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Abstract

Generative Language Models rely on autore-
gressive decoding to produce the output se-
quence token by token. Many tasks such as
preference optimization, require the model to
produce task-level output consisting of multiple
tokens directly by selecting candidates from a
pool as predictions. Determining a task-level
prediction from candidates using the ordinary
token-level decoding mechanism is constrained
by time-consuming decoding and interrupted
gradients by discrete token selection. Exist-
ing works have been using decoding-free can-
didate selection methods to obtain candidate
probability from initial output logits over vo-
cabulary. Though these estimation methods are
widely used, they are not systematically eval-
uated, especially on end tasks. We introduce
an evaluation of a comprehensive collection of
decoding-free candidate selection approaches
on a comprehensive set of tasks, including five
multiple-choice QA tasks with a small candi-
date pool and four clinical decision tasks with a
massive amount of candidates, some with 10k+
options. We evaluate the estimation methods
paired with a wide spectrum of foundation LMs
covering different architectures, sizes and train-
ing paradigms. The results and insights from
our analysis inform the future model design.

1 Introduction

Generative LMs respond to queries by generating
tokens to form an output sequence and optimize
themselves by learning to generate the correct to-
kens (Lewis et al., 2020). The simplicity of token-
level inference and optimization compromises its
performance on end tasks, as there is a gap be-
tween the token-level paradigm and sequence-level
task results and learning signals (Longpre et al.,
2023; Ethayarajh et al., 2024). Some tasks use gen-
erative LM to select the answer(s) from a given
pool of options where each candidate answer is a
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Figure 1: Decoding-free generative candidate selection
produces results without training specialized parameters,
building index, or token-by-token decoding.

natural language sequence. For example, multiple-
choice QA considers answer options as the candi-
date pool (Khashabi et al., 2020); the large collec-
tion of labels are candidate answers for extreme la-
bel classification tasks (Amigo and Delgado, 2022);
and disease ontology forms the candidate space for
diagnosis tasks (Singhal et al., 2023). The typ-
ical practice is to decode a complete output se-
quence and then match it with candidates (Mishra
et al., 2022). However, selecting candidates using
full decoding not only cuts off the gradient flow
and disables direct optimization on decoded results
but also limits the output bandwidth due to time-
consuming discrete decoding.

Existing works perform candidate selection with-
out decoding for outcome-level optimization or ef-
ficient parallel predictions (Rafailov et al., 2023;
Ma et al., 2025). For example, Ma et al. (2023b)
calculate averaged logits of MCQA options to se-
lect an answer without decoding; Xu et al. (2023a)
estimate the NLI result using logits of a single
token. Though these decoding-free candidate selec-
tion practices are widely used, there is no formal
definition or clear investigation of the properties
of each method. There is also no consensus about
the guiding principles for deploying those meth-
ods under various tasks and data scenarios with
diverse numbers, lengths, and complexity of can-
didate sequences. In this work, we formally define
the decoding-free generative candidate selection
task, and conduct the first systematic evaluation
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of typical practices on downstream tasks, reflect-
ing the ultimate influence of the selection meth-
ods compared with conducting full decoding. Our
systematic evaluation covers an extensive collec-
tion of candidate selection methods, including
five decoding-free approaches to calculating candi-
date probability distribution from token logits, as
well as encoding-only dense retrieval method and
full decoding approach. The effects of deploying
various methods are evaluated with a comprehen-
sive set of downstream testbeds widely used for
LLM evaluation. The first type of testbed includes
five multiple-choice QA tasks with broad target
capabilities and candidate diversity, reflecting the
candidate selection capabilities while the candi-
date pool is limited. We further increase the diffi-
culty and examine the performance on tasks with
massive numbers of candidates on expert-curated
large ontology with 10k+ options for making diag-
noses, procedure decisions, ordering lab tests, and
prescribing medications. We further dive into the
characteristic shifts of candidate selection meth-
ods while using a wide spectrum of foundational
LMs. The base models are diverse in terms of
architectures (decoder-only or encoder-decoder),
sizes (spanning from 137M to 11B), and training
methods (pre-trained or instruction-tuned).

The evaluation provides insights into the prop-
erties of decoding-free candidate selection meth-
ods. The performance of the token-logits-based
candidate representation is highly dependent on the
properties of the pretrained LM, dataset domain dif-
ficulty, and candidate space diversity. Pure estima-
tion methods can outperform non-instruction-tuned
models due to the challenges faced by weak base
models in handling certain question formats during
decoding. In this case, estimation methods offer a
more straightforward means of exhibiting knowl-
edge through token logits. The insights derived
from our evaluation enable more informed and con-
fident design for future estimation methods. We
empirically demonstrate that the logits of the first
output step are most informative; using selective to-
kens for estimations compromises the performance
and scaling properties of various model sizes.

2 Problem Formulation

2.1 Decoding Paradigm of Generative LMs

The ordinary sequence-to-sequence formulation of
generative LM takes the input sequence segq;, =

in mn :
1 seee ’t|seqm| and is expected to generate an out-

5 _ sout 0
put sequence seqous = " ,...,tf;éqm|. The out-
put sequence generation involves encoding the in-
put sequence to contextual vector representation
(i.e. , output of the final transformer block), and

decoding the outputs following

seqout = ffull—decode(fencode(seqin))' ()

During inference, the decoding function fryii-decode
involves |seqqy¢| discrete decoding steps, in which
each step produces one output token. For (k +
1) — th step of decoding, which is conditioned on
both the input sequence and k£ generated tokens,
the model produces logits z, € RIVI over the vocab-
ulary V after passing output of encoding through
unembedding matrix, and then obtain a probabil-
ity distribution over the possible next token (w €
in rout

1:|seqin|’ lzk)
softmax(z). Then a discrete token at this autore-
gressive decoding step is produced by Equation 2.

V') in the output sequence P (w |

7t = argmaxey P (] . 104) @)

2.2 Candidate Selection with Answer Pools

When performing tasks using generative LMs, we
include task instruction and query in the input
sequence seq;, and expect the derived answer
of the query ans from the generated output se-
quence sedqy,: can match the ground-truth answer
ans. Some tasks expect open-ended free genera-
tion where the final answer is the generated output
(ans = sedoyt), such as translation, creative story
generation and dialogue conversation (Wang et al.,
2023; Ma et al., 2023a). However, many tasks have
an existing answer candidate pool, and the output
sequence needs to find a matched candidate as the
final prediction. We notate the candidate pool as
C and a candidate as c € {c1,c2,..., ¢} Where
|C is the total number of candidate options. Each
candidate is a natural language sequence. The an-
swer of the query has to be one of the candidate, i.e.
ans € C. For example, answer options are candi-
dates for multiple-choice question answering (Tal-
mor et al., 2018), segments of the input sentences
are candidates of information extraction (Sun et al.,
2024; Zhao et al., 2024; Ma et al., 2024a), passages
in large archives serve as candidates for informa-
tion retrieval (Lewis et al., 2021), and drugs within
medication databases are candidates for prescrip-
tion tasks (Yu et al., 2024; Ma et al., 2021).
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Figure 2: Demonstration of generative candidate selection methods. (a) Using full decoding for tasks with answer
candidates by generating output sequences token-by-token. The task is to identify diagnoses given the patient’s
medical record. (b) Candidate space, consisting of coded diagnoses. (c) Using decoding-free generative candidate
selection method for the diagnoses task based on prior-decoding logits over vocabulary.

