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Abstract

NLP research frequently grapples with mul-
tiple sources of variability—spanning runs,
datasets, annotators, and more—yet conven-
tional analysis methods often neglect these
hierarchical structures, threatening the repro-
ducibility of findings. To address this gap, we
contribute a case study illustrating how linear
mixed-effects models (LMMs) can rigorously
capture systematic language-dependent differ-
ences (i.e., population-level effects) in a pop-
ulation of monolingual and multilingual lan-
guage models. In the context of a bilingual
hate speech detection task, we demonstrate that
LMMs can uncover significant population-level
effects—even under low-resource (small-N)
experimental designs—while mitigating con-
founds and random noise. By setting out a
transparent blueprint for repeated-measures ex-
perimentation, we encourage the NLP commu-
nity to embrace variability as a feature, rather
than a nuisance, in order to advance more ro-
bust, reproducible, and ultimately trustworthy
results.

1 Introduction

Robust statistical modeling, inference, and report-
ing lie at the core of scientific progress. In this con-
text, Null-Hypothesis Significance Testing (NHST)
is a fundamental tool to ensure that observed im-
provements in NLP models are not merely coin-
cidental. In recent years, the NLP community
has placed greater emphasis on empirical results
and model comparisons, increasing the need for
sound significance analysis. However, studies have
found that significance testing in NLP is often in-
consistent or improperly applied. For example, a
survey of ACL/TACL 2017 papers showed many
works ignored significance tests or used them in-
correctly (Dror et al., 2018). This is problematic
because without rigorous significance evaluation,
we risk mistaking random fluctuations for genuine

improvements, leading to a waste of valuable time
and computing resources.

A long-standing concern in experimental linguis-
tics 1s the multilevel, hierarchical, and nested nature
of language data, which can undermine naive signif-
icance tests. Clark (1973) famously demonstrated
the “language-as-fixed-effect” fallacy, showing that
treating specific stimuli (e.g. a sample of words
or sentences) as fixed can yield misleading conclu-
sions. In his example, two researchers obtained
statistically significant yet contradictory results on
the same hypothesis simply by using different word
samples. The fallacy arises because each treated
their 20 words as if they were the entire population,
rather than a random sample. The conclusion that
can be drawn from this example is that ignoring
nested structure — such as items within a dataset,
annotator-specific biases, or model parameteriza-
tions — can inflate Type I error rates. This insight
carries over to NLP experiments: if we evaluate a
new algorithm on a single test set or a fixed set of
instances, we might overgeneralize significance to
all possible texts or contexts.

Far from being resolved, modern NLP systems
further accentuate these concerns. For example,
it is known that neural network models introduce
additional randomness (from weight initialization,
data shuffling, etc.), meaning that repeated runs can
yield different outcomes. Empirical studies have
confirmed a reproducibility crisis in NLP (Belz
et al., 2023), which translates into the general ob-
servation that many supposedly superior results
fail to repeat under minor experimental variation
(Xue et al., 2023). For example, Reimers and
Gurevych (2017) showed that merely changing the
random seed can produce statistically significant
differences in model performance (p < 10™%). In
their study, the authors show that for two state-of-
the-art NER systems, a lucky seed can boost the
F score by about 1% — enough to turn a mediocre
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model into the perceived leader. Such variability
means a single reported score is an unreliable ba-
sis for comparison, and improvements might not
reliably reproduce. Berg-Kirkpatrick et al. (2012)
found that the threshold of improvement required
for significance depends on factors like test set size
and system similarity. They noted that more similar
systems can achieve significance with smaller gains
(since their outputs are correlated), and that in-
creasing test set size improves statistical power but
with diminishing returns. These issues highlight
why hierarchical modeling of repeated-measures
experimental data (i.e., data arising from experi-
ments where the same subjects are observed multi-
ple times under different conditions), and careful
experimental design are crucial to account for the
existing variability at multiple levels (runs, datasets,
annotators, etc.), making conclusions more robust.
In this study, we contribute a case study aimed to
illustrate methodological best practices for the sta-
tistical analysis and reporting of repeated-measures
experimental data in NLP. We do so in the context
of a cross-lingual evaluation task, and 2) limited
resources (small-N experimental designs). Here,
we employ linear mixed-effects models (LMMs) to
investigate systematic differences in performance
favoring evaluation in English, which is an effect
documented in the literature (Conneau et al., 2018).

2 Methods

Drawing from other fields of science, recently NLP
researchers have turned to hierarchical models and
multi-level experimental designs to expand the
field. At the core of these approaches are linear
mixed-effects models (LMMs), a class of regres-
sion models that include both fixed effects (sys-
tematic influences of interest) and random effects
(group-specific variations) (Bates et al., 2015). The
general form of an LMM can be expressed as:

vij = XijB + Zijb; + €ij, ey

where y;; is the observed dependent variable
for the i-th observation of the j-th grouping fac-
tor, X;; is a matrix of fixed effect predictors with
associated coefficient vector 3, Z;; is a matrix of
random effect predictors with corresponding ran-
dom effects b;, and ¢;; represents the residual error
term. Both the random effects b; and the residu-
als ¢;; are assumed to follow a normal distribution
bj ~ N(O, ‘If), and €5 ~~ N(O, 0'2).

