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Abstract

Continual pretraining enables Large Language
Models (LLMs) to adapt to specialized do-
mains like medicine and law. However, we
observe a consistent phenomenon across dif-
ferent model sizes and domains: a temporary
performance drop at the start of the continual
pretraining process, followed by a performance
recovery phase. To gain a deeper understanding
of this issue, we use the stability gap— a con-
cept adapted from the visual domain—which
explains this initial drop arises from instability
in the model’s general abilities. We validate
this hypothesis through a series of experiments.
To address this initial instability and enhance
LLM performance within a fixed compute bud-
get, we propose a training strategy that miti-
gates instability by increasing the number of
epochs, alongside two data sampling strategies
targeting data domain relevance and corpus dis-
tribution. We conduct experiments on Llama-
family models to validate the effectiveness of
our strategies for continual pretraining and in-
struction tuning in medical and legal domains.
Our strategies improve the average medical task
performance of the OpenLlama-3B model from
36.2% to 40.7% using only 40% of the original
training budget, while also enhancing general
task performance without causing forgetting.
Furthermore, we apply our strategies to contin-
ually pre-train and instruction-tune the Llama-
3-8B model. The resulting model, Llama-3-
Physician1, achieves the best medical perfor-
mance among open-source models and rivals
GPT-4 on specific tasks.

1 Introduction

Continual pretraining is an important approach for
LLMs to improve their performance in target do-
mains (Huang et al., 2023; Yang et al., 2024a;
Chen et al., 2023c), learn new topics and lan-
guages (Jiang et al., 2024; Gupta et al., 2023),

1We release our models at https://huggingface.co/
YiDuo1999/Llama-3-Physician-8B-Instruct.

Figure 1: The performance comparison between our
model (Llama-3-physician) and other models involves
reporting the ratio of each model’s task performance to
the best performance of that task among all models.

and even boost their general capabilities (Ibrahim
et al., 2024). While extensive research has fo-
cused on understanding LLM mechanisms during
pretraining from scratch (Biderman et al., 2023a;
Xue et al., 2024), far less attention has been given
to how LLMs behave during continual pretrain-
ing (Que et al., 2024). This gap in the literature is
particularly striking given the importance of con-
tinual pretraining in adapting models to new do-
mains and evolving knowledge. In this paper, we
report a surprising phenomenon observed during
continual pretraining: rather than an immediate
improvement, LLM performance on target do-
main tasks initially declines in the early stages
of training. Only after further training, when
more data is incorporated, does performance re-
cover and eventually surpass that of the original
model. We consistently observe this performance
pattern—a V-shaped curve—across various model
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scales and target domains, including medical and
legal fields, demonstrating its generalizability.

To explore the underlying mechanisms of this
phenomenon, we draw inspiration from the concept
of the stability gap (De Lange et al., 2022; Caccia
et al., 2021), originally introduced in the context
of vision models in continual learning. The stabil-
ity gap describes how a model’s performance on
previously learned tasks initially degrades when
learning new tasks, before gradually recovering
as it adapts. Previous research (De Lange et al.,
2022) attributes this initial drop to an imbalance be-
tween the model’s stability gradient—its ability to
maintain performance on prior tasks—and its plas-
ticity gradient—the capacity to adapt to new ones.
Early in training, the model’s plasticity gradient
dominates, leading to a temporary performance de-
cline. As training progresses, the stability gradient
strengthens, allowing performance to recover.

Applying this framework to LLMs, we hypothe-
size that the initial performance drop in continual
pretraining stems from a similarly insufficient sta-
bility gradient to preserve the model’s general ca-
pabilities (e.g., instruction-following skills). Over
time, as the plasticity gradient diminishes and the
stability gradient rises, task performance rebounds.
Supporting this hypothesis, we observe a similar V-
shaped pattern in general-domain tasks, where ini-
tial declines give way to recovery. Further analysis
of weight updates throughout the training process
provides additional evidence for this interpretation.

But how can we mitigate it to optimize contin-
ual pretraining? Given a fixed computing budget,
we know that the stability gap causes inefficiency
in continual pretraining as it delays performance
improvement. To address this, we propose three
efficient continual pretraining strategies:

1. Instead of continually pretraining the LLM on
a large corpus for one epoch, which induces a
large plasticity gradient for a long period, we
continually pre-train the LLM on a subset
of the corpus for multiple epochs.

2. Select the domain subset validated by do-
main Perplexity (PPL) to learn rich domain
knowledge, leading to faster performance re-
covery and higher peak performance.

3. Use a data mixture that is similar to the
pretraining data distribution in data source
and rate, thus reducing the distribution shift

and mitigating the knowledge forgetting of
general instruction-following ability.

To verify our strategy, we first conduct experi-
ments on the OpenLlama-3B model with medical
domain continual pretraining. We find that our
strategies show its computational efficiency by
reducing the original compute budget to 40% while
also enhancing the LLM’s peak performance (See
Table 1). We further verify the generalization of
our strategies in legal and general continual pre-
training settings (see Appendixes F and E) We
also compare our strategies with other continual
pretraining techniques and analyze the influence
of important learning factors, such as learning rate,
for our strategies. Finally, we apply our strate-
gies to both the continual pretraining and in-
struction tuning processes of the Llama-3-8B
model (Meta, 2024), efficiently enhancing its per-
formance on diverse medical tasks, outperforming
other open-source LLM baselines, and achieving
performance comparable to GPT-4 (See perfor-
mance comparison in Figure 1).

2 Related work

Large language Models such as GPT-4 (Ope-
nAI, 2023), Gemini (Team), and Llama (Touvron
et al., 2023a)), have billions of parameters and
show strong performance on various basic natu-
ral language tasks (Qin et al., 2023), human ex-
amination (Hendrycks et al., 2020b; Zhong et al.,
2023), and agent-related tasks (Guo et al., 2023;
Liu et al., 2023; Zhou et al., 2023). Their success at-
tracts researchers to analyze LLMs’ learning prop-
erties during the pretraining process (Kaplan et al.,
2020; Biderman et al., 2023a; Zhang et al., 2024a).
Kaplan et al. (2020) finds the pretraining scaling
rule for model size and dataset size and then Hoff-
mann et al. (2022) proposes the Chinchilla rule
that claims the equal importance of the model size
and the number of training tokens. Sorscher et al.
(2022) further claims that pruning low-quality data
can improve the above neural scaling laws. How-
ever, high-quality training tokens are limited and
may be run out soon (Villalobos et al., 2022). Thus,
some researchers try to maximize the utilization
of the existing corpus by training it for multiple
epochs (Muennighoff et al., 2024; Xue et al., 2024).
But they observe the performance degradation (Her-
nandez et al., 2022; Xue et al., 2023; Hoffmann
et al., 2022) after training 4 epochs.
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Continual pretraining gradually becomes nec-
essary for LLMs to expand their basic ability (Wu
et al., 2022; Fu et al., 2024; Zhuang et al., 2024),
avoid outdated information (Jiang et al., 2024), and
become the domain expert (Huang et al., 2023;
Yang et al., 2024a; Chen et al., 2023c; Nguyen
et al., 2023; Wu et al., 2023; Yıldız et al., 2024;
Xie et al., 2024a). The domain corpus for contin-
ual pretraining can be collected by n-gram mod-
els (Muennighoff et al., 2024), heuristic rules de-
signed by human experts (Chen et al., 2023c;
Zhang et al., 2024c) or automatically identified
by a LLM (Zhang et al., 2024c). For the continual
pretraining techniques. Ke et al. (2023, 2022) fo-
cused on adding masks or adjusting the architecture
of small language models like RoBERTa to protect
the learned general knowledge. However, these
techniques result in huge computational consump-
tion for LLMs. Recent studies (Gupta et al., 2023)
show that learning rate re-warming can improve
LLMs’ downstream task performance and a stabil-
ity gap appears when replaying the previous data.
(Ibrahim et al., 2024) further claims that learning
rate re-warming, re-decaying, and replay can make
the continual pretraining performance match the
performance of fully re-training when continually
pretraining the English LLM on the German cor-
pus. Other continual pretraining method studies
focus on selecting useful tokens (Lin et al., 2024),
expanding MOE architecture (Chen et al., 2023a),
and knowledge distillation (Jin et al., 2021b).

