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Abstract

Large Language Model (LLM)-based agents
exhibit significant potential across various do-
mains, operating as interactive systems that pro-
cess environmental observations to generate ex-
ecutable actions for target tasks. The effective-
ness of these agents is significantly influenced
by their memory mechanism, which records
historical experiences as sequences of action-
observation pairs. We categorize memory into
two types: cross-trial memory, accumulated
across multiple attempts, and in-trial memory
(working memory), accumulated within a single
attempt. While considerable research has opti-
mized performance through cross-trial memory,
the enhancement of agent performance through
improved working memory utilization remains
underexplored. Instead, existing approaches of-
ten involve directly inputting entire historical
action-observation pairs into LLMs, leading to
redundancy in long-horizon tasks. Inspired by
human problem-solving strategies, this paper
introduces HIAGENT, a framework that lever-
ages subgoals as memory chunks to manage
the working memory of LLM-based agents hi-
erarchically. Specifically, HIAGENT prompts
LLMs to formulate subgoals before generat-
ing executable actions and enables LLMs to
decide proactively to replace previous subgoals
with summarized observations, retaining only
the action-observation pairs relevant to the cur-
rent subgoal. Experimental results across five
long-horizon tasks demonstrate that HIAGENT
achieves a twofold increase in success rate and
reduces the average number of steps required
by 3.8. Additionally, our analysis shows that
HIAGENT consistently improves performance
across various steps, highlighting its robustness
and generalizability.

1 Introduction

Owing to the development of powerful reasoning
capabilities of Large Language Models (LLMs)

*Corresponding Author (pluo.lhi@gmail.com).

Figure 1: Top right: A commonly adopted paradigm
STANDARD for LLM-based agents includes: i) prompts
LLMs to generate one action; ii) executes the generated
action and then append the obtained observation to the
LLM’s context (working memory); and iii) generates the
next action. Bottom: Instead of incorporating all histor-
ical action-observation pairs into the working memory,
HIAGENT leverage subgoals as memory chunks, with
a summarized observation as the observation for each
memory chunk. HIAGENT achieves an average success
rate improvement of twofold (42 vs. 21) across five long-
horizon tasks.

in recent years (OpenAI, 2022, 2023; Meta AI,
2024; Touvron et al., 2023; Jiang et al., 2023),
LLM-based agents have demonstrated significant
potential in various applications (Xie et al., 2023;
Wang et al., 2024; Xi et al., 2023), such as soft-
ware development (Hong et al., 2023; Bairi et al.,
2024), robotic planning (Yao et al., 2022b; Puig
et al., 2018; Singh et al., 2023; Huang et al., 2022a),
simulating human behavior (Park et al., 2023), etc.
Typically, an LLM-based agent refers to an interac-
tive system that processes environmental observa-
tions, maintains context across multiple rounds of
dialogue, and outputs executable actions tailored
to completing a given task. Memory is one of the
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critical components of LLM-based agents, involv-
ing how agents store and utilize past experiences.
When handling a specific task, an agent’s memory
can be divided into cross-trial and in-trial mem-
ory (also as known as working memory). Cross-
trial memory typically consists of the historical
trajectory information accumulated across multi-
ple attempts at the current task. In contrast, in-
trial memory pertains to the information relevant
to the current trial. While many papers have ex-
plored leveraging cross-trial memory to optimize
agent performance (Shinn et al., 2024; Zhao et al.,
2024; Guo et al., 2023), few have investigated ways
to better utilize working memory. Existing LLM-
based agent literature primarily employs the STAN-
DARD strategy illustrated in Figure 1, where all
action-observation pairs in working memory are
directly incorporated into the context when prompt-
ing LLMs (Liu et al., 2023c; Ma et al., 2024; Yao
et al., 2022b). Although this approach transmits
the historical information to the LLM as compre-
hensively as possible, it encounters issues in long-
horizon agent tasks. Such tasks typically require
the agent to perform numerous actions to complete
the task, resulting in an extensive working memory.
This lengthy working memory creates a redundant
context, hindering LLMs from maintaining coher-
ent strategies and making accurate predictions over
extended periods.

Drawing on principles of cognitive sci-
ence (Newell et al., 1972; Anderson, 2013), hu-
mans typically decompose a complex problem into
multiple subproblems, addressing each individually.
Each subproblem is treated as a memory “chunk,”
thereby reducing the cognitive load on working
memory (Miller, 1956). By focusing on the results
of completed subproblems rather than their detailed
execution, humans effectively manage cognitive
resources and improve their efficiency in solving
complex, long-horizon tasks. Inspired by human
cognition and problem-solving strategies, we pro-
pose a sophisticated hierarchical working mem-
ory management framework HIAGENT tailored
for long-horizon agent tasks. The core idea of HI-
AGENT is to trigger LLMs to generate subgoals,
with each subgoal serving as a chunk of the work-
ing memory. Specifically, as shown in Figure 2, we
first prompt the LLM to generate a subgoal, then
create actions to achieve the subgoal and store the
corresponding action-observation pairs in a mem-
ory chunk. Once the subgoal is completed, we sum-
marize the memory chunk and append the subgoal-

observation pair to the working memory. In a word,
HIAGENT triggers LLMs to proactively decide to
replace previous subgoals with summarized obser-
vations while retaining only the action-observation
pairs relevant to the current subgoal. To provide
more flexible working memory management, we
also introduce a trajectory retrieval module, which
can retrieve the detailed trajectory information of
specific past subgoals when necessary.

To validate the effectiveness and efficiency of
HIAGENT, we conduct experiments on five long-
horizon agent tasks from AgentBoard (Ma et al.,
2024). The experimental results show that the suc-
cess rate of HIAGENT is twice that of the STAN-
DARD strategy, and it exceeds the STANDARD strat-
egy by 23.94% in progress rate. Additionally, HI-
AGENT is more efficient than STANDARD strategy,
reducing the average number of steps to complete
tasks by 3.8, the context length by 35.02%, and
the run time by 19.42%. Furthermore, to demon-
strate that redundant context impairs the perfor-
mance of LLM-based agents in long-horizon tasks,
we compare HIAGENT to a method that generates
subgoals without disregarding the detailed trajec-
tory information of past subgoals. Experimental
results show that HIAGENT improves the success
rate by 20% while reducing both runtime and the
number of steps. By analyzing model performance
across varying step counts, we find that HIAGENT

not only consistently outperform STANDARD on
progress rate but also show a higher likelihood
of generating executable actions as the number of
steps increased.

