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Abstract

Foundation models and their checkpoints have
significantly advanced deep learning, boosting
performance across various applications. How-
ever, fine-tuned models often struggle outside
their specific domains and exhibit considerable
redundancy. Recent studies suggest that com-
bining a pruned fine-tuned model with the orig-
inal pre-trained model can mitigate forgetting,
reduce interference when merging model pa-
rameters across tasks, and improve compres-
sion efficiency. In this context, developing an
effective pruning strategy for fine-tuned mod-
els is crucial. Leveraging the advantages of
the task vector mechanism, we preprocess fine-
tuned models by calculating the differences be-
tween them and the original model. Recog-
nizing that different task vector subspaces con-
tribute variably to model performance, we intro-
duce a novel method called Neural Parameter
Search (NPS) for slimming down fine-tuned
models. This method enhances pruning effi-
ciency by searching through neural parame-
ters of task vectors within low-rank subspaces.
Our method has three key applications: enhanc-
ing knowledge transfer through pairwise model
interpolation, facilitating effective knowledge
fusion via model merging, and enabling the
deployment of compressed models that retain
near-original performance while significantly
reducing storage costs. Extensive experiments
across vision, NLP, and multi-modal bench-
marks demonstrate the effectiveness and ro-
bustness of our approach, resulting in sub-
stantial performance gains. The code is pub-
licly available at: https://github.com/
duguodong7/NPS—-Pruning.

1 Introduction

In recent years, with the release of foundational
models and the proliferation of associated check-
points, the field of machine learning has under-
gone a paradigm shift. This shift has signifi-
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Figure 1: Knowledge transfer, fusion, and compression
are enhanced with the assistance of pre-trained model
parameters. The fine-tuned model is effectively repre-
sented as a combination of the pre-trained model and
pruned task vectors, leading to knowledge retention.

cantly enhanced the performance of downstream
applications. While fine-tuning pre-trained mod-
els (Wortsman et al., 2022; Choshen et al., 2022;
Liu et al., 2022a) has become common practice,
these models often struggle with generalization and
perform poorly outside their specific domains. Con-
sequently, improving knowledge transfer from pre-
trained to fine-tuned models has become a recent
research focus (Devlin et al., 2018). Consequently,
recent research has increasingly focused on improv-
ing knowledge transfer, fusion, and compression by
leveraging the parameters of the initial pre-trained
model. Model Tailor (Zhu et al., 2024) prunes fine-
tuned models and combines them with the original
model to reduce catastrophic forgetting. Addition-
ally, TALL-masks (Wang et al., 2024) compresses
checkpoints by localizing task information within
task vectors. All these research efforts on knowl-
edge transfer with available pre-trained parameters
depend on a crucial preprocessing step: pruning
the fine-tuned model task vectors (Ilharco et al.,
2023b), as shown in Figure 1.

Fine-tuned models often exhibit significant re-
dundancy in parameter modifications compared to
pre-trained models. Pruning these models can en-
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Figure 2: Performance of ViT-B/32 models on a specific
task (SUN397 dataset). Different subspaces of neural
parameters within the task vector contribute differently
to the performance of the fine-tuned model.

hance the efficiency of knowledge representation.
Pruning fine-tuned model sets offers three main
advantages: First, it reduces conflicts between fine-
tuned models and the pre-trained model during
knowledge transfer, thereby enhancing resilience to
catastrophic forgetting. Second, it minimizes inter-
ference among fine-tuned models during fusion, im-
proving multi-task generalization capabilities. Fi-
nally, pruning finetuned models can reduce storage
costs while maintaining multi-task performance.
However, despite extensive research on model prun-
ing in the context of compression (Liang et al.,
2021; Yu et al., 2023a; Xia et al., 2022), there is a
relative scarcity of studies focused specifically on
pruning fine-tuned models. To address this gap, we
propose a novel method called Neural Parameter
Search (NPS) and design an adapted approach to
apply pruned fine-tuned models in scenarios such
as knowledge transfer, fusion, and compression.
Specifically, we leverage the advantages of the task
vector mechanism and preprocess fine-tuned mod-
els by calculating the difference between them and
the original model. Recognizing that different task
vector subspaces contribute variably to model per-
formance, as shown in Figure 2, we search through
the neural parameters within low-rank subspaces
of task vectors. We partition the fine-tuned param-
eters into a set number of subspaces based on their
magnitude, use evolutionary algorithms to assign
new weights to different subspaces, and update
the weights based on the model’s performance on
calibration datasets. This process avoids the need
for gradient calculations, offering lightweight and
efficient advantages.

We validated the effectiveness of our method
across three key applications: knowledge trans-

fer, model fusion, and compression. First, we per-
formed interpolation between NPS-pruned mod-
els and the pre-trained model to mitigate forget-
ting, demonstrating superior performance on the
multi-modal benchmark with LLaVa (Zhu et al.,
2024) model compared to previous methods. Sec-
ond, we showed that weight averaging of multiple
NPS-compressed fine-tuned models enables effec-
tive model fusion. Our approach was evaluated on
NLP and vision tasks using models like TS5 (Raffel
et al., 2020), ViT (Dosovitskiy et al., 2020), and
LLaMa2 (Touvron et al., 2023), as well as for fus-
ing multiple PEFT adapters. Notably, it achieved a
4.3% performance gain with T5-base. Finally, for
deployment, our method allowed compressed mod-
els to retain near-original fine-tuned performance
while significantly reducing storage costs. Exten-
sive experiments demonstrated a 40% improvement
in compression efficiency on vision tasks.

Our contributions can be summarized in the

following four points:

* We reveal the importance of pruning fine-
tuned models and highlight the limitations of
previous methods.

* We propose Neural Parameter Search (NPS)
for slimming down fine-tuned models.

* Based on the pruned fine-tuned models, we
provide a simple and versatile method suitable
for multi-task model fusion, compression, and
robust knowledge transfer.

* Experimental results shown that our method
significantly improves performance in various
knowledge transfer scenarios.

2 Related Work

2.1 Knowledge Transfer, Fusion and
Compression

In the realms of knowledge transfer, model fusion
(Jiang et al., 2024; Fang et al., 2025), and com-
pression, foundational studies have driven signifi-
cant progress. (Wortsman et al., 2022) enhanced
zero-shot learning by fine-tuning pre-trained mod-
els with minimal data, while (Houlsby et al., 2019)
improved resource efficiency through parameter-
efficient transfer learning. (Chen et al., 2020) ad-
vanced model compression and fusion using con-
trastive learning in unsupervised settings, collec-
tively marking major strides in model efficiency
and robustness.

Recent years have seen the emergence of inno-
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vative methods for enhancing performance and ef-
ficiency across tasks when both pre-trained and
fine-tuned models are available. Fisher-weighted
averaging (Matena and Raffel, 2022) uses an
information-theoretic approach to assess parameter
importance, while RegMean (Jin et al., 2022) of-
fers a closed-form solution for merging parameters
through local linear regression. Task Arithmetic (Il-
harco et al., 2023a), PEM (Zhang et al., 2023a), and
TIES-Merging (Yadav et al., 2024) enhance model
fusion through parameter composition, thereby im-
proving model adaptability. Model Evolver (Du
et al., 2024c, 2023, 2024a) dynamically evolves
model parameters, while Model Tailor (Zhu et al.,
2024) mitigates catastrophic forgetting in multi-
modal tasks through model patching, decoration,
and post-training. Tall-masks (Wang et al., 2024)
offers efficient masking for model compression,
and MATS (Tam et al., 2024) employs a conju-
gate gradient method to match task parameter sub-
spaces.