Continual learning and the Stability Gap Con-
tinual learning aims to design methods that can
learn new knowledge without the catastrophic for-
getting of previously learned knowledge (Kirk-
patrick et al., 2017; Van de Ven et al., 2022). To
mitigate the forgetting problem when learning a
new task, replaying previous tasks’ data (Rolnick
et al., 2019; Buzzega et al., 2020; Prabhu et al.,
2020; Buzzega et al., 2021; Guo et al., 2022) be-
comes the main approach. De Lange et al. (2022);
Caccia et al. (2021) further find that, although they
conduct the replay approach, the vision model still
first loses its performance stability in previous clas-
sification tasks ( the performance drops abruptly)
and then gradually recovers. They call it the sta-
bility gap phenomenon. Different from them, we
focus on the continual pretraining of the LLM and
observe that both the LLM’s domain performance
and general ability suffer from the stability gap.

3 Identifying the stability gap in
continual pretraining

In this section, we describe the unique performance
phenomenon observed during continual pretraining,
where performance on the target domain initially
drops before rising. We then introduce the concept
of the stability gap to explain this behavior and
validate our explanation through experiments.

3.1 Investigating the behavior of LLMs
during continual pretraining

Experiment setup In this study, we choose
OpenLlama3B-v2 (Geng and Liu, 2023) as our
default LLM, which has been pretrained on openly
Refined-Web dataset (Penedo et al., 2023). We
consider the medical domain as our primary tar-
get domain. Following previous work (Chen et al.,
2023b), we set the compute budget to 50 billion
(50B) training tokens. More details are provided in
Appendix A. To measure the model’s medical do-
main performance, we follow (Chen et al., 2023c)
and consider the average accuracy performance
over the MMLU-Medical-Genetics (Hendrycks
et al., 2020a), MedQA (Jin et al., 2021a), Pub-
MedQA (Jin et al., 2019), and MedMCQA (Pal
et al., 2022) tasks (see task details in Appendix C).

Data collection To deploy a simple, economic,
and scalable pretraining data collection method,
we collect the continual pretraining corpus by first
training a small n-gram model (e.g., KenLM) on
a few human-collected data, and then using it to
calculate the data perplexity on the Refined-Web
dataset (Penedo et al., 2023), and then extracting
the 50B lowest-PPL tokens. We justify its effec-
tiveness in Appendix A and show its scalable in
other domains like legal in Appendix F.

Observation (1): The medical task performance
first drops and rises during continual pretrain-
ing. We report the average performance and its
deviation on medical tasks every 5 billion train-
ing tokens. From Figure 2(a), we observe that
the domain task performance initially drops dur-
ing the first 5 billion tokens and then gradually
recovers and improves. Furthermore, as shown
in Figure 2(b) (a fine-grained view), we observe
that the performance declines at the beginning, fol-
lowed by a gradual recovery. We also perform a
t-test to statistically verify the performance drop
shown in Figure 3(a). Additionally, we consider
the TinyLlama model (Zhang et al., 2024b), a 1.1B
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Figure 2: (a) reports the models’ average medical performance with the standard deviation among 5 runs during the
medical continual pretraining process. (b) reports the models’ average medical performance at the beginning. (c)
illustrates the models’ average medical perplexity (PPL) during the medical continual pretraining process.

Llama model trained on 3 trillion tokens, and con-
tinually pre-train it on the medical corpus. From
Figure 2(a), we observe that its performance on
medical tasks also shows the same trend, despite
being trained on so many tokens.

Observation (2): The perplexity of medical
Wikipedia steadily declines during continual
pretraining. We further measure the average per-
plexity (PPL) of the models on the Wikipedia cor-
pus about medical terms2. From Figure 2(b), we
observe that the PPL steadily drops. This suggests
that the LLM begins acquiring medical knowledge
during the initial phase of continual pretraining and
continues to enhance its understanding throughout
the entire process.

More Observations: We also examine continual
pretraining in both the legal domain and a general
setting. Similar V-shaped performance curves are
observed, reinforcing that the initial performance
drop followed by a subsequent rise in target task
performance is a common phenomenon in the con-
tinual pretraining of LLMs. Detailed results are
provided in Appendix B.

3.2 Stability Gap: A conceptual explanation
for the initial performance drop and then
following recovery.

The Stability Gap refers to the initial decline
in a vision model’s performance on previous tasks
while learning a new task, followed by a subse-
quent improvement, even when data from the ear-
lier tasks is replayed. Lange et al. (2022) explains
this by disentangling the model gradient G into

2https://huggingface.co/datasets/gamino/wiki_
medical_terms

α-weighted plasticity and stability components:
G = αGplasticity + (1− α)Gstability, where Gplasticity

focuses on learning the new task by minimizing
its data loss, while Gstability seeks to maintain per-
formance on previous tasks by keeping the loss of
replay data low. They attribute the initial perfor-
mance drop to the plasticity gradient exceeding the
stability gradient to reduce new task loss, resulting
in a failure to maintain performance on previous
tasks. As performance declines, the stability gra-
dient strengthens, leading to a balance between
gradients and eventual performance recovery.

Explanation of our observations Directly apply-
ing the concept of the stability gap to explain our
phenomenon is challenging because we do not ex-
plicitly replay the pretraining corpus, which is a key
element in traditional stability gap analysis. How-
ever, during domain-specific continual pretraining,
the language modeling loss serves two critical func-
tions: it both learns domain-specific knowledge
and implicitly preserves general knowledge and
text modeling capabilities (See LLM’s non-zero
commonsense performance in Figure 3(b)), as the
domain corpus still contains general information.
This implicit preservation serves as a form of ’self-
replay,’ enabling the retention of general knowl-
edge through what we term the stability gradient.
Further, we infer that performance declines because
the plasticity gradient for learning domain-specific
knowledge surpasses the stability gradient for re-
taining general text knowledge and text modeling
ability. Over time, the stability gradient strength-
ens to restore general knowledge and modeling
abilities, while the plasticity gradient has learned
knowledge in the target domain, leading to perfor-
mance improvement.
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Figure 3: In Figure (a), we perform a statistical t-test to demonstrate that the performance of OpenLLaMa
significantly drops at the 5B training tokens. (b) shows the OpenLLaMa’s average common-sense task performance
among 5 runs during medical continual pretraining. (c) illustrates the OpenLlama model’s relative parameter update
during the medical continual pretraining process. We report the average weight relative update of weights in the top
5 layers and the bottom 5 layers. We also report the rate between the two average numbers.