2.3 Ordinary Approaches for Cand. Selection

Classification methods train a |C|-way classifica-
tion head with specialized parameters, where each
candidate is treated as a class label. Retrieval
methods first create an index with an encoded rep-
resentation of each candidate. During prediction,
the most matched candidates are retrieved, where
the match is measured by the similarity between
the candidate embedding and the query.

To select candidates using a generative ap-
proach with full decoding, the LM first gener-
ates a free-form output with discrete tokens seqyyt,
then an additional mapping fiap from segoy: to
candidates is needed to produce the probability
over all candidates following Equation 3. This
function can be a heuristic rule, semantic similarity
matching, or manual processing. Then, the pre-
dicted answer ans where ans € C'is produced by

).

) = {pclapcza "'apdc\}

= fmap ( ffull—decode ( fencode ( S€Qin ) ) )
3)

in

ans = argmax . P (c | i seqin]

n
1:]seqin|

P(c|t

2.4 Decoding-free Generative Cand. Selection

At this point, we formally define the task of
decoding-free generative candidate selection. In
§2.3, we introduce generative candidate selection

using decoding, where the answer is reflected by
the output sequences. However, there are multi-
ple severe limitations of decoding-based candidate
selection. On the one hand, the discrete argmax
operator for token selection interrupts the gradient
flow, making applying objectives on task outcomes
inefficient, such as using reinforcement learning
with one-per-outcome sparse rewards instead of
token-level feedback. On the other hand, the de-
coding process is time and resource-consuming,
limiting the output bandwidth of generative LMs.

Decoding-free generative candidate selection
fest 18 a function to produce the candidate predic-
tion probability given segq;,, without discrete decod-
ing. Given the encoded representation, the function
calculates the logits of the first decoding step zg
(before the first discrete decoding) and then per-
forms various approaches on top of the logits to es-
timate the probability of candidate outcomes. The
assumption is that the model’s intended preference
over outcome candidates can be reflected in logits
of tokens of the candidate sequences.

The estimation method directly produces the
probability distribution over all candidate outputs
following Equation 7. The predicted answer can be

) = fest(fencode(se%n)) (7)
Compared with Equation 3, the full decoding pro-

n
1:|seqin |

yielded by ans = argmax . P (c |t

P(c|tm

Li|segin|
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exp(logit(ct))

exp({logit(c')))

exp(Z) logit(cl))

4 Pei =

i

- 5l exp(logit(c])

cess frull-decode (including probability calculation,
argmax for token selection, decoding for the next
token) and the mapping fmap are not conducted.

We elaborate on the advantages and how it differ
from ordinary approaches in Appendix B.

3 Generative Candidate Selection
Methods

We formally define candidate selection methods to
be analyzed. We introduce ordinary approaches in
§3.2. For decoding-free generative candidate selec-
tion methods, there are three key design choices: 1)
output step used to obtain the logits, i.e. source of
the raw logits data; 2) candidate sequence keyword
selection, i.e. what tokens represent a candidate
option; 3) estimation methods fest that produces
probability over candidates given the candidate se-
quences and the logits at a certain output step. We
discuss the first and second factors in §5.2 and §5.3,
and define the estimation methods in §3.1. Though
some of the estimation designs have been used by
existing works, there is no justification or empirical
analysis to support their design choices. To the best
of our knowledge, this work is the first to provide
a formal summary of these approaches and system-
atically investigate the properties of each design of
generative candidate selection methods.

3.1 Estimating Candidates Probabilities from
Logits

Logits of k-th token. Each candidate is repre-
sented by a sequence with || tokens, i.e. , ¢’ =
c’i, ceey C|ici|' From the logits across all tokens in the
vocabulary zg, we calculate the logit for a single
token (e.g. , the first or the last token) of each candi-
date sequence and apply softmax to these selected
logits to determine the probability p.: of predicting
a candidate ¢! among all candidates C' following
Equation 4. We consider two variants in our evalu-
ation: first token and last token estimation.

Averaged token logits. We average the logits
across all tokens for each candidate and apply soft-
max to these averaged logits across all candidates
to compute choice probabilities following Equa-
tion 5 where (-) represents the averaging operator.

>0 exp((logit(c/)))

pes = ©)

|7

i 17 exp(Si} Logit(c])

Sum of token logits. For each choice, we sum the
logits across all tokens of the candidate sequence.
We then apply softmax to these summed logits to
determine the probability of selecting each choice
following Equation 6.

3.2 Ordinary Candidate Selection Methods

Full decoding. This method performs full de-
coding to obtain an output sequence following
§2.1, then uses a mapping function to find the
corresponding predicted answer from the given
candidate pool following §2.3. We use the task-
specific mapping function introduced along with
each dataset. Typical practices include using regu-
lar expressions to match patterns, such as “Answers:
”, and predicting the candidates with the highest se-
mantic similarity with the output sequence.

Dense retrieval. We can also formulate the candi-
date selection task as a retrieval task and use dense
passage retrieval as one of the reference models.
Specifically, the question and each candidate choice
are embedded into a high-dimensional vector space
using these encoders, and cosine similarity between
them is computed. This similarity score quantifies
the relevance of each choice to the posed question
and determines the probability of each choice be-
ing the correct answer. For our experimental setup,
we use the Facebook DPR question encoder and
context encoder (Karpukhin et al., 2020) to gen-
erate embeddings of the questions and candidate
choices.

4 [Evaluation Settings

We apply the introduced candidate selection meth-
ods to ultimate downstream tasks to reflect their
influence on end tasks. We introduce the selected
tasks in §4.1 and base generative LMs in §4.2.

4.1 Testbed Tasks

We evaluate generative candidate selection methods
on two typical types of candidate selection tasks.
The first type contains a limited number of answer
candidates so that all plausible choices can fit in the
input prompt of the model if needed. The second
type of task has a massive candidate pool with a
large amount of candidates, which cannot fit in
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the input prompt. We show a comparison between
these two settings in Table 4. We cover more
details of the tasks in Appendix C.1, task statistics
and properties in Appendix C.2 and the distribution
of candidate sequences lengths in Appendix C.3.

4.1.1 Tasks with Limited # of Candidates

We use five tasks with the provided candidate
pools: (1) CommonsenseQA (Talmor et al., 2018),
(2) MMLU (Hendrycks et al., 2021b,a), (3)
GPQA (Rein et al., 2023), (4) BIG-Bench (Sri-
vastava et al., 2022), and (5) ARC (Clark et al.,
2018), covering commonsense questions, science
and liberal arts subjects in different education lev-
els, logical reasoning questions, etc. Instances in
all datasets contain one correct option and multiple
distractors. They vary in difficulty and number of
candidates per instance (3 to 5 candidates).

To require the model to answer in a specific for-
mat without intermediate thinking processes, we
add specific instructions in the input prompt, as
shown in Appendix C.4. When incorporating the
candidate information, we use candidate sequences
without indication heads (e.g. A, B) to estimate
the selection for decoding-free methods. For the
full decoding baseline, candidate sequences with
indicators are included in the input for a fair com-
parison. For the mapping function fy,,, used by
the full decoding, which converts output sequence
seqoyt to candidate selection ans, we capture the
first occurrence of a candidate sequence or indica-
tion head with regular expressions as the prediction
as further elaborated in Appendix C.5.

