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Abstract

Despite the remarkable successes of Large Lan-
guage Models (LLMs), the underlying Trans-
former architecture has inherent limitations
in handling complex reasoning tasks. Chain-
of-Thought (CoT) prompting has emerged as
a practical workaround, but most CoT-based
methods rely on a single generic prompt like
“think step by step,” with no task-specific adap-
tation. These approaches expect the model
to discover an effective reasoning path on its
own, forcing it to search through a vast prompt
space. In contrast, many work has explored
task-specific prompt designs to boost perfor-
mance. However, these designs are typically
developed through trial and error, lacking a the-
oretical ground. As a result, prompt engineer-
ing remains largely ad hoc and unguided. In
this paper, we provide a theoretical framework
that explains why some prompts succeed while
others fail. We show that prompts function as
selectors, extracting specific task-relevant in-
formation from the model’s full hidden state
during CoT reasoning. Each prompt defines a
unique trajectory through the answer space,
and the choice of this trajectory is crucial for
task performance and future navigation in the
answer space. We analyze the complexity of
finding optimal prompts and the size of the
prompt space for a given task. Our theory re-
veals principles behind effective prompt design
and shows that naive CoT—using model-self-
guided prompt like “think step by step” —can
severely hinder performance. Showing that op-
timal prompt search can lead to over a 50%
improvement on reasoning tasks through exper-
iments, our work provide a theoretical founda-
tion for prompt engineering.

1 Introduction
The advent of LLMs (Achiam et al., 2023) has

transformed natural language processing and arti-
ficial intelligence (Kojima et al., 2022; Liu et al.,
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Figure 1: Prompt templates influence the configura-
tion and navigation of the answer space. Prompt space
search techniques include methods like Auto-Prompt
(Shin et al., 2020), RL-Prompt (Deng et al., 2022) While
answer space searching includes ToT (Yao et al., 2024),
ReST-MCTS* (Zhang et al., 2024a)

2022; Zhao et al., 2023; Kahatapitiya et al., 2023),
demonstrating near-human performance in knowl-
edge tasks (Chang et al., 2024; Zhang et al., 2023a,
2022; Liu et al., 2021; Wen et al., 2025) while show-
ing limitations in reasoning abilities (Valmeekam
et al., 2022; Zhang et al., 2024b). These reason-
ing challenges span from basic operations like
counting and sorting (Dziri et al., 2024; Cao
et al., 2025) to complex tasks such as mathemati-
cal problem-solving and coding (Xu et al., 2022;
Thirunavukarasu et al., 2023). While various fac-
tors affect reasoning capabilities (Zhang et al.,
2023b), including training optimizations (Thor-
burn and Kruger, 2022), tokenization (Singh and
Strouse, 2024; Zhang et al., 2025), and datasets (Ye
et al., 2024; Yin et al., 2023), the model’s architec-
ture plays a pivotal role in determining its reasoning
capabilities (Raghu et al., 2017; You et al., 2020a,b,
2021, 2024; Wu et al., 2021; Zhang and Ding, 2024;
Zhang et al., 2024b,c; Delétang et al., 2022). The
Transformer architecture (Vaswani, 2017) underly-
ing most LLMs has inherent computational depth
limitations (Li et al., 2024), as its attention mecha-
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Figure 2: (a) Naive CoT, the model generates its own step template for recurrent computation. This prompt template
can be incorrect or suboptimal, leading to task failure. (b) With prompt engineering and design, the task performance
under CoT can be properly guided. (¢) When CoT is not employed, the model relies solely on its internal reasoning
via the Transformer architecture. (d) Transformer can only perform constant-depth sequential computations.

nism can only perform a fixed number of sequential
computational steps (Li et al., 2024; Zhang et al.,
2024b; Sanford et al., 2024; Dehghani et al., 2018).
This constant-depth modeling (Li et al., 2024) re-
stricts the model’s computability to TC? (Li et al.,
2024; Feng et al., 2024), limiting its ability to solve
complex and lengthy tasks (Figure 2 Rightmost).

Chain of Thought (CoT) (Wei et al., 2022) over-
comes the constant depth limitation of model archi-
tectures by extending reasoning into the text space
through prompting(Li et al., 2024; Zhang et al.,
2024b; Feng et al., 2024). Theoretical and empir-
ical studies show that CoT enables Transformer-
based models to achieve Turing Completeness un-
der ideal conditions (Li et al., 2024; Zhang et al.,
2024b). While theoretical upper bounds may not
reflect real-world performance, understanding how
CoT transcends architectural constraints is crucial
for optimal prompt design and forms the founda-
tion for our analysis of supervised CoT and prompt
search space theories. We therefore first reexam-
ine CoT’s computational mechanisms, synthesiz-
ing prior work (Li et al., 2024; Zhang et al., 2024b;
Feng et al., 2024) with our novel perspective.

The vanilla design of CoT is ‘“unsuper-
vised” (Barlow, 1989), meaning that the model
generates its prompt template without task-specific
prompt guidance from human. When prompted
to “Think step by step”, LLMs autonomously gen-
erate steps it needs to follow—for instance, gen-

erating current chess board description—and then
proceeding to search for final answers based on
this self-generated template (Figure 2 Leftmost).
This naive CoT approach can lead to poor perfor-
mance, as the model may generate sub-optimal
trajectory, which hinder the search process. For
example, a problem requiring DFS might be un-
necessarily attempted with a BFS template gener-
ated by the vanilla CoT, incurring high inference
costs and likely delivering incorrect answers (Fig-
ure 2 Leftmost). Such generic prompts are widely
adopted in many CoT extensions, including Graph-
of-Thought (GoT) (Besta et al., 2024) and Tree-
of-Thought (ToT) (Yao et al., 2024), which simply
generalize “think step by step” into broader but still
task-agnostic instructions.

In contrast, prompt engineering offers more de-
liberate, task-specific guidance to steer LLMs effec-
tively in downstream tasks. While a large body of
prompt design work exists, most approaches rely
on empirical trial and error to discover effective
prompts. Furthermore, the reasons behind the suc-
cess of certain designs remain poorly understood.

Why does a particular prompt design work?

Our work addresses this question by analyzing
the information trajectories induced by prompts in

32526



the answer space. We provide a theoretical foun-
dation for prompt engineering, offering prin-
cipled insights into the effectiveness of prompt
designs.

Additionally, we investigate the fundamental dis-
tinction between prompt space and answer space in
LLM-based problem solving. Building on insights
from prior theoretical analyses of CoT, we propose
and estimate the complexity of each space. This
allows us to formally characterize the structure of
prompt search and answer question:

How to find the optimal prompt design?

We conduct extensive experiments on structured
reasoning tasks, demonstrating that well searched
prompt design from prompt space is essential for
achieving optimal solutions.! Our results also re-
veal a substantial performance gap between sce-
narios with and without prompt guidance in CoT.
This work is the first to explicitly explore the com-
plexity of prompt space, providing a theoretical
foundation for both understanding and designing
effective prompting strategies for LLMs.

2  Demystifying CoT: Simple Explained

In this section, we synthesize key theoretical find-
ings on CoT prompting (Li et al., 2024; Zhang
et al., 2024b; Feng et al., 2024) to establish the
foundation for our supervised CoT analysis.