Empirical verification for our explanation
Based on our inference, we can predict that the
commonsense task performance follows a similar
V-shape curve as the stability gradient gradually
rises. We verify our prediction in Figure 3(a). We
also find evidence for our explanation at the weight
level by (2) measuring the relative weight update
of each weight w as wt−w0

w0
, where wt is the weight

value during continual pretraining and w0 is the
original weight value. A high relative weight up-
date indicates a large gradient for updating the
weight. Figure 3(b) shows that the bottom lay-
ers’ weights initially have a higher relative weight
update than the top layers (rate > 1.35). Previous
studies indicate that bottom layers learn the syntax
and low-level semantics (Devlin et al., 2019; He-
witt and Manning, 2019; Ling et al., 2023), while
top layers contain high-level semantics and task-
specific knowledge (Yang et al., 2024b; Chen et al.,
2024). This suggests that the top layers’ weights
indeed lack sufficient stability gradient to maintain
instruction-following ability initially. The perfor-
mance then recovers as the relative weight updates
(stability gradient) increase in the top layers and
domain knowledge is learned, as indicated by the
continuous drop in medical perplexity.

4 Our method

In this section, we propose three efficient contin-
ual pretraining strategies for reducing the above
stability gap problem. The training process and
details follow those in the above section. We then
compare the effectiveness of our strategies with

other continual pretraining techniques. Next, we
investigate the impact of important learning factors,
such as the learning rate, on our strategies. Finally,
we make ablation study about our strategy.

4.1 Efficient continual pretraining strategies
for mitigating the stability gap

Strategy I: Continually pre-train the LLM on
a corpus subset across multiple epochs rather
than the entire large corpus for a single epoch.
The key insight is that a larger corpus demands
a high plasticity gradient for a longer period. In
contrast, pretraining the LLM on a subset of the
corpus across multiple epochs reduces the need for
sustained high plasticity after the first epoch and
accelerates the rise of the stability gradient.

Strategy II: Continually pre-train the LLM on
the domain corpus subset validated by the do-
main PPL. The second strategy utilizes domain-
related tokens from the whole RefinedWeb dataset,
identified based on their alignment with a well-
defined and small domain corpus, to accelerate
performance recovery during continual pretraining.
Specifically, we ranked all samples in the Refined-
Web dataset based on their perplexity (PPL) scores,
calculated using a KenLM model trained on the
medical Wiki corpus described in Appendix. A.
We refer to this as the domain PPL. And then we
select the subset with the lowest PPL as the domain
corpus. We use this data collected method as a low
domain PPL score indicates that the passage has
a stronger alignment with the distribution of the
medical Wikipedia corpus. we further validate our
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Method Training tokens number MMLU-Med-Avg PubMedQA MedMCQA MedQA-4-Option Avg
OpenLLaMa-3B - 25.6 68.4 25.4 25.4 36.2
Full token baseline 50B 26.1 70.4 26.1 27.1 37.4
Re-warming and re-decaying 50B 26.5 70.3 27.1 27.1 37.7
Replay 5B data 50B 26.3 69.2 27.6 26.9 37.5
Replay 10B data 50B 29.3 71.0 30.4 27.6 39.5
Replay 15B data 50B 29.0 70.1 29.4 26.2 38.7
Freezing top 5 layers 50B 26.2 69.9 27.1 27.3 37.6
Freezing bottom 5 layers 50B 26.0 69.1 25.4 25.7 36.5
Our strategies 20B 30.0 71.2 34.0 27.8 40.7

Table 1: Zero-shot accuracy across various medical benchmarks.

method in Section 4.5.

Strategy III: Use a data mixture rate similar
to the pretraining data. The pretraining data
mixture rate is a vital factor for the pretraining per-
formance of large language models (LLMs) (Xie
et al., 2024c; Shen et al., 2023). Therefore, we
propose a third strategy that follows the pretraining
data’s mixture rate 3 to construct the continuous
pre-training, aiming to reduce the distribution gap
and stabilize the instruction-following ability of
the LLM during continual pretraining. Specifically,
for the OpenLlama model, we first randomly col-
lect 5 billion tokens following the Llama mixture
rate (Touvron et al., 2023a). To incorporate a medi-
cal corpus, we replace the sampled CC and C4 data
(which constitute 82% of the 5 billion tokens) with
the KenLM-selected tokens using strategy II. We
conduct the sampling and replacement operation at
each training epoch.

4.2 Setup
Baselines We consider the following baselines
for comparison: (1) Continually pretraining the
OpenLLaMa-3B LLM with 50 billion collected med-
ical tokens for one epoch ("the full token base-
line"). (2) Re-warming and re-decaying the learn-
ing rate of (1) based on the paper by (Ibrahim et al.,
2024). (3) Replay baselines: Following (Chen
et al., 2023b), we randomly sample 5B (10%), 10B
(20%), and 15B (30%) tokens from OpenLLaMa-
3B’s pretraining dataset (the RefinedWeb dataset)
and combine them with 50B medical tokens. Pre-
training is stopped once a total of 50B tokens have
been processed. This baseline does not consider
the data mixture rate. (4) Parameter protection
baselines: Following (Harun and Kanan, 2023), we
freeze the top 5 layers’ weights during the continual
pretraining process of (1) to protect the high-level

3When we do not know the data rate, we can use recent
advanced methods to approximately infer it (Hayase et al.,
2024).

instruction-following ability and mitigate the sta-
bility gap. We also consider another baseline that
freezes the bottom 5 layers’ weights for compari-
son.

Evaluation benchmark We follow (Chen et al.,
2023b) and consider the tasks of PubMedQA,
MedMCQA, and MedQA-4-Option. For the MMLU
benchmark (Hendrycks et al., 2020a), we consider
the average performance of its medical topics, in-
cluding medical genetics, anatomy, clinical knowl-
edge, professional medicine, and college medicine.
We use the lm-evaluation-harness framework (Gao
et al., 2023) to measure the baselines’ zero-shot per-
formance. The training details are in Appendix A.

4.3 Results
From Table 1, we find that (1) our strategies im-
prove the base model’s average medical task
performance significantly (4.5%) with only 20
billion training tokens. This demonstrates the ef-
fectiveness and efficiency of our strategies for con-
tinual pretraining. (2) Other techniques can also
improve continual pretraining performance, except
for the baseline ’Freezing bottom 5 layers,’ which
hinders the learning of medical domain knowledge.
We further verify our strategies’ effectiveness in
continual law pretraining. We put the results in
Appendix F.

