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Abstract

Emerging Large Language Model (LLM) ap-
plications require long input context in order
to perform complex tasks like document anal-
ysis and code generation. For these long con-
text length applications, the length of the input
prompt poses a significant challenge in terms
of inference efficiency since the inference costs
increase linearly with sequence length. How-
ever, for many of these applications, much of
the context in the prompt is fixed across dif-
ferent user inputs, thereby providing the op-
portunity to perform offline optimizations in
order to process user inputs quickly, as they
are received. We propose Squeezed Attention
to accelerate LLLM applications where a large
portion of the input context is fixed. We first
leverage K-means clustering offline to group
the keys for the fixed context based on semantic
similarity and represent each cluster with a sin-
gle centroid value. During inference, we com-
pare query tokens from the user input with the
centroids to predict which keys from the fixed
context are semantically relevant, and then com-
pute exact attention using only the important
keys, thereby reducing bandwidth and compu-
tational costs. We also present a hierarchical
version of our algorithm which can reduce the
complexity of attention from linear to logarith-
mic with respect to the fixed context length. We
evaluate our method on various long-context
benchmarks including LongBench, where it
achieves a 3.1 x reduction in KV budget with
no noticeable accuracy loss and up to an
8% reduction with only a 0.5 point accuracy
gap for the LLaMA-2-7B-32K, LWM-Text-
Chat-1M, and Longchat-7B-v1.5-32K models.
Futhermore, we implement kernels for cen-
troid comparison and sparse FlashAttention
with important keys, achieving more than 4 x
speedups during both the prefill and genera-
tion phases for long-context inference. Our
code is available at https://github.com/
SqueezeAIlLab/SqueezedAttention.
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Figure 1: A high-level visualization of our hierarchical
clustering approach. We identify important keys for the
current query by first identifying which coarse-grained
clusters are relevant (Level 1). We then refine this pre-
diction using finer-grained clustering (Level 2). Finally,
we identify the important keys for the current query and
only compute exact attention with these keys.

1 Introduction

Large Language Models (LLMs) have seen rapid
advancements in recent years, enabling a range of
downstream applications including Question An-
swering (QA) and analysis over structured and un-
structured documents. Performance on these tasks
has benefited from the increased context lengths
of newer open-source (Liu et al., 2024b; Touvron
et al., 2023a) and closed-source (Achiam et al.,
2023; Anthropic, 2023; Google, 2023) models,
as these tasks benefit from incorporating a large
amount of input context in order to condition the
model to generate particular outputs. However, de-
ployment of LLMs for downstream applications
is constrained by inference costs, with LLM infer-
ence requiring significant computational resources
as well as memory capacity and bandwidth. In
particular, long context-length applications have
large memory capacity and memory bandwidth re-
quirements due to the size of the KV cache, which
increases linearly with respect to sequence length
(Tang et al., 2024; Hooper et al., 2024; Li et al.,
2024).
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For many applications such as in-context learn-
ing, document QA, and code generation, over a
series of prompts a large portion of the input con-
text is fixed. This fixed context, which may contain
system instructions, documentation, or few-shot
examples, is extremely beneficial for tailoring the
model to the target application. However, increas-
ing the length of the fixed context poses a signifi-
cant challenge for inference efficiency. Throughout
this work, we will refer to this portion of the prompt
as the “fixed context,” and we will refer to the por-
tion that corresponds to the user requests that come
in online as the “user input.” The user input is ap-
pended after the fixed context and provided to the
model. For many long-context applications, the
fixed context portion of the prompt is much longer
than the user input portion of the prompt, and the
attention computation for this fixed context portion
typically dominates the inference runtime. In this
work, our aim is to take advantage of the fact that
this context is fixed and available prior to inference
in order to optimize attention to the fixed context
for new user requests.

We propose Squeezed Attention as a method to
accelerate fixed context applications by accelerat-
ing the attention computation. Our method, illus-
trated in Figure 1, accelerates inference by quickly
identifying which keys in the fixed context are im-
portant for a given query token. Offline prior to
inference, we cluster the keys in the fixed context
based on their semantic similarity and then rep-
resent keys from the same cluster using a single
representative “key centroid”. At inference time,
when the user input is received, we retrieve the im-
portant keys by first comparing the query tokens
with the key centroids, rather than the entire set of
keys, in order to identify the important key clusters
for the current query. Once the important clus-
ters are identified, we retrieve their associated keys
and compute exact attention only with those high-
scoring keys. Our method can be further extended
to a hierarchical clustering and retrieval scheme, as
shown in Figure 1, efficiently narrowing the search
space by first leveraging coarser-grained clusters
and then refining the search using fine-grained clus-
ters. In contrast to existing solutions (Zhang et al.,
2024b; Li et al., 2024; Ge et al., 2023) that iden-
tify less important tokens once and discard them
throughout the entire generation, our method dy-
namically identifies and retrieves only the informa-
tion that is semantically relevant to each generation
step. This allows our method to preserve gener-

ation quality while reducing the number of KV
cache entries loaded from memory by up to 8§ times
(including loading key centroids), as highlighted
in Section 6. By optimizing memory bandwidth as
well as computational costs, Squeezed Attention
effectively reduces overheads for both generation
and prefill during long-context inference.
Our work makes the following contributions:

¢ Semantic-based Key Clustering and Retrieval:
To cluster non-consecutive keys by their seman-
tic similarity, we perform K-means clustering
offline, representing all keys within each cluster
with a single “key centroid” value (Section 3.1).
This allows us to identify semantically relevant
keys for the query tokens during inference by
comparing the query against key clusters instead
of the entire key set (Section 3.2), and only per-
forming exact attention computation with the
most relevant keys. Since the number of key cen-
troids is significantly smaller than the number of
keys, the memory overhead remains minimal. We
additionally propose a hierarchical version of our
method (outlined in Section 3.3), which can re-
duce the memory and computational complexity
of the centroid lookup from linear to logarithmic
with respect to the fixed context length.

* System Implementation: We design efficient
Triton kernels for performing the centroid com-
parison (Section 4.1) and computing sparse
FlashAttention with only the important keys (Sec-
tion 4.2). Combined together, our method results
in 4.3 x and 4.2 x speedups during the prefill and
decode phases when running inference with long
fixed context (Section 6.3).

¢ Benchmark: We introduce PreFixQA (Section
5), a document QA benchmark which contains
a selection of arXiv documents, each with many
synthetic user input question and answer pairs.
This benchmark facilitates research into fixed
context methods by allowing us to evaluate vari-
ous user inputs for each document.

* Evaluation: We extensively evaluate our method
on long-context benchmarks including Long-
Bench (Bai et al., 2023), RULER (Hsieh et al.,
2024), and PreFixQA (Section 6.2). On Long-
Bench, our method preserves accuracy with 3.1 x
KV budget reduction and achieves up to 8 x KV
budget reduction with 0.5 point accuracy degra-
dation for the LLaMA-2-7B-32K, LWM-Text-
Chat-1M, and Longchat-7B-v1.5-32K models.
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Figure 2: Diagram outlining our approach for performing clustering offline with the fixed context. Refer to
Section 3.1 for 1-level clustering and Section 3.3 for hierarchical clustering. We apply K-means clustering to group
semantically similar key tokens, assigning a single centroid to represent each cluster. In the hierarchical approach
(Section 3.3, demonstrating a 2-level hierarchy for clarity), these centroids form the Level 2 centroids, which are
then clustered into coarser-grained Level 1 centroids by repeating the same procedure.

2 Related Work

With the growing popularity of long-context appli-
cations, there has been a continuous development
of LLMs that can support context lengths exceed-
ing 100k, and even up to 1M tokens (Achiam et al.,
2023; Anthropic, 2023; Google, 2023; Liu et al.,
2024b). However, as context lengths increase, the
KV cache often becomes a critical bottleneck, sig-
nificantly impacting memory usage and latency dur-
ing LLM inference (Tang et al., 2024; Hooper et al.,
2024). Therefore, KV cache compression methods
have emerged as a critical approach for enabling
efficient inference when using long-context models.
We provide a brief summary here of relevant KV
cache compression works; an extended discussion
of related work for long-context length inference
and KV compression is provided in Appendix A.
Several previous methods have been proposed
to enable more efficient long-context inference by
reducing the KV cache size (Hooper et al., 2024;
Liu et al., 2024e; Fu et al., 2024; Zhang et al.,
2024b). A notable approach is KV cache spar-
sification, which encompasses two general direc-
tions: KV cache eviction, and sparsely loading the
KV cache. KV eviction compresses the KV cache
by identifying and removing less important tokens
(Zhang et al., 2024b; Oren et al., 2024; Li et al.,
2024). While these methods are effective for re-
ducing memory requirements, they cannot recall

evicted tokens later during generation if these be-
come important, and they therefore cannot adapt
to changing token importance during generation
or in response to subsequent user inputs. Another
direction which is most similar to our approach
is sparse KV cache loading, where the full KV
cache is stored but only relevant keys and values
are loaded dynamically during inference. One prior
work, QUEST (Tang et al., 2024), clusters consecu-
tive KV cache entries and dynamically retrieves the
most relevant clusters based on their relevance to
each query token during generation. However, this
approach relies on physical proximity for cluster-
ing, whereas clustering should instead be based on
semantic proximity, as tokens that are physically
far apart can be semantically similar. Squeezed At-
tention addresses this by clustering tokens based on
embedding similarity, ensuring that semantically
relevant tokens are retrieved for future generations.