2.1 Limitations of Transformer Architecture
and Answer-token-Only Models.

Transformers, unlike recurrent networks, cannot
internally reason over arbitrary sequential steps
(depth). Specifically, Transformer don’t reuse the
previous hidden state h¢-; at time step t-1 when
calculating h (Figure 3.b), as it would be in recur-
rent networks like RNN (Figure 3.a). The hidden
state h is passed only through the layers of the
Transformer (Dehghani et al., 2018) (Figure 2.c)
rather than through time, which means that the
number of sequential steps is fixed and limited for
any given Transformer architecture (Li et al., 2024;
Zhang et al., 2024b; Elbayad et al., 2019). In con-
trast, RNNs (Grossberg, 2013) allow the hidden
state h to be passed through time steps via recur-
rent connections (Figure 3.a), enabling sequential

'Our code and experiment results are available at
https://github.com/juntaic7/CoT-with-Supervision.

computation over h through an arbitrary number
of input tokens. This enables RNNs to perform
deeper reasoning over h, which is essential for
solving complex tasks (Zhang et al., 2024b).

The hidden state h plays a crucial role in rea-
soning, as it stores both reasoning memory and in-
termediate reasoning results (Zhang et al., 2024b).
The ability to sequentially compute and update h
over time allows a model to build reasoning depth,
which is necessary for addressing complex prob-
lems. This depth advantage provided by recurrent
connections cannot be replicated by autoregressive
models. Autoregressive models, instead of pass-
ing the hidden state h forward, pass the generated
token y,. However, y cannot replace the role of
h for the following reasons: y is a discrete value
extracted from h and only contains partial informa-
tion (Figure 3.b), making it insufficient for contin-
ued reasoning in many tasks. y exists outside the
latent space where h operates (Figure 3.b), mean-
ing it cannot be used for computation in the same
way that h can (Zhang et al., 2024b). As a result,
the flow of computational information stored in h
is severely hindered in Transformer-based autore-
gressive models.

2.2 Nature of Inductive Reasoning

Reasoning inherently requires sequential depth.
For tasks with input of length n, reasoning is typ-
ically performed step by step to arrive at the final
result. Examples include counting (incrementing
a counter iteratively), playing chess (updating the
board state iteratively), and searching (marking
visited nodes iteratively). To solve a given task,
there is a theoretical lower bound on the required
depth of computation (Sanford et al., 2024). Trans-
former’s fixed sequential reasoning depth over the
hidden state h prevents them from solving tasks
that require deeper reasoning as input length grows
(Detailed in Appendix).

Consider chess game as an example. For a se-
quence of chess moves, x, = (X1,Xz,...,Xp), tO
validate the n-th move, the n-th board state h, must
be calculated. This requires n sequential computa-
tions, as the n-th board state depends not only on
the sequence of moves x but also on the previous
board state h,-;. While a neural network could
memorize the mapping from x;., to the correct
h (Arpit et al., 2017) to bypass the need for se-
quential computation, the memorization will be an
exponentially growing challenge and much more
space-intensive than reasoning. Thus, the model’s
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Figure 3: How CoT approximates recurrent computation.

internal representation h, which encodes the board
state, must be sequentially computed n times to
simulate the game. Answer-token-only (only x
outputted) Transformers (Fig. 3b and Fig. 1 Right-
most), which compute their hidden states h a fixed
number of times regardless of input length, cannot
perform such inherently sequential tasks (More on
Appendix).

2.3 CoT + Autoregressive = Recurrent

Previous research (Li et al., 2024; Zhang et al.,
2024b; Feng et al., 2024) demonstrates that CoT
effectively bridges the gap between autoregres-
sive (Liang et al., 2022; Liu et al., 2022) models and
recurrent structures (Zhang et al., 2024b) in LLMs.
CoT extends beyond simple answer token genera-
tion by producing intermediate steps as non-answer
natural language tokens (07,02, . .., 0k) that act as
a discretizations of latent information h, (Figure 3
(c)). Natural language’s expressive power enables
h to be encoded into token sequence 0;.;, which
the embedding layer then reconverts to vector h
(This process preserves computational information
through a process of discretizations followed by
vectorization (Figure 3 (c) and Figure 5 ):

discritization vectorization

h; (01,02, ,0k) hiy
The approach effectively mirrors the hy = hy
(Figure 4) operation in RNN-like networks, en-
abling recurrent updates to h (Figure 5).

Using the previous chess example, the CoT pro-

cess would generate natural language tokens (non-

answer helper tokens) describing board state hy
after k moves (answer tokens), specifying piece
positions. The model’s embedding layer then pro-
cesses this board description to convert into hg 1,
eliminating the need for recalculation of board state
from just moves x—a capability not inherent to
Transformer’s non-recurrent architecture.

In conclusion, LLMs with CoT extend reason-
ing from latent space H to natural language token
space 0. Natural language’s powerful encoding
capability enables storage and reuse of interme-
diate reasoning steps, increasing reasoning depth
to T'(n), where 7'(n) is the number of CoT steps
performed. Ideally with infinite CoT steps and per-
fect latent-space-to-text-space conversion, LLMs
could theoretically achieve recurrent and Turing
completeness. However, as each CoT step is lim-
ited in size and tokens, the amount of information
that can be extracted during CoT is limited. Which
information to extract is selected by prompt tem-
plate.

3 CoT Search Space = Prompt Space +
Answer Space

Despite theoretical potential for universal problem-
solving (Li et al., 2024; Zhang et al., 2024b), prac-
tical CoT implementations face limitations from
finite steps and imperfect h to o conversion. As
each step captures only partial information from h
(Figure 5), identifying relevant data for computa-
tion becomes critical (Figure 7). We decompose
the CoT reasoning into two components: template
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Figure 5: CoT only extract partial information from h. Which information to extract is dictated by prompt template.

search within the prompt space (Figure 7) and an-
swer search within the answer space (Figure 7). We
show how effective navigation of the prompt space
can simplify answer space complexity and com-
plexity of each space. Through out analysis, we
reveal the mechanism behind why certain prompt
design can be effective.

3.1 Prompt Space Complexity

The latent vector h contains rich intermediate infor-
mation when processing a task (Fig. 5, including
counters, sums, flags for binary indicators, and
more. When LLMs are prompted to perform tasks,
they follow a step template (either came up by LLM
itself or provided by human, Figure 1), specifying
which information from h to extract and discretize
into non-answer helper tokens (01,02, ..., 07 (cor))
in CoT. Ideally, as T'cory—0o—meaning the length
of the each CoT step is arbitrarily long—all vec-
torized information in h can be fully textualized,
achieving true recurrence (Figure 4) through au-
toregression. However, with limited k, only partial
information is discretized (Fig. 5).

If we define the amount of information stored in
h as n bits, and each CoT step extracts up to s bits
of information into o (Fig. 5 and 6), each unique
step template specifies a way to extract s bits from
the full n-bit space (Fig. 6). Thus, the total number
of potential step templates is C(n,s) = ﬁls),,
which estimates the number of ways information
can be extracted via CoT at each step (Fig. 6).

Each prompt template defines a verbalization of

unique s bits of information.

For example, in the chess simulation case (Fig.
7), h encodes details such as the <current board
layout>, <the next player>, <board status>,
<number of pieces taken by each player>
and so on. When given the instruction to “think step
by step”, the model decides which information to
extract based on the step template it generates (Fig.
7 No prompt guidance). Extracting the wrong infor-
mation might hinder reasoning in subsequent steps
as recurrence can not be effectively performed on
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the needed information.

The prompt search complexity C'(n, s) depends
on both n, the total information in h, and s, the
amount of information each CoT step can extract.
If a model is sufficiently trained, the total amount
of encoded information in h is proportional to both
dimension size of h (Allen-Zhu and Li, 2023), d,
and nature of the task, denoted by n o d & TASK.
In this context, n represents the size of the search
space, while s correlates with the length of CoT
tokens o, as longer CoT steps tend to extract more
information from h. In practice, step template
search by model itself is not entirely random. Mod-
els often find relevant templates using heuristics,
which significantly reduces the search complex-
ity of C'(m,s). However, identifying the optimal
template remains challenging, and using an subop-
timal template can severely degrade performance,
as demonstrated in our experiments.

