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Abstract

Large Language Models (LLMs) have demon-
strated exceptional capabilities across diverse
natural language processing (NLP) tasks. The
release of open-source LLMs like LLaMA and
Qwen has triggered the development of nu-
merous fine-tuned models tailored for various
tasks and languages. In this paper, we ex-
plore an important question: is it possible to
combine these specialized models to create
a unified model with multi-task capabilities.
We introduces Hierarchical Iterative Merging
(Hi-Merging), a training-free method for uni-
fying different specialized LLMs into a sin-
gle model. Specifically, Hi-Merging employs
model-wise and layer-wise pruning and scaling,
guided by contribution analysis, to mitigate
parameter conflicts. Extensive experiments
on multiple-choice and question-answering
tasks in both Chinese and English validate Hi-
Merging’s ability for multi-task learning. The
results demonstrate that Hi-Merging consis-
tently outperforms existing merging techniques
and surpasses the performance of models fine-
tuned on combined datasets in most scenar-
ios. Code is available at Applied-Machine-
Learning-Lab/Hi-Merging.

1 Introduction

Large Language Models (LLMs) have revolu-
tionized Natural Language Processing (NLP) by
demonstrating unprecedented capabilities in cap-
turing and utilizing world knowledge (Zhao et al.,
2024). Recent advances in architecture design and
training methodologies have enabled models like
GPT-4 (OpenAI, 2023) to engage in human-like
dialogue and solve real-world problems, enabling
breakthroughs in healthcare, recommender system,
and scientific research (Liu et al., 2024a; Fu et al.,
2024; Xu et al., 2024b).

*Co-first authors with equal contributions.
†Corresponding author.

With the advent of open-source large language
models (LLMs) like LLaMA-3 (Dubey et al., 2024)
and Qwen (Yang et al., 2024a), significant re-
search efforts have been dedicated to fine-tuning
these models for specific tasks, domains, and lan-
guages (Xu et al., 2024c). As a result, Hug-
ging Face1 now hosts over one million specialized
LLMs across various tasks, and this number contin-
ues to grow rapidly. These models represent a vast
repository of task-specific and language-specific
expertise, ranging from medical applications (Chen
et al., 2023; Liu et al., 2024b) to financial ques-
tion and answering (Cheng et al., 2024). A natural
question arises: is it possible to combine these
task-specific fine-tuned LLMs into a single uni-
fied model with broad capabilities, including multi-
lingual and multi-task functionalities? If achiev-
able, the deployment of such a unified model could
perform multiple tasks that currently require mul-
tiple LLMs, thereby significantly enhancing the
application of LLMs. One potential solution is to
gather all fine-tuning data and retrain the LLMs
from scratch. However, this approach has three
significant disadvantages: 1) the availability of
fine-tuning data, as the models are often public
but the data is not (He et al., 2024); 2) retraining
large LLMs requires substantial computational re-
sources; and 3) balancing the training data from dif-
ferent tasks to maintain strong performance across
all tasks without compromising any individual task
(avoiding the “seesaw effect” (Tang et al., 2020)
where improving one task’s performance leads to
degradation in others) is a non-trivial challenge.

Based on the above considerations, model merg-
ing (Yang et al., 2024b) emerges as a promising
solution for unifying multiple specialized models
while preserving their individual capabilities. How-
ever, current model merging methods face two fun-
damental challenges. First, interference between

1https://huggingface.co/
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Figure 1: Illustration of three paradigms for our LLM merging: merging models that specialize in different languages
(left), merging models that excel at different tasks (middle), and merging models that exhibit expertise in both
different languages and different tasks (left). Through such merging, a single model can inherit the combined
capabilities of both original models, enabling broader applicability and enhanced performance.

merged models can arise from noise introduced by
data bias (Tsuchiya, 2018) or the training process,
such as overfitting, impairs the merged model’s gen-
eralization. Second, models trained independently
follow distinct optimization trajectories, leading
to different knowledge alignments in their parame-
ter spaces (Ilharco et al., 2023). These misaligned
parameters become incompatible for direct combi-
nation without additional training.

To address these challenges, we propose Hi-
Merging, a Hierarchical Iterative Merging method.
It first applies model-wise pruning and scaling to
the delta vectors (parameter differences between
fine-tuned models and the foundation model) to
eliminate noisy parameters introduced during fine-
tuning. Then, we apply layer-wise pruning and
scaling iteratively for the knowledge misalignment,
starting from the most conflicted layers. To identify
the severity of layer-wise conflicts, we develop con-
tribution analysis - a method that quantifies each
layer’s contribution by measuring how adding or
removing specific layers affects model capabilities.
By analyzing how our contribution metrics change
before and after a pre-merging process, we can
identify potential conflicts, thereby guiding our it-
erative optimization process to resolve parameter
incompatibilities without additional training.

Our contributions can be summarized as follows:
• We investigate the challenges and potential

of training-free model merging for integrating
LLMs specialized in diverse tasks (e.g., MCQA,
QA) and languages (e.g., English, Chinese), ad-

dressing a complex multi-task scenario.
• We propose Hi-Merging, a hierarchical iterative

approach that effectively reduces the interference
of noise and knowledge alignment conflicts dur-
ing model merging.

• Extensive experiments on four datasets demon-
strate the effectiveness of Hi-Merging in multi-
task merging across different tasks and languages,
consistently achieving superior performance.

2 Preliminary for LLM Merging

In this section, we detail notations and introduce
existing LLM merging solutions as the preliminary.

Model merging aims to combine multiple mod-
els with distinct capabilities as a single model,
which has all the strengths of these models. In
this paper, we user two-model merging for illus-
tration: Given models MA and MB with parame-
ters θA and θB , both fine-tuned from a foundation
model MF with parameters θF for tasks tA and
tB respectively, model merging aims to combine
them into a single model Mmerge with parameters
θmerge that preserves capabilities for both tasks.

Typical model merging strategies include
weighted averaging and delta vector-based merging.
The former combines model parameters through a
weighted sum (Wortsman et al., 2022):

θmerge =
∑

m∈{A,B}
ωmθm, (1)

where ωm is the weight to balance different capabil-
ities constrained to

∑
m∈{A,B} ωm = 1, ωm > 0.
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And m ∈ {A,B} is the model identifier.
The second strategy merges models based on

delta vectors, the parameter differences between
fine-tuned models and their foundation model,
which can be mathematically defined as:

δm = θm − θF . (2)

Delta vectors δm defined in Equation (2) reveal
model-specific updates from the foundation model,
enabling a delta-weighted merging strategy (Il-
harco et al., 2023):

θmerge = θF +
∑

m∈{A,B}
ωmδm. (3)

where ωm > 0. Note that both strategies, illus-
trated in Equation (1) and Equation (3), can be eas-
ily extended to multiple model merging scenarios
by expanding the model list {A,B}.