3 Algorithm
3.1 Offline: Clustering Keys

The first step in our method is to cluster the fixed
context keys offline based on semantic similarity,
as outlined in Figure 2. Specifically, we use K-
means clustering with normalized key vectors to
group similar keys together. We then take the mean
of all vectors in each cluster to obtain a representa-
tive centroid, which can be used as a representative
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Figure 3: Diagram outlining how our method operates during inference to retrieve the most relevant keys when a
new input query is received. Refer to Section 3.2 for 1-level retrieval and Section 3.3 for hierarchical retrieval. For
1-level retrieval, the query token is first compared against the representative centroid of each cluster to identify the
most relevant clusters. Exact attention is then computed only for the keys within these retrieved clusters, rather than
across the entire fixed context. In our hierarchical retrieval approach (Section 3.3, demonstrating a 2-level hierarchy
for clarity), we first compare the query with coarse-grained Level 1 centroids, and then only compare with a subset
of the promising fine-grained Level 2 centroids in order to identify the important keys.

key token for all tokens in that cluster. By com-
paring incoming queries with this centroid, we can
determine whether the tokens in that cluster are im-
portant without necessarily comparing them with
individual keys. Note that this semantic-based clus-
tering approach groups together non-consecutive
key tokens, which could make it more challenging
to efficiently load the keys from memory. However,
the size of each KV cache token for a single head
in modern LLMs is typically at least 256 bytes
in bf16 (as the head dimensions are typically at
least 128) (Touvron et al., 2023a,b), which is suf-
ficiently large to efficiently utilize memory band-
width. Therefore, we are still able to execute mem-
ory operations efficiently when sparsely loading
in the non-consecutive keys and associated values
from memory.

3.2 Online: Query-Aware Key Retrieval

During inference, we would ideally only load the
keys which would have high attention scores for
the current query, but this cannot be known ahead
of time without doing a full pass over the keys.
We leverage the cluster centroid to approximately
measure the “average” attention score of the keys
within a cluster, thereby allowing us to identify

important keys without loading them all. By or-
ganizing keys into clusters, each represented by a
single centroid, we can accelerate inference for in-
coming user inputs, as shown in Figure 3. We first
compare the input query tokens with the key cen-
troids to assess which key tokens are likely to have
high attention scores. We estimate the importance
of cluster i for query token g as:
exp (9C")

L Nj-exp (qC)’
where Nj is the number of keys in cluster j and C;
is the cluster centroid for cluster j. This allows us
to assess the average importance of the tokens in
cluster i. If the average importance of a cluster is
above a desired threshold, we load in the keys for
that cluster and perform exact attention computa-
tion; otherwise, we avoid loading and performing
computation with these keys.

Using the Softmax estimate S;, instead of qu-T ,
as an importance metric for each cluster provides
an easy method to control the number of important
keys retrieved from each attention head. As out-
lined in Appendix B.2, some attention heads have
a more balanced distribution of attention scores, re-
sulting in a larger number of important keys, while
others have a more skewed distribution, indicating

Si = (1)
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only a few important keys. Ideally, we want to re-
trieve more keys from heads with a larger number
of important keys. Since Softmax values are nor-
malized to sum to 1, we can apply a single global
threshold across all layers and attention heads to
achieve this. This allows us to automatically re-
trieve more keys from heads with balanced atten-
tion score distributions, where more S; values ex-
ceed the threshold; and fewer keys from heads with
skewed distributions, where fewer S; values exceed
the threshold. This approach eliminates the need
for manually configuring the number of keys to
retrieve for each head. Once we choose the thresh-
old to achieve the desired sparsity level, it is kept
throughout the prefill and generation stages. De-
tails about the calibration procedure for the global
threshold are provided in Appendix C.

3.3 Hierarchical Centroid Lookup

The centroid lookup approach outlined in Sections
3.1 and 3.2 quickly identifies important keys for the
attention computation and only computes attention
for these keys. As long as we use fine-grained cen-
troids, we can have sufficient resolution to identify
which keys will be important and we can retain
accuracy. However, it is desirable to have fewer
centroids since a larger number of centroids leads
to an increased cost for centroid lookup.

In order to attain the accuracy improvements of
fine-grained centroid lookup while retaining the ef-
ficiency benefits of using coarse-grained centroids,
we leverage a hierarchical centroid lookup process.
Figure 2 demonstrates the offline preprocessing
step with our (two-level) hierarchical approach. Ini-
tially, using the same approach as in Section 3.1, we
cluster the keys into a larger number of centroids,
referred to as Level 2 centroids. We then perform
K-means clustering on these Level 2 centroids to
produce a smaller number of coarse-grained cen-
troids, referred to as Level 1 centroids.

During inference, we perform a hierarchical cen-
troid lookup as outlined in Figure 3. We first
compare incoming queries with the coarse-grained
Level 1 centroids to quickly prune out unnecessary
keys. This initial lookup narrows down the search,
allowing us to focus on comparing the queries with
the fine-grained Level 2 centroids that are likely to
be high-scoring. Specifically, we first compare the
input query token g with each of the coarse-grained
key centroids Ci(l) to assess which key tokens are
likely to have high attention scores:

Table 1: Theoretical memory and compute complexity
of the baseline (standard autoregressive generation), 1-
level retrieval, and hierarchical retrieval for a single
generation iteration. Here, L represents the context
length, c is the number of clusters in the 1-level retrieval
approach, and k < L is the number of keys remaining
after retrieval. In the hierarchical retrieval approach,
¢’ < ¢ < L denotes the number of clusters at each
hierarchical level. Note that c for the 1-level retrieval
cannot be reduced significantly with respect to L, while
¢’ for the hierarchical retrieval can.

Method Memory / Compute Complexity
Baseline O(L)
1-Level O(c+k) wherek < L

Hierarchical ~ O(c’logL + k) where ¢/, k < L

exp (qC i(l)T)
N - exp (9CT)
We then apply a threshold Tj to rule out low-
scoring clusters at the coarse-grained level, thereby
avoiding comparisons with the fine-grained Level
2 centroids for the less relevant clusters. For the
remaining Level 1 centroids, we expand them into
their corresponding finer-grained Level 2 centroids,

g _

i

(@)

Cl(z), which are then compared with the input query
token g to assess their relevance:

_ epq)

T Nit) - exp (qCT)

Since we are only considering the remaining
Level 2 centroids, the denominator is also calcu-
lated based on these selected centroids. We then
compare Sl(z) with threshold T, to decide which
keys should be used for exact attention computa-
tion. With this hierarchical approach, we can re-
duce the cost of finer-grained centroid lookup while
maintaining its accuracy. Although we describe a
2-level process here for clarity, this method can be
extended to multiple levels of hierarchy.

@ 3)

3.4 Complexity Analysis

Let L denote the context length, which can be sub-
stantially large in long-prompt applications. In
the baseline approach (i.e., standard autoregressive
generation), each generative step requires compar-
ing a query token with the entire set of keys in
the prompt, resulting in O(L) memory and com-
pute operations per iteration (i.e. per token gener-
ation). If we apply 1-level retrieval, however, we
can instead use c¢ centroids to identify the relevant
key clusters and then compute attention using only

32635



k < L retrieved keys. This reduces the memory
and compute complexity to O(c + k) per iteration.
One limitation of the 1-level retrieval approach is
that it can be challenging to significantly reduce ¢
(the number of centroids), as it would require clus-
tering a large number of keys into each cluster. This
may result in either pruning keys too aggressively
or retrieving irrelevant keys grouped together in the
same cluster.

In contrast, hierarchical centroid retrieval allows
for a more efficient reduction in centroids at each
level of the hierarchy by enabling gradual pruning
of keys. Suppose we retrieve only ¢/ < ¢ < L
clusters at each hierarchical level. In this setup,
we require O(log L) hierarchical levels to reduce
the keys to the desired final count, k. Therefore,
as highlighted in Table 1, the memory and com-
pute complexity for each generation iteration be-
comes O(c¢’log L + k), reducing the complexity
from linear to logarithmic with respect to the con-
text length.

4 System Implementation

4.1 Centroid Lookup

The first stage of our kernel implementation com-
pares query tokens with the centroids for the fixed
context keys. These query tokens may include mul-
tiple tokens from an incoming user input during the
prefill stage or a single token during the generation
stage. The kernel follows similar parallelization
strategies to FlashAttention-2 (Dao, 2023), where
we split across different attention heads and along
the query sequence length dimension. We first load
a block of query tokens and iterate over the entire
key centroids in order to find the most important
key centroids according to Equation 1. At a high
level, the kernel performs an initial pass over the
key centroids to compute the denominator in Equa-
tion 1 based on the query-key centroid dot product.
Then, it takes a second pass over the centroids to
compute S; as in Equation 1, using the denomina-
tor results from the first pass. Finally, we compare
S; with a target threshold T, and we only load the
keys in cluster 7 if S; > T.

During prefill, where multiple query tokens are
available, we split the workload along the query
sequence length dimension as in FlashAttention-2
(Dao, 2023) to attain additional parallelism. Dur-
ing generation, achieving parallelism is more chal-
lenging, as we cannot leverage parallelism across
the dimension of the length of the query sequence.

This is particularly problematic when dealing with
small batch sizes, as in that case the only paral-
lelism we can leverage is across different heads. To
address this, we develop an optimized implemen-
tation which parallelizes the second pass over the
centroids across the cluster dimension. Appendix
K highlights how this optimized implementation is
critical for performing the centroid lookup during
generation without substantial latency overhead.
Additional details of how the centroid lookup is
applied during the prefill and generation stages (as
well as for the kernel implementation for our hier-
archical method) are provided in Appendix D.

4.2 Sparse Attention with Retrieved Keys

Once the important keys are identified through our
centroid lookup, the second stage of our system im-
plementation leverages a sparse FlashAttention ker-
nel to attain speedups during both prefill and gen-
eration stages. This stage also uses similar paral-
lelization strategies as FlashAttention-2 by splitting
work across heads and along the sequence length di-
mension (Dao, 2023). Our kernel implementation
builds on top of prior work on Triton implementa-
tions for FlashAttention-2 (OpenAl, 2024) and for
dynamic sparse FlashAttention (Pagliardini et al.,
2023). The kernel uses a tensor containing key
indices to identify which keys need to be loaded
from memory for exact attention computation.