2 Preliminary

2.1 Large Language Model based Agent

Large Language Model (LLM) based agents are
intelligent autonomous systems designed to per-
form complex tasks. These tasks can be formal-
ized as a partially observable Markov decision
process (POMDP), characterized by the tuple
(S,O,A, T,R), where: S denotes the state space;
O represents the observation space; A signifies the
action space; T : S × A → S embodies the tran-
sition function; R : S × A → R encapsulates the
reward function; An LLM-based agent operates as
a policy π(at|I, ot, at−1, ot−1, . . . , a0, o0), which,
given the historical action-observation pairs and
instructions I (encompassing in-context examples,
environmental descriptions, etc.), generates an ex-
ecutable action at ∈ A. Each action precipitates
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Figure 2: An overview of the process of HIAGENT.

a new state st+1 ∈ S and a subsequent observa-
tion ot+1 ∈ O. This iterative interaction persists
until either task completion or the agent reaches a
predetermined maximum number of steps.

2.2 Working Memory
From the cognitive science perspective, working
memory enables individuals to hold and manip-
ulate information in real-time, facilitating com-
plex cognitive tasks such as reasoning, compre-
hension, and learning (Newell et al., 1972; An-
derson, 2013). In LLM-based agents, we define
working memory as the essential historical infor-
mation required by the LLM at a given moment
t to complete the current task. Effective working
memory management allows for better integrating
past experiences and current stimuli, leading to
more informed and accurate decisions. It can be
likened to the human process of attentional con-
trol and cognitive updating, which involves selec-
tively focusing on relevant information, filtering
out distractions, and continually updating the men-
tal workspace with new and pertinent data. The
STANDARD approach in Figure 1 stores all histor-
ical action-observation pairs in working memory,
i.e., mstd

t = (ot, at−1, ot−1, . . . , a0, o0). Although
this provides the LLM with comprehensive infor-
mation, it also introduces redundancy, complicating
the LLM’s processing.

3 Methodology
3.1 Overview
The core idea of HIAGENT is to employ subgoals
for hierarchical management of working mem-
ory. More specifically, as is shown in Figure 2,

the process of HIAGENT can be described as fol-
lows: (1) Before generating specific grounded ac-
tions, we prompt the LLM to first formulate a
subgoal gi. Each subgoal serves as a milestone
within the overall task. (2) Subsequently, the LLM
generates precise actions to accomplish this sub-
goal. (3) Upon the LLM’s determination that a
particular subgoal has been fulfilled, we synthe-
size the corresponding action-observation pairs into
a summarized observation si (§3.3). We then ob-
scure the action-observation pairs within the con-
text, substituting them with si. Consequently, the
working memory of HIAGENT can be formalized
as mt = (g0, s0, ...., gn−1, sn−1, gn, an0, on1, ...).
(4) Additionally, we have incorporated a re-
trieval module to facilitate more flexible mem-
ory management(§3.4). For instance, if the qth
subgoal is retrieved, we input the detailed
action-observation pairs into the context rather
than the summarized observation, i.e., m′

t =
(g0, s0, ...., gq, aq0, aq0, ..., gn, an0, on0, ...).

3.2 Subgoal-based Hierarchical Working
Memory

As is shown in Figure 2, at each time step, the
LLM can either generate the next action for the
current subgoal or generate a new subgoal when
it determines that the existing subgoal has been
accomplished. For the current subgoal, the agent
retains all action-observation pairs, providing a de-
tailed context for immediate decision-making. For
past subgoals, only a summarized version of the
observations is kept. This subgoal-based hierarchi-
cal management approach in HIAGENT is deeply
motivated by cognitive science principles, draw-
ing parallels with human cognition and problem-
solving strategies (Newell et al., 1972; Anderson,
2013). Employing subgoals to compartmentalize
action-observation pairs can be conceptualized as
a form of chunking methodology. In human cogni-
tion, chunking allows individuals to group related
information into meaningful units, thereby over-
coming working memory limitations (Miller, 1956).
Similarly, HIAGENT utilizes subgoals as cognitive
chunks, encapsulating related actions and observa-
tions. This chunking mechanism enables the system
to handle complex sequences of information more
effectively, reducing cognitive load and enhancing
overall performance. Furthermore, by generating
subgoals before specific actions, the system mim-
ics the human tendency to break down larger ob-
jectives into more manageable components. This
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methodology enhances computational efficiency
and aligns with established theories of human in-
formation processing.

3.3 Observation Summarization

The process of observation summarization can be
formalized as si = S(gi, o0, a0, ..., ot), where S
can be implemented using either a Large Language
Model (LLM) or alternative text summarization
models. This function encapsulates the synthesis
of historical observations and actions, contextual-
ized by the current subgoal, to produce a concise
representation of the agent’s state. Furthermore, a
crucial component of the summarized observation
is assessing whether the current subgoal has been
achieved. This evaluation serves as a pivotal guide
for future subgoal generation, facilitating adaptive
and goal-oriented behavior in the agent’s decision-
making process. By doing so, the agent can main-
tain a condensed yet informative context, balancing
the need for historical information with efficiency.
The example prompt can be found in Appendix ??

3.4 Trajectory Retrieval

Despite the summarization, there may be instances
where detailed past trajectory information becomes
crucial for immediate decision-making. For in-
stance, when a past subgoal execution fails, we
need detailed trajectory information to determine
the cause of failure. Moreover, reviewing past suc-
cessful experiences can also increase the likelihood
of success when facing novel challenges and sce-
narios. To address this, we introduce a trajectory
retrieval module. When the LLM determines that
detailed information from a past subgoal is neces-
sary, it generates a retrieval function to recall the
complete action-observation pairs for that subgoal,
analogous to the way to generate actions. This se-
lective retrieval allows the agent to access detailed
historical data on demand without consistently car-
rying the full context.

4 Experiments

4.1 Experimental Setup

Evaluation Tasks We conduct the experiments
on five long-horizon agent tasks, which typically
require more than 20 steps: (i) Blocksworld re-
quires the model to arrange the blocks into a spec-
ified target configuration by executing a series of
moves; (ii) Gripper involves moving objects be-
tween different rooms; (iii) Tyreworld simulates

changing a car tire, including removing the flat tire,
replacing it with a spare, and installing the new
tire; (iv) Barman emulates a bartender’s tasks in
mixing cocktails, including combining various in-
gredients, shakers, and garnishing drinks; (v) Jeri-
cho (Hausknecht et al., 2020) is a suite of text-
based adventure game environments designed to
evaluate agents’ ability to navigate and interact
with fictional worlds. More details can be found in
Appendix A.

Evaluation Metrics We use multiple metrics to
evaluate both the effectiveness and efficiency of
LLM-based agents in solving long-horizon tasks:
(i) Progress Rate (Ma et al., 2024) evaluates the
advancement toward task completion. Specifically,
a task consists of multiple goal conditions, and
the progress rate is the proportion of goal condi-
tions fulfilled by the model out of the total number
of goal conditions. (ii) Success Rate measures the
percentage of successful task completions. The suc-
cess rate is 1 when the progress rate is 1. (iii) Av-
erage Steps counts the steps taken to complete the
task; (iv) Context Efficiency is defined as the mean
number of tokens in the in-trial context across all
steps required to complete a given task. (v) Run
Time evaluates the time required to complete tasks.