4.1.2 Tasks with Massive # of Candidates

We adapt four professional decision-making tasks
introduced by Ma et al. (2024b) where the answer
has to fall in a large-scale expert-defined coding
system as the second category testbeds. The goal
is to select multiple candidates from the pool as
the predicted clinical decisions. They include: (6)
Diagnosis decisions on ICD-10-CM coding sys-
tem. Given the patient records of a hospital ad-
mission and the history diagnoses of the patient,
the task aims to produce a set of diagnoses, each
has to choose from chapters in the International
Classification of Diseases (10th revision) coding
system with 94k+ options. (7) Procedure deci-
sions on ICD-10-PCS coding system. The task
determines a set of actions to be implemented to
intervene in the patient’s health status given the
patient record at admission time. Candidates for

Model Common- BIG-
(# Param) Method | senseQA MMLU | GPQA | Bench ARC
Decoding 31.83 36.53 27.90 | 34.00 55.51
First +9.11 -6.8 -3.12 -2 -12.63
e Last | 4923 | 789 | -2.01 2 | 1267
Average +3.24 -4.33 -5.36 -0 -3.52
Sum +4.81 -3.75 -5.58 +0.8 -8.88
Decoding 70.70 58.86 27.68 51.20 91.70
LLaMA3 First -2.68 -19.2
Instruct Last -3.13 -19.2
(8B) Average -7.14 | -15.6
Sum -5.8 -16
Decoding 21.63 25.51 30.13 30.00 29.27
Mistral First +26.79 +4.66 -3.79 +24 | +19.41
v0.3 Last +27.25 +4.02 -3.57 +2 | +18.25
(7.3B) Average +20.89 +7.04 -4.01 +2 | +25.17
Sum +25.16 +7.62 -5.58 +1.2 | +24.05
Mistral Decoding 65.12 52.06 29.02 | 47.60 86.43
hisral First 1834 |["215270 -4.02 =
Vd 3 Last -18.52 -22.76 -2.46
(7'53) Average -20.74 -19.48 -4.91 -16 -27.08
Sum -17.42 -18.87 -5.58 -16.4 -27.08
Decoding 97.48 48.36 25.45 65.20 89.25
First -21.49 -1.34
) Last 2125 | -09
Average -18.54 -1.79
Sum -21.47 -4.02
DPR Retrieval ‘ 32.07 ‘ 27.15 ‘ 25.22 ‘ 30.80 ‘ 39.76
Random |  20.00 | 2500 | 2500 | 3333 | 2500

Table 1: Accuracy for each method across five multiple-
choice QA datasets with a limited number of candidates
per question. For generative candidate selection meth-
ods without decoding, we report the performance gap
compared with full decoding. Methods that underper-
form or outperform full decoding are highlighted with
red or green background.

procedures are codes in ICD-10-Procedure Cod-
ing System ontology with 85k+ options. (8) Lab
orders on LOINC coding system. Given the ad-
mission patient record, the task selects a set of lab
items from the candidate pool of 3rd-level codes
of the Logical Observation Identifiers Names and
Codes system. (9) Prescriptions on ATC coding
system. The goal is to identify a set of medica-
tions, each coded as a pharmacological subgroup
in the Anatomical Therapeutic Chemical classifica-
tion system, to be prescribed to the patient given
admission medical record.

4.2 Base Generative LMs

We assess decoding-free candidate selection ap-
proaches while using various pretrained genera-
tive language models, including both decoder-only
models in the Mistral and LLaMA families, as well
as encoder-decoder models in the Flan-T5 family.
For LLaMA (Al@Meta, 2024) and Mistral (Jiang
et al., 2023) models, we use both models without
instruction tuning (LLaMA3 8B and Mistral v0.3
7B) and after instruction tuning (LLaMA3 Instruct
8B and Mistral Instruct v0.3 7B). Among Flan-
T5 models, we use the 11B variant (Chung et al.,
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Model ‘ Diag- | Proc- Lab Presc-
(# Param) Method noses edures Orders | riptions
Decoding 34.86 9.42 36.52 31.00

First | -19.17 -1.45 | +10.36 | +11.05

LLaMA3 Last | -23.72 -7.61 -11.16 +3.81
(8B) Average | +2.17 -6.71 -1.86 +9.61
Sample Avg. -3.05 -7.16 +7.63 +8.05

Sum | -17.06 -8.37 -4.1 -6.08
Decoding 57.82 27.04 47.04 49.74

First -26.9 -11.55 -7.39

LLaMAS Last | -4.89 | -2642 [1:26237 -15.76
(8B) Average | -10.87 | -26.42 -17.59 -7.68
Sample Avg. -2.08 | -25.99 -16.79 -12.18

Sum -6.45 | -26.71 -15.95 -25.52
Decoding 18.17 12.83

Mistral First +19.64 | +16.13
V03 Last +26.3 | +12.89
(7.3B) Average +28.39 -11.44
Sample Avg. +29.25 | +16.15

Sum +28.38 +8.33
Decoding 43.96 40.53

Mistral First +1.41 -27.83
Instruct Last -23.19 -18.7
v0.3 Average -14.13 | -11.44
(7.3B) Sample Avg. +10.36 -0.29
Sum -13.44 -0.28
Decoding 8.43 4.41

First +32.14

Flan-T5 Last +16.93 | +28.76

XL (11B) Average +24

Sample Avg. +29.04 | +20.18

Sum +33.52 | +32.19

Table 2: Recall for each candidate selection method
across four clinical tasks with 1K+ to 94K+ candidates
per question. We report the performance gap compared
with full decoding.

2022). When preparing the input sequence seg;y,
we apply the chat template for the models trained
with the prompt template, and we append the gen-
eration prompt to indicate the start of the answer
segment.

5 Experiments Results

Table 1 and Table 2 show the candidate selection
performance on tasks with limited and large-scale
candidate pools, respectively. The runtime of each
method is shown in Table 3. Given longer candi-
date sequences, we introduce a new decoding-free
candidate selection approach named Sample Avg.,
which calculates average logits for every other to-
ken in candidate sequences. Besides the analysis
for output steps, candidate token selection (Fig-
ure 3), candidate length and model sizes (Figure 4),
we additionally demonstrate that adding chat tem-
plate for instruction-tuned model hurts the estima-
tion performance in Appendix D.1, the effect of
chain-of-thought reasoning in Appendix D.2, ad-
ditional ablation study on candidate length in Ap-
pendix D.3 and performance breakdown in Ap-
pendix D.4.

5.1 Characteristics of Generative Candidate
Selection Methods

Insight 1: Estimation methods provide reason-
able initial guesses for challenging tasks and
decision intuition especially when full decod-
ing is weak. In Table 1 with limited candidates,
for more challenging datasets such as GPQA,
decoding-free candidate selection approaches (also
referred to as “estimation methods”) provide a rea-
sonable initial guess and do not necessarily per-
form significantly worse than full decoding. Com-
pared to full decoding, estimation methods even
provide better performance for CommonsenseQA
using LLaMA3 and all MCQA tasks except GPQA
using Mistral v0.3. We observe these two models
still struggle to handle the format for answering
the question for some tasks during decoding, so
it is hard to project its knowledge to interpretable
results since the only surface to represent knowl-
edge, outputting sequences, is not working for a
weak base model. While knowledge by estimation
methods is easier to exhibit through token logits.