An additional challenge when computing atten-
tion to the fixed context is the imbalanced dis-
tribution of important key tokens across differ-
ent heads, which is highlighted in Appendix B.2.
When using the default parallelization strategy in
FlashAttention-2, if one head contains more im-
portant keys than the other heads, it will have sig-
nificantly longer runtime, hindering speedups. In
order to obtain latency benefits in these scenarios,
we split keys and values along the sequence-length
dimension as in Flash-Decoding (Dao et al., 2023),
based on a fixed number of desired keys and values
to be computed for a single Streaming Multiproces-
sor (SM). This means that if there are more keys
and values that need to be loaded for a particular
head, the work for this head will be parallelized
across a greater number of SMs in the GPU. As in
Flash-Decoding (Dao et al., 2023), our kernel is
designed in two phases, with the first phase comput-
ing partial attention outputs and the second stage
merging the partial attention outputs.
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Table 2: LongBench evaluation results with Squeezed Attention. We report results for the Llama-2-7B-32K,
LWM-Text-Chat-1M, and Longchat-7b-v1.5-32K models, using our single-level (‘“Sq”) and hierarchical (“H-Sq”)
lookup approaches. We also report baseline comparisons with QUEST (Tang et al., 2024), demonstrating how our
use of semantic similarity when clustering keys outperforms grouping keys sequentially. We report the average
score across LongBench tasks, as well as the average without SamSum (“All*”") for comparison against QUEST,
whose evaluation framework does not support SamSum. We also include the KV budget (“Budget”), which gives
the expected percentage of the KV cache that needs to be loaded in during inference (including extra memory
movement for cluster centroids). Additional experimental details are provided in Appendix F.

|  Single-Doc. QA | Multi-Doc. QA | Summarization | Few-shot Learning | Code | Avg.
¥ &
Config | Budget N \od > o > &£ Y
y & Q| & & & 8 & ¢ & & C A Al
AR R - F F S f
LLaMA-2-7B-32K
All KV ‘ 1 ‘ 1791 11.12 33.87 ‘ 1245 11.95 6.54 ‘ 29.37 16.93 21.58 ‘ 71.50 87.96 43.87 ‘ 61.45 59.14 ‘ 3398 34.69
Sq-70% ‘ 0.325 ‘ 18.55 11.78 34.33 ‘ 1231 1231 6.26 ‘ 29.50 16.90 20.76 ‘ 69.00 87.96 43.90 ‘ 61.29 59.53 ‘ 33.88 34.60
QUEST 0.215 [ 17.01 9.89 32.10 | 11.94 1141 6.27 28.90  17.65 22.14 | 68.00 86.43 - 62.53 59.39 | 33.36 -
Sq-80% 0.225 |19.03 12.11 32.77 | 1251 11.53 6.66 28.82  17.19 20.70 | 69.00 87.46 44.42|61.26 59.78 | 33.76 34.52
QUEST 0.168 |[2042 9.72 2946 | 1145 9.75 5.46 27.06  17.20 21.83 | 68.50 86.36 - 61.93 59.38 | 32.96 -
Sq-90% 0.125 | 18.15 1439 3238 | 11.84 11.70 6.45 29.06 16.93 21.66 | 70.00 87.43 45.15|58.79 59.37 | 33.70 34.52
H-Sq-90% | 0.112 | 17.41 1423 3271 | 11.99 1138  6.68 29.14 1697 2041 | 68.00 87.37 44.85|58.94 59.61 | 33.45 34.26
LWM-Text-Chat-1M
ALKV | 1 ]1627 2436 4200 | 21.63 1670 9.10 |27.57 2471 2448 | 7050 61.70 39.59 | 41.77 40.72 | 32.42 32.94
Sq-70% ‘ 0.325 ‘ 16.54 2471 4224 ‘ 21.66 15.88 9.08 ‘ 27.28  24.77 24.60 ‘ 70.50 60.93 39.75 ‘ 41.06 40.76 ‘ 3231 32.84
QUEST 0.215 | 1524 2457 40.68 | 21.57 17.02 7.93 2729 2486 24.45 | 67.00 62.14 - 45.53 4348 | 32.44 -
Sq-80% 0.225 | 16.66 2470 41.88 | 21.10 1591 9.13 27.00 24.68 2423 | 70.00 60.81 39.37 | 42.07 41.89 | 32.31 32.82
QUEST 0.168 | 15.37 2333 4145 | 2026 17.39 7.85 25.88  25.06 2443 | 65.00 62.54 - 46.20 43.06 | 32.14 -
Sq-90% 0.125 | 16.97 2496 41.14 | 20.70 16.40 9.24 27.00 24.59 23.51 | 71.50 59.37 39.87 | 44.78 43.80 | 32.61 33.13
H-Sq-90% | 0.118 | 16.69 24.79 4038 | 20.78 16.21 8.91 25.02  24.77 22.34 | 70.50 58.23 39.40 | 44.31 43.34 | 32.02 3255
LongChat-7B-v1.5-32K
All KV ‘ 1 20.82 28.95 43.06 ‘ 3279 24.18  14.09 ‘ 30.67 22.83 26.09 | 66.50 83.45 41.25 ‘ 5320 56.64 ‘ 38.71 38.89
Sq-70% ‘ 0.325 ‘ 20.93 29.18 43.00 ‘ 33.02 23.61 14.55 ‘ 31.13 2293 26.25 ‘ 66.50 83.60 40.90 ‘ 54.64 56.93 ‘ 38.94 39.08
QUEST 0215 |19.33 31.51 41.65 | 31.79 2325 1258 | 31.09 2284 26.87 | 67.50 84.33 - 53.57 55.37 | 38.59 -
Sq-80% 0.225 |20.57 29.64 4280 | 33.06 23.63 15.27 | 31.31 23.21 26.17 | 65.50 83.87 41.28 | 52.83 57.17 | 38.85 39.02
QUEST 0.168 | 18.03 30.21 37.83 | 31.78 21.03 11.21 3052 22.84 2647 | 63.50 84.71 - 51.50 55.82 | 37.34 -
Sq-90% 0.125 | 18.60 29.86 4221 | 3571 23.12 1431 |31.61 2279 26.17 | 65.50 78.85 41.22|51.57 56.95 | 38.25 38.46
H-Sq-90% | 0.122 | 18.86 30.51 4225 | 3542 20.88 13.85 | 30.85 22.84 25.71 | 65.50 78.50 40.96 | 51.89 57.20 | 38.02 38.23

5 Dataset for Fixed Context Processing

Despite the growing demand for long-context appli-
cations where a fixed document is used to answer
multiple user requests (e.g., code generation or
long-document QA), there is currently no bench-
mark designed to test this scenario. Recent long
context benchmarks (Bai et al., 2023; Hsieh et al.,
2024) do not evaluate the handling of multiple
queries on the same document. This leads to a
longer iteration cycle for developing fixed context
optimization methods since the offline preprocess-
ing step must be performed for every sample in-
stead of once per fixed context.

To bridge this gap, we introduce PreFixQA
(Fixed-Prefix QA), a benchmark which evaluates
the ability of LLMs to manage multiple queries on a
single long-context document. Our dataset curation
pipeline (outlined in detail in Section E) involves
collecting long documents from arXiv papers, and
then collecting question-answer pairs based on

each document using a multi-step generation and
filtering procedure inspired by the Llama-3 training
data generation approach (Dubey et al., 2024). This
process has yielded 1,127 high-quality question-
answer pairs (24 on average per document) for
our benchmark, ensuring a diverse and challenging
benchmark for long-document question-answering.

6 Results

6.1 Experimental Details

We evaluate our method on a range of downstream
long context length tasks. We leverage the Long-
Bench (Bai et al., 2023) and RULER (Hsieh et al.,
2024) benchmark suites as well as PreFixQA for
our evaluation. For our single-level experiments,
we set the number of cluster centroids to be 5% of
the fixed context length, and for our hierarchical
experiments we set the number of Level 1 centroids
and Level 2 centroids to be 1% and 5% of the fixed
context length, respectively. For our hierarchical
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Figure 4: Kernel implementation latency results for FlashAttention baseline as well as for Squeezed Attention with
70%, 80%, and 90% sparsity settings. We report latency results for prefill (with 1K and 4K input length) as well as
for generation with a single input token. Latency results are normalized to the FlashAttention baseline runtime for
prefill (and to our Triton FlashDecoding baseline for generation) for the same input length.

Table 3: RULER evaluation results with Squeezed Attention. We report results across different RULER tasks for the
LWM-Text-Chat-1M model using 32K context length for evaluation. We also report the KV budget (“Budget”),
which gives the expected percentage of the KV cache that needs to be loaded during inference for each configuration.
Our results show that our method is able to retain the accuracy of the baseline model, even with aggressive sparsity

settings.
Config \ Budget \ Niahl Niah2 Niah3 MKeyl MKey2 MKey3 MValue MQuery VT CWE FWE QA1 QA2 \ Avg.
AllKV 1 100.0  100.0 99.4 100.0 99.6 96.4 45.6 353 58.4 9.7 66.7 632 43.6 | 70.6
Sq-70% | 0.325 100.0  100.0 99.2 100.0 99.6 93.2 43.8 374 57.7 8.4 658 602 420 | 69.8
Sq-90% | 0.125 100.0  100.0 98.6 100.0 99.4 81.8 42.1 36.0 51.4 9.7 65.1 578 416 | 68.0

Table 4: PreFixQA evaluation results with Squeezed
Attention. We report results using our single-level
approach (“Sq”) and with our hierarchical lookup-
based approach (“H-Sq”). LLaMA-2, LWM, and
LongChat are LLaMA-2-7B-32K, LWM-Text-Chat-1M,
and LongChat-7B-v1.5-32K, respectively.

Config LLaMA-2 LWM LongChat
All KV 43.47 14.92 24.13
Sq-70% 42.14 14.45 23.79
Sq-90% 36.95 14.25 23.94
H-Sq-90% 37.05 14.12 23.71

experiments, we set the Level 1 threshold such
that 50% of the keys would be ruled out before
performing the fine-grained Level 2 lookup. For
the single-level lookup, the metadata overhead was
therefore 2.5% of the KV cache memory footprint,
since we only need to store centroids for the keys
and not for the values. For the hierarchical lookup,
the metadata overhead was 3% of the KV cache
size in terms of storage requirements, but only ap-
proximately 1.75% of the KV cache size in terms
of metadata loaded during generation. Additional
experimental details are provided in Appendix F.