Baselines STANDARD prompting strategy is a
predominantly used method in current LLM-based
agent literature (Yao et al., 2022b; Ma et al., 2024;
Liu et al., 2023c). It operates by taking one action
followed by one observation, providing a compar-
ative baseline for evaluating the performance of
HIAGENT.

Implementation Details The implementation of
evaluation tasks is based on AgentBoard (Ma et al.,
2024). We set a maximum step limit of 30 for task
configuration and provide one in-context example
for each task. We employ GPT-4 (gpt-4-turbo)1

as the LLM backbone for our experiments, serv-
ing both as the agent policy and the observation
summarization model. We set the temperature hy-
perparameter for LLM inference to 0 and topp to
1. Detailed prompt examples are provided in the
Appendix B.

4.2 Main Results
As shown in Table 1, HIAGENT demonstrated sub-
stantial advancements over STANDARD. Overall, in
terms of effectiveness, it increased the success rate

1We utilized the model via OpenAI API service.
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Table 1: Performance of STANDARD and HIAGENT on 5 long-horizon agent tasks. We report on four metrics:
Success Rate (SR), Progress Rate (PR), Average Steps (Steps), and Context Efficiency (Context), Run Time
(Time). The symbol ↑ indicates that a higher value for the metric is preferable, while ↓ signifies that a lower value is
considered better. In the Overall section, the result is obtained by averaging the values of a certain metric across
various tasks.

SR ↑ PR ↑ Steps ↓ Context ↓ Time ↓
Blocksworld
STANDARD 30.00 35.00 25.00 100% 100%
HIAGENT 60.00 +30.00 80.00 +45.00 18.60 -6.40 67.46% -32.54% 63.47% -36.53%

Gripper
STANDARD 50.00 87.75 25.20 100% 100%
HIAGENT 50.00 +0.00 86.25 -1.50 24.80 -0.40 49.99% -50.01% 70.46% -29.54%

Tyreworld
STANDARD 10.00 39.28 28.40 100% 100%
HIAGENT 60.00 +50.00 75.83 +36.55 19.00 -9.4 73.58% -26.42% 77.58% -22.42%

Barman
STANDARD 10.00 17.50 26.85 100% 100%
HIAGENT 30.00 +20.00 40.83 +23.33 24.5 -2.35 67.02% -32.98% 95.54% -4.46%

Jericho
STANDARD 5.00 13.51 26.60 100% 100%
HIAGENT 10.00 +5.00 29.85 +16.34 26.15 -0.45 66.86% -33.14% 95.85% -4.15%

Overall
STANDARD 21.00 38.61 26.41 100% 100%
HIAGENT 42.00 +21.00 62.55 +23.94 22.61 -3.80 64.98% -35.02% 80.58% -19.42%

by 21% and the progress rate by 23.94%. Regard-
ing task execution efficiency, it reduced the average
number of steps to completion by 3.8, decreased the
number of context tokens consumed by 35%, and
reduced the run time by 19.42%. Furthermore, in
certain tasks (blocksworld, barman, jericho), HIA-
GENT even achieved more than double the progress
rate improvement while maintaining efficiency. In
tyreworld, the model not only achieved a 50% im-
provement in success rate but also reduced the aver-
age number of steps by 9.4. Although the progress
rate slightly decreased by 1.5% in the gripper task,
context token usage was reduced by over 50%.
We can draw several conclusions from previous
discussions:
(1) HIAGENT is more effective than STANDARD,
achieving huge improvements on both success rate
and progress rate.
(2) HIAGENT is also more efficient than STAN-
DARD, requiring fewer steps to complete tasks, uti-
lizing shorter context lengths, and achieving faster
runtime.

5 Analysis

To gain deeper insights into our approach, we ex-
plored the following research questions:
(1) Are all modules effective for HIAGENT?
(2) Is HIAGENT consistently superior to the base-
line at different steps?

(3) Is improvement of HIAGENT solely derived
from task decomposition?
(4) How effective are the frameworks in generating
executable actions?
(5) Are the observed performance improvements
in HIAGENT statistically significant compared to
STANDARD?

5.1 Answer 1: All Modules in HIAGENT are
Effective for HIAGENT

In this section, we conducted an ablation study to
explore whether Observation Summarization and
Trajectory Retrieval are effective.

Observation Summarization is effective. We
heuristically use the observation corresponding to
the last action as the summarized observation when
removing the Observation Summarization mod-
ule. As is shown in Table 2 (“w/o OS”), there is a
significant decline in performance across all met-
rics. Specifically, the success rate and progress rate
were significantly impacted, decreasing by 30%
and 7.6%, respectively. It indicates that the obser-
vation summarization module can comprehensively
aggregate the detailed information within a trajec-
tory, thereby aiding the reasoning of an LLM-based
agent.

Trajectory Retrieval is also crucial for perfor-
mance enhancement. We hide all the detailed
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trajectory information of previous subgoals at each
time step to verify the effectiveness of Trajectory
Retrieval. According to the results in Table 2 (“w/o
TR”), the success rate decreased by 10%, and the av-
erage steps increased by 1.2. This is because, while
trajectory retrieval lengthens the reasoning steps
of the LLM, it allows the agent to flexibly retrieve
past trajectories under certain subgoals, which is
more beneficial for identifying errors in previous
actions.

The combination of Observation Summariza-
tion and Trajectory Retrieval yields signifi-
cant improvement. We conducted an experiment
where both modules were removed to validate the
functionality and effectiveness of the combined Ob-
servation Summarization and Trajectory Retrieval
modules. As shown in Table 2 (“w/o OS & TR”),
there is a noticeable performance decline compared
to HIAGENT, with the success rate decreasing by
20%. This decline is also evident when compared
to the individual ablations of the Observation Sum-
marization and Trajectory Retrieval modules, high-
lighting a substantial reduction in progress rate in
their absence.

5.2 Answer 2: HIAGENT is consistently
superior to STANDARD at different steps

To conduct a more granular study of HIAGENT’s
performance, we present the progress rate at dif-
ferent step counts (in intervals of 5 steps) in Fig-
ure 3. The experimental results indicate that overall,
HIAGENT consistently achieves a higher progress
rate at each step than STANDARD (f). Addition-
ally, it is noteworthy that HIAGENT benefits more
from an increased number of steps, whereas STAN-
DARD does not. For example, in the blocksworld
task (a) and barman task (b), STANDARD shows
no progress rate increase between steps 15-25,
whereas HIAGENT exhibits continuous growth.
This further demonstrates HIAGENT’s advantage
in handling long-horizon agent tasks.