In conclusion, the step (prompt) template defines
how information is extracted and used recurrently
in the CoT process. Finding the correct template
is equivalent to discovering the algorithm for solv-
ing a given task, determining what information is
needed at each step and how it should be used to
compute the next state (Figure 7 left).

3.2 Answer Space Complexity

Once the model “decides” on the steps to follow
during CoT, it performs reasoning accordingly.
With a specific step (prompt) template pi chosen
from the prompt space P, CoT iteratively executes
h, 2 (o(i),ogi), R ol(f)) = hy4+; to update h
and calculate the next state, continuing this pro-
cess until reaching the final state (solution). The
complexity of finding solutions in the answer space
depends on both the choice of p; and the nature of
the task itself.

Each task embeds a different level of com-
plexity in its answer space. For instance, in the

chess simulation task of <finding a set of
actions leading to game end>, the answer
space S = (s1,S2,...,Sc) contains all possible
combinations of action sequences s. The solution
set CR C & includes all valid action sequences
that lead to the end of the game, being a subset
of the entire answer space S. Solving the prob-
lem requires identifying one single correct action
sequence Scorrect = (¥1,¥5s---,¥7) € CR.

If a fixed step (prompt) template for this
task, such as pg = <extract current board
configuration at each step>, is used, the
CoT process iteratively extracts the current board
description and use it for calculating next board
state in h to identify the valid next move y;,
eventually forming the correct answer Scorrect =

(Y1,¥5, - - -, ¥r)- The complexity of navigating the
answer space can be roughly measured by:
len(CR)
_— 1
len(S) P M

This ratio measures the proportion of the solution
space CR relative to the entire answer space S,
given a specific template p. If the chosen template
p extracts irrelevant information—such as deter-
mining which player is next at each step—the ratio
simplifies to lfzrg((:g) In this case, each y; would
be generated randomly, as h can not be computed
iteratively over useful information needed for ex-
tracting correct y;, making the correct answer only
discoverable by chance.

Correctly identifying the step template p is cru-
cial for reducing the complexity of lfgrgfg) | p,asp
dictates what information is recurrently overlayed
in the process hy = hysy and in turn what can
be calculated, essentially acting as the “algorithm’
for solving tasks in the CoT process. In the chess
example, the optimal template would be <extract
current board configuration at each step>,
allowing the model to reason over the board state

’
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board state

iteratively, i.e., hy =————=> h.1. With the cor-

rect board state computed recurrently, the valid
next move y, can be effortlessly derived from hy
(Figure 7 right). However, using a less relevant tem-
plate, such as <extract the number of pieces
on the board at each step>, would expand
the search space nearly to 1;25(6;3)) , as the number
of pieces doesn’t provide useful information for
determining the next valid move. Consequently,
the model would have to recalculate the board state
at each step from previously generated moves y, ,
which requires O(n) depth-Transformers, limited
by constant depth, cannot handle. As a result, the
next action y,,; would not benefit from the CoT
process.

3.3 CoT as an Unsupervised Task Solver

CoT operates in an unsupervised manner for any
given task, relying on a single universal prompt,
Think Step by Step, and leaving it to the model
to generate its own step template p € P for ex-
tracting information at each step. Since humans
do not design prompt for information extraction,
the generation of steps—i.e., determining which
information to extract from h and compute recur-
rently—comes primarily from the model’s heuris-
tics. For example, in counting tasks, LLMs use
learned heuristics to extract a Counter value from
h and perform recurrent updates. However, these
unsupervised, heuristic-driven templates are often
unreliable, as the model lacks the knowledge to
identify key components for some computation
or tasks with complicated descriptions, as demon-
strated in previous work (Valmeekam et al., 2022)
and our experiments.

3.4 CoT Variants as Unsupervised Helpers for
Navigating Answer Space

In practice, the answer space S can be large and
complex, and even with the optimal step (prompt)
template p, CoT can make errors. Various CoT
variants, such as Tree-of-Thought (ToT) and Graph-
of-Thought (GoT), have been proposed to mitigate
these mistakes in solution searching. While these
“X-of-thought” approaches don’t dictate which spe-
cific information to extract at each step like p does,
they improve solution finding by exploring mul-
tiple paths and self-verifying. For instance, ToT
explores multiple instances in the answer space si-
multaneously under some given template p, unlike
the single-path exploration of CoT. Specifically, in-

formation extracted from the current hidden state
ht using p is used to generate q possible answers
for the next step, denoted as (yEH , yg%, . ,ygfg ).
Each answer leads to a different next state h4q.
In the example of <finding a set of actions
leading to game end>, the board state at step t
is extracted into descriptions using the correct tem-
plate p and to form h¢.q, and instead of producing a
single next move y,,, from h, multiple actions are
derived. Each derived action along with previous
actions forms a unique path that leads to a poten-
tial solution in §. Since some paths may fail (e.g.,
leading to a non-ending game), exploring multi-
ple paths simultaneously increases the efficiency
of searching the answer space. The visualization is
shown in Figure 8.

Similarly, GoT improves search accuracy by it-
eratively revisiting previously generated partial an-
swers. However, none of these approaches are
supervised, as the model is not informed of the
correct step template p and generates it on its own,
extracting information at each step accordingly. X-
of-Thought still relies on a “one-prompt-for-all”
approach and only aids in finding answers after
p € P is fixed. As we have shown, this can lead
to poor outcomes, since p directly influences the
complexity of the answer space, and X-of-Thought
may be too late to correct errors in some cases.

4 Experiments

In this section, we conduct experiments to demon-
strate the importance of supervision in the CoT
process. Specifically, we design scenarios where
the correct and optimal step template is provided
through supervision (assume we know optimal tem-
plate from prompt space), and compare them to
cases where incorrect or suboptimal prompt tem-
plates are simulated. Our results show significant
performance degradation when the step templates
are incorrectly derived, highlighting the need for
human supervision to ensure reliable task perfor-
mance with LLMs.

4.1 Experiments Designs

We follow previous work (Zhang et al., 2024b;
Delétang et al., 2022) by focusing on more funda-
mental reasoning tasks for LLMs. Specifically, we
evaluate tasks at three levels of computability: Reg-
ular (R), Context-Free (CF), and Context-Sensitive
(CS), each corresponding to tasks solvable by dif-
ferent levels of computational power, from deter-
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ministic automata all the way to linear bounded
automata (i.e. restricted Turing machines). These
tasks involve operations such as counting, sorting,
and number addition—basic operations that are re-
quired by more complex algorithmic problems (like
NP problems). Each task has a strong dependency
on identifying the correct step template, thus allow-
ing us to clearly observe the impact of selection on
step template on CoT performance.

All of these tasks require a level of computabil-
ity beyond the capabilities of the Transformer’s
internal architecture (Delétang et al., 2022). Specif-
ically, solving them demands a minimum computa-
tional depth that scales linearly with input length,
surpassing the constant depth inherent to Trans-
former models. Thus, solving these tasks neces-
sitates the use of CoT, and correctly identifying
the information to extract during CoT is crucial for
resuming computation and building the necessary
depth, as we analyzed before.

We use gpt-4o-classic web-server and
gpt-40 mini API, versions that eliminates the
use of external tools and functions solely based
on the LLM itself. To ensure that factors such as
long-context information retrieval and tokenization
do not affect the results and conduct controlled ex-
periments, we carefully design the data instance
in each task. Details of our experimental design,

including length sampling, task specifications, for-
mat adjustments, and prompt usage, are provided
in detail in the Appendix Section A and Section B.
The final results are shown in Table 1 and Table 3.