6.2 Accuracy Evaluation Results

We evaluate our method on long-context datasets
from LongBench (Bai et al., 2023), a comprehen-
sive benchmark which includes document QA, few-
shot learning, and code completion tasks. Table
2 provides evaluation of our method on the non-
synthetic English language tasks in LongBench
for the LLaMA-2-7B-32K (lla, 2023), LWM-Text-
Chat-1M (Liu et al., 2024b), and Longchat-7B-
v1.5-32K models (Li et al., 2023). We also provide
baseline comparisons with QUEST (Tang et al.,
2024). To ensure a fair comparison, we set the to-
ken budget for their method dynamically for each
input sample to match our approach. We also pro-
vide Longbench evaluation for Llama-3.1-8B and
Falcon3-7B in Appendix G. Additional baseline
configuration details are provided in Appendix F.
The results show that our method provides simi-
lar accuracy to the full KV cache baseline on long
context-length tasks, while offering significant ef-
ficiency improvement in terms of reduction in KV
cache loading and attention computation. Across
all three models in Table 2, our method maintains
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full KV cache accuracy with less than 0.11 point
degradation at 70% sparsity, reducing the KV bud-
get by 3.1x. Even at a more aggressive 90% spar-
sity, which reduces the KV budget by 8%, our
method only introduces a small accuracy degra-
dation of within 0.5 points. Note that our method’s
accuracy also matches an idealized baseline, where
full attention is computed with all keys before re-
taining only the highest-scoring ones, as further
discussed in Appendix H. This demonstrates that
our method can effectively identify and retrieve
the most relevant keys (i.e., those that yield high
attention scores) without loading all the keys.

Furthermore, our method outperforms the
QUEST baseline, with a pronounced accuracy gap
of up to ~1 point for more aggressive sparsity set-
tings. This highlights the advantage of semantic-
based clustering for identifying and retaining im-
portant keys. We also include results for our hier-
archical lookup approach, demonstrating how our
hierarchical method has lower overhead from the
centroid lookup with minor accuracy loss relative
to performing a single-level lookup. Appendix I
provides an ablation comparing the accuracy of our
algorithm when using coarse-grained versus fine-
grained centroids, demonstrating how fine-grained
centroids are required for high accuracy. Our hier-
archical method can attain the high accuracy of fine-
grained centroids with a reduced centroid lookup
overhead.

Additionally, we present evaluation for our
method on the PreFixQA dataset in Table 4 using
the LLaMA-2-7B-32K, Longchat-7B-v1.5-32K,
and LWM-Text-Chat-1M models (lla, 2023; Li
et al., 2023; Liu et al., 2024b). The results demon-
strate how our method provides similar accuracy as
the baseline for fixed context use-cases, while sig-
nificantly compressing the fixed context that needs
to be dynamically loaded during inference. We
also present an evaluation for our method on the
RULER benchmark (Hsieh et al., 2024) using the
LWM-Text-Chat-1M model (Liu et al., 2024b) in
Table 3, demonstrating the consistent performance
for our method across different benchmark suites.

6.3 System Evaluation

To evaluate our system implementation, we bench-
marked the end-to-end runtime for our centroid
lookup and sparse FlashAttention kernels (and in-
clude the runtime of Pytorch code for setting up
arguments for our kernels), and compared these
with baseline FlashAttention and FlashDecoding

implementations. We performed benchmarking on
an NVIDIA H100 NVL GPU. Experimental de-
tails for our kernel benchmarking experiments are
provided in Appendix F. Figure 4 shows the la-
tency for the FlashAttention baseline, as well as
for Squeezed Attention with 70%, 80%, and 90%
sparsity with 512K context length. We set the num-
ber of centroids to be 5% of the context length. We
report results for generation (one input token) as
well as prefill with 1K and 4K input tokens, and
we normalize the latency to the baseline latency for
each input size. These results show the benefits of
our method for accelerating long context length in-
ference, with 4.3 /4.2 speedups demonstrated
for the prefill and decode phases. Additional results
for context length 128K are provided in Appendix
J. Hierarchical centroid lookup kernel benchmark-
ing is also provided in Appendix L, demonstrating
how our hierarchical approach can accelerate the
lookup runtime by up to 1.4x for 512K context
length. Appendix M provides measured runtime
for clustering the fixed context keys; note that this
is performed offline ahead of inference time, so it is
not included in the inference latency breakdown.

7 Conclusion

We propose Squeezed Attention as a method for ac-
celerating attention in long context-length applica-
tions. Our method groups the fixed context keys by
applying K-means clustering offline and leverages
representative centroids for each cluster to quickly
identify important keys. Online during inference,
we first compare the new input query with the rep-
resentative centroids, and then only compute exact
attention for these important keys. Our method can
be extended to the hierarchical retrieval scheme,
which can reduce the memory and compute com-
plexity of lookups to logarithmic complexity with
respect to the fixed context length. Squeezed At-
tention is able to provide 4.3x / 4.2X speedups
during prefill and decode phases for long context
inference, while maintaining accuracy. Addition-
ally, we outline how our algorithm can be extended
using a hierarchical centroid lookup, allowing us
to achieve the accuracy of fine-grained centroid
lookups while maintaining the efficiency of coarse-
grained centroids, thereby improving the scalabil-
ity of our approach for longer context lengths. Our
approach accelerates long context length LLM in-
ference with fixed context applications while main-
taining accuracy.
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8 Limitations

One of the limitations of our work is that both the
sparsity threshold and the number of centroids used
are hyperparameters. Furthermore, the degree of
sparsity that is attainable without accuracy degrada-
tion is also dependent on the input context and the
type of task. Our work could therefore be extended
by developing an automated way of configuring
these hyperparameters depending on the target ac-
curacy level and the input context. Our approach
also focuses on accelerating fixed context applica-
tions, which limits its use for applications where
the full context is only available online. Future
work can be done to accelerate the initial offline
clustering step in order to allow our method to be
used in online use-cases. Finally, our current ap-
proach does not perform any approximation for the
less important keys. Future work could investigate
methods to approximate the attention to these keys
in order to compensate for this error.

9 Acknowledgements

We are grateful for the insightful discussions with
Dhairya Malhotra. We acknowledge gracious sup-
port from the FuriosaAl team including Jihoon
Yoon, Suyeol Lee, and Hyung Il Koo, as well as
from Intel, Apple, and NVIDIA. We also appreci-
ate the support from Microsoft through their Ac-
celerating Foundation Model Research, including
great support from Sean Kuno. Furthermore, we
appreciate support from Google Cloud, the Google
TRC team, and specifically Jonathan Caton, and
Prof. David Patterson. Prof. Keutzer’s lab is spon-
sored by the Intel corporation, Intel One-API, Intel
VLAB team, the Intel One-API center of excel-
lence, as well as funding through BDD and BAIR.
We appreciate great feedback and support from El-
lick Chan, Saurabh Tangri, Andres Rodriguez, and
Kittur Ganesh. Sehoon Kim would like to acknowl-
edge the support from the Korea Foundation for
Advanced Studies (KFAS). Michael W. Mahoney
would also like to acknowledge a J. P. Morgan
Chase Faculty Research Award as well as the DOE,
NSF, and ONR. This work was supported by the
Director, Office of Science, Office of Advanced
Scientific Computing Research, of the U.S. De-
partment of Energy under Contract No. DE-ACO02-
05CH11231. Our conclusions do not necessarily
reflect the position or the policy of our sponsors,
and no official endorsement should be inferred.

References

arxiv api user’s manual. https://info.arxiv.org/
help/api/index.html. Accessed: 2023-10-13.

2023. togethercomputer/llama-2-7b-32k.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, and 1 others. 2023. Gpt-4 techni-
cal report. arXiv preprint arXiv:2303.08774.

Anthropic. 2023. Claude 2: https://www.anthropic.
com/news/claude-2.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu,
Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao
Liu, Aohan Zeng, Lei Hou, and 1 others. 2023.
Longbench: A bilingual, multitask benchmark
for long context understanding. arXiv preprint
arXiv:2308.14508.

William Brandon, Mayank Mishra, Aniruddha
Nrusimha, Rameswar Panda, and Jonathan Ragan
Kelly. 2024. Reducing transformer key-value cache
size with cross-layer attention. arXiv preprint
arXiv:2405.12981.

Yukang Chen, Shengju Qian, Haotian Tang, Xin Lai,
Zhijian Liu, Song Han, and Jiaya Jia. 2023. Longlora:
Efficient fine-tuning of long-context large language
models. arXiv preprint arXiv:2309.12307.

Rewon Child, Scott Gray, Alec Radford, and
Ilya Sutskever. 2019. Generating long se-
quences with sparse transformers. arXiv preprint
arXiv:1904.10509.

Ronald Coifman, Vladimir Rokhlin, and Stephen
Wandzura. 1993. The fast multipole method for the
wave equation: A pedestrian prescription. /EEE An-
tennas and Propagation magazine, 35(3):7-12.

Tri Dao. 2023. Flashattention-2: Faster attention with
better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691.

Tri Dao, Daniel Haziza, Francisco Massa, and Grigory
Sisov. 2023. Flash-decoding for long-context infer-
ence: https://crfm.stanford.edu/2023/10/12/
flashdecoding.html.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, and 1 others. 2024. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783.

Qichen Fu, Minsik Cho, Thomas Merth, Sachin
Mehta, Mohammad Rastegari, and Mahyar Najibi.
2024. Lazyllm: Dynamic token pruning for effi-
cient long context llm inference. arXiv preprint
arXiv:2407.14057.

32640


https://info.arxiv.org/help/api/index.html
https://info.arxiv.org/help/api/index.html
https://www.anthropic.com/news/claude-2
https://www.anthropic.com/news/claude-2
https://crfm.stanford.edu/2023/10/12/flashdecoding.html
https://crfm.stanford.edu/2023/10/12/flashdecoding.html

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang,
Jiawei Han, and Jianfeng Gao. 2023. Model tells you
what to discard: Adaptive kv cache compression for
llms. arXiv preprint arXiv:2310.01801.

Google. 2023. Gemini 1.5 https://blog.
google/technology/ai/google-gemini-next-
generation-model-february-2024.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten,
Alex Vaughan, and 1 others. 2024. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783.