5.3 Answer 3: The improvement in HIAGENT
is not solely attributed to task
decomposition

Using LLMs to generate subgoals has been em-
ployed in numerous studies and has demonstrated
considerable performance advantages (Zhou et al.,
2022; Yin et al., 2023). Therefore, a pertinent ques-
tion arises: “Is the performance improvement at-
tributed to HIAGENT merely related to task de-

composition, rather than efficient working memory
management?” To address this question, we imple-
mented a new method that prompts the LLM to
generate a subgoal before generating executable ac-
tions, followed by generating actions to achieve this
subgoal. Unlike HIAGENT, this approach does not
obscure the detailed trajectory information of previ-
ous subgoals. The experimental results, detailed in
Table 3, indicate that although task decomposition
can lead to a performance improvement (30% in
success rate), the success rate is still 20% lower
than HIAGENT. Additionally, solely using task de-
composition introduces inefficiencies, increasing
runtime by 5.7% and context length by 12.8%. In
summary, HIAGENT is more efficient and effective
than task decomposition alone.

5.4 Answer 4: HIAGENT is effective in
generating executable actions even under
long steps

LLM-based agents sometimes generate actions that
cannot be executed, such as attempting to retrieve
objects from a closed container. This is typically
due to LLMs’ poor reasoning abilities. To inves-
tigate this, we calculated the proportion of exe-
cutable actions generated by the model at each
timestep, referred to as executability. As shown
in Figure 4, HIAGENT is more likely to generate
executable actions than STANDARD, further demon-
strating the effectiveness of HIAGENT. Addition-
ally, we observed that STANDARD is more prone to
generating non-executable actions when the steps
are longer (e.g., in the blocksworld, when the steps
exceed 20, executability drops below 10%). This
is because, as the working memory increases, the
ability of LLMs to generate executable actions de-
creases. In contrast, HIAGENT maintains over 80%
executability even with longer steps, indicating that
the robustness to long steps is a key factor in the
strong performance on long-horizon tasks.

5.5 Answer 5: The observed performance
improvements in HIAGENT are
statistically significant compared to
STANDARD

To validate the statistical significance of the im-
provements in both effectiveness and efficiency,
we selected the Progress Rate and Average Steps
metrics for analysis. We employed the Wilcoxon
signed-rank test (Woolson, 2005) for this purpose
due to its suitability for comparing paired samples.
This non-parametric test helps assess whether the
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Table 2: Ablation study of HIAGENT on tyreworld. “w/o OS” refers to removing the Observation Summarization
module introduced by Section 3.3. “w/o TR” refers to removing the Trajectory Retrieval module introduced by
Section 3.4. “w/o TR & OS” refers to removing both modules.

Model SR ↑ PR ↑ Steps ↓ Context ↓ Time ↓
HIAGENT 60.0 75.8 19.0 100.0% 100.0%

w/o OS 30.0 -30.0 68.2 -7.6 24.2 +5.2 110.8% +10.8% 122.5% +22.5%
w/o TR 50.0 -10.0 76.9 +1.1 21.2 +2.2 105.0% +5.0% 107.5% +7.5%
w/o OS & TR 30.0 -30.0 62.4 -13.4 26.2 +7.2 107.2% +7.2% 121.2% +21.2%

(a) Blocksworld (b) Gripper (c) Tyreworld

(d) Barman (e) Jericho (f) Overall

Figure 3: Progress rate at different steps.

STANDARD

HIAGENT

Figure 4: Executability of
actions at different steps.

observed differences are likely due to chance or
represent a genuine effect. The results of our anal-
ysis are as follows: (i) For the Progress Rate, the
test statistic is 144.0 with a p-value of 2.38×10−5,
indicating a statistically significant difference be-
tween HIAGENT and STANDARD; (ii) For the Aver-
age Steps, the test statistic is 112.5 with a p-value
of 0.0016, also demonstrating a statistically sig-
nificant difference. These results confirm that the
observed improvements in both effectiveness and
efficiency are not due to random variation, under-
scoring the superiority of HIAGENT.

6 Related Work

Large Language Model based-Agent. Large
Language Models (LLMs) have revolutionized the
field of language agents, endowing them with the
prowess to tackle intricate challenges through a log-
ical sequence of actions (Xie et al., 2023; Xi et al.,
2023; Wang et al., 2024). A series of works ex-
plored various applications of LLM-based agents,
such as code generation (Wang et al., 2023b; Lin
et al., 2018), web browsing (Yao et al., 2022a; Zhou

et al., 2023a; Pan et al., 2024; Li and Waldo, 2024),
robotics (Shridhar et al., 2020; Mu et al., 2024a,b),
tool use (Li et al., 2023b; Wu et al., 2024; Qin
et al., 2023), reasoning (Yang et al., 2024; Chen
et al., 2025), planning (Xie et al., 2024), conducting
research (Kang and Xiong, 2024), chip design and
more. In addition, a great deal of work has explored
the application of LLM-based agents in the field
of multi-agent systems (Hong et al., 2023; Zhang
et al., 2023a; Wu et al., 2023; Li et al., 2023a; Chen
et al., 2023).

This paper introduces a working memory man-
agement framework HIAGENT that can be univer-
sally applied to enhance the performance of other
agent frameworks. For example, ReAct (Yao et al.,
2022b) introduces a method where the LLM gen-
erates a chain of thought (Wei et al., 2022) before
generating actions, and the trajectory formed by the
triplet of “(thought, action, observation)” can be
managed using HIAGENT. Additionally, HIAGENT

has the potential to alleviate information manage-
ment challenges in multi-agent frameworks (Hong
et al., 2023).

32785



Table 3: Experimental results on tyreworld. “w. TD” refers to Task Decomposition, i.e., having the LLM generate
subgoals without concealing detailed trajectory information of previous subgoals.

Model SR ↑ PR ↑ Steps ↓ Context ↓ Time ↓
STANDARD 10.0 39.3 28.4 100% 100%
w. TD 40.0 +30.0 67.4 +28.1 22.8 -5.6 112.8% +12.8% 105.7% +5.7%
w. HIAGENT 60.0 +50.0 75.8 +36.5 19.0 -9.4 73.6% -26.4% 77.6% -22.4%

Planning. Planning is a cornerstone of human in-
telligence (Chen et al., 2024b, 2025), representing
a systematic approach to achieving goals through
a series of deliberate actions (Yao et al., 2024;
Zhang et al., 2023b; Song et al., 2023; Huang et al.,
2023, 2022b; Liu et al., 2023a; Hu et al., 2023b;
Ruan et al., 2023; Aghzal et al., 2023; Hu et al.,
2024). It involves breaking down complex tasks
into manageable sub-tasks, searching for potential
solutions, and achieving a desired goal. Least-to-
most (Zhou et al., 2022) and Plan-and-solve (Wang
et al., 2023a) propose decomposing a complex
question into a series of sub-questions. Lumos (Yin
et al., 2023) and XAgent (Team, 2023) introduce an
independent planning module for generating sub-
goals and use full context in the grounding module
to complete each subgoal.

HIAGENT distinguishes itself from the literature
by not only utilizing planning to enhance task per-
formance but also by using subgoals as memory
chunks to manage working memory hierarchically.
This approach brings context efficiency and sur-
passes methods that rely solely on planning, as
discussed in Section 5.3.