4.2 Main Result

Recurrence is Key for Reasoning. Recurrence
is crucial for task-solving, as shown in both ex-
pert models (RNN, Tape-RNN, and Transformers)
and LLMs (Table 1). Expert models like RNN and
Tape-RNN achieve over 90% accuracy across tasks,
depending on memory architecture. In contrast,
Transformers, limited by shallow reasoning depth,
fail to solve these tasks. Similarly, LLMs without
CoT, relying solely on Transformer reasoning, per-
form poorly. With CoT, which introduces recurrent
computational power, LLM accuracy improves sig-
nificantly. These findings underscore the essential
role of recurrence in a model’s computability, as
previously analyzed.

Step Template Choices and Prompt Designs
Dictates Reasoning Performance. To study the
role of prompt template design, we introduce two
levels: Optimal Supervision, guiding the model
with ideal steps for maximum performance, and
Suboptimal Supervision, simulating less optimal
steps to observe performance degradation. While
suboptimal templates are technically correct and
human-usable, they often degrade LLLM perfor-
mance by altering answer space configurations (De-
tailed analysis on Appendix Section C.1 and C.2).
Since the tasks are relatively simple, models rarely
fail to identify optimal step templates under super-
vision, but the performance gap between optimal
and suboptimal steps highlights the need for super-
vision. Details of supervision and prompt design
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Tape LLM CoT CoT CoT

Level - Task ‘ RNN RNN Transformer w/o CoT  Unsupervised Supervised Supervised-SUB
Modular Arithmetic | 1.00  1.00 0.96 0.22 0.96 1.00 0.44
R Parity Check 1.00 100 0.52 0.58 0.94 1.00 0.42
Cycle Navigation 1.00  1.00 0.62 0.50 0.78 1.00 0.26
Stack Manipulation | 0.56 1.00 0.58 0.00 0.92 0.96 0.00
CF Reverse List 0.62  1.00 0.62 0.48 0.80 0.96 0.38
Modular Arithmetic | 0.41  0.95 0.32 0.00 0.82 0.94 0.50

Table 1: Results produced using gpt-4o0-classic Web version on 50 instances each cell. For LLMs w/o CoT,
intermediate steps are explicitly prohibited using prompting. ““ Supervised” refers to when we provide the optimal
prompt template. “Supervised-SUB” refers to correct but suboptimal step templates are provided, simulating
scenarios where LLM makes inferior choices in navigating the prompt space and derives worse step templates.
Results for RNN, Tape-RNN and Transformer are from previous work (Delétang et al., 2022) for reference. The
difference in experiment settings are detailed in the Appendix Section B.

R CF
MA PC CN SM RL

096 094 078 092
092 090 092 036
1.00 098 090 0.72

1.00 1.00 1.00 0.96

Model MA

0.82
0.78
0.88

0.94

0.80
0.88
0.92

0.96

Unsupervised CoT
Unsupervised ToT
Unsupervised GoT

Correctly supervised CoT

Table 2: Variant of CoT in performing each task. Each
task is named using the first two letters in Table 1.

are provided in Appendix Section B.

From Table 1 and 3, we observe that providing
supervision yields noticeable improvements over
the unsupervised “step-by-step”” approach. Specif-
ically, errors caused by the model’s own derived
step templates are eliminated with correct super-
vision, resulting in better performance scores. In
contrast, when the step template is intentionally set
up sub-optimally, we observe a significant perfor-
mance degradation, with some tasks performing as
poorly as they would without using CoT. This veri-
fies that answer space’s landscape and complexity
are largely affected by choice of step template from
prompt space, and human supervision can guide
the model to the optimal configuration.

CoT Variants Help Navigate Answer Space.
We compare the results of different CoT variants
for the same tasks. As shown in Table 2, both
ToT and GoT improve performance over naive CoT.
However, this improvement is due to correcting “in-
correct calculations” during computation, not from
improvements in step-template selection. ToT pro-
vides little benefit, as the tasks typically have only
one path to the solution, large scale Tree-search
does not offer much help. In contrast, GoT shows
greater accuracy gains, thanks to its self-revisiting
mechanism.

Lastly, we showcase how suboptimal navigation
in the prompt space leads to uncorrectable results,
which we classify these failures into 4 modes, de-
tailed in Appendix Section C.2. As shown in Ap-

pendix section C.1 and C.2, the suboptimal step
template results in incorrect information extraction
and redundant generation, leading to a wrongly
computed next state and ultimately increasing the
difficulty of searching the answer space.

5 Choosing an Optimal Prompt for a Task

An effective prompt serves as a selector that gov-
erns how information is extracted from the hidden
representation h to generate the output o, which
in turn guides future computation. Since h en-
codes a mixture of task-relevant and irrelevant
signals, the goal of prompt design is to identify
and extract the top s most critical bits of informa-
tion from h—those most relevant to the reasoning
task—while discarding the rest.

This implies that an optimal prompt template
must explicitly specify what each step in the Chain-
of-Thought (CoT) reasoning process should output.
In other words, each CoT step should be guided to
compute and emit a well-scoped summary of the
current state, focused only on task-relevant vari-
ables. The prompt must align the CoT step’s output
with the s most informative components of h for
that specific task.

6 Conclusion

This work uncovers how prompts shape the rea-
soning process in Chain-of-Thought (CoT) prompt-
ing. By analyzing the interaction between prompt
space and answer space, we show that prompts
act as selectors of task-relevant information from
the model’s internal state. Our findings reveal that
prompt design is not just auxiliary but central to
CoT effectiveness—small changes in prompt struc-
ture can lead to large performance differences. This
provides a theoretical foundation for understanding
and improving prompt-based reasoning in LLMs.
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Limitations

Our research focused primarily on simple reason-
ing tasks, where we found consistent evidence that
CoT with optimal template (correct human guid-
ance) significantly improves performance. While
we believe these findings likely generalize to more
complex reasoning tasks, as they build upon similar
fundamental principles, we were unable to verify
this directly due to resource constraints and the
need for specialized domain expertise. Similarly,
although we tested on a limited set of models, the
universal nature of mainstream LLM training and
design principles suggests our findings would ex-
tend to other language models. Future work could
validate these assumptions by expanding the scope
to both more complex reasoning tasks and a broader
range of models.
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A Experiment Design in Detail

A.1 TImpact of Tokenization on Experimental
Results

Tokenization is a fundamental step in processing
textual inputs for LLMs, converting raw strings
into token sequences. This step, though often over-
looked in reasoning experiments, significantly in-
fluences model performance, particularly in CoT
prompting. CoT externalizes reasoning by break-
ing tasks into intermediate steps represented as text,
requiring a consistent mapping between input and
output tokens. However, variations in tokenization
schemes can disrupt this mapping, introducing in-
consistencies in how intermediate reasoning steps
are processed and stored.

As demonstrated in Table 4, tokenization choices
profoundly affect counting accuracy. For instance,
models using standard Byte Pair Encoding (BPE)
often merge multiple characters into a single token.
This creates a mismatch between the granularity of
reasoning steps (e.g., counting individual letters)

and the tokenization granularity, leading to errors
in CoT reasoning.

A.2 Designing Tasks to Minimize
Tokenization Effects

To mitigate the impact of tokenization on CoT rea-
soning, we designed tasks using a structured "list"
format. This approach ensures that each reasoning
unit (e.g., a character or a number) is tokenized
as a separate entity, eliminating ambiguity caused
by merged tokens. For example, instead of using
a compact string like abbaabaababa, we format
inputs as ‘[“a”, “b”, “b”, “a”]’, where delim-
iters like quotes and commas enforce precise token
boundaries.
This format ensures:

1. Each reasoning step operates on a distinct to-
ken, avoiding the need for token-awareness
within merged tokens.

2. The attention mechanism can directly align
reasoning steps with token embeddings, re-
ducing errors caused by hidden token proper-
ties.