For the results on clinical decisions with massive
candidates presented in Table 2, all methods expe-
rience a decrease in performance on these more
challenging tasks compared to the ones with a lim-
ited candidate space. Among decoder-only models,
estimation methods can outperform full decoding
for lab orders and prescriptions, particularly in non-
instruction-tuned variants. Specifically, all estima-
tion approaches surpass Mistral v0.3 in lab test
orders, with Sample Avg. achieving the highest
increase of 29.25 points compared to full decod-
ing. Additionally, four of the estimation methods
outperform LLaMA3 and Mistral v0.3’s decoding
methods in prescription decision making. The es-
timation methods provide hints of candidate selec-
tions in token logits. It is particularly useful when
the full decoding approach of non-instruction-tuned
models struggles to follow instructions (as shown
in qualitative analysis in Appendix D.5). When
the model is able to understand the instruction and
produce reasonable output (using instruction-tuned
models), full decoding is still better than estima-
tion. This aligns with our observation in Table 1.
To summarize, full decoding may impede the ac-
curate selection of candidates, especially for non-
instruction-tuned models, whereas decoding-free
methods can provide an initial guess in some cases
since they are not influenced by trajectory biases.
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Insight 2: Estimation methods lag behind when
full decoding performs well. In Table 1, we ob-
serve an overall drop in performance when using
estimation approaches, especially when the full de-
coding method achieves reasonable accuracy. This
aligns with the intuition that estimation methods
rely solely on the logits without capturing the token
dependencies within the output.

Insight 3: Estimation results are similar before
or after instruction tuning. Though instruction-
tuned models tend to achieve better results than
non-instruction-tuned ones with full decoding, the
estimated selection results using the models of the
same family do not have a large gap (LLaMA3
and Mistral compared with their instruct variants).
This indicates that instruction tuning benefits the
decoding method a lot while making no significant
difference for decoding-free methods.

Insight 4: Each candidate selection method ex-
cels under different conditions. The effective-
ness of a candidate representation depends heav-
ily on the specific LLM and dataset. For instance,
when using the CommonsenseQA dataset, selecting
by Sum logits is the best for Mistral Instruct v0.3,
while the Average method performs best for Flan-
TS5. The difference in performance between the
two single-token-based estimation methods (First
and Last) is small, likely due to the limited length
of most candidates. The DPR model without fine-
tuning performs similarly to random guessing on
more difficult datasets such as GPQA and BIG-
Bench as the retrieval model is designed for se-
mantic similarity instead of reasoning. Both the
capabilities of the pre-trained LM and the choice of
representative tokens play crucial roles in accurate
candidate selection.

Insight 5: Decoding-free estimation is much
more efficient than full decoding. As shown
in Table 3, the decoding-free estimation methods
bring significant speedups across all nine tasks, es-
pecially for tasks with large candidate pools (25.1x
to 57.6x speedup).

5.2 Effort of Output Steps

We investigate the middle ground between com-
plete decoding-free methods and full decoding. We
allow the LLM to generate output for a certain num-
ber of decoding steps and then use the logits of the
next step to perform candidate selection estimation.

Task | Cand. # | Decoding  First ~ Last Average  Sum
Com.sen.QA 5 1.28 0.04 0.04 0.06 0.06
MMLU 4 0.96 0.07 0.07 0.10 0.10
GPQA 4 0.75 0.19 0.19 0.27 0.27
BIG-Bench 3 0.90 0.08 0.08 0.12 0.12
ARC 4 1.24 0.06 0.06 0.08 0.08
Diagnoses 94,739 424.16 17.38 7.33 19.38 19.19
Procedures 85,257 35339 1448 14.10 15.67 1559
Lab Orders 1,622 108.82 3.60 2.99 3.06 3.07
Prescriptions 24,785 397.69 1420 1438 19.52  18.97

Table 3: Number of candidates and elapsed time (sec.
per instance) for nine tasks and five generative candidate
selection approaches using the Mistral v0.3 model.

Insight 6: Logits of the first output step is the
most informative. The ablation study is shown
in Figure 3(a). The estimation performance drops
significantly when the output steps increase after
the first step. There is only 1 unique token for
output steps 1 and 3 across all decoding outputs,
as all outputs start from a phrase leading to the
answet, i.e. “Based on the provided information, I
would suggest the following diagnoses:...”. Though
the uncertainty of the first decoded token is very
small, the logit distribution contains the most help-
ful signals across all output steps. The estimation
performance rises after generating the lead phrase
starting from the tenth output step.

Using the logits of the first output step, without
additional subsequent decoding, has been the de-
fault setting to estimate the candidate selection in
many works. It is also most efficient without ad-
ditional decoding steps. We empirically show that
using the logits of the first output step to estimate
the candidate selection is the optimal solution in
terms of both performance and efficiency.

5.3 Effect of Selected Candidate Keywords

We investigate the estimation capabilities when
only the logits of the most important keywords
of each candidate sequence are considered. We
prompt GPT-4o to select a certain number of the
most important and informative tokens among all
of each candidate sequence. We then only calcu-
late the candidate probability using logits of the
selected tokens.

Insight 7: Using full candidate sequence for esti-
mation is better than selecting essential tokens.
In Figure 3(b), we observe that as the considered to-
kens become more concise and selective (the num-
ber of selected candidate tokens becomes fewer),
the estimated results of various methods converge
to a similar range with a worse recall for most esti-
mation methods. This indicates that it is not neces-
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sary to only use essential tokens of the candidate
sequence during estimation if it is not First-only
logits being used to derive the selection.

5.4 Sensitivity to Model Sizes, Architectures,
and Candidate Length

Insight 8: Estimation performance increases
with larger decoder-only models, while stay-
ing constant with encoder-decoder ones. Fig-
ure 4.1(a) illustrates the performance of the
encoder-decoder model improves using full decod-
ing with respect to model sizes, while estimation
approaches remain constant. However, the analy-
sis on decoder-only GPT-2 family (Radford et al.,
2019), including GPT-2, GPT2-Medium, GPT2-
Large, and GPT2-XL, shown in Figure 4.1(b)
shows a different trend. For this model family,
all estimation methods surpass full decoding, and
estimation accuracy improves as the model size in-
creases. From qualitative analysis, we observe the
poor performance of GPT2 full decoding is due to
the fact that the model struggles to understand the
instruction and perform the QA task in a reasonable
format.

Insight 9: Estimation performance decreases
with longer candidate lengths. We depict the re-
lationship between accuracy and the average length
of candidates for both the MMLU and clinical
datasets in Figure 4.2(a-b). For the MMLU dataset,
data points are divided into 11 equal-sized bins,
with average accuracy plotted against the average
option length of the questions within each bin. For
clinical tasks, where questions share identical can-
didate sets, average accuracy is plotted for each
task, sorted by average candidate length (prescrip-
tions, lab orders, procedures, diagnoses). In the
MMLU dataset, decoding-free methods show de-
creasing accuracy with longer candidate length.
Conversely, in the clinical decision datasets, there
is an increase in accuracy for the last two average
option lengths due to the intrinsic difficulty of the
procedure dataset.

