maosong Sun.
2024c. Fantastic semantics and where to find them:
Investigating which layers of generative llms reflect
lexical semantics. CoRR, abs/2403.015009.

Marco Marelli, Stefano Menini, Marco Baroni, Luisa
Bentivogli, Raffaella Bernardi, and Roberto Zam-
parelli. 2014. A SICK cure for the evaluation of
compositional distributional semantic models. In
Proceedings of the Ninth International Conference
on Language Resources and Evaluation, LREC 2014,
pages 216-223.

Niklas Muennighoff, Hongjin Su, Liang Wang, Nan
Yang, Furu Wei, Tao Yu, Amanpreet Singh, and
Douwe Kiela. 2024. Generative representational in-
struction tuning. CoRR, abs/2402.09906.

Niklas Muennighoff, Nouamane Tazi, Loic Magne, and
Nils Reimers. 2022. Mteb: Massive text embedding
benchmark. arXiv preprint arXiv:2210.07316.

Jianmo Ni, Gustavo Hernandez Abrego, Noah Con-
stant, Ji Ma, Keith Hall, Daniel Cer, and Yinfei Yang.
2022a. Sentence-t5: Scalable sentence encoders
from pre-trained text-to-text models. In Findings of
the Association for Computational Linguistics: ACL
2022, pages 1864—-1874.

Jianmo Ni, Gustavo Hernandez Abrego, Noah Constant,
Ji Ma, Keith B. Hall, Daniel Cer, and Yinfei Yang.
2022b. Sentence-t5: Scalable sentence encoders
from pre-trained text-to-text models. In Findings of
the Association for Computational Linguistics: ACL
2022, pages 1864—1874.

Bo Pang and Lillian Lee. 2004. A sentimental education:
Sentiment analysis using subjectivity summarization
based on minimum cuts. In Proceedings of the 42nd
Annual Meeting of the Association for Computational
Linguistics (ACL-04), pages 271-278.

Bo Pang and Lillian Lee. 2005. Seeing stars: Exploiting
class relationships for sentiment categorization with
respect to rating scales. In Proceedings of the 43rd
Annual Meeting of the Association for Computational
Linguistics (ACL’05), pages 115-124.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21:140:1-140:67.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 conference on empiri-
cal methods in natural language processing, pages
1631-1642.

3177

https://doi.org/10.18653/V1/2022.EMNLP-MAIN.603
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.603
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.603
https://doi.org/10.48550/ARXIV.2404.07066
https://doi.org/10.48550/ARXIV.2404.07066
https://doi.org/10.48550/ARXIV.2404.07066
https://doi.org/10.48550/ARXIV.2405.17428
https://doi.org/10.48550/ARXIV.2405.17428
https://doi.org/10.48550/ARXIV.2403.01509
https://doi.org/10.48550/ARXIV.2403.01509
https://doi.org/10.48550/ARXIV.2403.01509
http://www.lrec-conf.org/proceedings/lrec2014/summaries/363.html
http://www.lrec-conf.org/proceedings/lrec2014/summaries/363.html
https://doi.org/10.48550/ARXIV.2402.09906
https://doi.org/10.48550/ARXIV.2402.09906
https://doi.org/10.18653/V1/2022.FINDINGS-ACL.146
https://doi.org/10.18653/V1/2022.FINDINGS-ACL.146
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html

Jacob Mitchell Springer, Suhas Kotha, Daniel Fried,
Graham Neubig, and Aditi Raghunathan. 2024. Rep-
etition improves language model embeddings. arXiv
preprint arXiv:2402.15449.

Hongjin Su, Weijia Shi, Jungo Kasai, Yizhong Wang,
Yushi Hu, Mari Ostendorf, Wen-tau Yih, Noah A.
Smith, Luke Zettlemoyer, and Tao Yu. 2023. One
embedder, any task: Instruction-finetuned text em-
beddings. In Findings of the Association for Com-
putational Linguistics: ACL 2023, pages 1102-1121.
Association for Computational Linguistics.