3 Method

In this section, we introduce the proposed method,
which consists of two major components: (1)
model-wise pruning and scaling that removes noisy
and redundant parameters and moderate excessive
ones and (2) layer-wise pruning and scaling iter-
ating on conflicted layers to address knowledge
misalignment issues.

3.1 Model-wise Pruning and Scaling

This section introduces two operations to process
delta vectors: pruning and scaling.

During the fine-tuning, models can accumulate
noisy parameters and learn sharp parameters for the
specific fine-tuning task. We introduce the pruning
and scaling operations to tackle these two problems,
respectively, which are controlled by the following
hyperparameters:
• Pruning Threshold (p): This parameter speci-

fies the proportion of the delta vector that should
be preserved. By retaining the largest p percent-
age of the vector’s components and rendering
the remaining (1 − p) to zero, the pruning op-
eration can eliminates trivial parameter updates
(data-specific noise) while preserving meaningful
task-specific knowledge.

• Scaling Factor (s): This factor controls the mag-
nitude of the delta vector. With this parame-
ter, the scaling operation contributes to address-
ing over-aggressive parameters by scaling down
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Figure 2: The accuracy of the fine-tuned Qwen2-7B-
Instruct on the MedQA dataset after the model-wise
pruning and scaling process with different combinations
of the pruning threshold p and the scaling factor s.

sharp updates, which may result from the overfit-
ting during fine-tuning. The pruning does not ap-
ply to large parameter changes as they likely en-
code essential knowledge. The scaling provides
a way to moderate their excessive influence.

With these hyperparameters, the pruning and scal-
ing cooperatively process the delta vectors in a
complementary manner: pruning eliminates negli-
gible parameter changes while scaling moderates
the significant ones. Note that both p and s con-
strained to [0, 1].

We empirically validate the effectiveness of the
pruning and scaling operations by iterating p and
s from [0.1, 1]. The result is visualized in Fig-
ure 2. We can find that the individual model
can maintain or even improve performance with
appropriate pruning and scaling. For example,
p = 0.1, s = 0.9 (preserving 10% of parameters
and scaling all delta values with 0.9) can defeat the
original model (p = 1, s = 1). This finding sup-
ports our idea of conducting model-wise pruning
and scaling to overcome noisy and radical parame-
ter updates.

Next, we introduce the model-wise pruning and
scaling details. Specifically, the delta vector (de-
fined in Equation (2)) for a given LLM Mm can
be defined as δm = [δm,1, δm,2, . . . , δm,N ], where
m ∈ {A,B} is the model identifier and N indi-
cates the size of trainable parameters.

The pruning operation Topp retains the ⌈p ·N⌉
elements of δm with the largest absolute value and
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zeros out the rest, resulting in δ̃m:

δ̃m = Topp(δm). (4)

In detail, the n-th component of δ̃m is:

δ̃m,n =

{
δm,n, if n ∈ {π(1), π(2), . . . , π(⌈p ·N⌉)}
0, otherwise

,

(5)
where π(n) represents the index of the n-th largest
component of δm in absolute value, such that:

∣∣δm,π(1)

∣∣ ≥
∣∣δm,π(2)

∣∣ ≥ · · · ≥
∣∣δm,π(N)

∣∣ . (6)

The scaling operation adjusts the magnitude of
the pruned delta vector δ̃m by multiplying it with
the scaling factor s ∈ [0, 1] as sδ̃m.

Regarding the different setting of p and s for
each model, the model-wise pruning and scaling
can be compactly expressed as:

δ̂m = sm · Toppm (δm) = smδ̃m, (7)

where δ̂m represents the delta vector after the
model-wise pruning and scaling.

Through model-wise process with pruning and
scaling, we effectively identify noisy and excessive
parameter updates from the fine-tuning, maintain-
ing and moderating the key knowledge about the
fine-tuning task for the subsequent merging.

3.2 Layer-wise Pruning and Scaling

In this section, we conduct the layer-wise model
merging with pruning and scaling operations with
a novel contribution analysis method to measure
the parameter conflict.

3.2.1 Contribution Analysis
Directly merging the model-wise processed delta
vectors {δ̂m}m∈{A,B} as in Equation 1 or Equa-
tion 3 will encounter the weight misalignment prob-
lem, which is overlooked by existing methods.

To investigate potential conflicts when merging
a specific layer, we measure its contribution by
calculating the performance difference before and
after the merge. Precisely, we assess the merging
contribution from two directions:
• Deletion Impact (α): To estimate this impact,

we first construct a merged model MG that
merges all layers using the merging process men-
tioned in Equation (1) or Equation (3). Then, we
calculate the performance degradation caused by
removing the delta vector for a specific layer.
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Figure 3: The demonstration of different conflict elimi-
nation strategies for three pre-merging conditions.

• Addition Impact (β): This impact is measured
by the performance improvement of adding the
delta vector for a specific layer to the pre-trained
foundation model MF .
These impacts can be mathematically repre-

sented as:

αl
m1,m2 =Ptm1(θm2 − δ̂

l
m2)− Ptm1(θm2), (8)

βl
m1,m2 =Ptm1(θ̂F + δlm2)− Ptm1(θF ), (9)

where m1 ∈ {A,B} is the task capability identifier
and m2 ∈ {A,B,G} is the model identifier. We
investigate the layer-wise contribution so that l is
the layer index. δ̂

l
m2 is the delta vector for Mm2 at

layer l. Ptm1(·) represents the performance metric
on the task tm1. For example, BLEU-4 (Papineni
et al., 2002) score for the QA task.