Alexander Gray and Andrew Moore. 2000. N-
body’problems in statistical learning. Advances in
neural information processing systems, 13.

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh,
Michael W Mahoney, Yakun Sophia Shao, Kurt
Keutzer, and Amir Gholami. 2024. Kvquant: To-
wards 10 million context length 1lm inference with
kv cache quantization. Advances in Neural Informa-
tion Processing Systems.

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shan-
tanu Acharya, Dima Rekesh, Fei Jia, and Boris Gins-
burg. 2024. Ruler: What’s the real context size of
your long-context language models? arXiv preprint
arXiv:2404.06654.

Huigiang Jiang, Yucheng Li, Chengruidong Zhang,
Qianhui Wu, Xufang Luo, Surin Ahn, Zhenhua Han,
Amir H Abdi, Dongsheng Li, Chin-Yew Lin, and
1 others. 2024. Minference 1.0: Accelerating pre-
filling for long-context llms via dynamic sparse atten-
tion. arXiv preprint arXiv:2407.02490.

Hao Kang, Qingru Zhang, Souvik Kundu, Geonhwa
Jeong, Zaoxing Liu, Tushar Krishna, and Tuo Zhao.
2024. Gear: An efficient kv cache compression
recipefor near-lossless generative inference of 1lm.
arXiv preprint arXiv:2403.05527.

Yanming Kang, Giang Tran, and Hans De Sterck. 2023.
Fast multipole attention: A divide-and-conquer atten-
tion mechanism for long sequences. arXiv preprint
arXiv:2310.11960.

Minsoo Kim, Kyuhong Shim, Jungwook Choi, and
Simyung Chang. 2024. Infinipot: Infinite context pro-
cessing on memory-constrained llms. arXiv preprint
arXiv:2410.01518.

Dongryeol Lee, Andrew Moore, and Alexander Gray.
2005. Dual-tree fast gauss transforms. Advances in
Neural Information Processing Systems, 18.

Dacheng Li, Rulin Shao Shao, Anze Xie, Ying
Sheng, Lianmin Zheng, Joseph Gonzalez, Ion Stoica,
Xuezhe Ma, and Hao Zhang. 2023. How long can
open-source llms truly promise on context length?

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat
Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle Cai,
Patrick Lewis, and Deming Chen. 2024. Snapkv:
Llm knows what you are looking for before genera-
tion. arXiv preprint arXiv:2404.14469.

Di Liu, Meng Chen, Baotong Lu, Huiqgiang Jiang,
Zhenhua Han, Qianxi Zhang, Qi Chen, Chen-
gruidong Zhang, Bailu Ding, Kai Zhang, and 1 others.
2024a. Retrievalattention: Accelerating long-context
llm inference via vector retrieval. arXiv preprint
arXiv:2409.10516.

Hao Liu, Wilson Yan, Matei Zaharia, and Pieter
Abbeel. 2024b. World model on million-length video
and language with ringattention. arXiv preprint
arXiv:2402.08268.

Ruikang Liu, Haoli Bai, Haokun Lin, Yuening Li, Han
Gao, Zhengzhuo Xu, Lu Hou, Jun Yao, and Chun
Yuan. 2024c. Intactkv: Improving large language
model quantization by keeping pivot tokens intact.
arXiv preprint arXiv:2403.01241.

Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao
Wang, Victor Xie, Zhaozhuo Xu, Anastasios Kyril-
lidis, and Anshumali Shrivastava. 2024d. Scis-
sorhands: Exploiting the persistence of importance
hypothesis for 1lm kv cache compression at test time.
Advances in Neural Information Processing Systems,
36.

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong,
Zhaozhuo Xu, Vladimir Braverman, Beidi Chen,
and Xia Hu. 2024e. Kivi: A tuning-free asymmet-
ric 2bit quantization for kv cache. arXiv preprint
arXiv:2402.02750.

William B March, Bo Xiao, and George Biros.
2015. Askit: Approximate skeletonization kernel-
independent treecode in high dimensions. SIAM Jour-
nal on Scientific Computing, 37(2):A1089-A1110.

Vlad Morariu, Balaji Srinivasan, Vikas C Raykar, Ra-
mani Duraiswami, and Larry S Davis. 2008. Au-
tomatic online tuning for fast gaussian summation.
Advances in neural information processing systems,

21.

Piotr Nawrot, Adrian Lancucki, Marcin Chochowski,
David Tarjan, and Edoardo M Ponti. 2024. Dynamic
memory compression: Retrofitting 1lms for acceler-
ated inference. arXiv preprint arXiv:2403.09636.

OpenAl.  2024. https://github.com/triton-
lang/triton/blob/main/python/tutorials/06-fused-
attention.py.

Matanel Oren, Michael Hassid, Yossi Adi, and Roy
Schwartz. 2024. Transformers are multi-state rnns.
arXiv preprint arXiv:2401.06104.

Matteo Pagliardini, Daniele Paliotta, Martin Jaggi, and
Francois Fleuret. 2023. Fast attention over long se-
quences with dynamic sparse flash attention. Ad-
vances in Neural Information Processing Systems,
36:59808-59831.

32641


https://blog.google/technology/ai/google-gemini-next-generation-model-february-2024
https://blog.google/technology/ai/google-gemini-next-generation-model-february-2024
https://blog.google/technology/ai/google-gemini-next-generation-model-february-2024
https://lmsys.org/blog/2023-06-29-longchat
https://lmsys.org/blog/2023-06-29-longchat

Jack W Rae, Anna Potapenko, Siddhant M Jayaku-
mar, Chloe Hillier, and Timothy P Lillicrap. 1911.
Compressive transformers for long-range sequence
modelling. arxiv preprint, 2019. URL https://arxiv.
org/abs.

Aurko Roy, Mohammad Saffar, Ashish Vaswani, and
David Grangier. 2021. Efficient content-based sparse
attention with routing transformers. Transactions of
the Association for Computational Linguistics, 9:53—

68.

Jiaming Tang, Yilong Zhao, Kan Zhu, Guangxuan Xiao,
Baris Kasikci, and Song Han. 2024. Quest: Query-
aware sparsity for efficient long-context llm inference.
arXiv preprint arXiv:2406.10774.

TII Team. 2024. Falcon 3 family of open foundation
models.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal
Azhar, and 1 others. 2023a. LLaMA: Open and ef-
ficient foundation language models. arXiv preprint
arXiv:2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, and 1 others. 2023b. Llama 2: Open foun-
dation and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Yang, Duraiswami, and Gumerov. 2003. Improved fast
gauss transform and efficient kernel density estima-
tion. In Proceedings ninth IEEE international con-
ference on computer vision, pages 664—671. IEEE.

Dongjie Yang, XiaoDong Han, Yan Gao, Yao Hu, Shilin
Zhang, and Hai Zhao. 2024. Pyramidinfer: Pyra-
mid kv cache compression for high-throughput llm
inference. arXiv preprint arXiv:2405.12532.

Yao Yao, Zuchao Li, and Hai Zhao. 2024. Sirllm:
Streaming infinite retentive llm. arXiv preprint
arXiv:2405.12528.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava
Dubey, Joshua Ainslie, Chris Alberti, Santiago On-
tanon, Philip Pham, Anirudh Ravula, Qifan Wang,
Li Yang, and 1 others. 2020. Big bird: Transformers
for longer sequences. Advances in neural informa-
tion processing systems, 33:17283-17297.

Hailin Zhang, Xiaodong Ji, Yilin Chen, Fangcheng Fu,
Xupeng Miao, Xiaonan Nie, Weipeng Chen, and Bin
Cui. 2024a. Pqcache: Product quantization-based kv-
cache for long context 1lm inference. arXiv preprint
arXiv:2407.12820.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong
Chen, Lianmin Zheng, Ruisi Cai, Zhao Song, Yuan-
dong Tian, Christopher Ré, Clark Barrett, and 1 oth-
ers. 2024b. H2o: Heavy-hitter oracle for efficient

32642

generative inference of large language models. Ad-
vances in Neural Information Processing Systems,
36.



A Related Work

This section provides a detailed discussion of re-
lated work for Long-Context LLMs as well as KV
cache compression.

A.1 Long-Context LLMs

With the growing popularity of long-context appli-
cations, there has been a continuous development
of LLMs that can support context lengths exceed-
ing 100k, and even up to 1M tokens. This includes
proprietary models such as GPT-4-Turbo (Achiam
et al., 2023), Claude-2 (Anthropic, 2023) and Gem-
ini 1.5 (Google, 2023), which support context
lengths of up to 128k, 200k, and 1M tokens, re-
spectively. On the open-source front, several efforts
have been made to extend the context lengths be-
yond the length on which the original models were
trained (Li et al., 2023; Chen et al., 2023). A no-
table work is Large World Model (LWM) (Liu et al.,
2024b), which has demonstrated extending the con-
text length of Llama 2 (Touvron et al., 2023b) to
1M tokens. However, as context lengths increase,
the KV cache often becomes a critical bottleneck,
significantly impacting memory usage and latency
during LLM inference (Tang et al., 2024; Hooper
et al., 2024). Therefore, KV cache compression
methods have emerged as a critical concern for en-
abling efficient inference when using long-context
models.

A.2 KV Cache Compression for
Long-Context Inference

To enable more efficient long-context inference by
reducing the KV cache size, several methods have
been proposed, including quantization (Hooper
et al., 2024; Liu et al., 2024e; Kang et al., 2024;
Liu et al., 2024c), shared KV cache across to-
kens (Nawrot et al., 2024) and layers (Brandon
et al., 2024), and token pruning (Fu et al., 2024). A
notable approach which will be discussed in more
detail is KV cache sparsification, which follows a
prior line of work in attention sparsification (Roy
et al., 2021; Child et al., 2019; Zaheer et al., 2020).
There are two general directions which have been
pursued for KV cache sparsification: KV cache
eviction, and sparsely loading the KV cache.

KV Cache Eviction. KV eviction has become a
widely used method for compressing the KV cache
by identifying and removing less important tokens.
Various strategies have been proposed to determine
token importance, including attention score con-

tribution (Zhang et al., 2024b; Oren et al., 2024),
persistent attention patterns during generation (Liu
et al., 2024d), token entropy (Yao et al., 2024), and
additional heuristic-based policies (Ge et al., 2023).