In conclusion, our research focuses on leverag-
ing pre-trained model parameters, as this approach
provides better transfer performance and greater
efficiency at a lower cost.

2.2 Model Pruning

Model pruning can be broadly classified into
two main approaches. The first approach en-
compasses traditional model pruning techniques.
This includes structured pruning methods such
as SliceGPT (Ashkboos et al., 2024) and LLM-
pruner (Ma et al., 2023), as well as unstruc-
tured pruning techniques like SparseGPT (Fran-
tar and Alistarh, 2023), Wanda (Sun et al., 2023),
GRAIN (Yang et al., 2023), GBLM-Pruner (Das
et al., 2023), and OWL (Yin et al., 2023).

The second approach focuses on pruning fine-
tuned models given a pretrained model. For in-
stance, Model Grafting (Panigrahi et al., 2023) cre-
ates a mask to identify the most critical parameters
for a specific task by optimizing the target task loss.
TIES (Yadav et al., 2024) addresses interference is-
sues that arise after magnitude pruning. DARE (Yu
et al., 2023a) aligns task vector parameters with
the expected model output by randomly selecting
and rescales them. Model Tailor (Zhu et al., 2024)
produces a sparse mask based on salience and sen-
sitivity scores, while Talls Mask (Wang et al., 2024)
combines the merged model with an additional
mask to localize task information, effectively re-
ducing storage costs.

In this paper, we propose a novel pruning ap-
proach that is simple, efficient, and robust by
searching for weight coefficients within neural pa-
rameter subspaces.

3 Methodology
3.1 Problem Setting

Here, we consider knowledge transfer, fusion and
compression of a set of tasks {71, ..., T}, } and var-
ious pre-trained models like ViT (Dosovitskiy et al.,
2021), TS5 (Raffel et al., 2020), or Llama2 (Touvron
et al., 2023). To begin, each pre-trained model is
optimized on task-specific data, which can be per-
formed either by fine-tuning the entire model or
by using a parameter-efficient fine-tuning (PEFT)
method (Liu et al., 2022b; Hu et al., 2022). Dur-
ing this process, the trainable parameters § were
initialized with . (the pre-trained state) and sub-
sequently updated to ¢ (the fine-tuned state).

Recent research introduced the concept of task
vectors (Ilharco et al., 2023a), which has been ap-
plied in various knowledge transfer, fusion, and
compression tasks. For a specific task 7T, the task
vector 7 € R? is defined as the difference be-
tween the fine-tuned weights 6; and the pre-trained
weights fpre, i.e., T = 6 — Opre. This captures the
changes during the fine-tuning phase for each task-
specific model. Building on this idea, a pruned
fine-tuned model H}t can be obtained by first de-
riving the pruned task vector 7, as defined in the
equation below:

O = Opre + 7 (1)

3.2 Neural Parameter Search for Pruning

Given that different parameter subspaces of task
vectors contribute variably to fine-tuning perfor-
mance, we first decomposed the task vector 7 into
M independent parameter subspaces ¢,, by rank-
ing the parameters based on their magnitude and
then dividing them according to these ranks, sum-
marized as 7 = 2%21 ¢m- Next, to enable more
effective pruning, we reallocated weights for each
subspace to obtain a new task vector:

M
7= Wn*qm )
m=1

while * denotes scalar multiplication of a vector
element-wise.

Initially, all weight coefficients were initialized
to 1, after which we used an evolutionary algorithm
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Figure 3: The framework of Neural Parameter Search enhances the efficiency of pruning fine-tuned models. This is
achieved by searching and reweighting the neural parameters of task vectors within low-rank subspaces.

to search for a more optimal set of weight coeffi-
cients. The optimization process aims to find the
best set {wy, ..., w,}, seeking optimal validation
accuracy, and ultimately maximizing performance
on calibration data with the adjusted fine-tuned
model, as shown in Figure 3.

In most of our experiments, we employed Covari-
ance Matrix Adaptive Evolution Strategies (CMA-
ES) (Hansen and Ostermeier, 1996), a probabilistic,
population-based optimization algorithm. CMA-
ES dynamically adjusts the search distribution
through a covariance matrix, updating the mean
and covariance at each iteration to effectively ex-
ploit the structure of the search space for obtaining
optimal candidate solutions. When the evolution-
ary algorithm has approximately converged, we
combined the optimized weight coefficients with
the task vector and the pre-trained model to obtain
an adjusted model:

M
O = epre + Z Wm * gm

m=1

3)

Finally, we pruned the fine-tuned model based on
the magnitude of its adjusted parameters after the
search. We define the sparsity ratio as r, where
0 < r <1, and compute a mask m to select the
most important neural parameters. This mask is
derived using the following equation:

1, if 7y > sorted(7)[r x d]
Mg = .
0, otherwise

The final pruned fine-tuned model is then given by:

C))

éft = epre +moOT &)

while ® represents the Hadamard product.
This final model can subsequently be applied to
scenarios such as knowledge transfer, fusion, and
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Figure 4: Performance variations of different methods
with changes in sparsity ratio. Our NP S method exhibits
higher tolerance to varying levels of sparsity.

compression. To evaluate the pruning efficiency
of the NP S method, we applied it to a pre-trained
vision model, ViT-B/32, which was fine-tuned on
various tasks. We then assessed the results of differ-
ent pruning methods on the respective benchmarks
for each task. The reported results are the average
performance across eight fine-tuned models under
varying levels of pruning sparsity, as illustrated
in Figure 4. In comparison with baseline meth-
ods like TIES (Yadav et al., 2024) and DARE (Yu
et al., 2023a), our findings indicated that when the
pruning sparsity ratio exceeds 0.2, most methods
maintain performance comparable to the fine-tuned
models. However, as the sparsity ratio drops be-
low 0.2, accuracy tends to decline rapidly. Notably,
our NPS method demonstrates greater tolerance
to lower sparsity ratios, preserving the original
model’s accuracy even at a sparsity ratio of 0.04.

3.3 Applications

Building on the significant improvement in pruning
efficiency for fine-tuned models, we present three
application scenarios for our proposed NP S method
in the context of knowledge transfer, model fusion,
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and compression when pre-trained models and task-
specific data for fine-tuning are available.

Knowledge Transfer. Fine-tuning language
models on new, unseen data often leads to a de-
cline in performance on the original tasks. More-
over, previous research (Zhu et al., 2024) indicates
that fine-tuned models have low knowledge repre-
sentation efficiency, containing a large number of
redundant parameters that offer little benefit for
new tasks. Removing these redundant parame-
ters can minimize interference when integrating
with the pre-trained model. Therefore, combining
a pruned fine-tuned model with the original pre-
trained model can enhance its resistance to catas-
trophic forgetting during knowledge transfer. We
propose applying NP S to the parameters of the task
vector before integrating them into the pre-trained
model, as shown below:

O = Opre + A-mOT (6)

Here, A is a hyperparameter used to rescale the
neural parameters within the pruned task vector.