4.4 Factor Analysis
Impact of learning rate and training subset size
To analyze the impact of training factors such as
learning rate and training subset size and find the
optimal hyperparameter configuration for our ex-
periments, we conducted a series of experiments,
with details provided in Appendix G. Our findings
show that a learning rate that is too high leads to
significant drops in generalization ability, while a
rate too low hampers the acquisition of new domain
knowledge. Additionally, using a subset that is too
large (e.g., 10 billion tokens) introduces a stability
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Figure 4: (a) reports the average medical performance among 5 runs with its deviation during the medical continual
pretraining process. The baseline is pretraining the OpenLlama-3B model with 50b medical tokens with one epoch.
’5b Random’ is pretraining the LLM with 5b tokens randomly selected from the 50b medical tokens for 5 epochs.
’5b KenLM selected’ is pretraining the LLM with the KenLM selected 5b tokens of the 50b medical tokens for 5
epochs. (b) shows the average medical performance across 5 epochs. (c) illustrates the average commonsense task
performance across 5 epochs.

gap and slows performance. Conversely, a smaller
subset yields better initial performance but leads to
rapid overfitting in later epochs.

4.5 Ablation study of our three strategies

In Figure 4(a), we observe that the first strategy
leads to faster performance recovery. The LLM
achieves peak performance at the fourth epoch, con-
sistent with previous studies (Xue et al., 2024).

For the second strategy, we continually pre-
trained the OpenLlama-3B model on the subset of
samples with the lowest domain perplexity over
5 epochs. From Figure 4 (a), we observe that the
KenLM-selected subset with the lowest PPL indeed
enables the LLM to recover performance faster and
stronger in the medical domain. To verify the posi-
tive correlation between domain perplexity (PPL)
and whether a passage belongs to the domain, we
sort all RefinedWeb passages by the domain PPL,
from lowest to highest. We then sample one pas-
sage every 50 entries and ask the LLaMa-3-72B
model to determine if the passage is medical. The
probability of a ’Yes’ response steadily decreases
from 0.95 to 0.004 as perplexity increases from 3.2
to 11.5. Further analysis of the pretraining subset
size is presented in Sec. 4.4.

For the third strategy, based on whether this
sampling and replacement operation is performed
once or at each epoch, we propose two methods:
(1) Rate-Fixed-Data-Fixed, where the medical to-
kens are sampled once to create a fixed training
corpus used for all epochs, and (2) Rate-Fixed-
Data-Dynamic, where the operation is repeated
independently at each epoch, producing a dynami-
cally changing training corpus.

From Figure 4(b), we observe that the second
method achieves higher peak performance by strik-
ing a better balance between replaying pretrain-
ing data and learning domain-specific knowledge.
Furthermore, our strategies improve the average
performance on general commonsense tasks while
mitigating overfitting when training on a small med-
ical corpus, as demonstrated in Figure 4(c). They
also reduce medical perplexity and the rate of rel-
ative weight updates, as discussed in Appendix D.
Additionally, we evaluate the effectiveness of our
three strategies in a general continual pretraining
setting, detailed in Appendix E.

5 Llama-3-Physician: Deploying our
strategies into the Llama-3 Model

Continual pretraining We continually pre-train
the Llama3-8B-base model using our three strate-
gies with medical continual pretraining tokens con-
structed in Sec. 4 for 4 epochs. The training details
are in Appendix H. After the continual pretraining
process, we find that the average medical perfor-
mance drops slightly, likely due to the unknown
data mixture rate of Llama-3. However, the medi-
cal perplexity is significantly lower than that of the
Llama3-8B-base model.

Task-specific fine-tuning To evaluate LLMs’
performance in the supervised learning setting, we
follow (Chen et al., 2023b) and individually con-
duct task-specific finetuning on both the base mod-
els and the continually pre-trained models using
each benchmark’s training set. We also consider
8 task-finetuned baselines. We put task details in
Appendix C and training and baseline details in
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Model MMLU-Medical PubMedQA MedMCQA MedQA-4-Option Avg

Llama-2-7B (Touvron et al., 2023b) 56.3 61.8 54.4 49.6 53.2
BioMistral SLERP 7B (Labrak et al., 2024) 60.5 75.2 44.2 47.3 56.8
MEDITRON-7B (Chen et al., 2023b) 55.6 74.4 59.2 52.0 57.5
Llama3-Aloe-8B-Alpha (Gururajan et al., 2024) 72.7 77.2 59.0 62.3 67.8

Llama-2-70B 74.7 78.0 62.7 61.3 67.2
MEDITRON-70B 73.6 80.0 65.1 65.4 69.0

GPT-3.5-turbo-finetuned (Shi et al., 2024) 70.5 71.4 61.8 63.3 66.7

Llama-3-8B base 47.2 52.1 38.2 35.5 43.3
Llama-3-8B Fine-tuned (ours) 82.3 75.8 60.0 61.1 69.8
Llama-3-8B Full (ours) 82.0 78.6 61.8 60.8 70.8
Llama-3-Physician-8B (ours) 85.0 79.1 81.4 61.5 76.7

Table 2: Accuracy comparison across various medical benchmarks in the task-specific fine-tuning setting. Llama-
3-8B Fine-tuned is directly fine-tuned on these tasks. For ’Llama-3-8B Full’, we first continually pre-trained the
Llama with 50B medical tokens and then finetuned the pretrained model on these tasks. For Llama-3-Physician-8B,
we first continually pre-trained the Llama with with our strategies and then finetuned the pretrained model.

Appendix H.

Results We use the lm-eval-harness (Gao et al.,
2023) to evaluate our model (Llama-3-Physician)
and related baselines’ performance. No demon-
stration examples are used. From Table 2, we
find that our model outperforms other baselines
with similar model scales on the four evalua-
tion benchmarks by a clear margin. This is due
to the following reasons: (1) we use the newest
and strongest open-source Llama-3 model rather
than older Llama-2 or Mistral-7B, (2) we continu-
ally pre-train the base model with KenLM-selected
medical tokens (compared to ’Llama-3-8B fine-
tuned and Llama-3-8B instruct’), and (3) our strate-
gies further boost the gains from continual pretrain-
ing markedly (compared to ’Llama-3-8B Full’).
Our 7B model also outperforms many larger
LLMs (70B) on average.

5.1 Deploying our strategies into the
instruction tuning process

For the instruction-tuning setting, we follow (Xie
et al., 2024b) and tunes the continual pretrained
Llama-3-8B model with a combination of medical
tasks. (See details in Appendixes H and I.

Observations We observe a similar performance
phenomenon in the instruction tuning process in
Figure 9. Our strategies can mitigate the initial
performance drop and achieve higher peak per-
formance during the instruction tuning process,
thereby extending the application of our strategies.