6 Related Works

To perform candidate selection from a candidate
pool, existing works use a classification head on
top of encoder outputs (Milios et al., 2023; Yamada
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et al., 2020; Li et al., 2022). However, classifica-
tion formulation requires additional parameters and
training while not supporting novel classes and dy-
namic candidates for each instance. The generative
candidate selection we discussed keeps its flexibil-
ity and generalizability with a large throughput. To
speed up inference, different parallel and efficient
decoding methods are proposed (Bae et al., 2023;
Zhang et al., 2018; Huang and Mi, 2010). However,
our goal is not to speed up decoding but to evaluate
the methods approximating decoded results with-
out decoding. To select a candidate from a pool
using the token logits without discrete decoding,
existing works propose to obtain the probability
of each candidate through aggregating different
parts of token logits such as only keeping logits
of a special token (Xu et al., 2023b), averaging
logits (Saeidi et al., 2024; Song et al., 2024; Etha-
yarajh et al., 2024; Xiong et al., 2024), or multiply-
ing logits (Ma et al., 2023c). We conduct the first
systematic evaluation on these methods.

7 Conclusion and Future Work

We provide the first formal definition and com-
prehensive evaluation of decoding-free generative
candidate selection methods. We demonstrate that
estimation methods can excel in scenarios where
base models struggle with answer formats, offering
a simpler yet effective alternative to full decoding.
Additionally, our findings emphasize the impor-
tance of the initial output step logits, revealing that
selective token usage can undermine performance
and scalability across model sizes. These insights
pave the way for more informed designs of candi-
date selection methods. Future work can build on
these findings to refine estimation techniques.
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Limitations

In terms of accuracy, current estimation methods
have room for improvement due to their reliance on
initial logits and simplified representative tokens

(e.g., first, average). Future work could consider us-
ing logits from more time steps or leveraging LLMs
to summarize the candidates into a few words, po-
tentially serving as more effective representative
tokens.

Regarding efficiency, computing logits domi-
nates the runtime of estimation approaches. Apply-
ing advanced techniques, such as PagedAttention,
to optimize memory usage can further enhance the
efficiency of estimation methods, especially for
tasks with lengthy prompts.
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A Potential Questions

Do decoding-free candidate selection methods
not involve decoding? Decoding-free methods
only use the logits of the first potential output to-
ken without producing the token. Calculating log-
its could be considered an early step in the token
decoding process. However, no complete decod-
ing step (as shown in Equation 2) is involved in
decoding-free methods (as shown in Equation 7).

Why do you need to do decoding-free candidate
selection? Compared with producing a response
to a query through full decoding (as demonstrated
in Equation 3), accurate decoding-free candidate
selection methods (as shown in Equation 7) are
needed, especially for two scenarios. 1) Accu-
rate outcome-based optimization. To optimize the
model with the feedback directly from the predicted

outcome ans, we need to know the model’s pre-
diction over potential candidates C without inter-
rupting the gradient flow (such as argmax operator).
These optimization tasks include preference opti-
mization, which learns to choose the winner option
over the loser one (Rafailov et al., 2023); bias miti-
gation, which obtains detected bias and mitigates
the bias level (Ma et al., 2023b); and information
extraction, which derives the possibility of extract-
ing different subsequence spans and performing
contrastive learning (Ma et al., 2023c).

2) Efficient answer production. The token de-
pendency of full decoding prevents the decoding
mechanism from outputting the answer in paral-
lel. Even though the output sequence sefg,; is
generated, an additional step (fmap) is needed to
convert the output sequence sedq,; to the predicted
answer ans (e.g. through sequence matching or se-
mantic similarity). Decoding-free candidate selec-
tion produces the probability over all potential an-

swers P (c | t’1”| _ ) directly without autoregres-
| seqin|

sive generation and supports parallel inference, sig-

nificantly improving the time and resources needed

for producing the answers to queries.

What are the potential usage and broader im-
pact of the evaluation done in this work? The
conclusions and observations derived from our eval-
uation provide evidence for more informed and
confident design choices for both optimizations
with outcome-level feedback and efficient answer
production without decoding. When researchers
and industry practitioners need to define a function
to estimate the possibility of potential answers us-
ing generative language models without decoding
the output sequence, they can: 1) choose the best
estimation method corresponding to their model
architecture and end tasks according to our evalu-
ation results; 2) understand the empirical tradeoff
between efficiency, in terms of runtime, and estima-
tion quality, in terms of performance difference; 3)
decide whether they are confident to use estimation
method instead of decoding (especially when the
estimation methods provide better performance for
non-instruction-tuned models). With the wise de-
cision of the candidate selection method, they can
obtain better performance after training the model
with answer-level rewards, such as through prefer-
ence alignment, and produce the predicted answers
faster with lower resource usage by replacing de-
coding with estimation.
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What are the differences between the two types
of tasks used in the evaluation? We quantify the
effects of various decoding-free estimation meth-
ods in downstream scenarios by using two types
of evaluation tasks: tasks with limited numbers
of candidates (specifically 5 multiple-choice QA
tasks) and tasks with massive numbers of candi-
dates (specifically 4 clinical decision tasks). We
summarize their core differences in Table 4.

The first type (limited candidates) has a lim-
ited number of candidates, among which only one
option is correct; all candidates’ information can
be contained in the input prompt, and the candi-
date pool is unique for each instance. The second
type (passive candidates) has a much larger pool of
candidates with multiple correct answers (detailed
statistics in Table 6). Thus, it is not feasible to
feed candidates in the input prompt. The specific
tasks we used (the four clinical decision tasks) use
the same output candidate pool across instances of
the same task. The examined methods should also
support dynamic candidate pools across instances
for tasks with massive numbers of candidates.

Why not use an agent-based system to han-
dle massive candidates? We can provide multi-
ple functions and tools for LLM agents to search,
match, or traverse relevant candidates from a large
pool of candidates. Compared with full decod-
ing, it will provide more information about the
candidate pool and potentially lead to better per-
formance. However, formulating the candidate se-
lection task as an agent is based on and expanded
from the idea of decoding discrete tokens to pro-
duce answers from output sequences (as described
in Equation 3); it does not enjoy the benefits of
decoding-free methods, and it is not a comparable
setting of the methods we focus on in this paper.

Which decoding methods are you using to com-
pare? We use the default decoding setting for
each model specified in their generation configu-
ration file. Our work does not aim to propose a
new decoding method or compare the performance
of various decoding methods. Instead, we empha-
size the benefits and limitations of decoding-free
candidate selection methods.

How is the evaluation performed in this pa-
per different from the evaluations provided in
the previous works that use those decoding-free
methods? Existing works do not consider how to
represent the response candidate from the logits of

a single output step as a standalone problem. Thus,
they do not provide justification, theoretical proof,
or evaluation of the design choice of the decoding-
free candidate selection method they used in their
works. Our work aims to raise awareness of the
importance of this design choice and conduct the
first thorough definition of the task and systematic
evaluation.