Knowledge Fusion. The knowledge fusion prob-
lem involves how to combine the finetuned model
sets {01, ..., 0,} to form a new model 6,,, without
the need to retrain using the initial training data for
each task, and ensuring that 6,,, can simultaneously
perform tasks {1,...,n}. The multi-task model
merging via task vectors is expressed as:

O = Ope+ . Ni-mi©n)/ > N (D

Here, \; is the coefficient for a specific pruned task
vector, which can be optimized using evolutionary
strategies to obtain an optimal set of {\1,..., A\, }
with the maximum validation accuracy for the final
merged model.

Knowledge Compression. Pruning fine-tuned
models is an effective strategy for compressing
checkpoints. By applying sparsity masks to
weights and storing only the masked values, we
can preserve full performance while greatly reduc-
ing storage.

In term of storage for {6;}1_;, we only need
to store the pre-trained model 0O, the task vec-
tors 7, and the binary masks m for each task. For
multi-task evaluation, fine-tuned models can be re-
constructed by adding only the important subsets
of task-specific vectors to the shared pretrained
parameterstpye:

éﬁl,.. . ,éﬁn = Hpre—i—[ml@ﬁ,... ,anTn] (8)

4 Experiment

4.1 Evaluation Settings

We expect that NPS will provide significant ben-
efits for developers in three main areas: First, in
experiments with multimodal large language mod-
els (MLLMs) using the LLaVA framework, our
approach preserved performance even at a spar-
sity level of 10%. This highlights its effectiveness
in mitigating catastrophic forgetting. Second, in
knowledge fusion, it consistently outperforms exist-
ing merging techniques across various modalities,
domains, and model sizes. Lastly, for knowledge
compression, it achieves superior accuracy and stor-
age efficiency compared to baselines on ViT-based
vision tasks. More information on implementation
details can be found in Appendix C.

4.2 Baseline Methods

Our baselines are categorized into three primary
areas: knowledge transfer for mitigating catas-
trophic forgetting, knowledge fusion, and compres-
sion. For knowledge transfer, we compare our
approach against Standard Fine-tuning, Model
Grafting (Panigrahi et al., 2023), Drop & Rescale
(DARE) (Yu et al., 2023a), and Model Tailor (Zhu
et al., 2024). In the domain of knowledge fusion,
we assess various methods such as Simple Av-
eraging (Wortsman et al., 2022), Fisher Merg-
ing (Matena and Raffel, 2022), RegMean (Jin
et al.,, 2023), Task Arithmetic (Ilharco et al.,
2023a), Ties-Merging (Yadav et al., 2024), PCB
Merging (Du et al., 2024b) and Consensus Merg-
ing (Wang et al., 2024). Notably, Task Arithmetic,
Ties-Merging, Consensus Merging, and our pro-
posed NPS are all based on task vectors, making
them training-free and lightweight. For knowledge
compression, we evaluate our method against sev-
eral model merging techniques and their combina-
tions with Talls Mask (Wang et al., 2024). Detailed
information on these baselines can be found in Ap-
pendix D.

4.3 Results on Knowledge Transfer

Following (Liu et al, 2023a), we conduct
knowledge transfer experiments using LLaVA-1.5
(Vicuna-7B). Both the projector and LLM pa-
rameters of the model are fine-tuned. The pre-
trained datasets include VQAv2 (Goyal et al.,
2017), GQA (Hudson and Manning, 2019),
Vizwiz (Gurari et al., 2018), SQA (Lu et al., 2022),
TextVQA (Singh et al., 2019), POPE (Li et al.,
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Table 1: Average performance and H-score on LLaVA-1.5 (Vicuna-7B) with a sparsity ratio r = 10%. “#Params"
refers to the number of parameters modified. The optimal and sub-optimal results are denoted by boldface and

underlining.
Method | #Params Pre-trained tasks Target task
ethe aAMS | vOAV2 GQA  VizWiz SQA TextVQA POPE MM-Bench MM-Bench-CN  Flickr30k  Avg  Hscore
Zero-shot | - | 7852 6197 500 70.17 5828 8597 64.78 58.51 18.62 4233 29.05
Fine-tune | 2.7B 68.61 49.01 2724 6386  40.03  79.73 59.02 50.17 77.1 56.42  63.40
DARE vz | 273M 7812 5925 489 6492 5717  84.86 64.77 57.47 25.6 60.12  36.64
Graftingcvio: | 273M 7448 5828 4316 6682 5256 8035 64.52 55.49 58.2 61.56  60.03
Model Tailorcviz: | 273M 7321 5249 4228 67.15  43.89 8288 63.40 56.15 75.4 61.87 66.94
NPS (ours) | 273M 743 5252 431 6612 4393 8323 64.52 57.51 76.2 62.38 67.54
Method | #P Pre-trained tasks Target task
etho AAMS | VQAV2 GQA  VizWiz SQA TextVQA POPE MM-Bench MM-Bench-CN  OKVQA  Avg Hscore
Zero-shot | - | 7852 6197 500 70.17 5828 8597  64.78 5851 | 014 | 27.94 33.09
Fine-tune | 2.7B 69.1 4861 3035 41.03 4213 7233 32.79 43.47 46.27 4734  46.87
DARE v | 273M 78.04 61.65 49.19 6758 5791  86.44 65.03 58.16 0.83 5831  1.64
Graftingicvi>: | 273M 7523 5842 4327 6726 5351 8529 62.16 54.42 30.8 5893 4125
Model Tailorjcvi: | 273M 7625 6039 4649 6951  54.88  85.44 63.32 54.21 38.1 60.95 47.71
NPS (ours) | 273M 76.81 6094 481 7132 5634 8723 64.77 57.5 38.4 62.38 48.38

2023b), MM-Bench (Liu et al., 2023b), and MM-
Bench-CN (Zhang et al., 2023b). We then fine-
tune LLaVA on Flickr30k (Young et al., 2014) and
OKVQA (Marino et al., 2019) tasks, which are not
included in the model’s pre-training datasets. The
performance of the fine-tuned model is evaluated
on these and other datasets.

For evaluation, we use both the arithmetic and
harmonic means (Zhu et al., 2024) of performance
across pre-trained and target tasks, referred to as
average performance and H-score. As shown in
Table 1, our NPS method effectively mitigates
catastrophic forgetting in MLLMs, outperforming
current fine-tuning and forgetting mitigation tech-
niques at a sparsity level of 10%. While further
fine-tuning to improve performance on new tasks
often deteriorates the model’s effectiveness on pre-
trained tasks, NP S successfully balances targeted
optimization with the preservation of pre-trained
performance. It achieves superior average metrics,
improving by 1.5% and 1.4%, respectively, demon-
strating its capability to enhance task-specific per-
formance while maintaining robustness.

4.4 Results on Knowledge Fusion

To empirically validate the effectiveness of NP S,
we conducted extensive experiments to compare
it with existing model merging techniques. Our
results highlight the advantages of our approach
across both cross-task and cross-domain perspec-
tives. Detailed information about the datasets used
is provided in Appendix E.