By modeling random effects, LMMs capture the

idea that our data points are often grouped — e.g.
multiple sentences drawn from the same document,
or multiple judgments from the same annotator —
and that these groups constitute samples from a
larger population. As we illustrate in this paper,
LMMs offer significant advantages over simpler
statistical tests such as paired t-tests or repeated-
measures ANOVA (RM-ANOVA) in the context
of NLP research where their adoption is still lim-
ited —although notable exceptions to this norm
exist, especially emerging from the human evalu-
ation subfield— (Pavlick and Kwiatkowski, 2019;
Howcroft and Rieser, 2021). In a different vein,
our work expands on previous studies that employ
LMMs to measure systematic variation in model
outputs (Sggaard, 2013; Gantt et al., 2020) and ap-
ply it under a cross-lingual evaluation paradigm.
Following this trend, in more recent developments
Sanchez Carmona et al. (2025) have also endorsed
the use of mixed-effects modeling within the NLP
domain. Nevertheless, our methodology diverges
considerably in its scope, motivation, and appli-
cation. Their study utilizes cross-classified mod-
els to analyze test score variability across various
models, datasets, and fine-tuning configurations
within the context of extensive biomedical bench-
marking. Conversely, our research concentrates
on repeated-measures designs typical of small-N
NLP experiments, highlighting the robust estima-
tion and interpretation of factorial interactions and
population-level effects through the application of
linear mixed-effects models (LMMSs). Rather than
isolating nuisance effects, we demonstrate how
structured variability can be leveraged as a signal to
derive reliable inferences within constrained exper-
imental settings. These two contributions are com-
plementary, each addressing distinct methodolog-
ical challenges with the overarching objective of
enhancing statistical rigor in NLP evaluation. Fur-
thermore, our work covers the existing gap in the
NLP literature on the interpretation and reporting
of regression models displaying strong interaction
effects, a circumstance that can severely compli-
cate the analysis task. Within this framework, we
demonstrate that LMMs provide a robust mecha-
nism for unraveling the complex influences inher-
ent in research inquiries associated with a popula-
tion of language models. This represents a pivotal
theoretical aspect of our study, which, to the best of
our knowledge, is unprecedented in its scope and
approach.
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3 Case Study

3.1 Motivation

To illustrate the ideas presented above, we set up
a case study aiming to measure a relevant effect
documented in the NLP literature in a population
of encoder-only language models ': the language-
dependent effectiveness gap; this is, the perfor-
mance decrease that arises when using language
models in other languages different than English
(Conneau et al., 2018; Ranasinghe and Zampieri,
2020). Particularly, we want to investigate whether
this theoretical effect can be observed in a popu-
lation of encoder-only models operating in a set
of well-defined evaluation tasks. Particularly, we
decided to focus on the English-Spanish pair. Al-
though both languages are amongst the most pop-
ular in the world, NLP systems generally yield
more robust outcomes on English, largely due to
the more extensive availability of high-quality an-
notated corpora and evaluation benchmarks for En-
glish relative to Spanish (Agerri and Agirre, 2023).
To ensure that we could effectively measure this
effect, it was necessary to find a dataset with the
following desirable characteristics:

The dataset was selected to ensure comparabil-
ity between its English and Spanish sections while
avoiding biases introduced by automatic annota-
tion translation (Jalota et al., 2023). Additionally,
to mitigate data contamination—where pre-training
on test data biases model evaluations (Riddell et al.,
2024; Jacovi et al., 2023; Ranaldi et al., 2024)—a
dataset with strict test-data privacy was chosen
2. Furthermore, a hierarchical structure was re-
quired to facilitate a crossed repeated-measures de-
sign, allowing for multiple observations per model
and item while enabling robust statistical analyses
that account for inter-model variation and cross-
linguistic differences (Barr et al., 2013; Conneau
et al., 2018). Based on these criteria, the SEXism
Identification in Social neTworks (EXIST) shared
task dataset was ultimately selected.

3.2 Dataset Description

Developed as part of the CLEF 2023 conference,
this dataset is a significant resource for detection
of sexism and hate speech in social media. The

'We focused on encoder-only models due to their preva-
lence in text classification and the documented presence of
language-specific effects in this architecture class.

Test data was kindly provided upon request by the task
organizers.

dataset comprises 10,034 annotated tweets in both
English (5,307) and Spanish (4,727). Each lan-
guage portion is split into training (70%), develop-
ment (10%), and test (20%) sets to ensure a robust
evaluation framework. A key feature of the dataset
is its diverse annotations: 1,065 annotators from
45 countries contributed to the labeling process,
providing a wide range of perspectives on sexism.
The dataset construction also aimed to mitigate dif-
ferent kinds of biases (i.e., seed, terminology, and
temporal) through a careful selection of seed terms
in both languages, random sampling across differ-
ent time periods, and inclusion of diverse content
sources. EXIST 2023 consists of three classifica-
tion sub-tasks: binary (t1), ternary (t2), and hier-
archical multilabel (t3). Each task supports evalua-
tion in two distinct evaluation modes (hereafter,
simply modes): hard and sof't. In the hard mode,
the gold standard is comprised of majority-voted
labels, whereas the soft mode utilizes labels that
represent the empirical class probabilities derived
from human annotations, which allows for more
nuanced model training and evaluation under the
"learning with disagreements" (LeWiDi) paradigm
(Umaetal., 2021). Specific details on each of these
tasks can be found in Appendix A.