Gemma Team, Morgane Riviere, Shreya Pathak,
Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhupati-
raju, Léonard Hussenot, Thomas Mesnard, Bobak
Shahriari, Alexandre Ramé, et al. 2024. Gemma 2:
Improving open language models at a practical size.
arXiv preprint arXiv:2408.00118.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Ellen M Voorhees and Dawn M Tice. 2000. Building a
question answering test collection. In Proceedings
of the 23rd annual international ACM SIGIR confer-
ence on Research and development in information
retrieval, pages 200-207.

Janyce Wiebe, Theresa Wilson, and Claire Cardie. 2005.
Annotating expressions of opinions and emotions
in language. Language resources and evaluation,
39:165-210.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan
Li, Dayiheng Liu, Fei Huang, et al. 2024. Qwen2
technical report. arXiv preprint arXiv:2407.10671.

Bowen Zhang, Kehua Chang, and Chunping Li. 2024.
Simple techniques for enhancing sentence embed-
dings in generative language models. arXiv preprint
arXiv:2404.03921.

3178

https://doi.org/10.18653/V1/2023.FINDINGS-ACL.71
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.71
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.71

A Appendix

A.1 Comparison with Bidirectional Attention

We explore the performance of removing the causal
attention mask. To this end, we design two types of
bidirectional attention masks: 1) enabling bidirec-
tional attention for the last token, and 2) enabling
bidirectional attention for the input sentence. To en-
sure fairness, the starting position of the non-causal
attention aligns with the position of the prepended
<PST> token.

Using Pretended CoT as the prompt, the results
are presented in Table 6. Both types of bidirectional
attention masks result lead to a substantial decrease
in performance. This observation is consistent with
prior research (BehnamGhader et al., 2024; Li and
Li, 2024), which indicates that, due to the inductive
bias of autoregressive large language models, em-
ploying a bidirectional attention mechanism tends
to reduce model performance.

A.2 Multi-Task Evaluation

We evaluate the TP technique across 12 classifica-
tion datasets, 3 pair classification datasets, 4 rerank-
ing datasets, 11 clustering datasets, 1 summariza-
tion dataset, and 1 additional STS dataset.

Initialization Method STS Avg.
Vanilla LLM 76.86
TP (Ours) 77.54
Bidirectional Attention (Last token) 53.06
Bidirectional Attention (Input Sentence) 43.70

Table 6: Influence of the modified attention masks.

Method PromptEOL PromptEOL+TP
AmazonCounterfactual 70.83 71.71
AmazonPolarity 88.48 94.57
AmazonReviews 46.03 47.77
Banking77 78.94 82.24
Emotion 48.35 51.05
Imdb 79.10 81.44
Massivelntent 72.49 75.22
MassiveScenario 75.41 78.69
MTOPDomain 90.49 93.63
MTOPIntent 81.48 83.16
ToxicConversations 64.51 68.68
TweetSentimentExtraction 60.55 61.15
Average (12) 71.39 74.11

Table 7: Results (accuracy scaled by 100x) on classifi-
cation datasets using LLaMA2-7B.

The datasets we used are all from the
MTEB benchmark (Muennighoff et al., 2022).

Method PromptEOL PromptEOL+TP
SprintDuplicateQuestions 43.02 51.61
TwitterSemEval2015 65.61 67.70
TwittertURLCorpus 78.97 80.90
Average (3) 62.53 66.74

Table 8: Results (accuracy scaled by 100x) on pair clas-
sification datasets using LLaMA2-7B.

Method PromptEOL PromptEOL+TP
AskUbuntuDupQuestions 53.88 57.02
MindSmallRerank 29.97 29.89
SciDocsRR 71.38 77.49
StackOverflowDupQuestions 40.63 43.19
Average (4) 48.97 51.90

Table 9: Results (average precision scaled by 100x) on
reranking datasets using LLaMA2-7B.

The 12 classification datasets include Ama-
zonCounterfactual, AmazonPolarity, AmazonRe-
views, Banking77, Emotion, Imdb, Massiveln-
tent, MassiveScenario, MTOPDomain, MTOPIn-
tent, ToxicConversations, and TweetSentimentEx-
traction. The 3 pair classification datasets are
SprintDuplicateQuestions, TwitterSemEval2015,
and TwitterURLCorpus. The 4 reranking
datasets are AskUbuntuDupQuestions, MindSmall-
Rerank, SciDocsRR, and StackOverflowDupQues-
tions. The 11 clustering datasets are Arxiv-
ClusteringP2P, ArxivClusteringS2S, BiorxivClus-
teringP2P, BiorxivClusteringS2S, MedrxivCluster-
ingP2P, MedrxivClusteringS2S, RedditClustering,
RedditClusteringP2P, StackExchangeClustering,
StackExchangeClusteringP2P, TwentyNewsgroup-
sClustering. The summarization dataset is Sum-
mEval. The additional STS dataset is BIOSSES.