Memory. The memory module in LLM-based
agents is analogous to the human memory system,
which is responsible for encoding, storing, and re-
trieving information (Zhang et al., 2024). The mem-
ory modules are typically divided into long-term
memory and short-term memory. Long-term mem-
ory can usually be stored in an external database,
while short-term memory (also known as working
memory) is typically used directly as the context in-
put of LLMs. Most current research papers primar-
ily focus on managing long-term memory (Alonso
et al., 2024; Maharana et al., 2024; Chen et al.,
2024a; Xiao et al., 2024; Yuan et al., 2023; Wang
et al., 2023c; Majumder et al., 2023; Hu et al.,
2023a; Hao et al., 2024; Tu et al., 2023; Liang et al.,
2023; Kagaya et al., 2024). Pioneer works include
Memorybank (Zhong et al., 2024), with its global-
level summaries, has made significant strides in
distilling conversations into coherent narratives.

Other works, such as Think-in-memory (Liu et al.,
2023b) and the Retroformer (Yao et al., 2023), in-
corporated summary modules to manage long-term
memories. Unlike these works, our study investi-
gates how optimizing the management of working
memory can enhance agent performance. Another
line of research involves modifying the structure
of transformers to enable LLMs to process longer
contexts, thereby extending their working memory
capabilities (Zhou et al., 2023b; Chevalier et al.,
2023; Bertsch et al., 2024; Ruoss et al., 2023; Belt-
agy et al., 2020; An et al., 2023).

However, existing research has identified that
LLMs encounter attention loss issues with lengthy
texts (Liu et al., 2024). Consequently, we believe
that investigating more efficient management of
working memory remains a valuable endeavor.

7 Conclusion

This paper proposes HIAGENT, a flexible frame-
work that utilizes subgoals to manage the working
memory of LLM-based agents. Experimental re-
sults from five long-horizon agent tasks demon-
strate that HIAGENT outperforms the baseline
model across all tasks, with an overall success
rate more than double that of the baseline model.
Furthermore, HIAGENT is more efficient, accom-
plishing tasks with fewer steps, in less runtime,
and using shorter context. In the future, we hope
HIAGENT can inspire more creative ideas on ef-
fectively managing the working memory of LLM-
based agents.

Limitation

While HIAGENT reduces redundant context, it may
still face challenges in extremely long-horizon
tasks where memory constraints persist. Future
work could explore more advanced retrieval strate-
gies to further optimize memory efficiency. More-
over, our experiments primarily focus on bench-
mark tasks; extending the evaluation to more di-
verse real-world applications would provide deeper
insights into the generalizability of our method.
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A More Details on Evaluation Tasks

A.1 Blocksworld

Action List
1. pickup <block>: allows the arm to pick up a
block from the table if it is clear and the arm is
empty. After the pickup action, the arm will be
holding the block, and the block will no longer be
on the table or clear.
2. putdown <block>: allows the arm to put down
a block on the table if it is holding a block. After
the putdown action, the arm will be empty, and the
block will be on the table and clear.
3. stack <block> <block>: allows the arm to stack
a block on top of another block if the arm is
holding the top block and the bottom block is clear.
After the stack action, the arm will be empty, the
top block will be on top of the bottom block, and
the bottom block will no longer be clear.
4. unstack <block> <block>: allows the arm to
unstack a block from on top of another block if
the arm is empty and the top block is clear. After
the unstack action, the arm will be holding the top
block, the top block will no longer be on top of the
bottom block, and the bottom block will be clear.

Goal example
b1 is on b2., b2 is on b3.

Observation example
b1 is on the table. b2 is on the table. B3 is on the
table. Robot arm is empty. The b1 is clear. The b2
is clear. The b3 is clear.

Action example
pickup b2.

A.2 Gripper

Action List
1. move <room1> <room2>: This action allows
the robot to move from one room to another.The
action has a single precondition, which is that the
robot is currently in a room. The effect of this
action is to move the robot to another room and to
remove the fact that it is in the original room.
2. pick <obj> <room> <gripper>: This action
allows the robot to pick up an object using the
gripper. The action has three preconditions: (1) the
object is located in a room (2) the robot is currently
in the same room and (3) the gripper is free (i.e.,
not holding any object). The effect of this action is
to update the state of the world to show that the

robot is carrying the object using the gripper, the
object is no longer in the room, and the gripper is
no longer free.
3. drop <obj> <room> <gripper>: This action
allows the robot to drop an object that it is carrying.
The action has two preconditions: (1) the robot is
currently carrying the object using the gripper, and
(2) the robot is currently in a room. The effect of
this action is to update the state of the world to
show that the robot is no longer carrying the object
using the gripper, the object is now located in the
room, and the gripper is now free.

Goal example
ball1 is at roomb. , ball2 is at roomb. , ball3 is at
roomb. , ball4 is at room.

Observation example
Ball1 is a ball. Ball1 is carrying right. Ball2 is a
ball. Ball2 is at rooma. Ball3 is a ball. Ball3 is at
rooma. Ball4 is a ball. Ball4 is at rooma. Left is a
gripper. Left is free. Right is a gripper. Robby is at
rooma. Room rooma Room roomb.

Action example
Pick up ball1 at rooma with arm right.

A.3 Tyreworld
Action List
1. open <container>: The precondition for this
action is that the container is unlocked and closed.
The effect of this action is that the container is
open and not closed.
2. close <container>: The precondition for this
action is that the container is open. The effect of
this action is that the container is closed and not
open.
3. fetch <object> <container>: The precondition
for this action is that the object is inside the
container and the container is open. The effect of
this action is that the object is held by the agent
and not inside the container.
4. put-away <object> <container>: The precondi-
tion for this action is that the object is held by the
agent and the container is open. The effect of this
action is that the object is inside the container and
not held by the agent.
5. loosen <nut> <hub>: The precondition for this
action is that the agent has a wrench, the nut on
hub is tight, and the hub is on the ground. The
effect of this action is that the nut on hub is loose
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and not tight.
6. tighten <nut> <hub>: The precondition for this
action is that the agent has a wrench, the nut on
hub is loose, and the hub is on the ground. The
effect of this action is that the nut on hub is tight
and not loose.
7. jack-up <hub>: This action represents the
process of lifting a hub off the ground using a jack.
It requires the agent to have a jack and for the hub
to be on the ground. After performing this action,
the hub will no longer be on the ground and the
agent will no longer have the jack.
8. jack-down <hub>: This action represents the
process of lowering a hub back to the ground
from an elevated position using a jack. It requires
the agent to have the hub off the ground. After
performing this action, the hub will be back on the
ground and the agent will have the jack.
9. undo <nut> <hub>: This action undo the
fastening of a nut on a hub. The preconditions are
the hub is not on the ground (i.e., it has been jacked
up), the hub is fastened, the agent has a wrench
and the nut is loose. The effects are the agent has
the nut, the hub is unfastened, the hub is no longer
loose and the hub is not fastened anymore.
10. do-up <nut> <hub>: This action fasten a nut
on a hub. The preconditions are the agent has a
wrench, the hub is unfastened, the hub is not on the
ground (i.e., it has been jacked up) and the agent
has the nut to be fastened. The effects are the nut is
now loose on the hub, the hub is fastened, the hub
is no longer unfastened and the agent no longer
has the nut.
11. remove-wheel <wheel> <hub>: This action
removes a wheel from a hub. It can only be
performed if the hub is not on the ground, the
wheel is currently on the hub, and the hub is
unfastened. After the action is performed, the
agent will have the removed wheel and the hub
will be free, meaning that the wheel is no longer
on the hub.
12. put-on-wheel <wheel> <hub>: This action puts
a wheel onto a hub. It can only be performed if
the agent has the wheel, the hub is free, the hub is
unfastened, and the hub is not on the ground. After
the action is performed, the wheel will be on the
hub, the hub will no longer be free, and the agent
will no longer have the wheel.
13. inflate <wheel>: This action inflates a wheel
using a pump. It can only be performed if the
agent has a pump, the wheel is not inflated, and the
wheel is intact. After the action is performed, the