3.3 Experiments

To investigate our research question —“Do lan-
guage models evaluated in English perform better
than their Spanish counterparts in the context of
the EXIST 2023 shared task?”—, we selected a
sample of three popular encoder-only architectures
(i.e., BERT, RoBERTa and DistilBERT) from the
literature. For each architecture, we chose repre-
sentatives that were pre-trained either in a) English,
b) Spanish, or ¢) multilingual data, yielding a total
of nine unique models: six monolingual (three in
English and three in Spanish) and three multilin-
gual (details on each of these models are shown in
Appendix D). Monolingual models were evaluated
on their relevant language portion of the dataset
(English or Spanish), whereas multilingual models
were tested on both. Therefore, our experimental
setup involved fine-tuning each model on every
possible combination of language, task and eval-
uation mode using the corresponding test data for
each model. This resulted in six unique conditions
that were seen by each model (t1-hard, t1-soft, t2-
hard, etc.). We employed a simple grid search
to identify per-model best configurations for fair
comparison across conditions: the grid search was
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performed on a hyperparameter space of 12 ele-
ments: batch size (16 and 32), learning rate (1le-5,
3e-5, 5e-5), and weight decay (0.1 and 0.01). Dur-
ing model training, we employed two distinct loss
functions, depending on the nature of the classifica-
tion task. For single-label classification tasks (task
1 and task 2), we used cross-entropy loss, and for
multi-label, binary cross-entropy loss. In the soft
case, we leveraged binary cross-entropy with log-
its loss to optimize over probability distributions
rather than discrete labels. Inference was achieved
employing the argmax for single-label classifica-
tion and thresholding (p > 0.5) of sigmoid out-
puts for multi-label classification. Training was
performed on a single NVIDIA 4090 RTX GPU,
investing a total of 144 GPU hours.

System performance was evaluated using the In-
formation Contrast Metric (ICM) 3 (Amig6 et al.,
2020), considering both its hard and soft vari-
ants (Plaza et al., 2023). ICM is an information-
theoretic similarity measure that generalizes both
pointwise mutual information (PMI) and Tver-
sky’s linear contrast model which has demonstrated
strong performance across a wide range of classi-
fication tasks (Amigo and Delgado, 2022). Using
this metric, for each model, the optimal configura-
tion was selected based on the parameter set that
maximized performance across all possible combi-
nations of task, mode, and language, as measured
on the evaluation set. Finally, the best configura-
tion was evaluated on the test set, yielding a raw
ICM system score sicn.

Since ICM quantifies information, its values
are defined over the range (—oo,00). Accord-
ingly, all scores were normalized within the in-
terval (—QICMe"/ ¢ GICM), where gfgl(f s repre-
sents the gold standard scores for the English or
Spanish test sets (i.e., the oracle classifier’s scores).
The corresponding gold standard scores are pro-
vided in Table 4.

3.4 Cross-Lingual Comparison

Since the EXIST task is purely bilingual (i.e., ex-
amples on each language portion are unique to
that language and not simply translations of their
counterparts in the other language), we needed to
account for potential differences in difficulty to be
able to establish a fair cross-lingual comparison of
system performance. To this end, we computed

3ICM was used as it is the official competition metric; how-
ever, our modeling framework generalizes to any continuous
score.

non-linguistic baselines for each task-mode via a
simple neural network baseline, which allowed us
to isolate the impact of linguistic knowledge from
task-specific challenges and measure real perfor-
mance gains that are not dependent on the partic-
ular difficulty of the task in each language. The
baselines were identically generated for English
and Spanish in PyTorch using a simple neuronal
network consisting of two fully connected layers
with 128 hidden units and a ReLU activation func-
tion. The input textual data was lightly cleaned,
tokenized, and ultimately vectorized using TF-IDF
and 10,000 features in both cases #. The networks
were trained for 20 epochs employing the same loss
functions as in the LM fine-tuning stage described
earlier. To ensure robustness, the final baselines
were calculated by averaging over 10 runs and nor-
malized using the intervals depicted on the right
of Table 4. The stability of the baselines was high,
with a mean standard deviation across task and
modes of 0.0038. To make system performances
comparable in a scale-free format, we adopted a
“fraction of headroom” measure, which gauges how
much of the remaining possible improvement each
system achieves, thus making comparisons more
equitable between languages and tasks whose base-
line levels may diverge. Consequently, even if En-
glish or Spanish begins at a relatively stronger base-
line, this measure preserves the notion of the frac-
tion of "what is left to gain" achieved by a system
in a given language-task-mode triplet. Formally,
we define the fraction of headroom A" as:

snorm _ bTLOTm
Ah _ °ICM ICM (2)
~T1ngy

where si&yf" is the normalized system ICM

score on a given task-mode pair and b75y;" is the
normalized baseline ICM score on the same pair.

3.5 Results

After completing the grid search, we collected 36
unique data points (3 architectures x 2 languages X
3 tasks x 2 modes) on each evaluation scenario
(either monolingual or multilingual) from six
Npmono = 6 different subjects (i.e. model pre-
trains) in the first case, and three N,,,;;; = 3 in
the second one. As it can be seen in the charts
of Figure 1, both scenarios demonstrate important
interaction effects between the different levels of
the three experimental conditions.