B Advantages and Properties of
Decoding-free Generative Candidate
Selection

B.1 Advantages

Decoding-free candidate selection methods are es-
pecially beneficial for two scenarios. 1) Accu-
rate outcome-based optimization. To optimize the
model with the feedback directly from the predicted
outcome ans, we need to know the model’s pre-
diction over potential candidates C without inter-
rupting the gradient flow. 2) Efficient answer pro-
duction. The token dependency of full decoding
prevents the decoding mechanism from outputting
the answer in parallel. Even though the output
sequence sefq: is generated, an additional step
(fmap) 1s needed to convert the output sequence
seqout to the predicted answer ans. Decoding-free
candidate selection produces the probability over
all potential answers directly without autoregres-
sive generation and supports parallel inference, sig-
nificantly improving the time and resources needed
for producing the answers to queries.

B.2 Difference Compared with Ordinary
Approaches

The common property between the generative can-
didate selection and classification is that both set-
tings require a given set of selections to produce
the final output. However, candidate selection is
different from classification in many key aspects
summarized in Table 5, specifically: 1) Support of
dynamic candidates. A classification model has to
use the same set of output labels across all instances
(e.g. positive or negative for sentiment classifica-
tion). However, candidate selection methods allow
the task to have a different set of output candidates
for each instance (e.g. different answer options for
each question in MCQA). 2) No need of additional
parameters. The classification head is an additional
set of parameters specialized for the defined output
classes. Different classification tasks have to use
a separate set of parameters. Candidate selection
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Property

\ Tasks w/ limited numbers of candidates

Tasks w/ massive numbers of candidates

Candidate info

Correct options # Single
Candidates # A few
Candidate pool Dynamic for each instance

Can be contained in input prompt

Not able to be contained in input
Multiple
Thousands
Fixed for all instances

Table 4: Key difference between two types of tasks used in the evaluation: tasks with limited/massive numbers of

candidates.

methods support various candidates with the gen-
erative LM’s native parameters only, without any
additional parameters. 3) No need for specialized
training. The additional parameters for each classi-
fication task need to be parameterized by training
on task-specific data, preventing it from generaliz-
ing to new tasks or labels. However, decoding-free
estimation methods support zero-shot candidate se-
lection, as the possibilities of choosing options are
calculated dynamically according to corresponding
candidates.

C Details of Experimental Setup and
Implementations

C.1 Testbeds
C.1.1 Tasks with Limited Candidates

The tasks with limited number of candidates in-
clude: (1) CommonsenseQA (Talmor et al., 2018)
includes questions testing commonsense knowl-
edge across over 2,000 concepts such as highways,
housing, and eating, assessing a broad understand-
ing of everyday scenarios. (2) MMLU (Hendrycks
et al., 2021b,a) covers a wide range of 57 subjects
including mathematics, medicine, computer sci-
ence, and law, designed to test specialized knowl-
edge in diverse fields. (3) GPQA (Rein et al., 2023)
contains challenging questions in biology, physics,
and chemistry, written and validated by experts
to test deep domain-specific knowledge. (4) BIG-
Bench (Srivastava et al., 2022) includes tasks like
boolean expression evaluation and causal judge-
ment based on stories, focusing on logical reason-
ing capabilities. We select the “logical deduction”
category with three objects for our experiments. (5)
ARC (Clark et al., 2018) comprises 7,787 multiple-
choice questions at grade-school level, divided into
a Challenge Set and an Easy Set, to test scientific
knowledge. We opt for the Easy Set in our experi-
ments.

We report accuracy and per-instance runtime
for these tasks. These datasets are split into sub-
sets such as train or test. We select one of the

dataset splits with available answer keys for our
study. For the mapping function f,,, converting
output sequence seqyy; to candidate selection ans,
we capture the first the answer candidate sequence
or candidate indication head (e.g. A, B, C D) ap-
peared in the output sequence with regular expres-
sions and use the matched candidate as the predic-
tion. All candidate options are added in the input
prompt, thus full decoding and decoding-free se-
lection methods use the same amount of available
information. We make sure all input sequences for
full decoding or decoding-free candidate selection
methods are exactly the same.

C.1.2 Tasks with Massive Candidates

As for the clinic decision datasets, the candidate
sequence lengths are generally longer than the first
testbed type, as shown in Table 6. Please refer to
(Ma et al., 2024b) for more data and experimental
setup details. We report recall and per-instance
runtime for these four tasks. For the mapping func-
tion fmap used by the full decoding approach to
select a candidate from the output sequence, we
follow the original benchmark setting by select-
ing the candidate with the highest cosine similarity
between sentence embeddings of the candidate defi-
nition and the generated output seq,,+ produced by
BERT model (Reimers and Gurevych, 2019). The
candidates are too many to fit in the input prompt,
thus while other methods have access to the can-
didates information, full decoding method is not
aware of candidates.

Different from tasks in §4.1.2, multiple candi-
dates need to be selected for the four tasks of the
second type, significantly increasing the difficulty
of candidate selection. For full decoding, the model
can determine the number of predictions made be-
cause the generation of the end-of-sentence token
indicates stopping making additional predictions.
Decoding-free candidate selection methods rely on
candidate probability, and it is hard to determine
a fixed threshold for all instances. Thus, we take
20 candidates with the highest probabilities, which
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Property | Classification

Generative candidate selection

Candidate pool
Separate parameters

Specialized training Require training

Fixed for all instances
Need separate classification head

Dynamic for each instance
No separate parameters
Support on the fly zero-shot inference

Table 5: Key difference between classification and generative candidate selection.

contain more predictions than ground-truth answers
for most testing instances. We then only report re-
call, indicating the portion of ground-truth answers
that are correctly predicted, to mitigate the influ-
ence of uncertain selection probability threshold.

To speed up the inference of full decoding,
we wrap the generative LM with vLLM frame-
work (Kwon et al., 2023), which leverages pag-
ing techniques in the operating system to optimize
memory usage. All experiments were performed
on a single NVIDIA A40 Graphics Card.

C.2 Statistics and Properties of Testbed

We show the statistics and properties of the nine
testbed tasks in Table 6.

C.3 Distribution of Candidate Lengths

The distribution of candidate lengths is provided
in Figure 5 and Figure 6 for the MCQA and clini-
cal decision datasets, respectively. For the MCQA
datasets, where each question has a distinct set of
candidate options, we compute the average number
of words in the candidate options for each question
and plot the distribution of these average candidate
lengths across all questions. For the clinical de-
cision datasets, where questions within the same
task (e.g. prescriptions) share the same candidate
pool, we plot the distribution of word counts of
candidates for the four distinct candidate pools.

C.4 Prompt Examples

The most informative prompt consists of system
and user content. The system content provides
the role (e.g. clinician) and the task instruction (e.g.
select the best option), while the user content con-
tains the specific question and candidate options if
applicable. The adoption of the chat template and
the inclusion of candidate options in the prompt are
specified in Table 7. We provide two prompt ex-
amples with the most complete information for the
MMLU and diagnosis decision tasks, respectively.
The prompt designs for clinical decision tasks are
inherited from (Ma et al., 2024b).