We sum up two impacts as the overall contribu-
tion:

clm1,m2 = αl
m1,m2 + βl

m1,m2. (10)

3.2.2 Iterative Conflict Elimination
The contribution analysis method defined in Equa-
tion (8)-(10) provides a solution to measure the
importance of merging specific layers. We can then
define the conflict resulted by model Mm(m ∈
{A,B}) within the layer l of the merged model as:

γlm = clm,m − clm,G. (11)

In this formula, we set the capability identifier
m1 = m as we expect the merged model can
maintain the performance of Mm on tm. We can
then identify the most severe conflicting layers
that impair the fine-tuned performance by sorting
Γl =

∑
m∈{A,B} γ

l
m.
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To mitigate the parameter misalignment, we it-
eratively merge the most conflicting layers (with
the largest Γl). Specifically, to process a specific
layer, there are three types of conflict as illustrated
in Figure 3:
1. Severe Conflict: γlA > 0 and γlB > 0, indicat-

ing both capabilities are impaired by the merg-
ing. In such cases, only the delta vector with
a larger contribution is retained, e.g., dropping
δ̂
l
B in the figure. Namely, δ̂

l
B is set to zero.

2. Partial Conflict: γlA ∗ γlB < 0, i.e., one of the
delta vectors leads to the parameter misalign-
ment. The solution for this case is to prune and
scale the conflict delta vector again, as we de-
fined in Section 3.1. For example, in Figure 3,
the overfitting on tA (γlA < 0 and γlB > 0)
leads to the degradation of the ability for tB . As
a result, we prune and scale δ̂

l
A again as2:

δ̂
l
A = sA · ToppA(δ̂

l
A). (12)

3. Mutual Enhancement: If γlA ≤ 0 and γlB ≤ 0,
the merging process improves for both capa-
bilities. In this case, no further adjustment is
necessary for this layer.

After resolving the conflicts of all layers, the pa-
rameters of the final merged model Mmerge is:

θmerge = θF + δ̂A + δ̂B. (13)

4 Experiments

In this section, we conduct comprehensive experi-
ments to evaluate the effectiveness of Hi-Merging
by answering following research questions (RQ):
• RQ1: How does Hi-Merging perform when

merging LLMs that excel at the same task but in
different languages?

• RQ2: How does Hi-Merging perform when
merging LLMs excel at different tasks with the
same languages?

• RQ3: Is Hi-Merging applicable for merging
LLMs across languages and tasks?

• RQ4: Can Hi-Merging effectively merge differ-
ent open-source LLMs?

• RQ5: How is the merging conflict under our
method’s settings?

• RQ6: What is the impact of different compo-
nents of Hi-Merging on its overall performance?

2We use the same notation δ̂
l

A for clarity.

Table 1: The brief description and statistics of the four
datasets (MedQA (Jin et al., 2020), CMExam (Liu
et al., 2023), HealthCareMagic (Li et al., 2023), and
cMedQA2) (Zhang et al., 2018) used for fine-tuning.

Name Task Language Train Validation Test

MedQA MCQA English 10,000 400 400
CMExam MCQA Chinese 50,000 4,000 4,000
HealthCareMagic QA English 30,000 1,000 1,000
cMedQA2 QA Chinese 30,000 1,000 1,000

4.1 Experimental Settings
4.1.1 Datasets
We select four datasets listed in Table 1 that cover
multilingual multi-task capabilities, including En-
glish and Chinese languages, with multiple-choice
question answering (MCQA) and open-domain
question answering (QA) tasks.

4.1.2 Baselines
In our experiments, we use the multilingual
and multi-task models fine-tuned on combined
datasets as strong baselines. For model merg-
ing approaches, we consider a range of general
model merging methods, including weighted av-
eraging (Model Soups (Wortsman et al., 2022))
and delta vector-based approaches (Arithmetic (Il-
harco et al., 2023), TIES-Merging (Yadav et al.,
2023), DARE (Yu et al., 2024), DELLA (Deep
et al., 2024), and Model Breadcrumbs (Davari and
Belilovsky, 2024)). We further compare with two
knowledge transfer approaches: OT-Fusion (Singh
and Jaggi, 2020) and Layer Swapping (Bandarkar
et al., 2025). Details are in Appendix A.1.1.

4.1.3 Implementation Details
We use Qwen2-7B-Instruct as foundation model-
swith results for other foundation models presented
in Appendix A.2. For fine-tuning, we employ
LLaMA-Factory 3 with LoRA (rank=8, alpha=16,
dropout=0.01) and a batch size of 64. The learning
rate is 1.0−4 with cosine decay and warm-up. LLM
merging is performed using mergekit 4. Both p and
s in model-wise process range from 0.1 to 1.0 with
a step of 0.1. In layer-wise process, the pruning
threshold p and scaling factor s are successively set
to half of their model-wise values.

4.1.4 Evaluation Metrics
For the MCQA task, accuracy is employed to mea-
sure the proportion of correct answers (Devlin et al.,

3https://github.com/hiyouga/LLaMA-Factory
4https://github.com/arcee-ai/mergekit
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Table 2: Performance comparison of merging methods
for bilingual MCQA task. Model A is fine-tuned on
MedQA. Model B is fine-tuned on CMExam. Multi-
task model is fine-tuned on both. The overall best result
is in bold and the best merging result is underlined.

Types Methods L1
(MedQA)

L2
(CMExam) Avg Impr. Avg Rank.

Pre-trained
Qwen2-7B-Instruct 51.4062 74.6217 - 17.0
Yi-1.5-9B 46.8185 58.6499 -16.31% 18.0
Baichuan2-7B 6.4415 7.1439 -89.22% 19.0

Fine-tuned
Model A (L1) 59.1406 83.7771 +13.40% 10.0
Model B (L2) 54.4531 88.6171 +13.52% 11.5
Multi-task 60.0781 88.2246 +17.67% 3.5

Merged

Model Soups 59.6094 88.6926 +17.67% 5.0
Task Arithmetic 59.5312 88.7681 +17.67% 4.0
TIES 59.0625 88.7832 +17.31% 4.5
DARE 58.6719 88.6926 +16.93% 7.5
DARE + TIES 58.9063 88.6021 +17.04% 8.0
Model Breadcrumbs 58.8281 88.6322 +17.00% 8.5
DELLA 58.9844 88.7681 +17.24% 5.5
DELLA + TIES 58.2812 88.7530 +16.67% 9.5
OT-Fusion 59.8271 88.6543 +17.60% 3.0
Layer Swapping 55.6406 87.0859 +16.24% 16.0
Hi-Merging (Ours) 60.1562 89.0700 +18.41% 1.0

2019).For the QA task, we use BLEU-4 (Papineni
et al., 2002) to evaluate the precision of the gen-
eration, and ROUGE-1,2,L (Lin, 2004) to assess
the overlap and coherence with the ground truth.
Additionally, we report both the average relative
performance improvement (Avg Impr.) and the
mean ranking (Avg Rank.) across all methods.