*We employed NLTK 3.8.1, PyTorch 2.2.0 and scikit-learn
1.4.1 to build the baselines.
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Figure 1: Fraction of headroom AP of tested models for each condition in our design. Dotted black lines indicate
mean values. Although RoBERTa and BERT seem to perform systematically better than DistilBERT in the
multilingual case, the same does not occur in the monolingual portion. This denotes factor interactions that we

sought to capture in the model specifications.

For example, while generally evaluations in the
sof't mode yielded lower scores in tasks 1 and 3
than in the hard mode, this effect was reversed
in task 2. Also, evaluations in tasks on the En-
glish portion seemed to obtain higher scores than
their counterparts in the Spanish portion, regard-
less of the employed evaluation mode. Beyond that,
it can also be noted that each archiecture (BERT,
RoBERTa, DistilBERT) exhibits a relatively stable,
consistent effect on performance across tasks and
modes. Specifically, while the relative ranking of
these classes can shift slightly depending on the
language (e.g., for Spanish, BERT and RoBERTa
seem closer, whereas in English RoBERTa shows
a clearer advantage), overall each class maintains
a characteristic offset in performance. To more ef-
fectively capture the complexity of these multilevel
interactions, we employed two distinct hierarchical
(mixed-effects) models: one dedicated to analyzing
the monolingual architectures (top of Figure 1) and
another focused on the multilingual architectures
(bottom).

4 Data Analysis

In this section, we present the methodology that
was adopted to analyze the data resulting from the
repeated-measures configuration described previ-
ously . In face of the hierarchical structure of
the data at hand, one common, though ultimately
inadequate approach consists in repeatedly apply-
ing the paired t-test. Although the paired t-test is
a popular and simple method for within-subject
comparisons (e.g., English vs. Spanish), it is gen-

SR code to replicate the analyses and figures in this paper
is provided as supplemental materials.

erally inadequate for repeated-measures data. It
assumes independent pairs—a condition often vi-
olated in complex designs with repeated evalu-
ations across multiple tasks and modes. Even
if independence is forced by averaging observa-
tions, this process removes legitimate variability
and yields underpowered analyses, a common is-
sue in NLP research (Card et al., 2020). For ex-
ample, the hierarchical design presented in this
paper would require six tests, which would in-
flate the family-wise error rate to approximately
a 27% at the standard significance level o = 0.05:
(P=1-a" =1-(0.95)% ~ 0.27). Although
corrections such as Bonferroni, Holm, or FDR exist
(Dror et al., 2017), mechanically applying them in
a mechanical manner can lead to systematic misin-
ferences (e.g., inflated type II errors) (Nakagawa,
2004), so they should not be relied upon as a uni-
versal solution to dependency issues. Furthermore,
in small-N designs such as the demonstrated in this
paper, these partial tests, having only 2 degrees of
freedom, would be markedly underpowered and
thus would render the detection of even large ef-
fects virtually unfeasible. As we explain in the
following sections, other more advanced statistical
tests beyond t-tests exist (e.g., repeated-measures
ANOVA). However, as we demonstrate in section
section 5, such tests are less flexible than LMMs,
and are thus better replaced by the latter approach.

4.1 Model Fitting

Building on the methodology described in previ-
ous sections, we fit two full-factorial models us-
ing the fraction-of-headroom measure A" as the
response variable. These models captured all two-
way and three-way interactions among the focal
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factor (language) and the remaining experimental
conditions (task and mode). In addition, we spec-
ified a nested random effect (1 | architecture
/ model) to account for the variability of mod-
els nested within their respective architectures (i.e.,
models pre-trained in either English or Spanish).
We implemented this modeling approach in R using
the 1me4 package (Bates et al., 2015), employing
the following specification for the monolingual sce-
nario:

delta ~
language * task * mode
+ (1 | architecture / model)

which expands to:
Muono: A% = By + B1(£) + Ba(t) + B3(m)
+ Br2(€ x t) + B13(€ x m)+

+ Baz(t x m) + Brag (€ x t x m)

+ Uarch:model + €ijk-
3)
with warch ~ N(0,02) and €5, ~ N(0, 0?)
We employed the same specification in the mul-
tilingual scenario; however, the nesting term within
the random effects structure was omitted due to the
presence of only a single representative for each
architecture in the experimental data (N, = 3).
Consequently, the specification of the random ef-
fects was reduced to (1 | architecture). Both
models were successfully fitted using restricted
maximum likelihood (REML). Subsequent to the
initial fitting, a simulation-based evaluation of the
models’ residuals was undertaken (Hartig, 2024) to
ascertain the absence of significant deviations from
LMM assumptions of normality and homoscedas-
ticity ®. For the models fitted under the two sce-
narios, Q-Q plots and residual variance plots are
presented in Appendix B. A summary of each
model’s estimated coefficients for the fixed effects
is shown in Table 1. In the monolingual model,
the marginal and conditional R? (Barton, 2024)
values were 0.894 and 0.948, respectively, and in
the multilingual model they were 0.800 and 0.899,
indicating that both fixed and random effects ex-
plained a substantial proportion of the variance in
our data.
In the table, it can be seen that in both scenarios
that the model fitted negative coefficient estimates

SFacilitated by the R DHARMa package. See
https://cran.r-project.org/web/packages/DHARMa/
vignettes/DHARMa.html for a full description of the
package’s main functionalities.