Merging NLP Models. In the NLP domain, we
follow the experimental setup outlined in (Yadav

et al., 2024). We use the T5-base and T5-large
models (Raffel et al., 2020), fine-tuning each on
seven diverse tasks, including question answer-
ing, paraphrase identification, sentence completion,
and coreference resolution. Table 2 demonstrates
that merging fully fine-tuned T5-base and T5-large
models using NPS results in an average perfor-
mance improvement of 2.1% for T5-base and 1.6%
for T5-large across the seven tasks.

Merging PEFT Model Adapters. Based on (Ya-
dav et al., 2024), we explore parameter merging for
efficient fine-tuning using the (IA)? method (Liu
et al., 2022b), a type of Parameter-Efficient Fine-
Tuning (PEFT) that extends base model activa-
tions with learned vectors. We use the T0-3B
model (Sanh et al., 2022) and fine-tune (IA)? on
training sets from eleven diverse datasets, includ-
ing tasks such as sentence completion and natural
language inference. For the (IA)? experiments, we
report median scores across all templates for each
dataset. As shown in Table 2, NP S improves aver-
age performance by 1.4% across 11 tasks compared
to the top baseline.

Merging LLMs. In our experiment, we com-
bined three specialized large language models built
on the Llama-2-7b architecture (Touvron et al.,
2023), each focusing on a different area: Chinese
language proficiency'!, mathematical reasoning (Yu
etal., 2023b)2, and code generation (Roziere et al.,

'nttps://huggingface.co/LinkSoul/
Chinese-Llama-2-"7b

https://huggingface.co/meta-math/
MetaMath-7B-V1.0
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Table 2: Comparison of different model merging methods across various fine-tuning configurations and modalities,
with average performance reported for different tasks. The optimal and sub-optimal results are denoted by boldface

and underlining.

Settings (—) 7 NLP Tasks 11 PEFT Tasks | 3 LLM Tasks 8 Vision Tasks 5 Emotion Domains
Method (|) | T5-Base T5-Large (IA)3 LLaMa2 | ViT-B/32 ViT-L/14 T5-Base RoBERTa-Base
Fine-tuned | 83.1 88.9 71.4 40.4 90.5 94.2 51.38 49.38
Multitask | 83.6 88.1 73.1 - 88.9 93.5 47.75 49.06
Averagingcvio) | 65.3 54.7 57.9 30.3 65.8 79.6 23.2 38.3
Fisher Mergingxeuirs2) | 68.3 68.7 62.2 - 68.3 82.2 26.1 38.1
RegMean ICLR23 72.7 79.8 58.0 - 71.8 83.7 34.2 38.4
Task Arithmeticicizos | 73.0 80.2 63.9 304 70.1 84.5 33.6 38.3
Ties-Mergingneues2s) | 73.6 80.3 66.8 342 73.6 86.0 34.5 39.7
Consensus TAjcviog | 73.1 80.2 65.8 335 73.5 85.8 339 39.2
Consensus TIEScvioy | 73.4 80.5 66.6 344 73.3 86.2 344 39.8
NPS (ours) | 75.7 (+2.1) 82.1 (+1.6) | 68.2 (+1.4) 35.3 (+0.9) | 76.5 (+3.0) 87.6 (+1.4) | 35.7 (+1.3) 40.9 (+0.9)
—@- Finetuned Zero-shot TA  —%— TIES  —— TALL Mask + TIES  —&— NPS-Pruning (ours)
1004 = - ———p=——= ,——'"—‘
24 —,a.’
R 90; 5 i
= 8 W
(9] ~ ”’
< 80 23] _-®
X 3 R .
€ S Pag
§ 70 n
22/
60 1
—_—l_ 55
2 3 4 5 6 7 8 2 3 4 5 6 7 8

Number of Tasks

Number of Tasks

Figure 5: Averaged normalized accuracy and storage cost versus the number of tasks on computer vision benchmarks.
Our proposed NPS method consistently preserves initial performance across various task combinations while

significantly compressing the fine-tuned checkpoints.

2023)3. We assessed the performance of each
model using specific benchmarks: CMMLU (Li
et al., 2023a) for Chinese, GSM8K (Cobbe et al.,
2021) for mathematics, and HumanEval (Chen
et al., 2021) for code generation. As indicated
in Table 2, our method NP S resulted in an average
performance improvement of 0.9%.

Merging Vision Models. For image classifica-
tion tasks, we adhered to the experimental setup
outlined by (Ilharco et al., 2022, 2023a). We em-
ployed two versions of the CLIP model (Radford
et al., 2021), specifically using ViT-B/32 and ViT-
L/14 as visual encoders. The visual encoders were
fine-tuned on eight tasks sourced from (Radford
et al., 2021), while the text encoder remained un-
changed. This approach covered a range of classifi-
cation domains, such as remote sensing, traffic clas-
sification, and satellite imagery recognition. Our
method achieved a 3.0% improvement over the top
baseline on ViT-B/32 and a 1.4% improvement on
ViT-L/14.

*https://huggingface.co/qualis2006/
llama-2-7b-int4-python-code-18k

Merging Emotion Domains. We carried out fur-
ther experiments to evaluate the effectiveness of
various methods in merging five domain-specific
emotion classification models. In line with the
methodology of RegMean (Jin et al., 2023), we
used the Roberta-base and T5-base models, along
with five preprocessed datasets from (Oberldander
and Klinger, 2018). Our analysis presents the av-
erage accuracy on in-domain datasets achieved by
different model merging techniques. Additionally,
we conducted experiments with multiple random
seeds and reported the average results across five
seeds. As detailed in Table 2, our approach sur-
passes the best baseline by 1.3% on Roberta-base
and 0.9% on T5-base.

4.5 Results on Knowledge Compression

We conducted experiments using eight different
ViT-B/32 models, each fine-tuned on distinct vision
tasks, and tested the performance and compression
efficiency across various numbers of tasks. For
each task quantity, five random combinations were
selected, and the average results were reported.
As shown in Figure 8, both TALL-Mask and NP S

32674


https://huggingface.co/qualis2006/llama-2-7b-int4-python-code-18k
https://huggingface.co/qualis2006/llama-2-7b-int4-python-code-18k

Searching Weights of Different Subspaces
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Figure 6: Searching for the weights of neural parameters
across different task vector subspaces.

maintain around 99% normalized accuracy across
all cases, with virtually no performance degrada-
tion as the number of tasks increases.

In terms of storage, our method significantly
reduces costs compared to storing individual fine-
tuned models, with the savings becoming more
pronounced as the number of tasks increases. The
TALL Mask + TIES method consistently consumes
a high amount of storage, even when the number
of tasks is small. In contrast, our approach re-
quires storage that increases gradually with the
number of tasks. While methods like Task Arith-
metic have lower storage demands, they suffer from
a noticeable drop in accuracy. Overall, our method
achieves an optimal balance on the Pareto front, ef-
fectively retaining performance while minimizing
total storage costs. More results about knowledge
compression are provided in supplemental materi-
als Appendix A.