3. Consistent tokenization across models, allow-
ing fair comparisons in experimental setups.

A.3 Empirical Evidence of Tokenization
Impact

Our experiments (Table 4) reveal significant dif-
ferences in performance across tokenization strate-
gies:

» Standard BPE : Counting tasks often yield
random-like accuracy, particularly with longer
strings, due to the lack of alignment between
tokenization and reasoning granularity.

* List-based tokenization: Accuracy improves
significantly, with models achieving near-
perfect results in many cases. The structured
format eliminates ambiguity, ensuring each
reasoning step aligns directly with a single
token.

These findings emphasize the need to care-
fully design task inputs to align with tokeniza-
tion schemes. By structuring tasks in a “list” for-
mat, we ensure CoT reasoning steps remain con-
sistent and interpretable, minimizing errors caused
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by tokenization-induced discrepancies. Future re-
search should explore tokenization schemes that in-
herently support CoT reasoning, such as hybrid ap-
proaches combining BPE efficiency with character-
level granularity.

A.4 Sensitivity of Tasks to Input Length

In our experiments, we use task-specific instance
lengths for different tasks, as summarized in the
main results Table 3. This design choice is based
on the observation that task performance is highly
sensitive to input length due to variations in task
difficulty and model biases.

Different tasks exhibit varying levels of complex-
ity as input length increases:

* For more complicated tasks, such as sorting
sequences, performance quickly drops to zero
when input length exceeds a certain threshold
(e.g., 20 letters).

* Conversely, for less challenging tasks or tasks
with inherent model biases, such as dupli-
cating sequences, models can maintain rel-
atively high performance even with much
longer lengths.

If a task instance length is chosen to be exces-
sively long, models may fail entirely, achieving
near-zero accuracy regardless of the prompting
strategy. Similarly, selecting an input length that
is too short would result in artificially high perfor-
mance, masking the impact of different prompting
techniques.

To ensure a fair and meaningful evaluation, we
select task-specific lengths that avoid both ex-
tremes:

* Not too short: The selected lengths prevent
tasks from becoming trivial, where perfor-
mance would be consistently high regardless
of the prompt design.

* Not too long: Excessively long tasks, which
result in universally low accuracy, would ob-
scure the impact of supervision and prompt
variations.

By choosing appropriate lengths for each task,
we strike a balance where performance is neither
too high nor too low. This ensures that the results
reflect the true reasoning capabilities of the model
and the influence of supervised CoT prompting.

B Tasks, Prompts & Results

We provide a comprehensive description of our
supplemental experiments and evaluation prompts
used to assess optimally-designed step templates
across the 9 tasks listed in Table 5. We name
CoT prompts using the optimal step template as
‘Supervised CoT’ (S-CoT), and CoT prompts us-
ing the suboptimal step template as ‘Suboptimally-
Supervised CoT’ (S-CoT-SUB), to distinguish
them from vanilla CoT (‘Unsupervised CoT’) that
only instructs the model to ‘think step by step.
We refer to this procedure of providing step tem-
plates as ‘Supervision’. For each task, we tested
four different input lengths, four different prompt
templates and performed 1,000 experiments for
each configuration using gpt-4o0 mini, resulting
in 144,000 total API calls.

Our experimental design extends beyond (Delé-
tang et al., 2022) which uses specifically-trained
expert models for particular tasks, to using general-
purpose LLLMs. We also incorporate more challeng-
ing task variations to rigorously test model capabil-
ities. Unlike prior research, which reports the best
performance out of N trials (Delétang et al., 2022;
Zhang et al., 2024b) for each task instance, we re-
port the average one-trail performance across all
tested instances. Our focus is on practical usability
beyond the theoretical upper-bound computability
analysis in previous work. To mitigate the impact
of tokenization that may hinder LLM’s reasoning
ability, we convert string-based tasks to list-based
tasks. The full results of large-scale experiments
are shown in Table 3.

C Case Study and Analysis of
Supervision Impact on Answer Space

In this section, we provide case studies in two tasks
(EP and RL) across two levels (R and DCF).

C.1 Supervision is Essential

CoT prompting exhibits two common failure
modes, as demonstrated in Tables 6 and 9: the
selection of suboptimal reasoning paths and the
generation of superficial (‘fake’) reasoning. The
impact of these failures, however, can be mitigated
through expert supervision. For instance, compar-
ing Tables 8 and 6 shows that injecting human
domain knowledge enables more efficient solution
strategies that transcend basic task definitions. This
finding highlights how expert guidance can unlock
the full reasoning potential of LLMs.
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The ‘fake’ CoT reasoning is particularly ev-
ident in Table 9, where the model’s generated
thinking steps devolve into mechanical instruction-
following. Rather than demonstrating genuine
problem-solving, the model disguises simple op-
erations like format conversions as cognitive steps
in an attempt to ‘fake’ the thinking process. Ta-
ble 11 illustrates how explicit supervision resolves
this issue by steering the model toward authentic
analytical reasoning.

C.2 Suboptimal Supervision is Harmful

Tables 7 and 10 demonstrate two common pitfalls
in supervised CoT prompting: redundant genera-
tion and recursive reasoning. In the case of redun-
dant generation, human-provided instructions may
prompt models to output verbose intermediate steps
containing unnecessary information. This exces-
sive verbosity can lead to context overflow issues
similar to the ‘forgetting’ phenomenon observed in
RNNEs.

The recursive reasoning problem arises when
CoT instructions incorporate subtasks that LLMs
struggle to solve without CoT prompting, such
as counting operations (Chang and Bisk, 2024).
This creates a paradoxical situation: while CoT
prompting aims to help models tackle otherwise
unsolvable tasks, the intermediate reasoning steps
themselves may require capabilities that exceed
the model’s baseline abilities. Therefore, we can
fully harness CoT’s potential by using an optimal
supervision only through careful exploration of the
prompt space.

D Supervised CoT: Users’ Perspective

D.1 How to Supervise?

As we’ve demonstrated, providing correct super-
vision is crucial for helping the model achieve ac-
curate results. A natural question arises: how can
effective supervision be derived? The key to good
supervision lies in understanding CoT’s underly-
ing mechanism, which essentially involves relaying
information through the text space. For tasks re-
quiring multiple steps, users need to identify ‘what
each step is’ and ‘what key information should be
extracted at each step’.

While this might seem straightforward in the ba-
sic reasoning tasks used in our experiments, it can
become more complex for challenging tasks, where
correctly identifying the information requires care-
ful task analysis. Therefore, human knowledge is

Class Task | Len | Base CoT S-CoT S-CoT-SUB

20 | 579 881 953 49.9
pc | 25 | 568 825 930 50.3

30 | 553 725 863 50.8

35 | 533 647 781 51.2

10 | 599 707 986 78.9

&~ Ep 15 | 381 561 882 50.3
20 | 228 417 715 29.1

25 | 176 266 538 18.3

30 | 7001 753 847 26.6

on | 20| 433 g4 627 244

50 | 31.8 314 489 211

60 | 233 233 382 20.5

10 | 405 490 551 30.9

p | 15 | 256 296 498 162

20 | 123 141 396 72

25 | 70 74 261 24

- 20 | 873 962  99.0 90.1
g En | 30 | 796 o1s 935 86.3
) 40 | 771 874 877 79.8
50 | 692 806  86.0 77.9

25 | 919 913 978 713

py | 35| 801 873 947 65.4

45 | 866 873 968 65.3

55 | 817 832 939 65.3

8 | 229 246 654 2.0

oF | 10| 220 144 365 1.8

12| 80 70 382 1.1

15 | 27 21 157 12

" 8 | 334 281 398 29.4
4] SL 10 | 242 157 217 204
12 | 189 90 242 13.7

15 | 81 36 129 47

40 | 627 732 738 66.3

bl | 50 | 610 686 714 64.5

60 | 647 711 726 65.7

70 | 624 637 662 59.6

Table 3: Large Scale results on 3 levels of tasks. Each
task are tested with 4 different lengths and 4 different
prompt templates, each cell with 1000 instances tested
with gpt-40 mini APL

critical for enhancing the model’s computational
abilities and can directly influence task results.
However, this supervision adds a substantial work-
load, as each task demands a unique understanding
of its computational structure.