In use cases where long context prompts are fol-
lowed by varying questions, the importance of the
KV cache for the context should be decided on
the basis of its relevance to the subsequent ques-
tion. To address this, SnapKV (Li et al., 2024)
proposes selecting KV cache entries solely based
on the attention scores of the most recent prompt
tokens to the rest of the input prompt. However,
since the important tokens in the input prompt are
determined once and remain fixed throughout the
generation process, it cannot adapt to changing to-
ken importance during generation or in response
to subsequent user inputs. InfiniPot (Kim et al.,
2024) extends this idea by iteratively compressing
the context based on its relevance to predefined
task-specific prompts that resemble potential input
questions. Nevertheless, selecting important tokens
offline using proxy prompts may not accurately re-
flect future queries.

Likewise, eviction-based approaches discard to-
kens and retain the remaining ones throughout gen-
eration, potentially overlooking the fact that dis-
carded tokens could become important later in the
process. Squeezed Attention, on the other hand,
bypasses the need for a full KV cache lookup by
clustering the KV cache and retrieving only the
most relevant clusters through an efficient centroid
lookup. This approach is lightweight enough to be
applied at every generation step, thereby ensuring
relevant context is retrieved for every query token.
Sparse KV Cache Loading. One previous direc-
tion that has been explored aims to store the full KV
cache, but only load in the relevant keys and val-
ues dynamically during inference. QUEST (Tang
et al., 2024) clusters consecutive KV cache entries
and dynamically retrieves the most relevant clus-
ters based on their relevance to each query token
during generation. Another line of relevant work
here is application of fast kernel summation meth-
ods (Gray and Moore, 2000; Yang et al., 2003;
Lee et al., 2005; Morariu et al., 2008; March et al.,
2015) and in particular variants of Fast Multipole
Method (FMM) (Coifman et al., 1993) which were
originally proposed to accelerate N-body simula-
tions. In the context of Transformers, recent work
of (Kang et al., 2023) utilizes FMM to cluster con-
secutive past tokens and assign coarser-grained
clusters to older tokens, reducing the memory over-
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head of storing the entire past tokens. However, this
approach, as well as QUEST (Tang et al., 2024),
rely on physical proximity for clustering, whereas
in natural language applications clustering should
instead be based on semantic proximity, as tokens
that are physically far apart can be semantically
similar. Squeezed Attention addresses this by clus-
tering tokens based on their embedding similarity,
ensuring that semantically relevant tokens are re-
trieved for future generations.

Another prior line of work aims to leverage vec-
tor search methods for only loading important keys
and values. PQCache (Zhang et al., 2024a) applied
product quantization-based vector search to iden-
tify important keys. Retrieval Attention (Liu et al.,
2024a) uses a K-Nearest Neighbors-based vector
search approach, which offloads dynamic retrieval
of important keys and values to the CPU. However,
these prior approaches are restricted to the gen-
eration stage and do not accelerate prefill, which
is critical to reducing time-to-first-token (TTFT)
latencies.

In contrast with prior works which leverage vec-
tor search methods, Squeezed Attention uses a fast
centroid lookup to enable accurate retrieval of rele-
vant contexts on the GPU without requiring offload-
ing operations to CPUs, as in (Liu et al., 2024a).
Our approach is also able to accelerate both pre-
fill and generation. Furthermore, our method al-
lows for loading more or fewer keys from different
heads, depending on the number of important keys
for each head. This approach enables us to achieve
higher accuracy while aggressively reducing the
number of KV entries.

A.3 Sparsity for Accelerating Prefill

There has also been previous work on exploiting
sparsity to accelerate prefill for LLM inference.
One prior approach detected and exploited partic-
ular attention sparsity patterns in order to reduce
the amount of computation required (Jiang et al.,
2024). A second prior approach is token pruning,
where tokens are progressively dropped as we go
from earlier layers to later layers in the network,
thereby skipping computation for low-importance
tokens at later layers (Yang et al., 2024; Fu et al.,
2024). Note that these approaches are mainly tai-
lored for accelerating attention for long prefill use
cases, whereas our method accelerates attention to
the fixed context for both prefill with the user query
and for decode.

B Additional Analysis

B.1 t-SNE Visualization of Keys and Their
Clusters

Figure 5 illustrates t-SNE plots of key embeddings
and their Level 1 and 2 clusters. As can be seen,
while the coarser Level 2 clusters offer a rough
grouping of the keys, the finer Level 1 clusters al-
low for a more detailed and accurate representation
within each cluster.

B.2 Attention Score Skewness Analysis

Figure 6 illustrates the cumulative attention scores
for the top 1% highest attention values within the
same model. A higher value (up to a maximum of
1) indicates that the attention head has a sharper,
more skewed distribution, while a lower value indi-
cates a flatter distribution of attention scores. This
plot demonstrates how the attention heads in the
first two layers of the LLaMA-2-7B-32K model, as
well as a subset of the heads at each of the remain-
ing layers, have a flatter distribution of attention
scores, and therefore we need to load in more keys
for accurate computation of attention.

C Global Threshold Calibration

To determine the appropriate global threshold for
achieving a target sparsity level, we use a small
number of tokens (100 tokens) from the end of
the fixed context in our experiments to calibrate
the threshold offline. We compute the average S;
scores using these last few query tokens and the
remaining fixed context keys, and set a threshold T
that achieves the desired sparsity level. Note that
we exclude the last keys during calibration to avoid
the impact of causal masking; these tokens are thus
retained exactly and not clustered. Once the global
threshold is decided, it is kept the same throughout
the prefill and generation stages.

D Centroid Lookup System
Implementation Details

Prefill Stage. During prefill, where multiple
query tokens are available, we split the workload
along the query sequence length dimension as in
FlashAttention-2 (Dao, 2023) to attain additional
parallelism. Since this process produces individ-
ual S; values for each query token, we compute
their average to obtain S;, i.e., the averaged impor-
tance score for each key cluster across all query
tokens. We then check whether S; > T to deter-
mine whether to load the keys in the corresponding
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Figure 5: t-SNE visualization of key embeddings and their Level 1 and 2 clusters from LLaMA-2-7B-32K on the
TREC benchmark (two attention heads, with index 24 and 25, from layer 0). For clarity, only the top 15 Level 1

clusters nearest to the query are shown.

cluster. Since S; is an estimate of the Softmax
value, which is normalized to sum to 1, averag-
ing across query tokens provides a simple way to
calculate their combined importance score.

Generation Stage. During generation, achieving
parallelism is more challenging, as we cannot lever-
age parallelism across the dimension of the length
of the query sequence. This is particularly problem-
atic when dealing with small batch sizes, as in that
case the only parallelism we can leverage is across
different heads. To accelerate centroid lookup dur-
ing generation, we additionally compute and store
exp (qC;") for each cluster during the first pass
over the key centroids while we are computing the
denominator D = }; N; - exp (quT). Then, in the
second pass, we load the precomputed exp (inT )
values and compare them against DT to determine
the importance of each cluster, without the need
to explicitly compute S;. This second pass can be
parallelized across the cluster dimension for fast
comparison. As highlighted in Appendix K, these
optimizations are crucial for performing the cen-
troid lookup during generation without substantial
latency overhead. Similar to the numerically stable
implementation of Softmax, where the maximum
value is subtracted from all inputs, our centroid
lookup approach during the generation stage also
subtracts the maximum value from all inputs while
computing the denominator D. Then, when com-
paring exp (qC;") to the threshold DT, the maxi-
mum value correction can similarly be accounted
for by scaling the threshold DT using the exponen-

tial of the maximum value rather than by scaling
exp (qC;") down by this value.

Hierarchical Centroid Lookup Kernel. We also
implement hierarchical centroid lookup kernels for
generation (see Appendix L for benchmarking ex-
periments). The comparison with the level one
centroids is identical to the one-level lookup ker-
nel for generation, and it outputs the indices of the
level two centroids which we need to compare with.
The kernel for the second or later levels of the hi-
erarchy takes as input the indices of the centroids
which need to be loaded. This kernel then performs
similar parallelization as the generation kernel in
the one-level case, except that when we parallelize
the work across the cluster dimension we ensure
that a balanced number of centroids are mapped to
each GPU SM. This is analogous to how we handle
unbalanced sparsity in the sparse FlashAttention
kernel, as described in Section 4.2.

E Overview of Dataset Generation
Pipeline

This section discusses in detail the dataset curation
pipeline for PreFixQA (Fixed-Prefix QA), which
evaluates the ability of LLMs to manage multiple
queries on a single long-context document. Our
dataset curation pipeline consists of two phases: (i)
collecting long documents from arXiv papers; and
(ii) generating question-answer pairs based on each
document, while ensuring correctness and consis-
tency. We also provide the GPT-4-Turbo (Achiam
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Figure 6: Cumulative attention scores for the top 1% highest scoring attention values across different heads and
layers in LLaMA-2-7B-32K for a single sample on the TREC benchmark.

et al., 2023) prompts that were used to generate
and filter high-quality question-answer pairs.

E.1 Long Documents Collection.

PreFixQA is a long-document QA benchmark de-
signed for one-document-multi-user-input scenar-
ios. To collect high-quality long documents, we
have sampled 47 papers from arXiv, each ranging
from 17,000 to 200,000 characters, with an average
length of 20 pages each after deleting references
and appendices. To evaluate LLMs’ capability to
understand diverse types of content, we have se-
lected papers from various fields, including com-
puter science, electrical engineering, biology, ma-
chine learning, economics, and finance. To prevent
training set contamination, all papers were sourced
from 2024 using the arXiv API (arx).

E.2 Question and Answer Generation.

To generate multiple questions per each document,
we have implemented a multi-step generation and
filtering procedure inspired by the Llama-3 training
data generation approach (Dubey et al., 2024). To
ensure that questions cover different sections of
the document and avoid redundant questions by
focusing too heavily on one part, we divide each
document into multiple chunks. Each chunk is then
provided to GPT-4-Turbo (Achiam et al., 2023) to
generate potential questions that can be answered
in 1-2 words. We generate questions with short

answers to enable more accurate evaluation through
string comparison.