for the effect of Spanish language on system perfor-
mance. Here, the coefficients for (¢ = es) indicate
that for the baseline condition (¢ = t1, m = soft),
Spanish yields a lower fraction of headroom than
English. However, positive language—task inter-
actions (especially for task2 and task3) partially
compensate for this gap in those tasks. Likewise,
a negative coefficient for (m = soft) reflects a per-
formance drop from hard to soft in the reference
condition, but in other task—language combinations,
this penalty is modulated by the relevant interac-
tion terms. In both cases, other interactions are
found to be significant, revealing the multilevel
character of the experiment. Note that here, an in-
experienced analyst could mistakenly interpret the
effect of language (¢ = es) on the observed vari-
able as precisely —0.16 or —0.08 due to a superfi-
cial reading of the coefficient estimates. However,
this interpretation would be incorrect due to the
significant involvement of language in significant
higher-order interactions (e.g., Language x Task
x Mode). Therefore, the main effect of 1anguage
on the population is not directly interpretable from
the models’ regression coefficient 51 in either sce-
nario. To estimate a global effect, it is necessary
to compute the associated marginal means of the
effect (i.e., the predicted means of the outcome
variable at each level of language, while averag-
ing over all levels of the other factors) along with
their associated confidence intervals.

4.2 Estimating Population-Level Effects

To obtain a more holistic view of the influence
of language beyond the baseline condition, we
estimate the population-level (marginal) effect of
language—i.e., the effect of language on A" for
the average model in our sample. To achieve this,
we employ estimated marginal means (EMMs),
which provide model-adjusted predictions by av-
eraging over the levels of other categorical factors.
This approach ensures that the estimated effect of
language accounts for variability introduced by
task and mode, rather than being confounded by
specific level comparisons. The emmeans R pack-
age (Lenth, 2024) implements this estimation by
extracting fixed-effect coefficients from the fitted
model and computing means over the relevant fac-
tor levels, using the variance-covariance structure
to quantify uncertainty and produce an estimate
7. For a given level ¢ of language, the estimated

"Specifically we employed Satterthwaite’s method to de-
rive degrees of freedom as in (Howcroft and Rieser, 2021)
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Variable Multilingual Monolingual
Coeff. (3) SE Coeff. (3) SE
Intercept (Go) 0.39%%  0.03  0.42"*  0.02
Language (¢ = es) (1) —0.16"* 0.03 —0.08**  0.03
Task (t = 2) (B2) —0.37* 0.03 —0.33""* 0.02
Task (t = t3) (B2) —0.15"*  0.03  —0.11"*  0.02
Mode (m = soft) (f3) —-0.10"  0.03 —0.10"*  0.02
Language x Task (¢ = es, t = t2) (f12) 0.21**  0.04  0.18"*  0.03
Language x Task (¢ = es,t = t3) (f12) 0.13** 0.04 0.07* 0.03
Language x Mode (¢ = es, m = soft) ([314) 0.11* 0.04 0.04 0.03
Task x Mode (t = t2, m = soft) (523) 0.20"*  0.04  0.15**  0.03
Task x Mode (¢t = t3, m = soft) (S23) 0.03 0.04 —0.01 0.03
Language x Task x Mode (¢ = es,t = t2, m = soft) ($123) —0.11"  0.06  —0.09*  0.04
Language x Task x Mode (¢ = es,t = t3,m = soft) (f123) —0.12*  0.06 —0.06 0.04

Table 1: Fixed effects for the model comparing Multilingual and Monolingual settings, with notation aligned to the
model equation. Significance codes: ***p < 0.001, **p < 0.01, *p < 0.05, 'p < 0.1.

marginal mean ¢, represents the expected value of
A" when task and mode are balanced across con-
ditions, ensuring an interpretable population-level
estimate.

In the My model, the EMM for English was
found to be 0.202 (SE = 0.0211), while for Span-
ish (es) it was 0.170 (SE = 0.0211). The esti-
mated difference between the two languages was
0.0316 (SE = 0.0114, df = 22, t = 2.767,
p = 0.0113), indicating a statistically significant
effect of language in the multilingual portion of our
experimental data. In contrast, in the monolingual
scenario, the estimated marginal means were nearly
identical for the two languages (English: 0.249,
SE = 0.0142; Spanish: 0.245, SE = 0.0142)
and the associated estimated difference was min-
imal (0.0041, SE = 0.0201, df = 4, t = 0.206,
p = 0.8469), providing no evidence of a language
effect in this setting. These results suggest that the
effect of language is significant in the multilingual
setting but negligible in the monolingual scenario,
shedding light on our initial research question.

Following established reporting practices
(Schuff et al., 2023; Card et al., 2020), we further
evaluated the magnitude of the significant language
effect observed in the multilingual scenario by
computing partial eta squared (ng) via a Type III
ANOVA of the model coefficients. As it can be
seen in Table 2, language exerts a large effect
on A" (775 = 0.60), indicating that it explains a
substantial portion of the variance. However, other
higher-order interactions, such as ¢ x ¢ (7712, = 0.57)
and/ X t x m (171% = 0.26), also play a significant

role. These findings underscore the importance of
interpreting the influence of language on system
performance within the more nuanced context of
the EXIST 2023 task.

Table 2: Partial eta squared (7712,) effect sizes with 95%
confidence intervals for main and interaction effects in
the multilingual scenario.