4.2 Bilingual Task Merging (RQ1)
We first verify the effectiveness of Hi-Merging on
bilingual task merging. Here, we merge models
trained on the MCQA task in English and Chinese,
as shown in Table 2. Additional experiments on
the QA task and a different LLM are provided in
Appendix A.2 due to space constraints.

Baseline methods like Model Soups and Task
Arithmetic that combine models without consider-
ing noises and conflicts achieve stable but lower
performance. Methods that reduce conflicts, such
as TIES and DARE, occasionally achieve the best
results on individual metrics. However, without
a clear guidance, their performance highly ran-
domised. In contrast, our Hi-Merging method, with
hierarchical pruning and scaling approach, not only
achieves the best average performance but attains
optimal results in about half of the individual met-
rics. We also investigate the impact of different
training sample sizes in Appendix A.3.

4.3 Monolingual Multi-task Merging (RQ2)
For monolingual multi-task merging, we combine
models trained on different tasks with the same
language (e.g., English MCQA with English QA),
as shown in Table 3. The results show that merged
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Figure 4: Performance of Hi-Merging on two open-
source medical models, Echelon-AI/Med-Qwen2-7B
and shtdbb/qwen2-7b-med, which are fine-tuned from
the foundation model Qwen/Qwen2-7B-Instruct.

models consistently outperform their individual
fine-tuned counterparts, with many even surpass-
ing multi-task fine-tuned models. Notably, our
Hi-Merging approach achieves a 1.84% relative
improvement over the multi-task fine-tuned model.
We attribute this success to three factors. 1) Dur-
ing multi-task fine-tuning with limited data (com-
pared to pre-training), tasks can interfere with each
other due to the “seesaw effect”. In contrast, model
merging allows parameters to be optimized inde-
pendently before integration, avoiding such inter-
ference. 2) Since both models are fine-tuned from
the same foundation model, their parameter up-
dates tend to follow similar optimization trajecto-
ries, making successful merging more likely. 3)
The inherent sparsity of LLMs provides sufficient
parameter space to accommodate multi-task knowl-
edge from both models.

4.4 Bilingual Multi-task Merging (RQ3)

For bilingual multi-task merging, we combine mod-
els trained on completely different tasks and lan-
guages. Specifically, we merge a model trained for
MCQA in one language (Model A: MedQA in En-
glish or CMExam in Chinese) with another model
trained for QA in the opposite language (Model
B: cMedQA2 in Chinese or HealthCareMagic in
English), as illustrated in Table 4.

Our experiments reveal an interesting pattern:
bilingual multi-task fine-tuning mainly affects QA
performance, while MCQA performance remain.
This can be explained by two factors: (1) QA
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Table 3: Performance comparison of merging methods for tasks with different question formats. Model A is
fine-tuned on MCQA tasks (T1), while model B is fine-tuned on QA tasks (T2). The overall best result is marked in
bold and the best merging result is underlined.

Types Methods
L1 (English) L2 (Chinese) Avg

Impr.
Avg

Rank.T1 (MedQA) T2 (HealthCareMagic) T1 (CMExam) T2 (cMedQA2)

Accuracy BLEU-4 ROUGE-1 ROUGE-2 ROUGE-l Accuracy BLEU-4 ROUGE-1 ROUGE-2 ROUGE-l

Pre-trained Qwen2-7B-Instruct 51.4062 30.1209 26.3524 5.3280 15.7451 74.6217 1.7090 14.1527 1.7822 9.0934 - -

Fine-tuned Model A (T1) 59.1406 34.6533 28.7482 6.9168 17.9525 88.6171 2.8064 16.8617 2.5603 12.0561 +17.36% 11.2
Model B (T2) 53.0469 35.5717 30.2512 8.9044 20.3625 81.5670 4.4159 21.2210 4.0680 17.4600 +20.21% 7.2
Multi-task 59.2188 35.6009 30.2101 9.1375 20.4645 88.6926 3.7790 20.5919 3.8096 16.9265 +25.23% 8.3

Merged Model Soups 58.5156 36.4411 30.5654 9.1754 20.4259 88.8285 4.3912 21.0216 4.0040 17.2843 +26.19% 5.6
Task Arithmetic 58.5938 36.3290 30.6624 9.1945 20.5406 88.7983 4.3018 20.6467 3.7496 16.9995 +26.13% 6.1
TIES 60.4688 35.7851 30.3243 9.0310 20.3723 88.6171 4.5434 21.5629 4.1910 17.4909 +26.78% 4.2
DARE 58.4375 36.5802 30.5488 9.0818 20.3945 88.7681 4.5487 21.3255 3.8403 17.4471 +26.29% 4.4
DARE+TIES 59.3750 35.7062 30.1950 8.7840 20.0878 88.8285 4.1587 21.1291 3.8124 17.2868 +25.63% 7.5
Model Breadcrumbs 57.8906 36.4620 30.2173 8.7845 20.0169 88.8889 4.4472 21.2492 3.8931 17.2846 +25.53% 6.4
DELLA 58.5938 36.3494 30.1715 8.8125 20.1879 88.8134 4.3718 21.0226 3.9300 17.3403 +25.83% 7.1
DELLA+TIES 59.5312 36.0774 30.4743 9.1151 20.4599 88.6021 4.3202 21.2269 4.0164 17.3779 +25.96% 5.7
Hi-Merging (Ours) 60.5469 36.4926 30.5467 9.1231 20.3523 88.9795 4.6781 21.5367 4.2165 17.5038 +27.07% 2.1

Table 4: Performance comparison of merging methods for bilingual multi-task learning. Model A is fine-tuned
on MCQA datasets (T1: MedQA or CMExam). Model B is fine-tuned on QA datasets (T2: cMedQA2 or
HealthCareMagic). The overall best result is marked in bold and the best merging result is underlined.

Types Methods
T1, L1

(MedQA)
T2, L2

(cMedQA2)
T1, L2

(CMExam)
T2, L1

(HealthCareMagic) Avg
Impr.

Avg
Rank.