5 Analysis

Search Visualization. To better understand the
workflow of our method, we visualized the prun-
ing process for a ViT-B/32 model fine-tuned on the
SVHN dataset, setting the sparsity ratio to 0.1. We
divided the task vector into five subspaces based
on their magnitude values and then continuously
updated the weights of these subspaces to explore
higher validation scores. It can be observed that
the weight values stabilize as the number of gen-
erations increases, as shown in Figure 6, and the
pruned model’s accuracy also gradually converges
to a stable value, as shown in Figure 7.

Time complexity. The total time required for the
overall NP S strategy is

7—‘total = Generations X (Tpruning + Tvalidate) (9)

Performance on SVHN dataset

97.41
X 097.2
>
)
g
597.0
v}
é’() ---- Finetuned model on val data
96.8 ---- Finetuned model on test data
—— NPS-Pruning on val data
—— NPS-Pruning on test data
96.6

0 10 20 30 40 50 60
Generations

Figure 7: Performance convergence of the pruned fine-
tuned model as the number of generations increases.

where generations represents the number of gen-
erations needed for searching, which is a pre-set
value and varies with different experiment settings.
The pruning time mainly depends on the number of
model parameters and the size of the model popu-
lation, while the validation time primarily depends
on the volume of inference data and the inference
speed. We have organized ablation study and re-
ported the number of generations and time required
in our experiments, as shown in Appendix B.

Advantages. Our method offers several notable
benefits, making it an efficient, flexible, and practi-
cal solution for various use cases.

* Gradient-Free Operation: NPS method op-
erates without gradient calculations, making
it lightweight and minimizing memory usage.

* Practicality and Ease of Implementation:
The method is straightforward to implement
and integrates easily into various applications.

* Broader Applicability and Stable Perfor-
mance: Unlike theoretical pruning methods,
our approach is more versatile and provides
consistent results across various applications.

6 Conclusions

This study highlights the significance of pruning
fine-tuned models when pretrained model is avail-
able. We introduce Neural Parameter Search (NPS)
as an efficient technique for this task. Our approach
facilitates multi-task model fusion, compression,
and robust knowledge transfer by searching neural
parameters within task vector subspaces. Experi-
mental results demonstrate that NP S significantly
enhances performance across various knowledge
transfer scenarios.

32675



Acknowledgements

This work was supported by National Science Foun-
dation of China (62476070), Shenzhen Science and
Technology Program (JCYJ20241202123503005,
GXWD20231128103232001, ZDSYS2023062609
1203008, KQTD2024072910215406) and Depart-
ment of Science and Technology of Guangdong
(2024A1515011540).

Limitations

While our method offers advantages such as
gradient-free operation, ease of implementation,
and broad applicability, it also has certain limita-
tions:

* Dependence on Pretrained Models: Our ap-
proach relies on pretrained models as a refer-
ence. If the fine-tuned model deviates signifi-
cantly from the original, it may hinder effec-
tive knowledge transfer, fusion, and compres-
sion.

* Validation Data Requirements: The method
requires additional validation data to guide the
search process. The quality and quantity of
this data directly impact pruning effectiveness
and overall performance.

¢ Computational Overhead of the Search
Process: Although the method is gradient-
free, the search process introduces a time cost,
which varies depending on task complexity.
This trade-off should be considered when de-
ploying the method in resource-constrained
environments.

Ethical Considerations

Our research is based on publicly available and
safe datasets and models. However, the applica-
bility of NP S may be limited to similar datasets or
domains. Its performance on other datasets remains
uncertain, and applying it to privacy-sensitive or
high-risk scenarios may pose risks. We recommend
caution and thorough validation to ensure accuracy
and reliability in such cases.
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Appendix

This paper enhances the pruning efficiency of fine-
tuned models through Neural Parameter Search
and applies this approach to various scenarios, in-
cluding knowledge transfer, fusion, and compres-
sion, with the assistance of pre-trained models. The
appendix is organized based on the following con-
tributions:

* Appendix A (Additional Results) provides ad-
ditional experimental results on knowledge
compression as well as task-level results from
the knowledge fusion experiments.

* Appendix B (Additional Analysis) includes
ablation studies, hyperparameter analysis, and
time cost evaluation for the search process.

* Appendix C (Implementation Details) outlines
the computational resources and runtimes,
along with the training details and evaluation
metrics.

* Appendix D (Baselines) provides a detailed
baseline description.

* Appendix E (Datasets) provides a detailed
dataset description.

A Additional Results

A.1 Additional Results on Compression

In our NLP experiments, particularly in the knowl-
edge compression scenarios involving large lan-
guage models, we present additional results, as
shown in Appendix Tables 3. These results demon-
strate that our method maintains the performance
of the previous best compression approach, TALLS
Mask+TIES, while significantly reducing storage
consumption.

A.2 Comprehensive Task-Level Results

We present task-level results for all knowledge fu-
sion experiments in Section 4.4. Detailed task-
level outcomes for T5-Base, TS5-Large (Raffel et al.,
2020), IA3 (Liu et al., 2022b), ViT-B/32, and ViT-
L/14 (Dosovitskiy et al., 2021) are provided in Ap-
pendix Tables 4, 5, 6, 7, and 8, respectively. We
also provide radar charts to compare the results of
merging vision tasks, as illustrated in Appendix
Figure 8. While previous baseline methods exhibit
inconsistent performance and struggle with certain
tasks, our method proves to be more robust, deliv-
ering near-optimal results across all tasks.
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Table 3: Comparison of different knowledge compression methods across various modalities, with average
performance reported for different tasks. The optimal results are denoted by boldface. Please refer to Section 4.5

for more details.

Settings (—) 7 NLP Tasks 3 LLM Tasks 8 Vision Tasks
T5-Base T5-Large LLaMa2 ViT-B/32 ViT-L/14

Method (]) | Acc.(%)] Bits(Gb)l | Acc.(%)t Bits(Gb)). | Acc.(%)t Bits(Gb)| | Acc.(%)! Bits(Gb)| | Acc.(%)t Bits(Gb)
Fine-tuned 83.1 47.8 88.9 169.1 40.4 629.6 90.5 23.3 94.2 79.1
Zero-shot | 53.5(61.0) 7.1 53.1p0m) 251 153379) 2156 | 62.3(688) 3.6 74.5(19.1) 11.0
Task Arithmeticiiciros 73-0(87.8) 7.1 80.2(90.2) 25.1 30.4(75‘2) 215.6 70.1(77_5) 3.6 84-5(897) 11.0
TIESieurses | 73.6(s5.6) 7.1 80.3(90.3) 25.1 34247 2156 | T3.6(s13) 36 86.0(01.3) 11.0
Talls+TIES e 24 826(994) 152 883(995) 54.3 395(978) 4423 902(997) 7.1 936(994) 23.1
NPS (ours) | 82.9.995) 11.1 888999 392 | 40501002 2763 | 90.9100.) 59 9431001y 180

VIT- B/32 ViT- L/14

SUN397

MNIST

SVHN

Averaging
Task Arithmetic

——— TIES-Merging
Fisher Merging

SUN397

MNIST

SVHN

Consensus Ties
NPS — Pruning (ours)

Figure 8: Test set performance when merging ViT-B/32 and ViT-L/14 models on eight image classification tasks.