Again, Supervised CoT requires clearly stating
what should be outputted as text at each step, as
this information will be used to construct the next
h, which we have shown before. Users need to
provide as specific instructions as possible to detail
what intermediate steps need to be outputted at
each ‘think-step-by-step’ step.

D.2 When to Supervise?

As we’ve observed, using an suboptimal step
template—whether model-derived or human-
injected—can result in significant performance
degradation. Based on this, it’s important to avoid
providing supervision unless you are reasonably
confident that the steps will not hinder the reason-
ing process. In cases of uncertainty, it may be better
to rely on the model’s own heuristics.
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E The Limited Computational Depth of
Answer-Only Models

We identify and formalize a fundamental compu-
tational limitation of ‘answer-only’ LLMs: their
inability to perform deep, iterative reasoning due
to bounded architectural depth. Specifically, we
characterize the computational depth—defined as
the number of sequential, non-parallelizable steps—
of various neural architectures and highlight that
Transformer-based models without intermediate
reasoning steps (e.g., CoT) are inherently con-
strained in the depth of computation they can per-
form. This provides a theoretical grounding for the
observed reasoning failures of answer-only models
on tasks requiring multi-step logical inference or
symbolic manipulation.

E.1 Multi-Layer Perceptrons (MLPs)

Multi-layer perceptrons compute over a fixed num-
ber of layers, where each layer applies a matrix
multiplication and non-linear activation in parallel
across input dimensions. For an MLP with m lay-
ers, the depth complexity is O(m), which simpli-
fies to O(1) for fixed architectures. Crucially, this
means the effective reasoning depth of the model
does not grow with input size. As a result, MLPs
struggle with tasks that require sequential decision-
making or iterative reasoning that scales with the
input, such as sorting or arithmetic over long se-
quences.

E.2 Recurrent Neural Networks (RNNs)

In contrast, RNNs process inputs sequentially.
Given an input sequence ., the hidden state at
time ¢ is updated via h; = gg(hy—1, z;). Each time
step represents a distinct computation, and thus
for a sequence of length n, the model executes
O(n) sequential operations. This dynamic depth
enables RNNs to learn and represent functions with
unbounded computational depth, conditioned on
sequence length—a key advantage for tasks with
temporal or step-wise structure.

E.3 Transformers and Answer-Only LL.Ms

Transformer models consist of a fixed number m
of layers, each applying self-attention and feedfor-
ward operations. While each layer attends over the
full input context, the total computational depth
is O(m) and thus constant with respect to the in-
put length. This makes Transformers highly par-
allelizable but limits their expressivity in terms of

sequential reasoning depth.

Autoregressive Transformers, such as GPT-style
LLMs, generate outputs token by token, where each
token is conditioned on the preceding ones. How-
ever, for a given token, the computation still flows
through the same fixed m layers. Therefore, the
depth of computation per token remains O(1). This
design is efficient for language modeling but poses
challenges for tasks requiring deep computation
per output token.

In an answer-only setting, where a model pro-
duces a final output token or short span without
generating intermediate reasoning steps, this depth
limitation becomes critical. The model compresses
its entire reasoning process into a shallow compu-
tation over the input and a small number of past
outputs. Without mechanisms like CoT prompting
or architectural recurrence, such models cannot em-
ulate computations requiring more depth than the
number of Transformer layers.

This bounded depth explains the well-
documented reasoning failures of LLMs on tasks
such as multi-digit arithmetic, logical deduction,
or planning. These tasks often require chaining
intermediate states that exceed the model’s depth.
Techniques such as CoT prompting can be viewed
as a way to simulate recurrence by externalizing
intermediate reasoning steps into tokens and
re-feeding them as input. This effectively increases
the depth of computation across multiple decoding
iterations, allowing models to approximate
iterative algorithms.

32539



Task Tokenization Type Unsupervised CoT Supervised CoT

. BPE 24.40 28.00
Sorting (len € [5, 10]) List-fy 54.20 64.70

, BPE 46.00 50.20
Reversing (len € [5,10]) List-fy 39.10 51.10

Table 4: Comparison of Unsupervised and Supervised CoT under different tokenization types for Sorting and
Reversing tasks (sampled length € [5, 10]), each cell is tested with 1000 generated instances.

Task Description Prompts
R
Parity Check (PC) Given a binary list composed of as and bs, output a string indicating if See Figure 9

the number of as in the list is even or odd.

Even Pairs (EP) Given a binary list composed of as and bs, determine if the total See Figure 10
number of abs and bas is even. In our settings, we modify this task to
output the total count of such pairs.

Cycle Navigation (CN) Starting at position 0 on a cycle of length 5, follow a list of See Figure 11
movements (0=STAY, 1=INCREASE, 2=DECREASE) and output the
final position.

DCF

Reverse List (RL) Given an input list of elements, output a string containing all elements See Figure 12
in reverse order.

Equal Number (EN) Given a balanced binary list composed of Os and 1s, determine if the See Figure 13
count of 0 in the list is greater than or equal to the count of 1 in the
list at each prefix.

Palindrome Verification Given a list containing a middle marker #, check whether the See Figure 14

(PV) elements before the marker appear in reverse order after the marker.

CS

0dds First (OF) Given a list of letters, output a string containing all letters in odd See Figure 15
positions followed by all letters in even positions from the original
list, maintaining relative order within each group. In our settings, we
modify this task to work with random letters instead of a binary
alphabet.

Sorting List (SL) Given a list of characters, output a string containing the characters See Figure 16
sorted in ascending ASCII order using insertion sort.

Duplicate List (DL) Given a binary list, output a string that contains the input sequence See Figure 17

repeated twice.

Table 5: Overview of Tasks & Prompt.
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TAsK: Parity Check

Determine whether the number of occurrences of letter ‘{{letter}}’s in the list below is even.
Conclude with { ‘Result’: True} if the count is even, { ‘Result’: False} if the count is odd.

List: {{list}}

Unsupervised CoT

Determine whether the number of occurrences of letter *{ {letter}}’s in the list below is even. Think step by step.
Conclude with { ‘Result’: True} if the count is even, { ‘Result’: False} if the count is odd.

List: {{list}}

Supervised CoT

Determine whether the number of occurrences of the letter ‘{{letter}}’ in the given list following the steps below:
1. Initialize ‘count’ to 0.

2. For each letter in the list, increment ‘count’ if the letter is the same as the letter being evaluated and write down
the current ‘count’.

3. Decide if the the occurrences of the target letter is even or odd.
4. Conclude with {‘Result’: True} if the count is even, { ‘Result’: False} if the count is odd.

List: {{list}}

Suboptimal Supervised CoT

Determine whether the number of occurrences of the letter ‘{{letter}}’ in the given list following the steps below:

1. For each letter in the list, determine if the letter is the same as the letter being evaluated. Write down yes or no for
each step.