You are a scholar with extensive knowledge across
various disciplines. What is the correct answer to
this question:

[QUESTION]

[CHOICES]

Format your response as follows: "The correct an-
swer is (insert answer here)."

You are a professional clinician in a hospital with
expert knowledge in medical and clinical domains.
The task is to make a list of diagnoses for this patient
based on the provided information of the patient.
The diagnosis can be in ICD-10-CM code format
(such as S12.000G), or natural language description
of the disease. Please provide as many diagnoses
as you can until you are not confident about your
diagnosis decision.

[PATIENT PROFILE]

[MEDICAL RECORD AT ADMISSION]
[RADIOLOGY REPORTS]

[LAB TEST RESULTS]

C.5 Extracting Predicted Answer from the
Decoding Output

Unlike estimation approaches, where the selec-
tion is deterministic, exact decoding requires pars-
ing the output to extract the choice from the re-
sponse, notated by the f., function in Equa-
tion 3. For MCQA tasks, we identify the choice
by matching specific substring formats (e.g. ,
"Answer: A', '(A)', 'A[,.)]"). We treat the
first occurring option as the choice made by the
LMs, and the rest of the options are considered
explanations. For the clinical dataset, we use a
sentence transformer to find the most relevant diag-
nosis codes that appear in the response following
the implementation of CliBench. For more details
on parsing clinical decision outputs, we refer read-
ers to (Ma et al., 2024b).

D Additional Experiments

D.1 Effect of Chat Template to Estimation
Performance

We compare three estimation approaches—First,
Average, and Sum—with and without the use of
prompt templates across five multiple-choice ques-
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Task ‘ Split Instances # Candidate # Average candidate token #
CommonsenseQA | train 9741 5 1.52
MMLU test 14,042 4 6.72
GPQA train 448 4 5.84
BIG-Bench train 250 3 5.33
ARC test 2,241 4 3.76
Diagnoses test 1,081 94,739 9.65
Procedures test 1,054 85,257 9.37
Lab Orders test 1,067 1,622 5.25
Prescriptions test 1,036 24,785 2.30
Table 6: Properties of nine testbeds.
(a) CommonsenseQA (b) MMLU 1 (c) GPQA (d) BIG-Bench (f) ARC
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Figure 5: Distribution of average candidate lengths for MCQA benchmarks.

We evaluate two LMs with their

Average Candidate Length

default prompt template: LLaMA3 Instruct and
Mistral Instruct v0.3. In this comparison, since op-
tions are not provided in the prompt, we rephrase
the instruction to frame it as an open-ended ques-
tion, e.g., “You are an intelligent assistant with a
vast understanding of everyday life. The task is
to answer the following question, drawing from
relevant knowledge areas.”

The results, as illustrated in Figure 7(a-c),
demonstrate that the accuracy without using
prompt templates generally exceeds that with tem-
plates. Specifically, in about 80% of the test cases,
not using a prompt template outperforms using one,
as depicted in Figure 7(d-f). The GPQA dataset is
an exception, where using the template generally
enhances performance across most LMs. The ac-
curacy of these estimation approaches is notably
sensitive to the format of the prompt, as they rely
heavily on the logits generated from the prompt.

D.2 Effect of Chain-of-Thought Reasoning

We evaluate the estimation performance using CoT
reasoning on the MMLU college_mathematics
subset with the Meta-Llama-3-8B-Instruct model
under three distinct settings:

* No CoT, logits of the first output step: This
default setting, as described in the submission
paper, does not involve CoT reasoning.

* CoT, logits of the first output step: The in-
put prompt includes CoT instructions and in-
context examples. The logits from the first
output step are used for decoding-free estima-
tion methods.

* CoT, logits after thoughts: Similar to the pre-
vious setting, but the model generates a step-
by-step reasoning process before producing
the final answer. The logits from the output
step immediately preceding the final answer
are used for estimation.

Table 8 presents the performance differences rel-
ative to full decoding. The results show that CoT
reasoning improves estimation performance, nar-
rowing the gap compared to full decoding. How-
ever, using logits conditioned on the generated
reasoning steps leads to degraded performance.
This finding aligns with “Insight 6” in Section 5.2,
which emphasizes that the logits of the first step
are the most informative.

D.3 Performance vs Candidate Length for
Other QA Tasks

In addition to the performance vs candidate length
ablation study shown in Figure 4.1(a) for MMLU,
we report a similar analysis for other QA tasks. For
the MCQ datasets, we sorted the questions accord-
ing to candidate length and split them into 12 sub-
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(a) Diagnoses

(b) Procedures

(c) Lab Orders

(d) Prescriptions
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Figure 6: Distribution of average candidate lengths for clinical decision benchmarks.

Data Type Model Type Method Chat Template  Candidate Pool Info
. Decoding v Contained in the input
Instruction-tuned Estimation v fest TEpresentation
MCQA est I€P
Non-instruction-tuned Dec.:odu.lg Not appl%cable Contained in the %nput
Estimation | Not applicable fest TEpresentation
Instruction-tuned EDiigldltr.lgn j ffmaprreliresiﬂti?(;n
Clinic stimatio st Tepresentatio
Noninstruction-tuned DCC.EOdII.lg Not appl%cable Jmap representagon
Estimation | Not applicable fest Tepresentation

Table 7: Prompt formats for combinations of dataset type, model type, and selection method. Estimation methods
include First, Last, Average, Sample Avg., and Sum. For each combination, we indicate whether a prompt template
is applied and the approach of incorporating the candidate pool information. “Contained in the input” means we
verbalize all candidates and include them in the input prompt. “f,,,, representation” indicates though the candidates
are not explicitly provided in the input, but the mapping from the output sequence (generated by the full decoding
process) to the predicted answer provides implicit candidate information as all candidates are served as matching
candidates in the fr,,p, function. *f. representation” indicates that candidate info is used by the decoding-free
candidate selection method to calculate the probability over candidate outputs by using candidate-specific logits

calculation.
CoT CoT
Method No CoT  logits before thoughts  logits after thoughts
First 9 -7 -11
Last 9 -4 -10
Average 5 -4 -10
Sample Avg. 7 -6 -7
Sum 2 -0 -5

Table 8: Difference between the recall of full decod-
ing and three variants of estimation methods, without
or with CoT for “college mathematics” in MMLU, us-
ing LLaMA 3 Instruct. Methods that underperform or
outperform full decoding are highlighted with red or
green background.

sets of equal size. We plotted the average accuracy
versus the average candidate length of the subsets
in Figure 8. The gap between decoding and estima-
tion methods is smaller for GPQA and BIG-Bench
compared to the easier datasets CommonsenseQA
and ARC. Overall, performance remains relatively
constant with respect to average candidate length
for CommonsenseQA and BIG-Bench, whereas it
fluctuates more for the other two datasets.

D.4 Estimation Performance Breakdown for
MMLU

Figure 9 illustrates the estimation accuracy versus
decoding for Mistral Instruct v0.3 across individual
subjects in the MMLU dataset. Generally, the full
decoding accuracy exceeds the estimation perfor-
mance, although a few subjects show comparable
results.

D.5 Example Outputs

We present the full decoding outputs for two ques-
tions: one from the MMLU dataset and the other
from the clinical diagnosis decision task.