Accuracy BLEU-4 ROUGE-1 ROUGE-2 ROUGE-l Accuracy BLEU-4 ROUGE-1 ROUGE-2 ROUGE-l

Pre-trained Qwen2-7B-Instruct 51.4062 1.7090 14.1527 1.7822 9.0934 74.6217 30.1209 26.3524 5.3280 15.7451 - -

Fine-tuned Model A (T1) 59.1406 2.8064 16.8617 2.5603 12.0561 88.6171 34.6713 28.4279 6.6122 18.1117 +17.17% 10.7
Model B (T2) 54.4922 4.4159 21.2210 4.0680 17.4600 79.6875 35.5717 30.2512 8.9044 20.3625 +20.03% 7.2
Multi-task 60.7812 3.8473 20.8741 4.0434 16.9525 88.9795 35.7429 30.1735 8.9153 20.3902 +26.22% 6.8

Merged Model Soups 58.3584 4.6592 21.2316 4.0559 17.3805 88.6322 36.1765 30.7169 9.2702 20.5227 +26.35% 4.5
Task Arithmetic 58.0469 4.6682 21.2618 4.0984 17.4231 88.7379 36.1222 30.2256 8.7570 20.1357 +25.69% 5.7
TIES 59.6094 4.3764 21.0083 3.9002 17.4194 88.7228 35.7708 30.5143 8.8994 20.3487 +26.16% 6.4
DARE 57.8906 4.5671 21.1856 3.9549 17.2328 88.6322 35.8639 30.1489 8.8150 20.1025 +25.22% 8.1
DARE+TIES 58.75 4.4929 21.3194 4.0824 17.4826 88.5568 34.8223 29.7597 8.3004 19.7624 +24.76% 7.8
Model Breadcrumbs 57.1094 4.7217 21.4192 4.1477 17.4182 88.6021 36.4961 30.3911 9.0696 20.4108 +25.82% 4.3
DELLA 58.0469 4.8065 21.5135 4.1356 17.4962 88.6167 36.0159 30.3747 9.0414 20.3929 +26.11% 3.9
DELLA+TIES 59.0625 4.4854 20.9954 4.0491 17.5630 88.6624 35.0176 29.9666 8.6580 20.1406 +25.31% 7.5
Hi-Merging (Ours) 60.2344 4.7743 21.1954 4.1749 17.3991 88.7983 36.5223 30.3932 8.7882 20.1619 +27.02% 4.1

Table 5: Performance of Hi-Merging on two open-
source medical models: Echelon-AI/Med-Qwen2-7B
and shtdbb/qwen2-7b-med.

Types Models Medical Math

MedQA Pubmed GSM8K

Single Pre-trained 37.3868 5.7994 65.96
Echelon-AI/Med-Qwen2-7B 64.2862 92.9898 15.92
shtdbb/qwen2-7b-med 40.1598 11.5017 57.77

Merged Hi-Merging (Medical) 64.9011 92.1692 56.63

tasks require complex free-form generation, mak-
ing them more vulnerable to joint fine-tuning; (2)
MCQA tasks involve clear classification bound-
aries and simpler choice selection, making them
more robust to merging process.

4.5 Open-source LLM Merging (RQ4)

To validate the generality of our merging ap-
proach, we conduct experiments using two open-
source medical models from Hugging Face:
Echelon-AI/Med-Qwen2-7B 5, fine-tuned on En-

5https://huggingface.co/Echelon-AI/Med-Qwen2-7B

Table 6: Performance of Hi-Merging after merging the
medical model with the math-specialized model Qwen2-
Math-7B-Instruct.

Types Models Medical Math

MedQA Pubmed GSM8K

Single Pre-trained 37.3868 5.7994 65.96
Merged Merged (Medical) 64.9011 92.1692 56.63

Qwen2-Math-7B-Instruct 36.7716 15.3618 79.00
Merged Hi-Merging (Medical + Math) 63.6742 91.7320 77.45

glish datasets for tasks such as medical QA and
information retrieval (IR), and shtdbb/qwen2-7b-
med 6, fine-tuned on Chinese datasets for dialogue
generation. Both models are derived from Qwen2-
7B-Instruct. Figure 4 illustrates the performance
comparison across 12 medical datasets, with met-
rics normalized for better visualization.

Our approach demonstrates robust performance
across the task spectrum. In 7 out of 12 datasets,
Hi-Merging achieves the best performance among
all models, with only two datasets showing appar-

6https://huggingface.co/shtdbb/qwen2-7b-med
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Figure 5: The visualization of layer contributions and
merging conflicts when merging model fine-tuned on
MedQA and CMExam.

ent degradation compared to the better-performing
individual model. These results demonstrate Hi-
Merging’s ability to effectively fuse medical knowl-
edge while maintaining or enhancing performance
across diverse languages and tasks. Detailed imple-
mentation setup and unprocessed numerical results
can be found in Appendix A.1.2 and A.4.

To further demonstrate the adaptability of our
approach in other domains, we merge the com-
bined medical model with an additional mathemat-
ical model Qwen/Qwen2-Math-7B-Instruct 7. As
shown in Table 5 and Table 6, merging two models
from the same domain (medical) leads to mutu-
ally beneficial integration. However, when further
merging the medical model with an LLM from
a different domain (math), we observe slight per-
formance drops on both domains, suggesting that
larger divergence in fine-tuning data increases the
difficulty of effective knowledge integration.

4.6 Case Study (RQ5)
Figure 5 visualizes layer-wise contributions and
merging conflicts when combining MedQA and
CMExam models, revealing that conflicts are not
uniformly distributed. Model A (MedQA) shows
significant conflicts in later layers, while Model
B (CMExam) exhibits conflicts in earlier layers.
This non-uniformity highlights the need for Hi-
Merging’s hierarchical pruning and scaling strat-
egy, leading to the improved performance demon-
strated in previous experiments in Table 8. Such
layer-specific conflict patterns suggest that differ-
ent layers may specialize in different tasks, making
a uniform merging strategy suboptimal.

7https://huggingface.co/Qwen/Qwen2-Math-7B-Instruct

4.7 Ablation Study (RQ6)

Table 7: Ablation study of different processes in Hi-
Merging for bilingual MCQA task merging. Model
A is fine-tuned on MedQA. Model B is fine-tuned on
CMExam. Multi-task model is fine-tuned on both. The
overall best result is in bold.

Types Methods L1
(MedQA)

L2
(CMExam) Avg Impr.