Effect . 95%CI

¢ 0.60 [0.31,0.76]
t 0.89 [0.78, 0.93]
m 0.35  [0.06, 0.59]
{xt 0.57 [0.24,0.73]
{xm 0.26 [0.02,0.52]
txm 0.58 [0.26, 0.74]
{xtxm 021 [0.00,0.46]

To further support this analysis, Appendix C
presents two alternate modeling scenarios for inter-
ested readers, utilizing the same dataset but with
varied fixed-effect configurations. These scenarios,
which either exclude interaction terms or modify
random effects, demonstrate how minor modeling
decisions can greatly influence uncertainty, statis-
tical power, and residuals. By contrasting these
examples with our primary model, we highlight
the crucial role of model design in drawing reliable
conclusions from repeated-measures NLP experi-
ments.

5 Robustness of Linear Modeling

To further validate the applicability of linear mixed
models (LMMs), we conducted a supplementary
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experiment on the data from the multilingual sce-
nario. The aim of this experiment was to provide
an example of the robustness and flexibility of
LMMs in the context of missing data points, a
capacity that makes them superior to more rigid
tests such as RM-ANOVA. To this end, we sys-
tematically removed increasing proportions of the
data—specifically, 5%, 10%, up to 50%—and per-
formed 100 fits of My at each level, assessing
the p-value of comparing the EMMs for the two
levels of language: Hg : Yr—en — Yr—es = 0. On
each case, we annotated the proportion of cases
where the null hypothesis was rejected by the cor-
responding test. The results (Figure 2) indicate
that the LMM successfully identified the language
effect in 95% of the simulation runs when 10%
of the data were removed, and maintained a de-
tection rate of 70% when 15% of the data were
omitted. On the contrary, and despite RM-ANOVA
was able to find the significant effect of language
in the complete data (F(1,2) = 20.778, p = .045),
it failed to produce sensible estimates even when
the data ablation level was at the minimum (5%).
This example illustrates the practical advantages of
linear mixed-effects models (LMMSs) in NLP ex-
perimentation, where missing data frequently arise
due to inconsistent data collection, training inter-
ruptions, or unanticipated model failures. LMMs
demonstrate resilience to data loss, enabling reli-
able inferences even under less-than-ideal condi-
tions. In contrast, conventional methods such as
repeated-measures ANOVA (RM-ANOVA) remove
entire groups whenever a single data point is miss-
ing, thereby undermining statistical power or even
rendering the analysis infeasible.

6 Recommendations

To complete our contribution, we propose the fol-
lowing general methodological recommendations:

1. Embrace variability Our study underscores
the importance of explicitly modeling inherent vari-
ability rather than relying on aggregation-based ap-
proaches that may obscure meaningful differences.
LMMs provide a rigorous statistical framework for
addressing the hierarchical and crossed structures
that frequently arise in NLP experiments, such as
repeated runs, multiple datasets, and annotator vari-
ability. Compared to conventional methods, LMMs
more effectively partition variance, yielding robust
population-level inferences even in the presence of
small sample sizes or missing data.

Robustness of Language Effect under Data Ablation
100.0%

0.05

Figure 2: Percentage of significant p-values by number
of missing data points. Randomly removing 20% of
the data from the model fits reduced the chances of
detecting the language effect by approximately 50%.
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2. Keep Model Complexity Low Although the
inclusion of additional predictors may seem advan-
tageous in achieving a more comprehensive rep-
resentation of underlying effects, excessive model
complexity can hinder interpretability and com-
promise the reliability of parameter estimates. As
demonstrated in this study, the presence of substan-
tial interaction effects necessitates a nuanced inter-
pretation of regression coefficients. Consequently,
increasing the number of modeled effects exacer-
bates the challenge of deriving meaningful insights
within a given research framework. A pragmatic
approach documented in the literature (Bates et al.,
2018), which we followed in this work, is to be-
gin with a parsimonious model that focuses on key
fixed effects and a minimal set of essential random
effects.

3. Report Model Diagnostics. To ensure the va-
lidity of statistical inferences derived from fitting
regression models, it is critical to assess whether
model assumptions—such as normality and ho-
moscedasticity in the case of LMMs—are ade-
quately met. Nevertheless, in practice, the report-
ing of residual diagnostics—ranging from graphi-
cal assessments to simulation-based techniques—is
frequently omitted, despite their potential to reveal
assumption violations. Tools such as DHARMa en-
able the detection of overlooked anomalies and
facilitate more robust model evaluation. Transpar-
ent reporting of these diagnostic checks strengthens
the credibility of statistical conclusions and miti-
gates the risk of drawing inferences based on model
misspecification.
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7 Conclusion

In this study, we have presented a rigorous
methodology for estimating population-level ef-
fects from repeated-measures experimental data,
demonstrated through a case study rooted in the
cross-lingual evaluation of language models. By ex-
plicitly accounting for the repeated-measures struc-
ture, linear mixed-effects models enable more re-
liable statistical inferences and help mitigate com-
mon pitfalls frequently encountered in the litera-
ture, such as inflated Type I error rates and under-
powered comparisons. While our case study fo-
cuses on cross-lingual evaluation, the methodologi-
cal insights and recommendations outlined in this
work are directly applicable to virtually any NLP
domain involving repeated measurements, includ-
ing model robustness assessments, human anno-
tation studies, and dataset-level comparisons. We
hope these findings encourage the broader adoption
of hierarchical and multilevel modeling within the
NLP community, ultimately fostering more repro-
ducible and interpretable NLP experiments.