Table 4: Test set performance when merging TS5-base models on seven NLP tasks. Please refer to Section 4.4 for

more details.

Task(—) e Test Set Performance
Method(/) paws qasc quartz story_cloze wiki_qa winogrande wsc
Zeroshot 53.5 499 358 533 48.1 76.2 50 61.1
Fine-tuned 83.1 946 984 8l.1 84.9 95.8 64.5 62.5
Multitask 83.6 94 979 825 86.7 95 64.1 65.3
Averaging[u ML22] 65.3 67.4 834 60.8 50.3 93.2 51.7 50.0
Fisher Mergingcuirs2) 68.3 66.7 856 635 57.1 90.1 54.2 60.8
RegMean;ici zo3) 72.7 772 938 63.6 64.6 90.4 58.4 60.7
Task Arithmeticiciros 73.0 69.6 91.5 67.3 76.1 91.3 58.3 56.9
Ties-Merging~eurss| 73.6 822 848 66.1 73.5 87.0 60.2 61.1
Consensus Tiespveursos) 73.4 823 845 657 73.4 86.8 60.3 60.5
NPS (ours) 75.6 79.1 933 659 76.2 89.9 59.9 63.9

B Additional Analysis

B.1 Ablation Studies

Our method incorporates several key factors, in-
cluding the number of subspaces, the volume of
the calibration dataset, and the sparsity of pruning
levels. We conducted ablation studies on these ele-
ments, with the results presented in Appendix Ta-
ble 9, 10, 11. Specifically, we tested our approach

on knowledge fusion across eight ViT models for
vision tasks.

B.2 Hyperparameters

Due to the hyperparameter sensitivity in task vector-
based model merging methods, we provide the op-
timal values of A and r as determined by our exper-
iments, as outlined in Tab. 12. For Task Arithmetic,
we explored A within the range of 0.2 to 1.5, using
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Table 5: Test set performance when merging T5-large models on seven NLP tasks. Please refer to Section 4.4 for
more details.

Task(—) L Test Set Performance
Method(]) paws qasc quartz story_cloze wiki_qa winogrande wsc
Zeroshot 53.1 582 542 541 54.3 70.9 49.2 63.9
Fine-tuned 88.9 945 983 885 914 96.2 74.5 79.2
Multitask 88.1 942 985 893 92 95.4 73.5 73.6
Averagingicvi» 54.7 572 264 714 54.8 86.6 50.2 36.1
Fisher Merging c.irs 68.7 684 83 65.5 62.4 94.1 58.2 49.2
RegMeanci zos 79.8 839 972 732 82.6 94.1 63.2 64.4
Task Arithmeticicizos 80.2 77.6 96.6 75.1 85.6 93.8 61.8 70.8
Ties-Merging~curs:: 80.3 782 975 728 83.7 94.5 64.5 70.8
Consensus Ties s 80.5 784 9777 726 83.7 94.8 64.6 71.2
NPS (ours) 82.1 82.1 984 723 85.7 94.1 67.2 75.0

Table 6: Test set performance when merging (IA)? models on eleven tasks. Please refer to Section 4.4 for
experimental details.

Task(—) Natural Language Inference Sentence Completion | Co-reference | WSD
Method(!) RTE CB ANLIlI ANLI2 ANLI3 | COPA Hella. Story. | WSC Wino. | WiC

Zeroshot 53.1 582 542 355 34.4 34.4 75.0 392 865 639 512 519
Fine-Tuned 714 827 958 704 46.5 53.0 85.3 444 950 653 751 717

Average

Averagingicui2) 57.9 812 583 433 39.1 40.0 80.9 40.1 924 528 538 550
Fisher Mergingxcuirs2) 62.2 833 833 459 41.0 422 83.1 422 941 583 567 542

RegMean;iciros) 58 81.2 583 433 39.2 40.2 80.9 40.1 925 535 538 55
Task Arithmeticiiciros 63.9 74.1 833 608 494 50.0 87.5 415 953 493 628 49.1

Ties-Mergingvcurss| 66.8 786 875 66.6 51.3 51.5 81.7 432 909 576 670 584
Consensus Tiescvios 66.6 785 873 664 51.1 51.2 81.6 434 902 573 67.1 583
NPS (ours) 68.2 80.1 835 673 51.2 49.8 88.4 426 928 619 675 648

Table 7: Test set performance when merging ViT-B/32 models on 8 vision tasks. Please refer to Section 4.4 for
more details.

Task(—) PR Test Set Performance

Method(]) SUN397 Cars RESISC45 EuroSAT SVHN GTSRB MNIST DTD
Individual 90.5 75.3 71.7 96.1 99.7 97.5 98.7 99.7 79.4
Multitask 88.9 74.4 77.9 98.2 98.9 99.5 93.9 72.9 95.8
Averagingicyvi 65.8 65.3 63.4 71.4 71.7 64.2 52.8 87.5 50.1
Fisher Mergingxcurs2 68.3 68.6 69.2 70.7 66.4 72.9 51.1 87.9 59.9

RegMeanjiciros 71.8 65.3 63.5 75.6 78.6 78.1 67.4 93.7 52
Task Arithmeticiicir>; 70.1 63.8 62.1 72 77.6 74.4 65.1 94 52.2
Ties-Merging~cuirs»: 73.6 64.8 62.9 74.3 78.9 83.1 71.4 97.6 56.2
Consensus Ties s> 73.3 64.5 63.0 74.1 78.5 83.0 71.1 96.9 55.8
NPS (ours) 76.5 66.8 65.4 78.5 79.2 86.5 77.1 98.1 59.3

Table 8: Test set performance when merging ViT-L/14 models on 8 vision tasks. Please refer to Section 4.4 for
more details.

Task(—) g Test Set Performance

Method(]) SUN397 Cars RESISC45 EuroSAT SVHN GTSRB MNIST DTD
Fine-tuned 94.2 82.3 924 97.4 100 98.1 99.2 99.7 84.1
Multitask 93.5 90.6 84.4 99.2 99.1 99.6 96.3 80.8 97.6
Averagingw ML22 79.6 72.1 81.6 82.6 91.9 78.2 70.7 97.1 62.8

Fisher Merging xcuirs> 82.2 69.2 88.6 87.5 93.5 80.6 74.8 93.3 70
RegMean;icir: 83.7 73.3 81.8 86.1 97 88 84.2 98.5 60.8
Task Arithmeticiicizs 84.5 74.1 82.1 86.7 93.8 87.9 86.8 98.9 65.6
Ties-Merging~curso: 86 76.5 85 89.4 95.9 90.3 83.3 99 68.8
Consensus Tiesneuirss 86.2 76.6 85.2 89.5 96.3 90.4 83.6 99.1 68.8
NPS (ours) 87.6 76.8 86.1 89.5 96.5 88.4 91.1 98.5 73.7
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Table 9: The performance of NP S in knowledge fusion
on vision tasks across varying volumes of calibration
datasets.

Volume  Ties-Merging 1/4  1/2 1
ViT-B/32 73.6 759 763 765
ViT-L/14 86.0 87.1 875 87.6

Table 10: The performance of NP S in knowledge fusion
on vision tasks across varying numbers of subspaces.