Example 1 Question: Sammy wanted to go to
where the people were. Where might he go?
Candidates: (A) race track, (B) populated areas,
(C) the desert, (D) apartment, (E) roadblock.
Answer: populated areas

Below is the list of example outputs from LMs
for the question in Example 1 in CommonsenseQA.
Unlike the other models, which correctly select the
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First Average Sum
(a) (b) (c)
Mistral Mistral Mistral
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Figure 7: (a-c) The accuracy of the estimation approaches without chat template subtracted by the accuracy with
chat template, for two instruction-tuned LMs and five datasets. (d-f) Distribution of the difference between the
accuracy without chat template and with chat template. The vertical black line denotes the 20% percentile.
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Figure 8: Accuracy versus average candidate length for four MCQ datasets.

accurate choice, the response from Mistral v0.3 is
unrelated to the input prompt. Notably, Flan-T5
XL provides the correct answer succinctly.

LLaMA3:

The answer is (B) populated areas.

LLaMA3 Instruct:

Based on the context of the question, the correct
answer is (B) populated areas. The question states
that Sammy wanted to go to where the people were,
which implies that he is looking for a location with
a large number of people. Populated areas, such as

Course: Exclusion Code:

Map Exercise S-C-O-IN 1. A-1 draws attention to
the sky because it shows a cartoon face without any
details but, for the purpose of creating emphasis, it
has blue and purple sunrays drawn in. Despite the
imminent sense of doom, the drawing is done in
bright colors which create a lighter mood. B-2 best
serves the purpose of identifying the region where
the chase

Mistral Instruct v0.3:

The best answer to your question would be (B) pop-
ulated areas. Given the context that Sammy wanted
to go to where the people were, it would make sense
that he would head towards an area with a high pop-
ulation density, such as a city or town. Therefore,
populated areas is a logical choice.

cities, towns, or busy streets, would likely have a Flan-T5 XL.:
higher concentration of people compared to other .
options like a race track, desert, apartment, or road- [
block. B
Below is the list of outputs produced by the full
Mistral v0.3: decoding approach of five LMs for clinical diag-
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Figure 9: Top 20 Accuracy for four estimation methods combined with Mistral Instruct v0.3 on MMLU dataset.
The dashed line denotes the accuracy of the full decoding approach.

nosis decisions for admission ID 26214425. The
This is a case of metastatic lung adenocarcinoma

LMs Wer‘e prompted to generate all p OSSIbIF: dlag_ with an EGFR mutation on erlotinib. The patient
noses. Mistral v0.3 tends to repeat the questions in is experiencing right hip pain due to progression of
the prompt. Flan-T5 XL produces only one possi- her known right iliac bone metastasis.

. . . . The patient has been getting zometa every 3 months,
ble diagnosis, despite being prompted to generate s dlose S0 s meen oy 1adbeiien Qe

multiple diagnoses. This behavior is similar to ogy who plan to perform RT post-discharge. Also
its performance on the previous MCQA questions, emailed her OP Oncologist Dr. ___ recommended
. . . a CT-guided biopsy of the lesion. However, as pt
where it provides only the answer without further was admitted on ___, this would likely not be done
explanation. until ___ and she elected not to stay in the hospital
awaiting this procedure. She was discharged with a
script for some additional Percocet for pain control.
She reported adequate pain control with PO medi-
cations.

The patient has a history of DVT. She was only on
60mg lovenox as her weight was closer to 80kg.
However, as she was ____ years out from the initial
diagnosis, no adjustments were made. Pt was en-
couraged to discuss dosing with Dr. ___.

The patient has hypertension and continued meto-
prolol.

LLaMA3: LLaMA3 Instruct:
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Here are the diagnoses for this patient:

1. Metastatic lung adenocarcinoma (C34.90)

2. Right hip pain secondary to right iliac bone
metastasis (M84.461A)

3. Cancer-related pain (G89.3)

4. Hypertension (110)

5. Deep vein thrombosis (182.409)

6. History of pathologic fracture (M80.00XA)

7. Osteoporosis (M81.0)

8. EGFR mutation (R83.9)

9. Anemia (D64.9)

10. Hyperlipidemia (E78.9) (not explicitly stated
but likely given the patient’s medical history and
medications)

Note: The ICD-10-CM codes are provided in paren-
theses for each diagnosis.

Mistral v0.3:

Hemosiderosis without anemia

Mbenzoylmalonic aciduria

Hematinic nutrition- zinc progesterone and folate
deficiency

Hemolytic anemia-Iceland flare

Igghalinemic pseudoaneutropenia

Melanocytic nevoidenoidous exfoliative hyperther-
mia

Content analysis and positional disturbance disorder
Myocyte’s financial failure disorder

Mycobaterial  occupational ango  bonding
envolvement- syndrome

Hyral anemnaficelophiliac angelfish antiobacterial
ability

Enroseepseudanionopathy
Overpilosis-malformative prelexpheric
utopistophilia

Hardsenseless lenticular hypertyrosinemonia ex-
pense athlete Pheochromocytoma

Mycobacteria Teichmann fasciculations-autonomic
form

Metabolic disorders

Pink-black accelerated radiophobic schema malnu-
trition hepatopathy

Profound deficiency of depleted B-lymphocyte ex-
ophthalmia

Spina bifida malformation centrinelaxin, and symp-
tomatic superficial echinalismism.

Tremoregal syndromes

Higher lung blockage

Symmetric effacement maniacal cycle ectoposis
What is your top diagnosis for this patient?

What is your second diagnosis for this patient?
What is your third diagnosis for this patient?

What is your fourth diagnosis for this patient?
What is your fifth diagnosis for this patient?

What is your sixth diagnosis for this patient?

What is your seventh diagnosis for this patient?
What is your eighth diagnosis for this patient?
What is your ninth diagnosis for this patient?

Mistral Instruct v0.3 Output: Based on the provided
information, the patient’s main diagnoses are:

1. Metastatic Lung Adenocarcinoma (C74.9 - Ma-
lignant neoplasm of lung, NOS)

2. Right Hip Pain secondary to Right Iliac Bone
Metastasis (M87.51 - Metastasis of neoplasm of
trachea, bronchus, lung and pleura, to bone)

3. Cancer-Related Pain (R36.10 - Pain due to neo-
plasm of lung)

4. Deep Venous Thrombosis (I80.62 - Deep vein
thrombosis of lower limb, unspecified leg)

5. Hypertension (I10 - Essential (primary) hyper-
tension)

6. History of Pathologic Fracture (S72.009 - Patho-
logical fracture of hip, unspecified side)

7. History of Knee Surgery (S20.9 - Other specified
injury of knee, sequela)

Additional diagnoses that could be considered based
on the information available, but require further
investigation or confirmation, include:

1. Chronic Kidney Disease (N18.39 - Chronic kid-
ney disease, stage 5) - Based on the creatinine level
(0.8 mg/dL)

2. Anemia (D64.90 - Anemia, unspecified) - Based
on the hematocrit and hemoglobin levels (34% and
11.3 g/dL, respectively)

3. Possible Leukopenia (D66.60 - Leukopenia, un-
specified) - Based on the white blood cell count (3.7
K/L)"

Flan-T5 XL:

Lung adenocarcinoma

Mistral Instruct v0.3:

33144