However, a single pass of question generation
often results in low-quality question-answer pairs
due to incorrectness or inconsistency of the an-
swers. To avoid this, we introduce an additional
filtering process to ensure the correctness and con-
sistency of each question-answer pair. In this step,
each question (along with the specific chunk) is
provided to GPT-4-Turbo five separate times to
produce potential answers. We then filter out ques-
tions with inconsistent answers, which typically
arise from ambiguity in the question or context.
Furthermore, GPT-4-Turbo is used as a judge to
score the correctness of each answer, based on the
full document, on a scale of zero to ten. Questions
where at least three out of five answers score above
eight are kept; otherwise, they are discarded. For
the retained questions, the highest-rated answer is
selected and kept in the dataset.

E.3 Prompts

Dataset curation prompts for question genera-
tion.

System: You are a helpful assistant
tasked with generating very
specific, unambiguous, short-answer
questions based on a provided
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Document. The goal is to create
high-quality synthetic data. Ensure
the following:

1. The question must be fact-based
and directly answerable from the
text of the provided Document and
section of the paper.

2. The question should not be

vague, subjective, or open to
interpretation.
3. Focus on creating concise,

precise questions that yield a 1-2
word answer.

4. Questions should be relevant to
the section of the paper and avoid
overly broad phrasing.

5, Avoid generating questions
where the answer is too complex or
requires long explanations.

User: Based on the section of
the paper from the given document
which is an arxiv paper generate one
short-answer question that asks for
specific information retrievable
directly from the section of the
paper. The answer must be 1-2 words
only.

Follow the format of this example:

Example: Question: What
type of buffer is integrated
with warp-specialization in

FlashAttention-3? Use this section
of the paper as the context: "Given
section”. Do not output the answer;
Just the question.

Dataset curation prompts for answer genera-
tion.

System: You are a helpful assistant
designed to generate accurate and
specific short answers from a
provided section of the paper and
Document. Ensure the following:

1. The answer must be concise (1-2
words) .

2. The answer must be directly
retrieved from the provided text.

32647

3. If the section of the paper
does not contain the information
necessary to answer the question,
respond with: ’The document does

not contain the answer to the
question.’.

4. Avoid providing additional
commentary, and only output the
answer.

User: Given the section of the

paper below from an arXiv paper,
generate a concise (1-2 words)
answer to the following question.
Retrieve the answer from the paper
and the provided paragraph. Pay
close attention to the document and
retrieve the right answer. Output
the answer only and not the question
or anything else.

Follow the format of this example:
Example: Question: What
type of buffer is integrated
with warp-specialization in
FlashAttention-3? Answer: circular
SMEM buffer. Here is the section
of the paper: "Given Section”.
Question: "Question”. Answer:

Dataset curation prompts for filtering.

System: Please act as an impartial
judge and evaluate the quality
of the question and answer pairs
provided. You will be assessing
them based on the provided document.

Your evaluation should emphasize
the following criteria:
1. Correctness: Is the answer

factually accurate and grounded in
the document?

2. Agreement: Does the answer
directly address the question and
provide a relevant response?

3. Confidence: Does the answer
confidently engage with the
question, even if the Document does
not contain the exact information?




Important considerations for
rating:

- Rate vague or overly general
questions lower, especially if

they 1lack specificity or do not
make sense in the context of the

document.
- Rate answers where the model,
dataset, or method is unclear or

missing details lower.

- If the answer states that the
information is not in the document,
confirm by reviewing the document.

If the information is indeed
missing, rate the answer highly.
If it is present, rate the answer
lower.

- Avoid focusing on questions about
appendix numbers, or formatting
details (like section names).

- Avoid asking questions that have
2 possible answers. if there are
2 possible answers and only one is
provided, rate the answers low.

- If there are questions that are
taken from the ’References’ and
’Acknowledgments’ sections, rate
the answers low.
For each answer,
on a scale from 1
its quality.

provide a rating
to 10 based on

User: The question is "Question”
and the answers are "Answers”. Make
sure to give the rating for each
answer in the answers list. Please
output your rating in the following
format:

Question: "Question” Answer:
[Answer1]- Rating: [[5]] Answer:
[Answer2]- Rating: [[8]]

F Experimental Details

Evaluation. Across all tasks, when identifying the
“fixed context” portion of the input, we isolate the
context before the user input using the prompt tem-
plate for each task, and then we apply our approach
to this fixed portion of the prompt. For measur-
ing accuracy with PreFixQA, we use F1 Score to
calculate the similarity score between the outputs

and the ground truth (as is used in LongBench for
single-document QA tasks (Bai et al., 2023)). We
use 32K as the maximum context length through-
out our evaluation, and we truncate longer inputs
for both LongBench and PreFixQA. For RULER
(Hsieh et al., 2024), we use the default configura-
tion with 500 samples to evaluate our method.
KV Budget Computation. We report KV bud-
get estimates throughout the evaluation based on
the configured sparsity threshold and percentage of
centroids used. Note that the KV budget does not
include performing recomputation with the same
key centroid (as our current kernel implementation
for prefill loads the key centroid twice to avoid ma-
terializing intermediate tensors). Additionally, due
to our calibration procedure (which sets a single
threshold for both prefill and generation), the KV
cache budget may be slightly higher than expected
during prefill, and slightly lower than expected dur-
ing generation. This occurs since averaging the at-
tention to the centroids across query tokens flattens
the attention distribution, which leads to preserving
more key tokens during prefill. Also, with the hier-
archical method, the portion of KV tokens that are
loaded may deviate further from the expected value
from calibration due to the potential for incorrectly
filtering out important keys when comparing with
the Level 1 centroids, and due to not loading all of
the Level 2 keys when computing the denominator
in Equation 3. For our hierarchical lookup experi-
ments, we therefore profiled the KV cache budget
estimates reported in our evaluation.

Baseline Methods. QUEST (Tang et al., 2024)
uses a fixed token budget across all input samples
when evaluating on LongBench. In order to per-
form a fair comparison with our method, we set the
token budget for their approach to be a fixed per-
centage of the length of each sample. We dynami-
cally set their token budget to be a percentage of the
fixed context length (rounded up to the nearest mul-
tiple of 16). Since our method only approximates
attention to the fixed-context portion of the input,
we adjust this dynamically computed token budget
using the full input length for the sample as well as
the maximum generation length for the target task.
This adjustment ensures that the achieved compres-
sion ratio for the fixed context with their method
is comparable with our approach. Note that this
adjustment also accounts for the 100 tokens at the
end of the fixed context that we use for calibration
purposes and retain exactly with our method. For
QUEST comparisons, we also leave the first two
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layers uncompressed to match their default config-
uration. We use 90% and 95% sparsity settings
for their method to obtain the two configurations
reported in Table 2, and we use 85% sparsity set-
tings for their method to obtain the configurations
reported in Table 5.

Kernel Benchmarking. In order to benchmark
our kernel implementations for long context length
inference, we used sample text from the PG-19
language modeling dataset (Rae et al., 1911), and
applied our clustering method to derive centroids to
use when benchmarking. We used PG-19 data since
language modeling data allowed us to segment the
fixed context and input into the desired lengths for
measuring latency. Using real data ensured that we
had a realistic sparsity distribution across different
heads and layers. We ran clustering offline using
offloading to collect data with a context length of
512K, and loaded this in one layer at a time in order
to collect measurements. We report the average
runtime across all layers in all our experimental
results.

For  prefill, we  benchmarked  our
Triton kernel implementations using
triton.testing.do_bench with 100 warmup
runs and 500 measurement runs. For generation,
we used 50 measurement runs for 100 different in-
put query tokens, and averaged the runtime across
all of these runs. We use the H100 NVL hardware
platform for our experiments. We benchmarked
the end-to-end runtime for our centroid lookup
and sparse FlashAttention kernels (and include the
runtime of Pytorch code for setting up arguments
for our kernels). For prefill, we compared the
performance of our implementation with the
FlashAttention-2 implementation provided through
the PyTorch scaled_dot_product_attention
APIL. For generation, we implemented a Triton
FlashDecoding kernel optimized for single-batch
inference to serve as a stronger baseline.

G Additional Longbench Evaluation

Table 5 provides evaluation of our method for the
Llama-3.1-8B (Grattafiori et al., 2024) and Falcon3-
7B (Team, 2024) models, as well as a comparison
with QUEST (Tang et al., 2024) (with sparsity level
configured to match our approach). Note that these
models use grouped query attention, which means
that the keys and values are shared amongst a subset
of the heads. We allowed each head to indepen-
dently select important keys and values (since this

aligns with the open-source QUEST implementa-
tion), and then reported the total profiled memory
footprint. Future work could explore better ag-
gregation strategies across query heads that share
keys and values (eg. using the average score across
query heads to allow each head to “vote” for the
keys and values to retain); however, we let each
head separately identify important keys and values
for fair comparison with QUEST. While we ob-
serve more substantial average accuracy degrada-
tion for Llama-3.1-8B relative to the uncompressed
baseline (when compared with the degradation re-
ported with our method for LLaMA-2-7B-32K,
LWM-Text-Chat-1M, and Longchat-7B-v1.5-32K
models in Table 2), our method retains significantly
higher accuracy than QUEST for the same compres-
sion ratio with both models.

H Comparison with Ideal Lookup

Table 6 provides comparisons with a baseline using
an idealized lookup. For the “Ideal” baseline com-
parisons, we first compute attention from the user
input query tokens to all of the fixed context keys.
We then select the keys whose attention scores are
above the configured threshold, and compute ex-
act attention using only these keys. This serves as
an upper bound on the attainable accuracy for a
given sparsity percentage, since it lets us identify
the high-scoring tokens exactly before computing
attention using these tokens. For this idealized
baseline, we also calibrate for a global threshold
across all layers to allow this approach to adap-
tively retain more or fewer keys for different heads,
which allows us to make a fair comparison between
our method and this idealized baseline.