Baselines For instruction-tuning, we consider
instruction-tuned models like Mistral-7B-
instruct (Jiang et al., 2023), Zephyr-7B-β-

instruct (Tunstall et al., 2023), PMC-Llama-7B
(Wu et al., 2023), BioMedGPT-LM 7B (Zhang
et al., 2023a), Medalpaca-13B (Han et al.,
2023), AlpaCare-13B (Zhang et al., 2023b), Me-
LLaMA-13B chat(Xie et al., 2024b), Llama-3-8B
instruct (Meta, 2024), and JSL-Med-Sft-Llama-
3-8B (johnsnowlabs, 2024). These LLMs are
tuned with general instructions or medical task
instructions.

Results From Table 6, we find that our model out-
performs other open-source baselines in question-
answering tasks by a clear margin. Additionally,
our model’s average performance is close to that
of GPT-4. Furthermore, in Table 5, we observe
that our model significantly outperforms GPT-4
in medical classification, relation extraction, natu-
ral language inference, and summarization tasks.
This demonstrates the significant advantage of our
model in processing diverse medical tasks.

6 Conclusion

Our paper explores the behavior of LLMs when
continually pretraining them on a new domain’s
corpus and observes the stability gap, a phe-
nomenon marked by a significant initial perfor-
mance drop followed by a slow recovery. We ex-
plain it from the view of plasticity and stability
gradients and then propose three strategies that ef-
fectively improve the LLM’s domain performance
and reduce computational costs by reducing the sta-
bility gap. Furthermore, we deploy our strategies
on the newest Llama-3-8B model, which achieves
the strongest performance among open-source base-
lines of similar model scales and outperforms the
closed-source GPT-3.5 model.
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Limitations and Potential impacts Ideally,
knowing the pretraining data mixture could maxi-
mize the outcome of our method, but most strong
open-source LLMs didn’t provide their training
data mixture. Our Llama-3-8B experiment shows
we can still improve significantly in this scenario.
Due to limitations in computing resources, we plan
to verify our conclusions and strategies on larger
LLMs in the future. Our strategies are designed to
address the machine learning problem of the stabil-
ity gap, and we do not see any potential risks. The
datasets and base models used in this paper will be
open-sourced.
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A The Details of pretraining

Models Download and Training Hyperparame-
ters The models OpenLLaMa-3B, TinyLLaMa-1B,
and Pythia-410m are downloaded from their of-
ficial websites. For the baselines, we follow
the setups described in their respective official
papers. The pretraining code is based on the
transformers library. Below are the key details
for training:

• Context size: Predict the next token with a
context size of 2048.

• Hardware: Training is executed using 192
V100 GPUs.

• Optimizer: We use the AdamW optimizer with
the following parameters:

– β1 = 0.9, β2 = 0.95

– Weight decay = 0.01
– Learning rate = 3e-4
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• Learning Rate Scheduler: We employ a co-
sine learning rate scheduler with a 0.1 warmup
ratio to gradually adapt to training complexity.

• Precision: We use bf16 precision for compu-
tational efficiency.

• Gradient Accumulation: Set to 4 steps, with
each training batch containing about 340 mil-
lion tokens.

• Epoch: For OpenLLaMa-3B and
TinyLLaMa-1B, we continually pre-train
them with the constructed 50 billion medical
tokens constructed in Section 4 for one epoch.
For Pythia-410m, we continually pretrain it
with the construct 100 billion new constructed
corpus for one epoch.

• Efficient Inference: We support
FlashAttention-2 (Dao, 2023) for more
efficient inference and long-context decoding.

When deploying these strategies in the continual
pretraining process, we use the same learning rate
schedule as used in the pretraining phase.

How to Construct Our Pretraining Corpus?

• Medical Continual Pretraining Corpus: We
begin by training a small model (e.g., KenLM,
n = 3) on the wiki_medical_terms corpus.
This model is then used to evaluate the per-
plexity of text samples in the Refined-Web
dataset. We select the 50B tokens with the
lowest perplexity, resulting in a medical cor-
pus.

• Note that the wiki-medical-terms dataset,
containing 6,000 terms and descriptions,
serves as a reference for perplexity calcula-
tions, but it is not the source of the 50B to-
kens.

• Legal Continual Pretraining Corpus: The
construction process is similar to the med-
ical corpus, but instead of using the
wiki_medical_terms dataset, we use the
Caselaw Access Project dataset, which is
downloaded from Hugging Face.

• General Continual Pretraining Corpus: For
this, we randomly sample 100 billion tokens
from the 2021-2022 subset of the RefinedWeb
dataset. We consider this subset as reliable

because the Pythia-410m LLM is pretrained
on the Pile dataset, which contains only data
before 2021. Pretraining the Pythia-410m
model on this new corpus can be viewed as
pretraining on new, unseen data.

The reason for choosing KenLM: Both KenLM
and FastText (n-gram models) are easy to train and
provide fast inference on large corpora. In contrast,
other sorting partition methods, such as calculating
the entropy of an LLM, require significant GPU
resources and are more challenging to deploy for
both customers and academic researchers.

B More observation and analysis

For continual law pretraining, we use the same pro-
cedure to collect domain corpus and the same opti-
mization setup to train the LLM. For its evaluation,
we consider three QA tasks: MMLU-International-
Law, MMLU-Professional-Law, and Contract-QA
from LegalBench (Guha et al., 2023). We report the
average performance in Figure 5(a), which shows
a similar v-shape performance curve. Continual
pretraining on another large corpus is an important
approach to boost the pretrained LLM’s general
task performance (Jiang et al., 2024; Gupta et al.,
2023). We call it the general continual pretrain-
ing setting. We further find that it also exists a
similar performance phenomenon. Specifically, we
continually pre-train the Pythia-410m model (Bi-
derman et al., 2023b) (initially pre-trained on the
Pile (Gao et al., 2020) dataset) on the RefinedWeb
dataset (Penedo et al., 2023) to boost its general
ability. We measure its general ability using the av-
erage performance across 10 common-sense tasks
and report the average performance of every 10 bil-
lion tokens. Training details are in Appendix A and
task details are in Appendix C. From Figure 5(b),
we observe that the LLM’s general task perfor-
mance first drops significantly and then gradually
rises.

Based on our observations, the initial drop fol-
lowed by a rise in target task performance is a
general phenomenon in the continual pretraining
of LLMs of various sizes.

C Task and Baseline Information

For the medical evaluation, we follow (Chen et al.,
2023b) and mainly consider the following four
tasks:

MedMCQA (Pal et al., 2022) is a large-scale
and comprehensive dataset for multichoice (four-
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Figure 5: (a) shows the OpenLLaMa’s average legal task performance during law continual pretraining. (b) shows
the Pythia model’s average common-sense task performance when we continually pre-train it on the new Refined-
Web datasets.

option) medical question answering. It is derived
from real-world medical entrance exam questions
(Indian AIIMS and NEET-PG) and consists of over
194,000 high-quality medical questions. These
questions cover 2,400 healthcare topics and 21 med-
ical subjects, exhibiting a wide range of topical
diversity. The average token length is 12.77.

MedQA (Jin et al., 2021a)is a multichoice
question-answering dataset collected from the pro-
fessional medical board exam, the United States
Medical License Exams (USMLE). It comprises
12,723 questions sourced from a comprehensive
collection of 18 English medical textbooks that
have been extensively utilized by medical students
and USMLE candidates. Questions in MedQA
cover a wide range of topics in clinical medicine,
necessitating responses with professional expertise
and complex multi-hop reasoning across multiple
pieces of evidence. The average question and op-
tion length is 116.6 and 3.5, respectively.