2. Decide if the the occurrences of the target letter is even or odd.
3. Conclude with { ‘Result’: True} if the count is even, { ‘Result’: False} if the count is odd.

List: {{list}}

Figure 9: Different prompting strategies for Parity Check task.
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TASK: Even Pairs

Please count the total numbers of ‘ab’ and ‘ba’ in the list below.

The output should be formatted as a dictionary with the key ‘Result’. Do not output the individual counts. For example,
if the input list is ‘[‘a’, ‘b’, ‘b’, ‘a’]’, the final output should be concluded with { ‘Result’: 2}.

List: {{list}}

Unsupervised CoT

Please count the total numbers of ‘ab’ and ‘ba’ in the list below. Think Step by step.
The output should be formatted as a dictionary with the key ‘Result’. Do not output the individual counts. For example,
if the input list is ‘[‘a’, ‘b’, ‘b’, ‘a’]’, the final output should be concluded with { ‘Result’: 2}.

List: {{list}}

Supervised CoT

Please count the total numbers of ‘ab’ and ‘ba’ in the list following the steps below:
1. Initialize the ‘count’ to 0.
2. For each letter in the list, if the letter is different from the next letter, increment the ‘count’ by 1. Output the count.
3. Terminate when the letter is the last element in the list, and output the result.

The output should be formatted as a dictionary with the key ‘Result’. Do not output the individual counts. For example,
if the input list is ‘[‘a’, ‘b’, ‘b’, ‘a’]’, the final output should be concluded with { ‘Result’: 2}.

List: {{list}}

Suboptimal Supervised CoT

Please count the total numbers of ‘ab’ and ‘ba’ in the list following the steps below:

1. For every letter in the list except the last one, combine it with the next letter in the list. Decide if it’s a ‘ab’ or ‘ba’.
Output ‘“True’ or ‘False’.

2. Count the number of ‘True’s.

The output should be formatted as a dictionary with the key ‘Result’. Do not output the individual counts. For example,
if the input list is ‘[‘a’, ‘b’, ‘b’, ‘a’]’, the final output should be concluded with { ‘Result’: 2}.

List: {{list}}

Figure 10: Different prompting strategies for Even Pairs task.
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TAsK: Cycle Navigation

Given a sequence of movements on a cycle of length 5, compute the end position.

The movements are STAY, INCREASE, DECREASE and are represented as {0, 1, 2}. Please determine the agent’s
final position after executing all movements in the list.

The output should be formatted as a dictionary with the key ‘Result’. Do not output the individual counts. For example,
if the input list is [0’, “1°, “2’, ‘1’]’, the final output should be concluded with { ‘Result’: 1}.

List: {{list}}

Unsupervised CoT

| r

Given a sequence of movements on a cycle of length 5, compute the end position.

The movements are STAY, INCREASE, DECREASE and are represented as {0, 1, 2}. Please determine the agent’s
final position after executing all movements in the list. Think step by step.

The output should be formatted as a dictionary with the key ‘Result’. Do not output the individual counts. For example,
if the input list is ‘[0, “1°, 2°, ‘1’]’, the final output should be concluded with { ‘Result’: 1}.

List: {{list}}

| '

Supervised CoT

Given a sequence of movements on a cycle of length 5, compute the end position. The movements are STAY, INCREASE,
DECREASE and are represented as {0, 1, 2}.
Please determine the agent’s final position after executing all movements in the list following the steps:

1. Initialize ‘state’ to 0.

2. For every movement in the list: increment ‘state’ by 1 if the movement is 1, decrement ‘state’ by 1 if the movement
is 2.

3. After every movement in the list id taken, the final position is ‘state’ modulo 5.

The output should be formatted as a dictionary with the key ‘Result’. Do not output the individual counts. For example,
if the input list is ‘[0’, “1°, 2’, ‘1°]’, the final output should be concluded with ‘Result’: 1.

List: {{list}}

Suboptimally Supervised CoT

| r

Given a sequence of movements on a cycle of length 5, compute the end position. The movements are STAY, INCREASE,
DECREASE and are represented as {0, 1, 2}.
Please determine the agent’s final position after executing all movements in the list following the steps:

1. Convert every movement ‘2’ in the list to -1, ‘0’ to 0, ‘1’ to 1.

2. Calculate the sum of all elements (which will be 0, 1, or -1) in the list.

3. The final position is the sum modulo 5.

The output should be formatted as a dictionary with the key ‘Result’. Do not output the individual counts. For example,
if the input list is [0, “1°, 2°, ‘1’]’, the final output should be concluded with ‘Result’: 1.

List: {{list}}

Figure 11: Different prompting strategies for Cycle Navigation task.
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TASK: Reverse List

Please reverse the list.

The output should be formatted as a dictionary with the key ‘Result’, with the reversed list concatenated to a string. For
example, if the input list is ‘[‘a’, ‘b’, ‘c’, ‘d’]’, the final output should be concluded with ‘Result’: ‘dcba’.

List: {{list}}

Unsupervised CoT

Please reverse the list. Think step by step.
The output should be formatted as a dictionary with the key ‘Result’, with the reversed list concatenated to a string. For
example, if the input list is ‘[‘a’, ‘b’, ‘c’, ‘d’]’, the final output should be concluded with ‘Result’: ‘dcba’.

List: {{list}}

Supervised CoT

Reverse the list following the steps below:
1. Create an empty string ‘reversed’

2. For each character in the input list:

¢ Remove the first (leftmost) letter
* Add this letter to the beginning of ‘reversed’
* Only display the ‘reversed’ string

The output should be formatted as a dictionary with the key ‘Result’, with the reversed list concatenated to a string. For
example, if the input list is ‘[‘a’, ‘b’, ‘c’, ‘d’]’, the final output should be concluded with { ‘Result’: ‘dcba’}.

List: {{list}}

Suboptimally Supervised CoT

Reverse the list following the steps below:
1. Initialize the ‘counter’ to 0.

2. For each character in the input list starting from the leftmost character, move it to the rightmost place in the list
and increment the counter.

3. If the counter equals to the length of the input list, this list is reversed.

The output should be formatted as a dictionary with the key ‘Result’, with the reversed list concatenated to a string. For
example, if the input list is ‘[‘a’, ‘b’, ‘c’, ‘d’]’, the final output should be concluded with {‘Result’: ‘dcba’}.

List: {{list}}

Figure 12: Different prompting strategies for Reverse List task.
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TAsSK: Equal Number

Determine if the count of ‘0’ in the list is greater than or equal to the count of ‘1’ in the list at each prefix.
The output should be formatted as a dictionary with the key ‘Result’. For example, if the input list is ‘[‘0’, ‘0, ‘1°, ‘1’]’,
the final output should be concluded with {‘Result’: True}.

List: {{list}}

Unsupervised CoT

Determine if the count of ‘0’ in the list is greater than or equal to the count of ‘1’ in the list at each prefix. Think step by
step.

The output should be formatted as a dictionary with the key ‘Result’. For example, if the input list is ‘[0, ‘0’, ‘1, ‘1]’
the final output should be concluded with {‘Result’: True}.

Supervised CoT

Determine if the count of ‘0’ in the list is greater than or equal to the count of ‘1° in the list at each prefix following the
step below:

1. Initialize ‘count’ to O.

2. For each element in the list:

* If the element is 0: increment ‘count’ by 1
o If the element is 1: decrement ‘count’ by 1
* Output current ‘count’. If ‘count’ is less than 0, break and return False.

3. If the final ‘count’ is O, return True.

The output should be formatted as a dictionary with the key ‘Result’. For example, if the input list is ‘[0, ‘0’, ‘1, ‘1]’
the final output should be concluded with { ‘Result’: True}.