I Clustering Granularity Ablation

Table 7 include empirical results showing the av-
erage accuracy on a subset of LongBench for the
LWM-Text-Chat-1M model with different numbers
of centroids and pruning percentages to analyze the
impact of cluster granularity. We find that with 5%
centroids (one centroid per 20 tokens), we attain
high accuracy for aggressive (90%) pruning. With
1% centroids (one centroid per 100 tokens), we
observe large accuracy penalties with 90% prun-
ing; however, the centroid lookup overhead is re-
duced substantially. This motivates our hierarchi-
cal method, which allows us to achieve the high
accuracy of the lookup with fine-grained centroids
(5%) while maintaining the low lookup overhead
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Table 5: Longbench evaluation for Squeezed Attention with the Llama-3.1-8B and Falcon3-7B models, including
the average score across tasks. We also report baseline comparisons with QUEST (Tang et al., 2024). We report the
average score across LongBench tasks, as well as the average without SamSum (“All*”) for comparison against
QUEST, whose evaluation framework does not support SamSum. We also include the KV budget for our method
(“Budget”), which gives the percentage of the KV cache that needs to be loaded in during inference (including extra
memory movement for cluster centroids). We profiled the KV budget since different query heads which share the
KV cache may require loading different keys and values. We demonstrate how our method attains significantly
closer accuracy to the baseline relative to QUEST for the same memory budget.

|  Single-Doc. QA | Multi-Doc. QA | Summarization | Few-shot Learning | Code | Avg.
¥ &
Config | Budget \g \od > & 4 & Y
y & QL& & ¢ £ & ¢ & N o O | A< Al
A R A A R R S R

Llama-3.1-8B

ALKV | I 2191 1262 3390 | 11.64 1390 862 |30.07 2546 238 | 73.5 9097 47.43|7039 67.83|35.63 3647

QUEST | 0.375 | 1697 12.04 28.84
Sq-80% | 0.360 | 19.13 12.50 32.43

10.60 11.80  7.42 28.50  22.98 3.07 | 70.00 90.13 - 66.63 63.83 | 33.29 -
11.51 1257 8.06 | 28.44 23.85 593 | 72.50 90.73 45.05 | 65.55 65.20 | 34.49 35.25

Falcon3-7B

ALKV | 1 |2586 1223 3361 | 10.74 1233 694 |3340 2321 25.12 | 77.50 89.38 43.74 | 61.61 68.16 | 36.93 37.42
QUEST | 0.423 ‘19.97 10.08  32.00

Sq-80% | 0.302 |24.37 12.83 33.15 | 11.58 1223 548 | 32.65 2347 2523 | 75.00 88.87 40.88 | 61.93 67.84 | 36.51 36.82

1092 1229  5.05 ‘28.65 23.09  23.63 ‘75.00 89.73 - ‘60.32 61.75 ‘ 34.81

Table 6: Ablation showing the accuracy of Squeezed Attention compared with an idealized baseline. We report
LongBench evaluation results for the Llama-2-7B-32K model, including the average score across tasks. We also
include the KV budget for our method (“Budget”), which gives the percentage of the KV cache that needs to be
loaded in during inference (including extra memory movement for cluster centroids). Our results demonstrate that
our centroid lookup method attains similar accuracy to the idealized baseline for the same level of sparsity across
different LongBench tasks.

| Single-Document QA | Multi-Document QA | Summarization | Few-shot Learning | Code |
¥ &
Config | Budget \uf \od R N N &£ (] Avg.
> $ Qf Ny ¥ & K & & < ry & <
& FFIE Fy T §E e
All KV ‘ 1 ‘ 1791 11.12 33.87 ‘ 1245 11.95 6.54 ‘ 29.37 16.93 21.58 ‘ 71.50 87.96 43.87 ‘ 61.45 59.14 ‘ 34.69
Ideal-70% 0.3 18.28 11.25 34.13 | 12.56 12.13 6.57 29.12 16.99 21.37 | 70.00 87.79 43.59 | 62.01 59.36 | 34.65
Sq-70% 0.325 | 18.55 11.78 34.33 | 1231 1231 6.26 29.50 16.90 20.76 | 69.00 87.96 43.90 | 61.29 59.53 | 34.60
Ideal-90% 0.1 17.65 11.77 33.89 | 12.67 11.86 6.04 29.02 16.79 2322 | 69.00 87.23 44.33|57.82 60.17 | 34.39
Sq-90% 0.125 | 18.15 1439 3238 | 11.84 11.70 6.45 29.06 1693 21.66 | 70.00 87.43 45.15|58.79 59.37 | 34.52

with coarse-grained centroids (1%). The reduced  speedups reported for 512K. For generation, we ob-
lookup overhead is attained by first performing a  serve reduced speedups, observing 2.5 X speedups
coarse-grained lookup to filter out less promising  with 90% sparsity, relative to the FlashDecoding
fine-grained centroids, before comparing with only ~ baseline implementation. The reduced speedups

the more promising fine-grained centroids. in this regime are due to greater overheads with
the centroid lookup kernel for shorter sequence
J Kernel Benchmarking for 128K lengths.
Sequence Length

K Generation Centroid Lookup Kernel
Figure 7 shows the latency for the FlashAttention Ablation

baseline as well as for Squeezed Attention with

70%, 80%, and 90% sparsity with 128k context =~ We provide ablations for our centroid lookup kernel
length, with the number of centroids set to be 5% of =~ implementation for generation. Specifically, we ab-
the context length. We report results for generation  late the benefits of our single-pass optimization,
as well as prefill with 1K and 4K input tokens, and ~ as well as the improvements from parallelizing
we report the latency for each configuration normal-  along the KV sequence length dimension in order
ized to the baseline latency for the corresponding  to accelerate the centroid lookup during generation.
input size. For prefill, we observe 4.2 speedups  Table 8 shows the results for this ablation, demon-
with 90% sparsity, which is comparable with our  strating how these optimizations allow Squeezed
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Average Latency (Fixed Context Sequence Length of 128K)

Normalized Latency
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Baseline 70% 80% 90% Baseline 70% 80% 90% Baseline 70% 80% 90%
Pruning  Pruning  Pruning Pruning  Pruning  Pruning Pruning  Pruning  Pruning
Prefill (1K Input Length) Prefill (4K Input Length) Generation

I Baseline

I Centroid Lookup

Sparse Flash Attention

Figure 7: Kernel implementation latency results for FlashAttention baseline as well as for Squeezed Attention with
70%, 80%, and 90% sparsity settings. We report latency results for prefill (with 1K and 4K input length) as well as
for generation with a single input token. Latency results are normalized to the FlashAttention baseline runtime for
prefill (and to our Triton FlashDecoding baseline for generation) for the same input length.

Table 7: Average accuracy on a subset of Long-
Bench tasks (TREC, 2WikiMQA, and MultifieldQA)
for Squeezed Attention with the LWM-Text-Chat-1M
model, with different numbers of centroids and pruning
percentages. With coarse-grained centroids (1%, or one
centroid per 100 tokens), we observe substantial accu-
racy degradation for aggressive sparsity (90% pruning),
whereas with fine-grained centroids (5%, or one cen-
troid per 20 tokens), we can attain high accuracy even
with aggressive sparsity.

Config 1% Centroids 2% Centroids 5% Centroids

AllKV 43.07 43.07 43.07
50% Pruning 40.72 42.93 42.87
90% Pruning 19.55 42.19 4297

Attention to achieve greater speedups during gen-
eration.

L. Hierarchical Centroid Lookup Kernel
Benchmarking

We provide additional experimental results com-
paring the latency improvements that are attain-
able through leveraging our hierarchical centroid
lookup kernel implementation. Table 9 provides
kernel benchmarking experiments for our hierar-
chical lookup, demonstrating how our hierarchical
centroid lookup can reduce the overhead of the
single-level centroid lookup by up to 1.4x for a
context length of 512K, which is particularly valu-
able for more aggressive sparsity thresholds where
the cost of the centroid lookup is a greater contrib-
utor to overall latency.

M Clustering Runtime

Table 10 shows the clustering runtime for our
method with 128K context length for both our
one-level and hierarchical (two-level) clustering ap-
proaches. The clustering runtime was measured us-
ing the LWM-Text-Chat-1M model on 8 NVIDIA
H100 NVL GPUs, and it includes the time for col-
lecting the KV cache, performing clustering, and
calibrating for the global threshold. The clustering
runtime for both the single-level and hierarchical
case is 23-24 minutes. Note that clustering is a one-
time cost which is performed offline and therefore
does not contribute to inference latency.
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Table 8: Ablation for our centroid lookup kernel implementation during generation with sequence length 512K,
showing the normalized latency relative to the baseline Triton FlashDecoding kernel. We show the benefits of
incorporating our single-pass optimization, as well as the gains from splitting along the KV dimension as in
FlashDecoding (Dao et al., 2023). These results highlight the importance of our lookup kernel optimizations for
attaining speedups with Squeezed Attention during generation.

Configuration ‘ FlashDecoding Baseline ‘ Centroid Lookup  + Single-Pass Optimization  + Split-KV Optimization

Normalized Latency | 1 | 0.29 0.22 0.12

Table 9: Latency for hierarchical centroid lookup during generation with a context length of 512K (normalized to
the latency of the one-level lookup). The baseline latency is computed using one-level lookup with 5% centroids.

Reported latency results assume 90% sparsity threshold for the level one lookup and >90% sparsity for the level two
lookup.

L1/L2 Number of Centroids (as a Percentage of Context Length) ‘ Baseline Latency (1-Level) ‘ Hierarchical Latency (L1/L12) ‘ Speedup

1%/5% Centroids 1
0.5%/5% Centroids 1

0.82(0.37/0.45) 1.22
0.71 (0.27/0.44) 1.41

Table 10: Runtime (in minutes) for clustering with our one-level and hierarchical clustering method for the LWM-
Text-Chat-1M model with 128K fixed context. Note that clustering is performed offfine for the fixed context ahead
of inference time, so it does not contribute to the inference-time latency for our method.

Configuration \ One-Level Clustering (5% Centroids) \ Hierarchical Clustering (1% / 5% Centroids)

Latency (minutes) | 23 | 24

32652