wheel will be inflated.

Goal example
w1 is in boot.

Observation example
Boot is closed. Boot is unlocked. Hub the-hub1 is
fastened. Hub the-hub1 is on the ground. Jack is
in boot. Pump is in boot. R1 is in boot. The nut
nuts1 on the hub the-hub1 is tight. Wheel r1 is
intact. Wheel r1 is not inflated. Wheel w1 is on
hub the-hub1. Wrench is in boot.

Action example
Open boot.

A.4 Barman
Action List
1. <hand> grasp <container>: Grasp a container
2. <hand> leave <container>: Leave a container on
the table
3. fill-shot <shot> <ingredient> <hand1> <hand2>
<dispenser>: Fill a shot glass with an ingredient
from dispenser
4. refill-shot <shot> <ingredient> <hand1>
<hand2> <dispenser>: Refill a shot glass with an
ingredient from dispenser
5. empty-shot <hand> <shot> <beverage>: Empty
a shot glass 6. clean-shot <shot> <beverage>
<hand1> <hand2>: Clean a shot glass
7. pour-shot-to-clean-shaker <shot> <ingredient>
<shaker> <hand1> <level1> <level2>: Pour an
ingredient from a shot glass to a clean shaker from
level1 to level2
8. pour-shot-to-used-shaker <shot> <ingredient>
<shaker> <hand1> <level1> <level2>: Pour an
ingredient from a shot glass to a used shaker from
level1 to level2
9. empty-shaker <hand> <shaker> <cocktail>
<level1> <level2>: Empty a shaker containing
cocktail from level1 to level2
10. clean-shaker <hand1> <hand2> <shaker>:
Clean a shaker 11. shake <cocktail> <ingredient1>
<ingredient2> <shaker> <hand1> <hand2>: Shake
a cocktail in a shaker
12. pour-shaker-to-shot <beverage> <shot> <hand>
<shaker> <level1> <level2>: Pour a beverage from
a shaker to a shot glass from level1 to level2

Goal example
shot1 contains cocktail1.
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Observation example
Cocktail1 part1 ingredient is ingredient1. Cocktail1
part2 ingredient is ingredient3. Cocktail2 part1
ingredient is ingredient2. Cocktail2 part2 ingre-
dient is ingredient3. Cocktail3 part1 ingredient
is ingredient1. Cocktail3 part2 ingredient is
ingredient2. Dispenser1 dispenses ingredient1.
Dispenser2 dispenses ingredient2. Dispenser3
dispenses ingredient3. Left hand is empty. Level
l0 is next to level l1. Level l1 is next to level l2.
Right hand is empty. Shaker1 is at empty level l0.
Shaker1 is at level l0. Shaker1 is clean. Shaker1
is empty. Shaker1 is on the table. Shot1 is clean.
Shot1 is empty. Shot1 is on the table. Shot2 is
clean. Shot2 is empty. Shot2 is on the table. Shot3
is clean. Shot3 is empty. Shot3 is on the table.
Shot4 is clean. Shot4 is empty. Shot4 is on the
table.

Action example
right grasp shot1.

A.5 Jericho
Action List
1. Inventory: check things you are carrying
2. Look: check your surroundings
3. Examine <place/obj>: check the details of
something
4. Take <obj>: pickup obj
5. Put down <obj>: leave a obj at your current
place.
6. Drop <obj>
7. Check valid actions: Check actions you can use
8. South: go south
9. North: go north
10. East: go east
11. West: go west
12. Up: go up
13. Down: go down
14. Check valid actions (Other available actions)

Goal example
You are the warrior Link that needs to save the
princess from the castle.

Observation example
You are at the path leading to the castle. The castle
is to your north. There is a barrel in front of you.

Action example

Examine barrel

B Prompt Examples

B.1 STANDARD

Environment Implementation

Your goal is to replace flat tyres with intact
tyres on the hubs. Remember to open boot
first to get tools you need. Intact tyres
should be inflated. The nuts should be tight
on the hubs. The flat tyres, wrench, jack,
and pump should be in the boot. The boot
should be closed.

There are 13 actions defined in this
domain:
open <container>: The precondition for this
action is that the container is unlocked and
closed. The effect of this action is that the
container is open and not closed.
close <container>: The precondition for
this action is that the container is open. The
effect of this action is that the container is
closed and not open.
fetch <object> <container>: The precon-
dition for this action is that the object is
inside the container and the container is
open. The effect of this action is that the
object is held by the agent and not inside
the container.
put-away <object> <container>: The
precondition for this action is that the
object is held by the agent and the container
is open. The effect of this action is that the
object is inside the container and not held
by the agent.
loosen <nut> <hub>: The precondition for
this action is that the agent has a wrench,
the nut on hub is tight, and the hub is on the
ground. The effect of this action is that the
nut on hub is loose and not tight.
tighten <nut> <hub>: The precondition for
this action is that the agent has a wrench,
the nut on hub is loose, and the hub is on
the ground. The effect of this action is that
the nut on hub is tight and not loose.
jack-up <hub>: This action represents the
process of lifting a hub off the ground using
a jack. It requires the agent to have a jack
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and for the hub to be on the ground. After
performing this action, the hub will no
longer be on the ground and the agent will
no longer have the jack.
jack-down <hub>: This action represents
the process of lowering a hub back to the
ground from an elevated position using a
jack. It requires the agent to have the hub
off the ground. After performing this action,
the hub will be back on the ground and the
agent will have the jack.
undo <nut> <hub>: This action undo
the fastening of a nut on a hub. The
preconditions are the hub is not on the
ground (i.e., it has been jacked up), the hub
is fastened, the agent has a wrench and the
nut is loose. The effects are the agent has
the nut, the hub is unfastened, the hub is
no longer loose and the hub is not fastened
anymore.
do-up <nut> <hub>: This action fasten a
nut on a hub. The preconditions are the
agent has a wrench, the hub is unfastened,
the hub is not on the ground (i.e., it has
been jacked up) and the agent has the nut to
be fastened. The effects are the nut is now
loose on the hub, the hub is fastened, the
hub is no longer unfastened and the agent
no longer has the nut.
remove-wheel <wheel> <hub>: This action
removes a wheel from a hub. It can only be
performed if the hub is not on the ground,
the wheel is currently on the hub, and
the hub is unfastened. After the action is
performed, the agent will have the removed
wheel and the hub will be free, meaning
that the wheel is no longer on the hub.
put-on-wheel <wheel> <hub>: This action
puts a wheel onto a hub. It can only be
performed if the agent has the wheel, the
hub is free, the hub is unfastened, and the
hub is not on the ground. After the action
is performed, the wheel will be on the hub,
the hub will no longer be free, and the agent
will no longer have the wheel.
inflate <wheel>: This action inflates a wheel
using a pump. It can only be performed
if the agent has a pump, the wheel is not
inflated, and the wheel is intact. After the ac-
tion is performed, the wheel will be inflated.