Numbers — Ties-Merging 1 2 4 8
ViT-B/32 73.6 748 756 762 765
ViT-L/14 86.0 869 873 875 876

a step size of 0.1. In the cases of TIES-Merging
and NP S, we varied the mask ratios r across {0.05,
0.1, 0.2}, while A was searched within the range of
0.8 to 2.5 with a step size of 0.1. For knowledge
compression using NP S, we fixed the ratio r at 0.05
to minimize storage costs.

B.3 Time cost

The total time required for the overall NP S strategy
is

Tiotal = Generations X (Tpruning + Tvalidate) (10)

where generations represents the number of gen-
erations needed for searching, which is a pre-set
value and varies with different experiment settings.
The pruning time mainly depends on the number of
model parameters and the size of the model popu-
lation, while the validation time primarily depends
on the volume of inference data and the inference
speed. We have organized and reported the num-
ber of generations and the time required for each
task in Appendix Table 13. As shown, our method
typically requires only a few hours (2-6 hours) to
complete, even for large language models.

B.4 More Related Work

In recent years, significant progress has been made
in knowledge transfer, model fusion, and compres-
sion techniques (Li et al., 2025), enabling the effi-
cient deployment of large-scale models (Shi et al.,
2025). Several studies have shown that fine-tuning
pre-trained models with a small amount of data can
significantly improve their zero-shot generalization
ability (Ren et al., 2022, 2021). Parameter-efficient
tuning methods, such as LoRA and Adapter, have
demonstrated strong performance in low-resource
scenarios (Bi et al., 2025b,a, 2024). Moreover,

Table 11: The performance of NP S in knowledge fusion
on vision tasks with different sparsity pruning ratios r.

Ratios 0.03 0.05 0.1 02 03
ViT-B/32 758 76,5 763 752 72.1
ViT-L/14 869 87.6 872 86.5 834

contrastive learning has been widely employed in
unsupervised settings to facilitate model compres-
sion and fusion (Guo et al., 2025b,a; Ma et al.,
2025). In the area of model fusion, Fisher-weighted
averaging estimates parameter importance using
information-theoretic measures, while RegMean
offers a closed-form solution based on local regres-
sion. Other works, including task arithmetic, PEM,
and TIES-Merging, enhance generalization by lin-
early combining parameters across tasks (Zhao
et al., 2022; Lee et al., 2024; Lu et al., 2025).
Model Evolver dynamically optimizes fusion tra-
jectories, and Model Tailor mitigates catastrophic
forgetting in multimodal tasks through patching,
decoration, and post-training strategies (Zeng et al.,
2024; Zhou et al., 2025a,b).

C Implementation details

C.1 Computational Resources and Runtimes

Our experiments were conducted on Nvidia A6000
GPUs with 48GB of RAM. Depending on the
dataset size, fine-tuning the T5-Base and T5-Large
models for single tasks took between 15 minutes
and 2 hours, while fine-tuning the multitask check-
point took around eight hours. The fine-tuned (IA)3
models were provided by Yadav et al. (2024).*. We
also used vision models ViT-B/32 and ViT-L/14
as provided by Ilharco et al. (2023a).°. Merge ex-
periments were highly efficient, with evaluations
for RoBerta-base, T5-Base, T5-Large, ViT-B/32,
and ViT-L/14 models taking less than 2 minutes.
However, two specific experiments required more
time: (1) Evaluating (IA)® models took about one
hour for 11 datasets due to the need to use multiple
templates from prompt sources and compute me-
dian results across them. (2) Validation on LLMs
(LLaMa?2) was also slow, usually requiring about
40 minutes for evaluating 3 datasets.

*https://github.com/prateeky2806/
ties-merging

Shttps://github.com/mlfoundations/
task_vectors#checkpoints
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Table 12: A and pruning ratio r for NP S

Task (—) 7 NLP Tasks 11 PEFT Tasks | 3 LLM Tasks 8 Vision Tasks
Method () | T5-Base  T5-Large 1A)3 LLaMa2 | ViT-B/32  ViT-L/14
Task Arithmeticiiciros [A] 0.4 0.5 0.5 0.3 0.3 0.3
Ties-Mergingeurrssi [A, 7] | [1.7,0.1]  [2.4, 0.05] [1.7,0.1] [1.0,0.1] [1.0,0.1T [1.1,0.05]
NPS for fusion (ours) [\, 7] | [1.9,0.05] [2.2,0.05] [1.8,0.1] [0.9,0.1] [1.2,0.05] [1.2,0.05]
NPS for compression (ours) [r] 0.05 0.05 - 0.05 0.05 0.05
Table 13: Time Costs for NP S.
Task (—) 7 NLP Tasks 11 PEFT Tasks | 3 LLM Tasks 8 Vision Tasks
Method ({) T5-Base  T5-Large (I1A)3 LLaMa2 | ViT-B/32 ViT-L/14
Time for Pruning | 5 secs 9 secs 1 secs 113 secs 4 secs 7 secs
Time for Validation | 4 mins 7 mins 15 mins 12 mins 6 mins 9 mins
Generations 30 50 20 20 30 30
Total Time for NPS | 126 mins 358 mins | 300 mins 278 mins 183 mins 273 mins
C.2 Training details H-Score. To rigorously evaluate our method’s

We trained the T5-base and T5-large models for
up to 75,000 steps, using a batch size of 1024 and
a learning rate of 0.0001. Early stopping with a
patience of 5 was employed to prevent overfitting.
Training was conducted in bfloat16 to conserve
GPU memory, with a sequence length capped at
128 tokens. For the PEFT configuration of the (IA)?
approach on the T0-3B model, the batch size was
set to 16 for training and 32 for evaluation, while
maintaining a learning rate of 0.0001. The early
stopping patience was extended to 10 due to the
model’s complexity. We didn’t use any learning
rate scheduler or weight decay during training. For
large language models, we used fine-tuned check-
points from Huggingface®.

In the cross-domain merging experiments, we
fine-tuned the RoOBERTa-base model with an initial
learning rate of 1e-5 and the T5-base model at 1e-4,
using the AdamW optimizer. The learning rate was
gradually increased during the first 6% of training
steps, then linearly decreased to zero. Both models
were trained with a batch size of 16 over 30 epochs
for emotion classification, with performance evalu-
ated at the end of each epoch, resuming from the
best checkpoint.

C.3 Evaluation Metrics

Normalized Accuracy. We report both normal-
ized and absolute accuracies. Normalization is
based on of the individual fine-tuned models.

1 N acc [fmerged (-73)]

1y
N = acc | ffine-tned(7)]
=1 oy

n

Acc. =

1D

*https://huggingface.co/

ability to mitigate catastrophic forgetting in
MLLMs, we use two key metrics: Average Per-
formance and the H-score (Zhu et al., 2024). The
H-score, a novel metric, provides a balanced as-
sessment by calculating the harmonic mean be-
tween the average performance on original tasks,
Avg(Porigin), and on target tasks, Avg(Piarget). The
formula for the H-score is as follows:

Py = 2 X AVg(Porigin) X AVg(Pta'rget)
AVg(Porigin) + AVg(Rarget)

(12)

The H-score was introduced to avoid overempha-
sizing the performance of original tasks, especially
as their number grows.