Pre-trained Qwen2-7B-Instruct 51.4062 74.6217 -

Fine-tuned
Model A (L1) 59.1406 83.7771 +13.40%
Model B (L2) 54.4531 88.6171 +13.52%
Multi-task 60.0781 88.2246 +17.67%

Merged w/o All 59.5312 88.5291 +17.48%
w/o Model-wise Process 59.8437 88.6501 +17.83%

w/o Model-wise Pruning 60.0781 88.9342 +18.24%
w/o Model-wise Scaling 59.9219 88.7863 +18.00%

w/o Layer-wise Process 59.6094 88.5417 +17.55%
w/o Layer-wise Pruning 61.0156 88.6473 +18.75%
w/o Layer-wise Scaling 59.7656 88.6926 +17.80%

Hi-Merging 60.1562 89.0700 +18.41%

The ablation study in Table 7 reveals several key
insights. Layer-wise process has a more signifi-
cant impact than model-wise process, and remov-
ing scaling operations leads to larger performance
drops than removing pruning. While removing
layer-wise pruning achieves the highest average
improvement, it shows less consistent performance
across tasks compared to the full Hi-Merging ap-
proach, indicating that pruning helps stabilize the
merging process despite potentially limiting peak
performance on specific tasks.

5 Related Works

5.1 Multilingual Task-Oriented LLMs

Multi-task learning (MTL) has proven valuable
across various domains, from recommendation sys-
tems (Wang et al., 2023a; Zhang et al., 2024) to
knowledge graphs (Xu et al., 2024a) and health-
care (Liu et al., 2024c), by enabling models to share
knowledge between related tasks. This paradigm
becomes especially relevant for multilingual NLP,
where different languages face similar challenges
in tasks like machine translation (Wang et al.,
2022), text summarization (Gambhir and Gupta,
2017), and sentiment analysis (Dashtipour et al.,
2016).

Recently, LLMs have greatly contributed to ad-
vancing multilingual tasks by leveraging massive
amounts of multilingual data (Brown et al., 2020;
Devlin et al., 2019; Xue et al., 2021). Despite their
success, LLMs exhibit a clear performance gap
across languages: they excel at widely-spoken lan-
guages with abundant training data but struggle
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with less-represented languages that have limited
online presence (Wang et al., 2023b).

To enhance multilingual capabilities, LLMs em-
ploy continual training on specific languages, as
seen in models like Chinese-LLaMA (Cui et al.,
2023) and EuroLLM (Martins et al., 2024). Ad-
ditionally, supervised fine-tuning techniques, such
as LoRA in Chinese-Alpaca (Cui et al., 2023), fur-
ther improve multilingual understanding. However,
LLMs are usually enhanced for one language at a
time, resulting in multiple isolated models.

5.2 Model Merging

Model merging aims to integrate knowledge from
multiple fine-tuned models into a single one. These
methods are categorized into two types: weighted-
based merging and interference mitigation.

Weighted-based merging focuses on combin-
ing model parameters effectively. This includes
simple techniques like parameter averaging, such
as Model Soups (Wortsman et al., 2022), Fisher-
weighted merging (Matena and Raffel, 2022) and
RegMean (Jin et al., 2023). While computation-
ally efficient, these methods often miss conflict-
ing parameter updates, leading to performance
degradation. Therefore, Task Arithmetic (Ilharco
et al., 2023) proposes manipulating delta vectors.
AdaMerging (Yang et al., 2024c) and evolutionary
algorithms (Akiba et al., 2024) optimize merging
coefficients and blend diverse models, respectively.

Interference mitigation techniques aim to re-
duce parameter conflicts based on the over-
parameterization and sparsity of LLM. SparseGPT
(Frantar and Alistarh, 2023) show high LLM per-
formance despite significant parameter pruning.
DELLA (Deep et al., 2024) introduces MAG-
PRUNE for selective pruning and parameter rescal-
ing. However, these techniques focus mainly on
individual parameter-level operations without con-
sidering the structural relationships and knowledge
dependencies across model layers.

6 Conclusion

In this paper, we proposed Hi-Merging, a novel
approach for merging LLMs for multilingual multi-
task learning. Hi-Merging leverages model-wise
and layer-wise pruning and scaling strategy to min-
imize the conflict between fine-tuned models’ delta
vectors. The model-wise process eliminates the
fine-tuning noise and overfitting parameters of the
original models. Then, the layer-wise process ana-

lyzes the contribution of each layer’s delta vector
to the fine-tuning performance, reducing the inter-
ference of conflicts in several key layers. Exten-
sive experiments on the MCQA and QA datasets
demonstrated that Hi-Merging outperforms tradi-
tional merging techniques and even surpasses mod-
els trained on multiple datasets. Future work will
explore finer-grained conflict analysis strategies.

7 Limitations

While our proposed Hi-Merging method demon-
strates promising results, several limitations should
be acknowledged. First, our current method only
supports merging two models at a time. Extend-
ing the approach to simultaneously merge multiple
models presents additional challenges in terms of
conflict resolution and computational complexity,
which requires further investigation.

Second, our evaluation is currently limited to two
task types (MCQA and QA) and two languages
(English and Chinese). The effectiveness of Hi-
Merging on a broader range of NLP tasks and lan-
guage families remains to be investigated. This
includes exploring its applicability to tasks such
as text generation, summarization, and semantic
parsing across diverse language groups.

Third, our method focuses on merging models
fine-tuned from the same foundation model. The
applicability and performance of Hi-Merging when
merging models from different architectural fami-
lies or pre-training approaches is yet to be explored.
This limitation becomes particularly relevant as the
field continues to see diverse model architectures
and training paradigms.

Finally, our current implementation assumes rel-
atively balanced task importance. The method
might need adaptation for scenarios where certain
tasks or languages should be prioritized over oth-
ers, potentially requiring a more flexible weighting
mechanism in the merging process. Future work
could explore dynamic weighting strategies that
adapt to specific application requirements and per-
formance objectives.
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A Appendix

A.1 Experimental Settings
A.1.1 Baselines
In our experiments, we compare it against a com-
prehensive set of baseline methods, including tra-
ditional weighted averaging techniques and state-
of-the-art approaches specifically developed for
fine-tuned models.
• Multilingual Multi-task Training This ap-

proach trains a single model on the combined
datasets of multiple languages simultaneously,
without distinguishing between tasks.

• Model Soups (Wortsman et al., 2022) Uniform
Soup is a simple merging method where the pa-
rameters of the fine-tuned models are averaged
based on their importance.

• Task Arithmetic (Ilharco et al., 2023) This
method performs arithmetic operations on the
parameter differences between the pre-trained
and fine-tuned models.