The results on classification datasets, pair clas-
sification datasets, reranking datasets, clustering
datasets, retrieval datasets, summarization dataset
and additional STS dataset are presented in Table 7,
Table 8, Table 9, Table 10, Table 11, and Table 12,
respectively. Our method shows improvement in
40 out of 44 cases across all datasets. Specifically,
the TP technique achieves an average improvement
of 2.72 on classification datasets, a 4.21 increase on
pair classification datasets, a 2.93 gain on rerank-
ing datasets, an improvement of 4.51 on clustering
datasets, a 1.23 gain on summarization dataset, and
a 7.07 gain on additional STS dataset.

A.3 More Prompt Baseline Evaluation

We identify two prompts A and B similar to
PromptEOL that could benefit more significantly

3179

Method PromptEOL PromptEOL+TP
ArxivClusteringP2P 34.87 43.57
ArxivClusteringS2S 31.19 39.82

BiorxivClusteringP2P 19.56 25.75
BiorxivClusteringS2S 24.34 31.92
MedrxivClusteringP2P 27.65 26.41
MedrxivClusteringS2S 34.53 35.98
RedditClustering 24.69 31.69
RedditClusteringP2P 48.52 48.54
StackExchangeClustering 42.16 44.90
StackExchangeClusteringP2P 33.56 33.03
TwentyNewsgroupsClustering 27.61 36.98
Average (11) 31.70 36.24

Table 10: Results (V-measure scaled by 100x) on clus-
tering datasets using LLaMA2-7B.

Method
SummEval

PromptEOL
28.88

PromptEOL+TP
30.11

Table 11: Results (Spearman correlation scaled by 100x)
on summarization dataset using LLaMA2-7B.

from TP. These prompts are derived from (Li and
Li, 2024) and (Li and Li, 2023). In addition, we
design two prompts C and D to impart clear seman-
tic information to the <PST> token. The specific
prompts are shown below:

Prompt A: "The representative word for
sentence <PST> ’[TEXTT] is:"

Prompt B: "Summarize sentence <PST>
’[TEXT]’ in one word:"

Prompt C: "Given the keyword <PST>,
this sentence: ’[TEXT]’ means in one
word:"

Prompt D: "This sentence: <PST> and
’[TEXT]’ means in one word:"

We conduct comparative experiments with and
without TP using Prompt A and B. The results
are shown in the Table 13. As shown in the ta-
ble, our proposed method significantly improves
the performance of prompt A and B, achieving a
10.64 and 9.26 increase, respectively. This vali-
dates our hypothesis that simple prompts without
prior knowledge, similar to PromptEOL, rely more
heavily on modeling backward dependencies to
effectively capture semantics.

We observe that compared to the results in Table
1, Prompt C and D do not further enhance TP’s
performance in the Table 13. We speculate this is
because TP edits occur in the intermediate layers
of the LLM, and providing prior knowledge about
the <PST> token in the input does not effectively

Method
BIOSSES

PromptEOL
62.66

PromptEOL+TP
69.73

Table 12: Results (Spearman correlation scaled by 100x)
on additional STS dataset using LLaMA2-7B.

help the model grasp its intended meaning.

A.4 Number of <PST> tokens

We further analyze the impact of the number of
inserted <PST> tokens on performance based on
PromptEOL. The results are shown in the Table14.
Incorporating two <PST> tokens achieve a slight
improvement in TP performance (by 0.08 points).
However, prepending more <PST> tokens leads
to a decline in performance, as evidenced by the
results of 3 <PST> tokens and 4 <PST> tokens.

A.5 Masking <PST> Token in the First Layer

We mask the <PST> token in the first layer of the
LLaMA?2 7B model to mitigate the impact of token
initialization. The experimental results are shown
in the Table 15.