Limitations

We acknowledge some limitation in our approach.
The bilingual dataset used in our experiments, de-
spite being designed for cross-lingual analysis,
may still exhibit unaccounted differences in dif-
ficulty, annotation consistency, or domain cover-
age between its English and Spanish subsets. We
addressed this by introducing normalized base-
lines, but inherent disparities across languages (lex-
ical richness, writing style, label imbalance) can
affect system performance independently of any
language-specific model shortcomings. For that
reason, the findings made in this paper may not
be directly translatable to other tasks and domains.
The sexism-detection domain chosen here reflects
real-world social media data, but may not map di-
rectly to other domains such as biomedical text,
legal documents, or conversational agents. Domain
shifts can alter the distribution of language fea-
tures and labeling conventions, potentially dimin-
ishing the generality of our findings. However, the
methodology presented in this paper is still useful
for evaluating robustness in hierarchical modeling
approaches and can be extended to other multi-
lingual and multi-domain settings. Future work
should explore additional language pairs, larger
datasets, and alternative annotation frameworks to
further validate our proposed methodology. Fur-

thermore, while our case study focuses on fixed
factors such as language, task, and mode, other
important sources of variation—such as random
initializations, pretraining corpus differences, or
training data splits—can also be incorporated into
LMMs when sample sizes permit (see Sanchez Car-
mona et al. (2025) for an example). Finally, we
acknowledge the use of commercial Al assistant
chatbots to assist in the writing of the manuscript.
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A EXIST 2023: Task Descriptions

1. Sexism Identification (Task 1): A binary
classification task in which systems determine
whether a tweet expresses ideas related to sex-
ism, including explicitly sexist messages, de-
scriptions of sexist situations, or critiques of
sexist behavior.

2. Source Intention Classification (Task 2):
A ternary classification task categorizing the
author’s intention in sexist tweets into three
classes: (a) Direct—tweets that are explicitly
sexist or incite sexism; (b) Reported—tweets
narrating a sexist situation experienced by
women in the first or third person; and (c)
Judgmental—tweets condemning sexist situa-
tions or behaviors.

3. Sexism Categorization (Task 3): A multi-
label, hierarchical classification task assigning
one or more categories to sexist tweets:

* Ideological and Inequality: Discrediting
feminism, rejecting gender inequality, or
portraying men as victims of oppression.

* Role Stereotyping and Dominance: Ex-
pressing false notions about women’s
suitability for certain tasks or asserting
male superiority.

* Objectification: Presenting women as ob-
jects, focusing on physical attributes, or
reinforcing unrealistic beauty standards.

» Sexual Violence: Containing sexual sug-
gestions, requests, or harassment of a
sexual nature.

* Misogyny and Non-Sexual Violence: Ex-
pressing hatred and non-sexual violence
towards women.

B Model Diagnostics

To verify that our linear mixed model adequately
captures the relationship between log(score norm
baseline norm) and the fixed effect of language
(while accounting for the random intercepts of class
run and task:mode), we employed the DHARMa R
package for diagnostic checks. DHARMa uses
a simulation-based approach to generate scaled
residuals, which allows for straightforward graph-
ical and statistical assessments of normality, ho-
moscedasticity, and outliers. In the figure below,
the Q—Q plot on the left compares the observed
residual distribution to an ideal uniform distribu-
tion, while the box plot on the right summarizes
residuals by category. The non-significant Kol-
mogorov—Smirnov, dispersion, and outlier tests
all indicate that the model’s assumptions are suffi-
ciently met, suggesting our multilingual model is
well-specified for the data at hand.
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Figure 3: DHARMa simulation-based diagnostic plots
for the models fitted to the data in the multilingual (top)
and monolingual (bottom) scenarios. The Q-Q plot
(left) shows that observed scaled residuals closely fol-
low the expected distribution, and the box plot (right) in-
dicates no significant language within-group deviations.
Non-significant Kolmogorov—Smirnov, dispersion, and
outlier tests confirm that the models’ residuals meet
standard assumptions.

C Additional LMM Specification
Examples

To complement our main analysis, we present
two additional modeling examples using the same
dataset. These illustrate common choices re-
searchers face when applying linear mixed-effects
models (LMMs) in repeated-measures NLP experi-
ments. By varying how fixed and random effects
are specified, we highlight the consequences for
interpretability and statistical inference.

C.1 Example 1: Treating Architecture as
Fixed, Task as Random

To illustrate the implications of simplifying model
structure, we refit a linear mixed-effects model in
which architecture is treated as a fixed effect
and task as a random intercept. This scenario
reflects a common analytical choice in which re-
searchers seek to compare known model families
(e.g., BERT vs. RoBERTa) across a representa-

tive sample of tasks, while omitting higher-order
interactions involving task or mode. In this spec-
ification, the outcome variable A" is modeled as
a function of language, architecture, and their
interaction, with a random intercept for task to
account for task-level variability. The mode factor
is excluded entirely from the model, under the as-
sumption that its contribution is either negligible or
redundant in the presence of the other terms. The
model specification is:

delta ~ language * architecture + (1 | task)

This simplified model produced a clean fit with
no singularities or convergence issues. The es-
timated marginal means (EMMs) for language
revealed a mean fraction-of-headroom of 0.202
for English (SE = 0.056) and 0.170 for Span-
ish (SE = 0.056), resulting in a mean difference
of 0.0316 (SE = 0.0222,t = 1.43, p = 0.164).
Although the effect size is identical to that obtained
in the main full-factorial model (Section 3.5), the
estimated standard error is nearly double, leading
to a loss of statistical significance. The model’s
explanatory power also diminished substantially:
the conditional R, which accounts for both fixed
and random effects, was 0.690, suggesting that de-
spite the random intercept for task still captures
some meaningful structure, it is insufficient to the
purpose of the study.