MMLU (Hendrycks et al., 2020b) is a com-
prehensive multi-task language understanding test
dataset that encompasses 57 tasks across various
domains such as mathematics, history, computer
science, law, etc. In our experiments, we specif-
ically focus on a subset of medical reasoning-
related tasks including clinical knowledge, col-
lege medicine, medical genetics, and professional
medicine.

PubMedQA (Jin et al., 2019) is a biomedi-
cal question and answering dataset derived from
PubMed abstracts. It contains 1k expert anno-
tated multi-choice question-and-answer samples
based on 211.3k PubMed articles. The task of
PubMedQA is to provide answers to research ques-
tions with yes/no/maybe responses based on the

corresponding abstracts. The average question and
context length is 14.4 and 238.9, respectively.

HOC (Baker et al., 2016) is a classification task
to decide the Hallmarks of Cancer (HOC) taxon-
omy of the article based on its abstract. The input is
an abstract text. There are 10 topics you will need
to decide whether the article is related to. Topics:
sustaining proliferative signaling, evading growth
suppressors, resisting cell death, enabling replica-
tive immortality, inducing angiogenesis, activating
invasion and metastasis, genomic instability and
mutation, tumor promoting inflammation, and cel-
lular energetics, and avoiding immune destruction.

DDI 2023 (Segura-Bedmar et al., 2013)
is a task to predict the relationship be-
tween the given head entity labeled as
@DRUG1andtailentitylabeledas@DRUG2
within a given sentence, this relation which must be
in (‘mechanism’, ‘effect’, ‘advice’, ‘int’, ’none’).
mechanism: this type is used to annotate drug-drug
interactions that are described by their pharma-
cokinetic mechanism. effect: this type is used
to annotate drug-drug interactions describing an
effect or a pharmacodynamic mechanism. advice:
this type is used when a recommendation or advice
regarding a drug interaction is given. int: this type
is used when a drug-drug interaction appears in the
text without providing any additional information.
none: there are no drug-drug interactions.

BioNLI (Bastan et al., 2022) is a task to classify
the relationship between the given medical premise
and hypothesis into one of the following labels:
entailment, contradiction, or neutral. This dataset
contains abstracts from biomedical literature and
mechanistic premises generated with nine different
strategies.
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MIMIC-CXR (Johnson et al., 2019) is a genera-
tion task that derives the impression from findings
in the radiology report.

The dataset statistics are in Table 3
For the evaluation of general task ability, we

consider the following 10 commonsense tasks:
ARC-Challenge and ARC-Easy ARC (Clark

et al., 2018) is a multiple-choice question-
answering dataset, containing questions from sci-
ence exams from grade 3 to grade 9. The dataset
is split into two partitions: Easy and Challenge,
where the latter partition contains the more diffi-
cult questions that require reasoning. Most of the
questions have 4 answer choices.

BoolQ (Clark et al., 2019) is a question-
answering dataset for yes/no questions containing
15942 examples. These questions are naturally oc-
curring —they are generated in unprompted and
unconstrained settings. Each example is a triplet
of (question, passage, answer), with the title of the
page as optional additional context. The text-pair
classification setup is similar to existing natural
language inference tasks.

COPA (Roemmele et al., 2011) consists of 1000
questions, split equally into development and test
sets of 500 questions each. Each question is com-
posed of a premise and two alternatives, where the
task is to select the alternative that more plausibly
has a causal relation with the premise.

HellaSWAG (Zellers et al., 2019) is a dataset
for studying grounded commonsense inference. It
consists of 70k multiple choice questions about
grounded situations: each question comes from one
of two domains – activitynet or wikihow – with four
answer choices about what might happen next in
the scene. The correct answer is the (real) sentence
for the next event; the three incorrect answers are
adversarially generated and human-verified, so as
to fool machines but not humans.

OpenBookQA (Mihaylov et al., 2018) is a new
kind of question-answering dataset modeled after
open-book exams for assessing human understand-
ing of a subject. It consists of 5,957 multiple-
choice elementary-level science questions (4,957
train, 500 dev, 500 test), which probe the under-
standing of a small “book” of 1,326 core science
facts and the application of these facts to novel
situations.

PIQA (Bisk et al., 2020) dataset introduces the
task of physical commonsense reasoning and a cor-
responding benchmark dataset Physical Interaction:

Question Answering or PIQA. Physical common-
sense knowledge is a major challenge on the road
to true AI-completeness, including robots that inter-
act with the world and understand natural language.
PIQA focuses on everyday situations with a prefer-
ence for atypical solutions.

Race (Lai et al., 2017) is a large-scale reading
comprehension dataset with more than 28,000 pas-
sages and nearly 100,000 questions. The dataset
is collected from English examinations in China,
which are designed for middle school and high
school students. The dataset can serve as the train-
ing and test sets for machine comprehension.

SciQ (Welbl et al., 2017) dataset contains
13,679 crowdsourced science exam questions about
Physics, Chemistry and Biology, among others.
The questions are in multiple-choice format with
4 answer options each. For the majority of the
questions, an additional paragraph with supporting
evidence for the correct answer is provided.

WinoGrande (Sakaguchi et al., 2021) is a new
collection of 44k problems, inspired by the Wino-
grad Schema Challenge (Levesque, Davis, and
Morgenstern 2011), but adjusted to improve the
scale and robustness against the dataset-specific
bias. Formulated as a fill-in-a-blank task with bi-
nary options, the goal is to choose the right option
for a given sentence which requires commonsense
reasoning.

We use the lm-eval-harness (Gao et al., 2023) to
evaluate the LLM on these tasks’ test set and report
the zero-shot performance.

D The Perplexity and relative parameter
update rate of the LLM using our
strategies

From Figure 6(a), we observe that the LLM us-
ing our strategies gradually decreases its average
medical perplexity, indicating that the LLM is ac-
quiring rich medical knowledge. Its average med-
ical perplexity at the fourth epoch is even lower
than that of the OpenLLaMa-3B model, which has
been continually pre-trained with 50 billion med-
ical tokens. From Figure 6(b), we also find that
the ratio between the average relative parameter
updates of the bottom 5 layers and the top 5 layers
of the OpenLLaMa-3B model using our strategies
is closer to 1. This suggests that the plasticity gra-
dient and the stability gradient are more balanced
when employing our strategies.
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Table 3: Dataset statistics

Dataset # Train # Test Source

MedMCQA (Pal et al., 2022) 182,822 4183 Exam
MedQA (Jin et al., 2021a) 10178 1273 Exam
MMLU (Hendrycks et al., 2020b) - 163 Exam
PubMedQA (Jin et al., 2019) 211,269 500 Literature
HOC (Baker et al., 2016) 1108 315 Literature
DDI 2023 (Segura-Bedmar et al., 2013) 1108 315 Literature
BioNLI (Bastan et al., 2022) 5544 6308 Literature
MIMIC-CXR (Bastan et al., 2022) 122,014 1606 Literature

Figure 6: (a) reports the average medical perplexity of the OpenLLaMa-3B using our strategies. ’5b KenLM selected’
means the LLM using our strategies I and II. ’5b rate-fixed-data-dynamic’ means the LLM using our three strategies.
’Baseline’ is the average medical perplexity of the OpenLLaMa-3B model that has been continually pre-trained with
50 billion medical tokens. (b) shows the rate between the bottom 5 layers’ average relative parameter and the top 5
layers’ average relative parameter update of the OpenLLaMa-3B using our strategies. ’Baseline’ is the rate of the
OpenLLaMa-3B model during the continual pretraining with 50 billion medical tokens.