The performance is slightly lower than that of
PromptEOL+TP. This may be attributed to the role
of the <PST> token in the first layer, where it acts
as a placeholder, enabling the LLM to interpret the
input length as N+1. Despite its random initial-
ization, the <PST> token ensures consistent input
length across all layers.

A.6 Resuming TP at Different Layers

We explore the practice of using TP for a few layers,
and then pause for a few layers and then resume
again. We conduct experiments based on the best
practices of PromptEOL and TP, applying TP at
the 1st layer, stopping TP at the 8th layer, and early
exiting at the 27th layer. The results are shown in
the Table 16. Once resumed, TP remains active
until output. We find that resuming TP at deeper
layers (e.g., layer 21) yields a slight performance
improvement.

A.7 TP without Prompt

We test performance of TP without any prompt.
The results are shown in the Table17. Although the
absence of a prompt significantly degrades perfor-
mance, TP still manages to provide improvements.

3180

Method Backbone STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.

Prompt A LLaMA2-7B 4479 6573 5039 5870 58.10 51.42 4792 53.86
Prompt A + TP (Ours) LLaMA2-7B 5222 6744 58.00 69.89 7132 65.76 66.86 64.50
Prompt B LLaMA2-7B 51.18 73.74 63.13 6887 7096 63.29 67.45 65.52
Prompt B + TP (Ours) LLaMA2-7B 64.32 80.18 70.49 7729 7836 79.32 73.47 74778
Prompt C LLaMA2-7B 6434 77.87 67.62 7425 7215 77.33 7491 72.64
Prompt D LLaMA2-7B 6199 80.83 71.69 7831 77.06 77.82 73.68 74.48

Table 13: Results on STS tasks (Spearman correlation scaled by 100x) using prompt A, B, C, and, D in Appendix
A3.

Method Backbone STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.

1 <PST> (PromptEOL+TP) LLaMA2-7B 6690 83.12 7431 79.87 80.03 80.67 7540 77.19

2 <PST> LLaMA2-7B 6598 83.34 7431 80.31 80.17 80.78 76.01 77.27
3 <PST> LLaMA2-7B 6498 8292 7299 7933 79.34 80.01 7595 76.50
4 <PST> LLaMA2-7B 6452 8290 7201 7890 78.67 79.50 75.75 76.04

Table 14: Results on STS tasks (Spearman correlation scaled by 100x) based on PromptEOL, with various number
of <PST> placeholder tokens incorporated into the prompt.

Method Backbone STS12 STS13 STS14 STS1S STS16 STS-B SICK-R Avg.

PromptEOL+TP LLaMA2-7B 6690 83.12 7431 79.87 80.03 80.67 75.40 77.19
Masking <PST> LLaMA2-7B 66.85 8297 74.17 79.72 79.94 80.55 75.26 77.07

Table 15: Results on STS tasks (Spearman correlation scaled by 100x) based on PromptEOL, masking the <PST>
token in the first layer.

Method Backbone STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.

PromptEOL+TP LLaMA2-7B 6690 83.12 7431 79.87 80.03 80.67 75.40 77.19

Resuming at Layer 9 LLaMA2-7B 6697 8275 73.24 7875 7936 80.40 7533 76.69
Resuming at Layer 10 LLaMA2-7B 66.76 8291 7326 79.11 79.40 8030 7558 76.76
Resuming at Layer 11 LLaMA2-7B 66.68 83.01 73.34 79.13 79.46 80.17 75.60 76.77
Resuming at Layer 16 LLaMA2-7B 66.84 83.07 74.22 79.83 79.96 80.56 75.36 77.12
Resuming at Layer 26 LLaMA2-7B 6695 83.18 7433 79.89 80.04 80.66 7540 77.21

Table 16: Results on STS tasks (Spearman correlation scaled by 100x) based on PromptEOL, resuming TP at
different layer.

Method Backbone STS12 STS13 STS14 STS1S STS16 STS-B SICK-R Avg.

w/o prompt LLaMA2-7B 9.13 2225 11.04 33.09 3492 159 33.73 22.87
w/o prompt + TP LLaMA2-7B 11.68 25.85 13.08 33.70 46.58 22.05 42.61 2794

Table 17: Results on STS tasks (Spearman correlation scaled by 100x) based on PromptEOL without any prompt.

3181