Storage Cost. This section show the calculation
of the storage cost for each method in Section 4.5
and Appendix A Tab. 3. Let NV be the number of
tasks, P be the number of all parameters, P’ be
the number of trainable parameters in the model,
and F' be the number of frozen parameters in the
model. Assuming one float parameter takes 32 bits,
for each method, their respective storage cost for
T tasks is calculated as:

* Fine-tuned models: 32(NP' + F'). 32N P’ is
for storing 7" trainable parameters and 32F' is
for storing frozen parameters.

* Task arithmetic: 32 P; Stores a single model.
* Ties-merging: 32P; Stores a single model.
* Consensus Ties: 32P; Stores a single model.

» Zero-shot: 32P; Stores a single model.
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* TALL Mask + Ties: (64 + N)P' + 32F;
64P" + 32F'is for storing zeroshot model and
multi-task vector, while N P’ is for storing T
binary masks.

* NPS: 32P+ (r+32+1)N P’; r is the sparsity
pruning ratio.

D Baseline details

We provied a detailed baseline description. Our ex-
periments encompass seven comparison methods:

* Individual means that each task uses an in-
dependent fine-tuned model, which has no in-
terference between tasks, but cannot perform
multiple tasks simultaneously.

* Traditional MTL collects the original train-
ing data of all tasks together to train a multi-
task model. It can be used as a reference upper
bound for model merging work.

* Weight Averaging is the simplest method
of model merging, which directly averages
the parameters of multiple models using
0 = D1, 0¢/n, calculating the element-
wise mean of all individual models. It can
be used as a lower bound for model merging.
(Choshen et al., 2022; Wortsman et al., 2022).

¢ Fisher Merging (Matena and Raf-
fel, 2022) calculates the Fisher in-
formation matrix (Fisher, 1922)

Fy = EINDtEprgt(y|df)V9t (logPGt (y"rt))2
to measure the importance of each parameter
when merging models for task ¢, where and
model merging is performed according to the
guidance of this importance.

* RegMean (Jin et al., 2023) imposes a con-
straint when merging models, that is, the
Lo distance between the merged model’s
and the individual models’ activations. It
computes a least-squares solution as 6,, =
(3ot X X0) ™1 300 (X X46r), where X,
is the input activation of the corresponding
layer.

e Task Arithmetic (Ilharco et al., 2023a) first
defines the concept of “task vectors” and
merges these vectors into a pre-trained model
to execute multi-task learning. The model is
produced by scaling and adding the task vec-
tors to the initial model as 0,, = Onic + A *
21 T

* Ties-Merging (Yadav et al., 2024) further
solves the task conflict problem in Task Arith-
metic (Ilharco et al., 2023a). It eliminates re-

dundant parameters and resolves symbol con-
flicts through three steps: Trim, Elect Sign,
and Disjoint Merge.

AdaMerging automatically learns a merging
coefficient for each layer of each task vector
in Task Arithmetic (Ilharco et al., 2023a).
LoraHub (Huang et al., 2023) employs Low-
rank Adaptations to dynamically combine
task-specific modules for cross-task general-
ization, and adapts to new tasks by configuring
9/ = Zle wg - Gk

DARE (Yu et al., 2023a) sets the majority of
delta parameters to zero and rescale the rest
by & = 6-(1/(1 — p)) where p is the pro-
portion of delta parameters dropped, therefore
efficiently reduces parameter redundancy.

E Datesets details

This section provides a detailed dataset description
for our experiments.

NLP Tasks. Following TIES-Merging (Yadav
et al., 2024), we choose seven datasets for merging
NLP models: question answering (QASC (Khot
et al., 2020), WikiQA (Yang et al., 2015), and
QuaRTz (Tafjord et al., 2019)), paraphrase identifi-
cation (PAWS (Zhang et al., 2019)), sentence com-
pletion (Story Cloze (Sharma et al., 2018)), and
coreference resolution (Winogrande (Sakaguchi
et al., 2021) and WSC (Levesque et al., 2012)).

PEFT Models. Following TIES-Merging (Yadav
et al., 2024), we use eleven datasets including sen-
tence completion (COPA (Roemmele et al., 2011),
H-SWAG (Zellers et al., 2019), and Story Cloze
(Sharma et al., 2018) datasets), natural language
inference (ANLI (Nie et al., 2020), CB (Marn-
effe et al., 2019), and RTE (Giampiccolo et al.,
2007)), coreference resolution (WSC (Levesque
et al.,, 2012) and Winogrande (Sakaguchi et al.,
2021)), and word sense disambiguation (WiC (Pile-
hvar and Camacho-Collados, 2019)).

Vision Tasks. Following Task Arithmetic (II-
harco et al., 2023a), we study multi-task model
merging on eight image classification datasets be-
low. Stanford Cars (Krause et al., 2013) is a car
classification dataset consisting of 196 classes of
cars. DTD (Cimpoi et al., 2014) is a texture clas-
sification dataset comprising 47 classes. EuroSAT
(Helber et al., 2019) comprises 10 classes of geo-
referenced satellite images. GTSRB (Stallkamp
et al., 2011) includes 43 classes of traffic signs.
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MNIST (LeCun, 1998) features grayscale images
of handwritten digits across 10 classes. RESISC45
(Cheng et al., 2017) encompasses 45 classes of re-
mote sensing image scenes. SUN397 (Xiao et al.,
2016) consists of 397 classes of scene images.
Lastly, SVHN (Netzer et al., 2011) encompasses 10
classes of real-world digital classification images.

Table 14: Statistics of emotion classification datasets.

Train Dev Test

In-domain
DialyDialog 72,085 10,298 20,596
CrowdFlower 27,818 3,974 7,948

TEC 14,735 2,105 4,211
Tales-Emotion 10,339 1477 2,955
ISEAR 5,366 766 1,534

Emotion Classification. In order to investigate
the performance of the sentiment classification task,
following RegMean (Jin et al., 2023), we selected
a diverse and challenging set of datasets. Among
them, DailyDialogs (Li et al., 2017), CrowdFlower,
TEC (Mohammad, 2012), Tales-Emotion (Alm
et al., 2005), and ISEAR (Scherer and Wallbott,
1994) is utilized to train domain-specific model.
For evaluation, we focus exclusively on the funda-
mental emotions: anger, disgust, fear, joy, sadness,
and surprise. A detailed overview of the datasets
and statistics is provided in Tab. 14.

LLMs.

* CMMLU (Li et al., 2023a) is a comprehensive
Chinese evaluation benchmark specifically de-
signed to assess language models’ knowledge
and reasoning abilities in a Chinese context. It
covers 67 topics ranging from basic subjects
to advanced professional levels.

¢ GSMSK (Cobbe et al., 2021) is a collection of
8.5K high-quality, linguistically varied math
word problems from grade school, crafted by
skilled human authors. The solutions predomi-
nantly require executing a series of basic arith-
metic operations (4, —, X, <) to derive the
final answer.

¢ HumanEval (Chen et al., 2021) is a dataset for
evaluating code generation ability, containing
164 manually crafted programming problems
covering aspects such as language understand-
ing, reasoning, algorithms, and simple mathe-
matics.
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