These discrepancies are not accidental but illus-
trative of a broader principle in hierarchical mod-
eling: although point estimates for main effects
may remain stable across specifications, their as-
sociated uncertainty is highly sensitive to model
structure. The full-factorial model reduces resid-
ual variance by explicitly modeling how language
interacts with task and mode. In contrast, the sim-
plified model effectively reallocates all interaction-
related variance to the residual term, thereby inflat-
ing standard errors and reducing power. The exam-
ple illustrates how simplifying fixed-effect struc-
ture—especially by omitting theoretically plausible
interactions—can severely weaken statistical infer-
ence, even when point estimates of the variable of
interest remain unchanged. For researchers work-
ing with repeated-measures designs, particularly
in small-N scenarios, such simplifications should
be approached with caution. When the research
objective involves making population-level claims,
retaining a rich interaction structure is often essen-
tial for reliable inference.
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C.2 Example 2: Omitting All Interactions
(Additive-Only Model)

To further explore the impact of model simplifica-
tion, we fit an additive-only linear mixed-effects
model in which all fixed effects are specified with-
out interactions. In this configuration, the outcome
variable A" is modeled as an additive function of
language, task, and mode, with a random inter-
cept for architecture to account for system-level
heterogeneity. No interaction terms are included,
meaning the model assumes that the effects of each
predictor are strictly independent. This approach is
frequently motivated by a desire for interpretabil-
ity and reduced complexity, especially when the
sample size is limited. The model specification is:

delta ~ language + task + mode
+ (1 | architecture)

This model converged without singularity issues
and yielded a clean fit according to standard diag-
nostics. The estimated marginal means (EMMs) for
language were 0.202 for English (SE = 0.023)
and 0.170 for Spanish (SE = 0.023), resulting in
a marginal difference of 0.0316 (SE = 0.0218,
t = 1.45, p = 0.158). As expected, the point es-
timate of the language effect mirrors that of the
full-factorial model in the main text (0.0316) once
again, but the exclusion of interaction terms leads
to inflated uncertainty and a corresponding loss
of statistical significance. The marginal R? was
0.556 and the conditional R? was 0.632, indicating
moderate explanatory power largely driven by the
fixed-effects structure.

However, in this case residual diagnostics using
the DHARMa package revealed a notable deviation
from model assumptions. While the Q-Q plot and
standard dispersion tests did not indicate significant
violations, the right-hand quantile plot in Figure 4
showed significant deviations between observed
and expected residuals. The red quantile bands,
generated from simulated residuals, reveal system-
atic miscalibration in the model’s predictive distri-
bution. This suggests that while the model explains
the central tendency of the data reasonably well,
it may fail to capture tail behavior or nonlinear
dependencies, especially across combinations of
task and mode that are conditionally structured in
the full model but ignored here.

These results reinforce the conclusions drawn in
Example 1: although point estimates of key effects
may remain stable across different model specifi-
cations, the omission of experimentally-motivated

DHARMa residuals (Example 2 - Additive Model)
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interactions can lead to underestimation of vari-
ability, distort residual structure, and diminish the
model’s ability to generalize. The additive-only
model is particularly vulnerable to this issue be-
cause it assumes strictly independent contributions
of all factors—a strong assumption rarely justified
in complex, factorial designs. The application of
simpler, additive-only models to repeated-measures
data should therefore be approached cautiously, as
those may overlook critical sources of variance and
yield misleadingly narrow conclusions.

D Additional Tables
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Model Name Trained In Parameters

distilbert-base-uncased English 66M
CenlA/distillbert-base-spanish-uncased Spanish 66M
distilbert-base-multilingual-cased Multilingual 134M
bert-base-cased English 110M
dccuchile/bert-base-spanish-wwm-cased Spanish 110M
bert-base-multilingual-cased Multilingual 177TM
roberta-base English 125M
PlanTL-GOB-ES/roberta-base-bne Spanish 125M
xlm-roberta-base Multilingual 270M

Table 3: Summary of model architectures, training language, and parameter count.

Task Mode gng gIeéM gIegM - gIe(st ‘ Hen Hes Hen — HMes

i H £0.980 +0.999 0.020 0.571 0.617 -0.046
S +3.114 +3.118 0.004 0.436 0.468 -0.032

0 H +1.445 =+1.601 0.156 0.347 0411 -0.065
S +6.118 +6.243 0.125 0.219 0.251 -0.031

3 H +2.040 +2.239 0.199 0.304 0.326 -0.022

S +9.126 +9.607 0.482 0.205 0.218 -0.014

Mean - - - - 0.347 0.382 -0.036

Table 4: Gold standard test set ICM scores (used for normalizing system raw ICM scores) and average baseline
scores for English and Spanish datasets.
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