Here are examples:

The goal is to satisfy the following
conditions: w1 is in boot. (Note you need
to open boot first so that you can extract
tools from it.)

Observation: Boot is closed. Boot is
unlocked. Hub the-hub1 is fastened. Hub
the-hub1 is on the ground. Jack is in boot.
Pump is in boot. R1 is in boot. The nut
nuts1 on the hub the-hub1 is tight. Wheel
r1 is intact. Wheel r1 is not inflated. Wheel
w1 is on hub the-hub1. Wrench is in boot.

Action: check valid actions.
Observation: Valid actions are: Open boot.
Check valid actions. Look around.
Action: Open boot.
Observation: Boot is open.
Action: fetch wrench from boot
Observation: You have wrench.
Action: check valid actions
Observation: Valid actions are: Fetch pump
from boot., Fetch r1 from boot., Put-away
wrench in boot., Close boot., Fetch jack
from boot., Loosen the nut nuts1 on the hub
the-hub1., check valid actions
Action: Loosen the nut nuts1 on the hub
the-hub1.
Observation: The nut nuts1 on the hub
the-hub1 is loose.
Action: fetch jack from boot
Observation: You have jack.
Action: jack-up the hub the-hub1
Observation: Hub the-hub1 is not on the
ground.
Action: Undo the fastening of the nut nuts1
on the hub the-hub1.
Observation: Hub the-hub1 is unfastened.
Action: Remove-wheel w1 from the hub
the-hub1.
Observation: You have w1.
Action: Put-away w1 in boot
Observation: W1 is in boot. Goal is
completed.
You should perform actions to accomplish
the goal: The goal is to satisfy the following
conditions: Wheel r1 is inflated., r1 is on
the-hub1., w1 is in boot.
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You should use the following commands
for help when your action cannot be
understood: check valid actions
Observation: Boot is closed. Boot is
unlocked. Hub the-hub1 is fastened. Hub
the-hub1 is on the ground. Jack is in boot.
Pump is in boot. R1 is in boot. The nut
nuts1 on the hub the-hub1 is tight. W1 is
on the-hub1. Wheel r1 is intact. Wheel r1 is
not inflated. Wrench is in boot.
Action: Open boot.
Observation: Boot is open.
Action: jack-up the-hub1
Observation: The action is not valid and
therefore takes no effect. Please check valid
actions. Action: jack-up the hub the-hub1
Observation: The action is not valid and
therefore takes no effect. Please check valid
actions.
Action: Loosen the nut nuts1 on the hub
the-hub1.
Observation: The action is not valid and
therefore takes no effect. Please check valid
actions.
Action: Loosen the nut nuts1 on the hub
the-hub1.
Observation: The action is not valid and
therefore takes no effect. Please check valid
actions.
Action: Loosen the nut nuts1 on the hub
the-hub1.
Observation: The action is not valid and
therefore takes no effect. Please check valid
actions.
Action: Fetch wrench from boot.
Observation: You have wrench.

B.2 HIAGENT

Environment Implementation

Your goal is to replace flat tyres with intact
tyres on the hubs. Remember to open boot
first to get tools you need. Intact tyres
should be inflated. The nuts should be tight
on the hubs. The flat tyres, wrench, jack,
and pump should be in the boot. The boot
should be closed.

There are 13 actions defined in this

domain:
open <container>: The precondition for this
action is that the container is unlocked and
closed. The effect of this action is that the
container is open and not closed.
close <container>: The precondition for
this action is that the container is open. The
effect of this action is that the container is
closed and not open.
fetch <object> <container>: The precon-
dition for this action is that the object is
inside the container and the container is
open. The effect of this action is that the
object is held by the agent and not inside
the container.
put-away <object> <container>: The
precondition for this action is that the
object is held by the agent and the container
is open. The effect of this action is that the
object is inside the container and not held
by the agent.
loosen <nut> <hub>: The precondition for
this action is that the agent has a wrench,
the nut on hub is tight, and the hub is on the
ground. The effect of this action is that the
nut on hub is loose and not tight.
tighten <nut> <hub>: The precondition for
this action is that the agent has a wrench,
the nut on hub is loose, and the hub is on
the ground. The effect of this action is that
the nut on hub is tight and not loose.
jack-up <hub>: This action represents the
process of lifting a hub off the ground using
a jack. It requires the agent to have a jack
and for the hub to be on the ground. After
performing this action, the hub will no
longer be on the ground and the agent will
no longer have the jack.
jack-down <hub>: This action represents
the process of lowering a hub back to the
ground from an elevated position using a
jack. It requires the agent to have the hub
off the ground. After performing this action,
the hub will be back on the ground and the
agent will have the jack.
undo <nut> <hub>: This action undo
the fastening of a nut on a hub. The
preconditions are the hub is not on the
ground (i.e., it has been jacked up), the hub
is fastened, the agent has a wrench and the
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nut is loose. The effects are the agent has
the nut, the hub is unfastened, the hub is
no longer loose and the hub is not fastened
anymore.
do-up <nut> <hub>: This action fasten a
nut on a hub. The preconditions are the
agent has a wrench, the hub is unfastened,
the hub is not on the ground (i.e., it has
been jacked up) and the agent has the nut to
be fastened. The effects are the nut is now
loose on the hub, the hub is fastened, the
hub is no longer unfastened and the agent
no longer has the nut.
remove-wheel <wheel> <hub>: This action
removes a wheel from a hub. It can only be
performed if the hub is not on the ground,
the wheel is currently on the hub, and
the hub is unfastened. After the action is
performed, the agent will have the removed
wheel and the hub will be free, meaning
that the wheel is no longer on the hub.
put-on-wheel <wheel> <hub>: This action
puts a wheel onto a hub. It can only be
performed if the agent has the wheel, the
hub is free, the hub is unfastened, and the
hub is not on the ground. After the action
is performed, the wheel will be on the hub,
the hub will no longer be free, and the agent
will no longer have the wheel.
inflate <wheel>: This action inflates a wheel
using a pump. It can only be performed
if the agent has a pump, the wheel is not
inflated, and the wheel is intact. After the ac-
tion is performed, the wheel will be inflated.