• TIES (Yadav et al., 2023) The Task Interference
Elimination Strategy (TIES) minimize negative
transfer and task interference by pruning redun-
dant parameters and using a chosen sign to deter-
mine parameter update directions.

• DARE (Yu et al., 2024) Delta Alignment for Ro-
bust Ensemble (DARE) reduces the interference
across tasks by randomly drop the delta vectors.

• Model Breadcrumbs (Davari and Belilovsky,
2024) This approach tracks and prunes maxima
and minima in delta vectors to retain critical task-
specific features.

• DELLA (Deep et al., 2024) DELLA follows
DARE and assign drop rates to delta vectors ac-
cording to their absolute values, improving per-
formance stability.

• OT-Fusion (Singh and Jaggi, 2020) This method
aligns and averages model weights via optimal
transport, enabling one-shot parameter merging
across heterogeneous models without retraining.

• Layer Swapping (Bandarkar et al., 2025) This
approach composes task and language experts
by directly replacing top and bottom transformer
layers, facilitating cross-lingual transfer.

A.1.2 Implementation Details
For model adaptation, we applied LoRA to all lin-
ear networks in the model. The learning rate sched-
ule was carefully designed with a 100-step warm-
up phase followed by cosine decay, which helped
achieve stable convergence while maintaining opti-
mal model performance. This configuration proved
effective in balancing training efficiency and model
quality across both multilingual and multi-task sce-
narios.

In addition to Qwen2-7B-Instruct, we also exper-
imented with other foundation models including
Llama-3-8B-Instruct (results shown in A.2). How-
ever, Qwen2-7B-Instruct demonstrated more con-
sistent performance, particularly in handling both
English and Chinese tasks, making it the preferred
choice for our main experiments.

For visualization in Figure 4, we normalized the
performance metrics to facilitate clear comparisons.
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Table 8: Performance comparison of merging methods for bilingual QA tasks. Model A is fine-tuned on Health-
CareMagic, Model B is fine-tuned on cMedQA2, Multi-task model is fine-tuned on both datasets. The overall best
result is marked in bold and the best merging result is underlined.

Types Methods L1 (HealthCareMagic) L2 (cMedQA2) Avg Impr. Avg Rank.
BLEU-4 ROUGE-1 ROUGE-2 ROUGE-l BLEU-4 ROUGE-1 ROUGE-2 ROUGE-l

Pre-trained Qwen2-7B-Instruct 30.1209 26.3524 5.3280 15.7451 1.7090 14.1527 1.7822 9.0934 - -

Fine-tuned
Model A (L1) 35.5717 30.2512 8.9044 20.3625 3.7609 19.1370 3.1364 15.1441 +30.66% 6.875
Model B (L2) 24.8587 24.9841 4.1492 15.1967 4.4159 21.2210 4.0680 17.4600 +11.57% 8.375
Multi-task 35.7637 29.9781 8.6687 20.1184 3.7660 20.9869 3.7784 16.8850 +34.19% 6.125

Merged

Model Soups 33.2627 28.8258 7.5487 18.9459 4.6801 21.5564 4.0502 17.5380 +30.80% 6.125
Task Arithmetic 33.0398 28.7169 7.5726 18.9600 4.7181 21.4108 4.0503 17.6772 +30.55% 5.625
TIES 33.6571 29.0496 7.7769 19.1503 4.3751 20.8551 3.7518 17.1978 +30.23% 7.375
DARE 33.3031 28.9575 7.8222 19.1702 4.7578 21.0865 3.8996 17.2488 +30.64% 5.625
DARE+TIES 26.8091 26.0330 5.2307 16.5201 4.2456 20.6276 3.7531 17.1445 +15.41% 10.375
Model Breadcrumbs 34.3247 29.4403 8.1518 19.6443 4.4092 20.9365 3.8138 17.1378 +32.19% 6.750
DELLA 33.4207 28.9234 7.6728 18.9674 4.6827 21.1596 4.0709 17.4775 +30.77% 5.500
DELLA+TIES 27.2331 26.1723 5.4339 16.6009 4.7130 21.2275 4.2944 17.7694 +18.37% 6.000
Hi-Merging (Ours) 35.9500 29.9826 8.8738 20.3844 4.7009 21.1752 3.9704 17.2361 +36.42% 3.250

Table 9: Performance comparison of merging methods for multilingual QA using Llama-3-8B-Instruct. Model A is
fine-tuned on HealthCareMagic (L1: English). Model B is fine-tuned on cMedQA2 (L2: Chinese). Multi-task model
is fine-tuned on both datasets. The overall best result is marked in bold and the best merging result is underlined.

Types Methods L1 (HealthCareMagic) L2 (cMedQA2) Avg. Impr.
BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L

Pre-trained Llama-3-8B-Instruct 16.3118 21.6011 3.1389 10.8666 0.0225 0.4710 0.0211 0.2343 6.5834 -

Fine-tuned
Model A (L1) 36.0325 30.4111 9.2743 20.7236 0.0185 0.1288 0.0025 0.0841 12.0844 +83.5%
Model B (L2) 3.9950 7.7673 0.9267 4.6358 3.0638 20.4016 3.4178 16.3067 7.5643 +14.9%
Multi-task 35.6154 30.5447 9.2156 20.4271 3.0250 20.3136 3.4964 16.0911 17.3411 +163.5%

Merged

Model Soups 32.1199 28.2278 6.3715 18.2456 3.3256 19.5499 2.8670 15.4688 15.7720 +139.5%
Task Arithmetic 31.6679 27.7646 6.0354 18.0448 3.3805 19.6475 2.9507 15.4806 15.6215 +137.2%
TIES 32.1494 28.0527 6.7440 18.2913 3.2238 19.5369 2.8854 15.2112 15.7618 +139.4%
DARE 25.9679 25.6716 4.5173 16.3803 3.5337 20.8586 3.1736 16.6716 14.5968 +121.7%
DARE+TIES 26.6707 25.9106 5.2031 16.5525 3.2236 19.8564 2.9963 15.5967 14.5012 +120.2%
Model Breadcrumbs 26.9844 26.1004 4.7037 16.3247 3.3307 20.7442 3.3069 16.2874 14.7228 +123.6%
DELLA 25.6313 25.6792 4.5522 16.1313 3.6612 20.9176 3.3286 16.7355 14.5796 +121.4%
DELLA+TIES 27.1246 26.0186 5.3163 16.6170 3.3433 19.9122 3.0848 15.9942 14.6764 +122.9%
Hi-Merging (Ours) 33.5960 28.4141 7.2167 18.8804 3.1967 19.8207 2.9509 15.7833 16.2324 +146.5%

The performance values of the models on each
dataset represent the average of the QA task metrics
(BLEU-4, ROUGE-1, ROUGE-2, and ROUGE-
L). We scaled the pre-trained Qwen2-7B-Instruct’s
performance to 20 and the better-performing fine-
tuned model’s performance to 80 for each task. The
performance values of the other fine-tuned model
and our merged model were then proportionally
adjusted within this range to maintain their relative
differences.