E Deploying our strategies into the
general continual pretraining setting

Continually pretraining one LLM on another large
corpus is an approach to boost its general ability
(Gupta et al., 2023). We consider the scenario of
continually pretraining the Pythia-410m model on
the RefinedWeb dataset. The Pythia-410m model
has been pre-trained on the Pile dataset. In this
context, we use the average performance of 10
commonsense and reading comprehension tasks,
as detailed in Appendix C, to measure the LLM’s
general task performance. To test the effective-
ness of strategy I in the general continual pretrain-
ing setting, we conduct multi-epoch experiments
with different training subset sizes. The tokens in
each training subset are randomly sampled from
the RefinedWeb dataset and the computational con-
sumption of each experiment can not be beyond
the compute budget (100 billion tokens). From
Figure 7, we find that strategy I indeed helps the
Pythia-410m model to mitigate the stability gap

and achieve better peak performance. We also find
the best performance among our experiments is
achieved when pretraining the LLM with 11 billion
tokens for 7 epochs. However, we can not find a
good data filter for the second strategy. We have
tried to train a KenLM on WikiText as the data fil-
ter for measuring the sample’s ability in improving
LLMs’ general ability. But it does not work. From
Figure 7, we find that strategies I and III can help
the LLM to reduce the stability gap and achieve
higher performance.

F Effectiveness of our strategies in the
legal domain

We consider strong baselines and report their legal
performance in Table 4.

G Impact of learning rate and training
subset size

Impact of the learning rate To analyze the in-
fluence of training factors like learning rate and
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Figure 7: We report the average performance of the 10 commonsense and reading compression task here. The
Model is Pythia-410m.

Figure 8: (a) reports the performance of TinyLlama-1.1B across multiple epochs. All these experiments use our
strategies with different pretraining learning rates. (b) reports the performance of OpenLlama-3B across multiple
epochs. All of the experiments in (a) and (b) use our strategies with different pretraining learning rates. (c) reports
the performance of OpenLlama-3B across multiple epochs with different training subset sizes S. To collect the
pretraining corpus with different sizes, we first rank all samples of the 50 billion medical tokens based on the
perplexity calculated by the trained KenLM (see Sec. 3.1). Then, we select the first S billion tokens with the
lowest perplexity. For all experiments here, we report the average task performance of PubMedQA, MedMCQA,
MMLU-medical-genetics, and MedQA-4-Option tasks.
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Method Training tokens number MMLU-International-Law MMLU-Professional-Law Contract-QA Avg
OpenLLaMa-3B - 27.1 28.4 51.0 35.5
Full token baseline 50B 28.1 29.4 54.4 37.4
Re-warming and re-decaying 50B 28.5 27.3 55.1 37.0
Replay 10B data 50B 29.3 29.0 54.4 37.6
Our strategies 20B 31.0 31.2 57.0 39.7

Table 4: Zero-shot accuracy across various legal benchmarks.

training subset size, we conduct a series of ex-
periments. We put the details in Appendix xxx.
We find that too high learning rate leads to severe
general-ability drops and too low leads to poor
learning of new domain knowledge. Too large a
subset (e.g., 10 billion tokens) results in a stability
gap and slower performance, too small a subset
yields better initial performance, but it also causes
quick overfitting in later epochs. We further verify
the best hyperparameter setup for our experiments.
The pretraining learning rate is a crucial factor for
updating LLMs during continual pretraining. To
investigate its impact on our strategies, we con-
duct continual pretraining experiments with differ-
ent learning rates. From Figure 8(a) and (b), we
find that the optimal learning rate varies with the
LLM scale: a small LLM (e.g., TinyLlama-1.1B)
requires a higher learning rate (e.g., 3e-4), whereas
larger LLMs (e.g., OpenLlama-3B) benefit from
a lower learning rate (e.g., 3e-5). If the learning
rate is too low (e.g., 3e-5 for TinyLlama-1.1B), the
LLM cannot learn domain knowledge effectively
to boost performance. Conversely, if the learning
rate is too high (e.g., 3e-4 for OpenLlama-3B), per-
formance declines as the large learning rate leads to
a significant plasticity gradient, causing the LLM
to lose its general instruction-following ability for
completing tasks. Based on our analysis experi-
ments, we set the pretraining learning rate at 3e-4
for TinyLlama and 3e-5 for OpenLlama-3B’s ex-
periments.

Impact of the training subset size The size of
the training subset is another important factor in
our strategies. To determine the optimal training
subset size, we conduct pretraining experiments on
Llama-3b using various training subset sizes. From
Figure 8(c), we observe that a smaller domain-
related subset yields better initial performance and
mitigates the stability gap (e.g., 1 billion tokens),
but it also causes the performance to drop quickly
in later epochs due to overfitting. A larger subset
(e.g., 10 billion tokens) results in a stability gap and
slower performance recovery, as the LLM needs to

maintain a high plasticity gradient to learn a large
number of new samples. Based on our experiments,
we select a subset with 5 billion KenLM-selected
tokens, as it mitigates the stability gap, achieves
the best peak performance, and is computationally
effective.

H The Training Details of Deploying our
Strategies into the Llama-3 Model

pretraining details: The pretraining task is to pre-
dict the next token with a context size of 8192.
The training is executed using 16 H100 80GB
GPUs. We employ the AdamW optimizer with
β1 = 0.9, β2 = 0.95, a weight decay of 0.01, and a
learning rate of 3e-5. We use a cosine learning rate
scheduler with a 0.1 warmup ratio for gradual adap-
tation to training complexity and bf16 precision for
computational efficiency. Gradient accumulation
is set to 12 steps, and each training batch contains
about 340 million tokens. We also add support for
FlashAttention-2 (Dao, 2023) for more efficient
inference and long-context decoding.

Task-specific finetuning details: We employ
the AdamW optimizer with a weight decay of
0.01 and a learning rate of 3e-5. We use a co-
sine learning rate schedule with a 10% warmup
ratio, decaying the final learning rate to 10% of
the peak learning rate. We fine-tune the LLMs
for 3 epochs. Since MMLU (Hendrycks et al.,
2020a) does not have a training set, we fol-
low (Chen et al., 2023b) and primarily consider
the MMLU-Medical-Genetics benchmark, evaluat-
ing the model finetuned on MedMCQA.