Note: A subgoal is a milestone goal
that you need to complete in order to
achieve the final goal. When there is an
unfinished subgoal, you need to ground the
given subgoal to corresponding executable
actions for solving the given task in the
following format: "Action: action". When
there is no current subgoal or you believe
the previous subgoal has been completed
(based on past actions and observations),
you need to output the next subgoal to
be completed and its first action in the
following format: "Subgoal: subgoal
Action: action". You cannot output two
subgoals consecutively. Detailed trajectory

information (action-observation pair) of
previously satisfied subgoals will be hidden
for context efficiency. If you believe that the
detailed trajectory information of a particu-
lar subgoal is crucial for the current subgoal,
you can use Action: "retrieve(subgoal_id)"
to obtain the detailed trajectory information.

Here are examples:

The goal is to satisfy the following
conditions: w1 is in boot. (Note you need
to open boot first so that you can extract
tools from it.)

Observation: Boot is closed. Boot is
unlocked. Hub the-hub1 is fastened. Hub
the-hub1 is on the ground. Jack is in boot.
Pump is in boot. R1 is in boot. The nut
nuts1 on the hub the-hub1 is tight. Wheel
r1 is intact. Wheel r1 is not inflated. Wheel
w1 is on hub the-hub1. Wrench is in boot.

1 Subgoal: Open the boot to access
the tools.
Action: check valid actions.
Observation: Valid actions are: Open boot.
Check valid actions. Look around.
Action: Open boot.
Observation: Boot is open. Subgoal is met.

2 Subgoal: Fetch the wrench from
the boot.
Action: fetch wrench from boot
Observation: You have wrench. Subgoal is
met.

3 Subgoal: Loosen the nut on the
hub.
Action: Loosen the nut nuts2 on the hub
the-hub1.
Observation: The action is not valid.
Subgoal is not met.

4 Subgoal: Examine errors and try to
loosen the nut on the hub again.
Action: retrieve(3)
Observation: trajectory of Subgoal 3 is
retrieved.
Action: check valid actions
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Observation: Valid actions are: Fetch pump
from boot., Fetch r1 from boot., Put-away
wrench in boot., Close boot., Fetch jack
from boot., Loosen the nut nuts1 on the hub
the-hub1., check valid actions
Action: Loosen the nut nuts on the hub
the-hub1.
Observation: The nut nuts1 on the hub
the-hub1 is loose. Subgoal is met.

5 Subgoal: Fetch the jack from the
boot and jack up the hub. Action: fetch jack
from boot
Observation: You have jack.
Action: jack-up the hub the-hub1
Observation: Hub the-hub1 is not on the
ground. Subgoal is met.

6 Subgoal: Unfasten the nut nuts1
and remove wheel w1.
Action: Undo the fastening of the nut nuts1
on the hub the-hub1.
Observation: Hub the-hub1 is unfastened.
Action: Remove-wheel w1 from the hub
the-hub1.
Observation: You have w1. Subgoal is met.

7 Subgoal: Put away the wheel w1 in
the boot.
Action: Put-away w1 in boot
Observation: W1 is in boot. Goal is
completed. You should perform actions to
accomplish the goal: The goal is to satisfy
the following conditions: Wheel r1 is
inflated., r1 is on the-hub1., w1 is in boot.

You should use the following com-
mands for help when your action cannot be
understood: check valid actions

Observation: Boot is closed. Boot is
unlocked. Hub the-hub1 is fastened. Hub
the-hub1 is on the ground. Jack is in boot.
Pump is in boot. R1 is in boot. The nut
nuts1 on the hub the-hub1 is tight. W1 is
on the-hub1. Wheel r1 is intact. Wheel r1 is
not inflated. Wrench is in boot.

1 Subgoal: Open the boot to access
the tools.

Observation: Boot is open.

2 Subgoal: Fetch the wrench from
the boot.
Observation: You have wrench.

3 Subgoal: Loosen the nut on the
hub the-hub1.
Observation: The nut nuts1 on the hub
the-hub1 is loose.

4 Subgoal: Fetch the jack from the
boot and jack up the hub the-hub1.
Observation: You have jack and hub
the-hub1 is elevated. Subgoal is met.

5 Subgoal: Unfasten the nut nuts1
and remove wheel w1 from the hub
the-hub1.
Action: undo nuts1 on the-hub1
Observation: Hub the-hub1 is unfastened.
You have nuts1.
Action: Remove-wheel w1 from the-hub1
Observation: The-hub1 is free. You have
w1.

C More details on Observation
Summarization

C.1 Prompt Example

You are an advanced AI system tasked with summarizing and

analyzing a series of action-observation pairs (trajectories)

and determining whether a specific subgoal has been met.

Your goal is to create a summary that captures all essential

information, decisions, and outcomes from the given trajectories,

and indicate whether the subgoal has been met based on the

summarized observations.

If there are no valid actions taken, you need to analyze the

reason.

### Instructions:

1. Provide a summarized observation related to the subgoal in a

concise manner.

2. Determine whether the subgoal has been met.

3. Do not output anything except whether summary and subgoal

are met. Your output should be only one line. Do not output

things like ‘##Summary’, ‘##Summary and Analysis’.

{example}

##Trajectory

{formatted_trajectory}
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##Subgoal:

{subgoal}

###Output:

C.2 Comparison with Other Task Planning
Methods

To further validate the effectiveness of HIAGENT,
we conducted comprehensive comparisons with
other state-of-the-art efficient task planning meth-
ods, including Least-to-Most (Zhou et al., 2022)
and Tree-Planner (Hu et al., 2023b).

Comparison with Least-to-Most. As shown in
Table 2, we adapted the Least-to-Most approach
to agent scenarios as our Task Decomposition
baseline. The results demonstrate that HIAGENT

achieves a 20% higher success rate while maintain-
ing better context efficiency. This improvement can
be attributed to our hierarchical memory manage-
ment approach that enables more effective reason-
ing over long-horizon tasks.

Comparison with Tree-Planner. We also com-
pared HIAGENT with Tree-Planner, another effi-
cient task planning method, on the Tyreworld envi-
ronment. The results are shown in Table 4.

Table 4: Performance comparison between HIAGENT
and Tree-Planner on Tyreworld.

Method Success Rate Context Efficiency

HIAGENT 60.0% 100.0%
Tree-Planner 40.0% 94.7%

While Tree-Planner maintains relatively efficient
context usage (94.7%), it falls short of HIAGENT’s
performance on long-horizon tasks. This perfor-
mance gap can be attributed to our more effective
hierarchical memory management approach, which
enables better reasoning over extended action se-
quences.

These comprehensive comparisons with state-of-
the-art methods further validate the effectiveness
of our approach in handling complex task planning
scenarios.
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