A.2 Bilingual Task Merging

For merging LLMs that specialise in different lan-
guages on the same task, we further conduct ex-
periments on the QA task (Table 8) and extend
the foundation LLM to Llama-3-8B-Instruct, as
presented in Table 11 and 9.

The results in Table 8 demonstrate the effective-
ness of our approach in merging bilingual QA mod-
els. Hi-Merging achieves the best performance on
English QA metrics (BLEU-4: 35.95, ROUGE-1:

29.98, ROUGE-2: 8.87, ROUGE-L: 20.38) while
maintaining competitive performance on Chinese
QA metrics. This balanced performance leads to
the highest average improvement (+36.42%) and
best average ranking (3.25) among all merging
methods. Notably, while some baseline methods
like DELLA+TIES achieve better performance on
specific Chinese metrics, they significantly com-
promise English performance, highlighting our
method’s advantage in maintaining cross-lingual
capabilities.

The results in Table 9 show that the performance
of merged models based on Llama-3-8B-Instruct
is generally inferior to that of the pre-merged fine-
tuned models. This indicates that the effectiveness
of the merging process is strongly influenced by
the quality of the foundation models. The observed
degradation in performance can be attributed to sev-
eral factors. First, weaker foundation models, such
as Llama-3-8B-Instruct, tend to produce delta vec-
tors with more dispersed and less coherent param-
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Table 10: Numerical performance of Hi-Merging on two open-source models, Echelon-AI/Med-Qwen2-7B and
shtdbb/qwen2-7b-med.

Models MedQA MediQA Medical Flashcards Health Advice Pubmed WikiDoc WikiDoc Patient CORD 19 iCliniq HealthCareMagic ChatMed MedChatZH

Qwen2-7B-Instruct 37.3868 17.3595 22.7668 2.8205 5.7994 17.6217 18.785 39.1748 19.3292 28.7051 9.9138 8.0654
Echelon-AI/Med-Qwen2-7B 64.2862 32.052 41.1081 97.7523 92.9898 20.7237 26.9203 40.7167 26.5593 30.3212 15.1218 9.2714
shtdbb/qwen2-7b-med 40.1598 27.1442 29.85 4.096 11.5017 20.5808 21.1528 41.2026 27.332 33.3678 19.4513 11.2665
Hi-Merging (Ours) 64.9011 31.9421 45.1714 97.755 92.1692 21.0211 26.3293 40.9803 28.7816 31.6779 19.8074 11.2958
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Figure 6: Impact of training sample size on model merging conflicts. Blue and orange lines represent the average
performance metrics for HealthCareMagic and cMedQA2, respectively.

Table 11: Performance comparison of merging methods
for bilingual MCQA using Llama-3-8B-Instruct. Model
A is fine-tuned on MedQA (L1: English). Model B
is fine-tuned on CMExam (L2: Chinese), Multi-task
model is fine-tuned on both datasets. Overall best result
is in bold and the best merging result is underlined.

Types Methods L1
(MedQA)

L2
(CMExam) Avg. Impr.

Pre-trained
Llama-3-8B-Instruct 57.9733 17.2821 37.6277 +0.00%
GLM-4-9B 54.7656 69.5194 62.1425 +65.15%
Gemma-2-9B 14.2583 2.7698 8.5141 -77.37%

Fine-tuned
Model A (L1) 60.4688 52.2706 56.3697 +49.81%
Model B (L2) 60.3906 60.5525 61.0575 +62.27%
Multi-task 62.8906 61.0356 61.9631 +64.70%

Merged

Model Soups 61.2500 61.0507 61.1504 +62.54%
Task Arithmetic 61.2500 61.8750 61.5625 +63.65%
TIES 61.7188 61.3225 61.5207 +63.56%
DARE 61.5625 61.3678 61.4652 +63.42%
DARE + TIES 60.9375 59.4656 60.2016 +60.05%
Model Breadcrumbs 61.0156 60.4318 60.7237 +61.43%
DELLA 60.8594 60.7186 60.7890 +61.58%
DELLA + TIES 61.9531 61.3527 61.6529 +63.91%
Hi-Merging (Ours) 62.2656 61.0757 61.6707 +63.96%

eter distributions during fine-tuning. These delta
vectors often carry noisy or conflicting information,
which makes the merging process prone to parame-
ter conflicts. Second, the weaker representational
capacity of these models limits their ability to en-
code robust and semantically aligned knowledge,
further exacerbating the challenges of merging.

A.3 Number of training samples

We examine the impact of varying the number of
training samples on the conflict during model merg-
ing, as shown in Figure 6. In the experiment, we
use two QA datasets, HealthCareMagic (English)
and cMedQA2 (Chinese), sampling 10k, 20k, 30k,

40k, and 50k training examples from each to pro-
duce a series of fine-tuned models, five per dataset.
This setup evaluates how the number of training
samples influences both individual model perfor-
mance and compatibility during merging. The x-
axis of Figure 6 represents the number of training
samples, while the y-axis denotes the average per-
formance metrics, including BLEU-4, ROUGE-1,
ROUGE-2, and ROUGE-L.

However, Figures 6b and 6c show that merged
models through either Model Soups or Task Arith-
metic suffer from performance drops driven by the
increasing size of training sample as further train-
ing leads to conflicting highly specialized models.
Figure 6d shows the opposite: our method retains
performance trends in line with fine-tuned models
and addresses conflicts to retain improving perfor-
mance through larger training sets.

These results highlight the robustness of our
method in resolving merging conflicts, ensuring
that the merged models retain the strengths of indi-
vidual models while achieving stable and superior
performance across training sample sizes.

A.4 Open Source LLM Merging
Table 10 presents the detailed numerical results
for all models across the 12 medical datasets. The
datasets cover a wide range of medical tasks and
languages, allowing us to comprehensively evalu-
ate the models’ capabilities and the effectiveness
of our merging approach.
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