For baselines in task-specific fine-tuning, we
consider three kinds of baselines here: (1) Task-
specific finetuning of the base model of open-
source LLMs. This includes models such as
Llama-2-70B, Llama-3-8B, and Llama3-Aloe-8B-
Alpha (Gururajan et al., 2024). We copy their re-
sults from their respective papers (Gururajan et al.,
2024) or the Meditron paper (Chen et al., 2023b) ex-
cept for the Llama-3-8B, which we finetuned using
the same process as our strategies. (2) Task-specific
finetuning of continually pre-trained LLMs like
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meditron (Chen et al., 2023b), BioMistral SLERP
7B (Labrak et al., 2024), Llama-3-8B-full. These
LLMs have been continually pre-trained with a
medical corpus. We copy their results from their pa-
pers, except for Llama-3-8B-full, for which we con-
tinually pre-train the Llama-3-8B with 50B medical
tokens collected in Section 3.1, and then finetune
it using the same process as our strategies. (3)
Closed-source LLMs. This includes models like
ChatGPT and GPT-4 (OpenAI, 2023). The results
are measured using the Microsoft Azure OpenAI
API service (Shi et al., 2024).

Instructions-tuning details:

Deployment In the instruction tuning process,
our first strategy is common as the medical instruc-
tion tuning process usually involves multi-epochs
training (Zhang et al., 2023a; Xie et al., 2024b; Han
et al., 2023). For the second strategy, we consider
Deita (Liu et al., 2024), a simple automatic instruc-
tion data selector, to select high-quality medical
instruction data. This selector uses the LLM to
give quality scores for instructions and considers
the diversity of instruction data by sampling data
from different clustering. For the last strategy, we
consider high-quality general instruction datasets
like Airoboros-3.2 (Durbin, 2024) to mitigate the
forgetting in general instruction following ability.

We consider the combination of the question-
answering training set of MedMCQA (Pal et al.,
2022), MedQA (Jin et al., 2021a), PubMedQA (Jin
et al., 2019), classification task HOC (Baker et al.,
2016), relation extract task DDI2013 (Segura-
Bedmar et al., 2013), inference task BioNLI (Bas-
tan et al., 2022), and summarization task MIMIC-
CXR (Johnson et al., 2019) tasks . To avoid po-
tential data contamination, for each test sample of
MedQA (Jin et al., 2021a), PubMedQA (Jin et al.,
2019), and MedMCQA (Pal et al., 2022) tasks,
we delete the training samples that contain its op-
tion. The specific dataset details are in Appendix C.
For the training samples of theMedQA (Jin et al.,
2021a),PubMedQA (Jin et al., 2019), and MedM-
CQA (Pal et al., 2022) tasks, we use the instruc-
tion template from the Meditron paper (Chen et al.,
2023b). For the other datasets’ training samples,
we use their original instructions.

We employ the AdamW optimizer with a weight
decay of 0.01 and a learning rate of 3e-5. We
use a cosine learning rate schedule with a 10%
warmup ratio, decaying the final learning rate to
10% of the peak learning rate. We fine-tune the

LLMs for 3 epochs. The global batch size is 96
and max sequence length is 1024. Unlike the above
task-specific fine-tuning, we only tune one LLM
here and use the instruction-tuned LLM to test all
benchmarks.

For the baselines’ results, we download the base-
lines’ official models/deploy their APIs and then
test their task performance using lm-eval-harnesses
and Me-Llama’s evaluation frameworks. If the pa-
per does not release its model, we copy the results
from the original paper (e.g., Me-Llama).

I Details Analysis of the Instruction
Tuning Process
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Task type Classification Relation extraction Natural Language Inference Summarization

Datasets HOC DDI-2013 BioNLI MIMIC-CXR

Mistral-7B-instruct (Jiang et al., 2023) 35.8 14.1 16.7 12.5
Zephyr-7B-instruct-β (Tunstall et al., 2023) 26.1 19.4 19.9 10.5
PMC-Llama-7B (Wu et al., 2023) 18.4 14.7 15.9 13.9
Medalpaca-13B (Han et al., 2023) 24.6 5.8 16.4 1.0
AlpaCare-13B (Zhang et al., 2023b) 26.7 11.0 17.0 13.4
BioMedGPT-LM 7B (Zhang et al., 2023a) 23.4 15.5 17.9 6.2
Me-Llama-13B (Xie et al., 2024b) 33.5 21.4 19.5 40.0
JSL-Med-Sft-Llama-3-8B (johnsnowlabs, 2024) 25.6 19.7 16.6 13.8
Llama-3-8B instruct 31.0 15.1 18.8 10.3

GPT-3.5-turbo-1106 54.5 21.6 31.7 13.5
GPT-4 (OpenAI, 2023) 60.2 29.2 57.8 15.2

Llama-3-physician-8B instruct (ours) 78.9 33.6 76.2 37.7

Table 5: Performance comparison for general medical tasks in the instruction-tuning setting. For BioNLI, DDI 2023,
and HOC tasks, we report macro-F1. For MIMIC-CXR summarization tasks, we report Rouge-L as the result.

Figure 9: We consider the ’full instruction data’ experiment as fine-tuning the model with all instruction data
for 3 epochs. For the ’n% data’ experiments, we first uniformly sampled the highest quality instructions from
each instruction dataset based on scores provided by the Deita data selector. We then mixed the sampled data
with the general instructions from the Airoboros-3.2 dataset. The total training tokens are equal to n% of the full
instruction data. We set n to 25, 50, and 75 here. (a) shows the experiments’ average medical question-answering
task performance during instruction tuning. (b) illustrates the experiments’ performance for other medical tasks. For
BioNLI, DDI 2023, and HOC tasks, we report macro-F1 as the score. For MIMIC-CXR summarization tasks, we
report Rouge-L as the score.

Model MMLU-Medical PubMedQA MedMCQA MedQA-4-Option Avg

Mistral-7B-instruct (Jiang et al., 2023) 55.8 17.8 40.2 41.1 37.5
Zephyr-7B-instruct-β (Tunstall et al., 2023) 63.3 46.0 43.0 48.5 48.7
PMC-Llama-7B (Wu et al., 2023) 59.7 59.2 57.6 49.2 53.6
Medalpaca-13B (Han et al., 2023) 55.2 50.4 21.2 20.2 36.7
AlpaCare-13B (Zhang et al., 2023b) 60.2 53.8 38.5 30.4 45.7
BioMedGPT-LM 7B (Zhang et al., 2023a) 52.0 58.6 34.9 39.3 46.2
Me-Llama-13B (Xie et al., 2024b) - 70.0 44.9 42.7 -
Llama-3-8B instruct 82.0 74.6 57.1 60.3 68.5
JSL-Med-Sft-Llama-3-8B (johnsnowlabs, 2024) 83.0 75.4 57.5 59.7 68.9

GPT-3.5-turbo-1106 74.0 72.6 34.9 39.3 60.6
GPT-4 (OpenAI, 2023) 85.5 69.2 69.5 83.9 77.0

Llama-3-physician-8B instruct (ours) 80.0 76.0 80.2 60.3 74.1

Table 6: Accuracy comparison for question-answering tasks in the instruction-tuning setting.
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