List: {{list}}

Suboptimally Supervised CoT

Determine if the count of ‘0’ in the list is greater than or equal to the count of ‘1’ in the list at each prefix following the
step below:

1. Initialize ‘count_0’ and ‘count_1" to 0.

2. For every prefix of the list (except the last prefix which is equal to the whole list):

¢ Count the number of ‘0’ in the list, store to ‘count_0’.
¢ Count the number of ‘1’ in the list, store to ‘count_1".
* If ‘count_1’ is greater than ‘count_0’, break and return False directly.

3. At the last step (i.e. the prefix being the list), if ‘count_0’ is equal to ‘count_1" at the last step, return True. Else
return False.

The output should be formatted as a dictionary with the key ‘Result’. For example, if the input list is ‘[0, ‘0’, 1, ‘1’]’,
the final output should be concluded with {‘Result’: True}.

List: {{list}}

Figure 13: Different prompting strategies for Equal Number task.
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TASK: Palindrome Verification

Base

Determine if the list is a palindrome. The list contains a middle marker ‘#’, which separates the first half and the second
half of the list.

The output should be formatted as a dictionary with the key ‘Result’. For example, if the input list is ‘[‘a’, ‘b’, ‘#’, ‘a’,
‘b’]’, the final output should be concluded with {‘Result’: False}.

List: {{list}}

Unsupervised CoT

| r

Determine if the list is a palindrome. The list contains a middle marker ‘#’, which separates the first half and the second
half of the list. Think step by step.

The output should be formatted as a dictionary with the key ‘Result’. For example, if the input listis ‘[‘a’, ‘b’, ‘#’, ‘a’,
‘b’]’, the final output should be concluded with {‘Result’: False}.

List: {{list}}

Supervised CoT

| '

Determine if the list is a palindrome. The list contains a middle marker ‘#’, which separates the first half and the second
half of the list. Think following the instructions below:

1. Copy the list before the middle marker ‘# into list ‘left’.

2. Reverse ‘left’, store in list ‘left_reverse’.

3. Copy the list after the middle marker ‘# into list ‘right’.

4. Compare ‘left_reverse’ with ‘right’, if they are different, return False. Otherwise return True.

The output should be formatted as a dictionary with the key ‘Result’. For example, if the input listis ‘[‘a’, ‘b’, ‘#’, ‘a’,
‘b’]’, the final output should be concluded with ‘Result’: False.

List: {{list}}

| '

Suboptimally Supervised CoT

Determine if the list is a palindrome. The list contains a middle marker ‘#’, which separates the first half and the second
half of the list. Think following the instructions below:

1. Copy the list before the middle marker ‘#’ into a list ‘left’.
2. Copy the list after the middle marker ‘#’ into a list ‘right’.

3. For the leftmost letter in ‘left’:

 If it’s not same as the rightmost letter in ‘right’, return False.
 If it’s same as the rightmost letter in ‘right’, remove it from ‘left’, also remove the rightmost letter from

‘right’.
* Output new ‘left’ and ‘right’ lists.

4. If both ‘left’ and ‘right’ are empty, return True. Otherwise, return ‘False’.

The output should be formatted as a dictionary with the key ‘Result’. For example, if the input list is ‘[‘a’, ‘b’, ‘#’, ‘a’,
‘b’]’, the final output should be concluded with {‘Result’: False}.

List: {{list}}

Figure 14: Different prompting strategies for Palindrome Verification task.
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TASK: Odds First

Please convert the list below to odds first.
The output should be formatted as a dictionary with the key ‘Result’, with the sorted list concatenated to a string. For
example, if the input list is ‘[‘a’, ‘b’, ‘c’, ‘d’]’, the final output should be concluded with { ‘Result’: ‘bdac’}.

List: {{list}}

Unsupervised CoT

Please convert the list below to odds first. Think step by step
The output should be formatted as a dictionary with the key ‘Result’, with the sorted list concatenated to a string. For
example, if the input list is ‘[‘a’, ‘b’, ‘c’, ‘d’]’, the final output should be concluded with { ‘Result’: ‘bdac’}.

List: {{list}}

Supervised CoT

Please convert the list below to odds first following the instructions:
1. Create an empty list ‘odds’ and a copy of the list ‘copy’

2. For each letter in the list, if the index is odd, remove it from ‘copy’ and add it to ‘odds’. Output ‘odds’ and ‘copy’
for each step. ‘copy’ will contain all letter with even index upon finishing.

3. Convert ‘odds’ and ‘copy’ to string, then concatenate them together.

The output should be formatted as a dictionary with the key ‘Result’, with the sorted list concatenated to a string. For
example, if the input list is ‘[‘a’, ‘b’, ‘c’, ‘d’]’, the final output should be concluded with { ‘Result’: ‘bdac’}.

List: {{list}}

Suboptimally Supervised CoT

Please convert the list below to odds first following the instructions:
1. For every letter in the list, decide whether it’s at odd position or even position. Output the decisions.
2. Concatenate all letters at odd positions in the original sequence.
3. Concatenate all letters at even positions in the original sequence.
4. Concatenate the result of Step 2 and Step 3.

The output should be formatted as a dictionary with the key ‘Result’, with the sorted list concatenated to a string. For
example, if the input list is ‘[‘a’, ‘b’, ‘c’, ‘d’]’, the final output should be concluded with {‘Result’: ‘bdac’}.

Figure 15: Different prompting strategies for Odds First task.
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TASK: Sorting List

Base

Please sort the list below in ascending order using insertion sort. Note that lower case characters are greater than upper
case characters.

The output should be formatted as a dictionary with the key ‘Result’, with the sorted list concatenated to a string. For
example, if the input list is ‘[‘a’, ‘B’, ‘C’, ‘d’]’, the final output should be concluded with { ‘Result’: ‘BCad’}.

List: {{list}}

| r
\

Unsupervised CoT

Please sort the list below in ascending order using insertion sort. Think step by step. Note that lower case characters are
greater than upper case characters.

The output should be formatted as a dictionary with the key ‘Result’, with the sorted list concatenated to a string. For
example, if the input list is ‘[‘a’, ‘B’, ‘C’, ‘d’]’, the final output should be concluded with { ‘Result’: ‘BCad’}.

List: {{list}}

Supervised CoT

| r

Please sort the list below in ascending order using insertion sort following the steps below. Note that lower case
characters are greater than upper case characters.

1. Start by creating an empty list ‘sorted’ for sorted characters.

2. While the original list is not empty:

* Remove the first character from the input list
* Insert the character to the correct place in ‘sorted’.
 Display ‘sorted’ after each step.

The output should be formatted as a dictionary with the key ‘Result’, with the sorted list concatenated to a string. For
example, if the input list is ‘[‘a’, ‘B’, ‘C’, ‘d’]’, the final output should be concluded with { ‘Result’: ‘BCad’}.

List: {{list}}

Suboptimally Supervised CoT

| '

Please sort the list below in ascending order using insertion sort following the steps below. Note that lower case
characters are greater than upper case characters.

1. Set a place counter to 1.

2. While the counter is not greater than the length of the list, keep doing this step:

* Increment the place counter.

» The characters before the place counter has been sorted. Insert the character at the current place counter to
the correct position in the sorted part of the list.

* Display the currrent list and the counter after each step.

The output should be formatted as a dictionary with the key ‘Result’, with the sorted list concatenated to a string. For
example, if the input list is ‘[‘a’, ‘B’, ‘C’, ‘d’]’, the final output should be concluded with { ‘Result’: ‘BCad’}.

List: {{list}}

Figure 16: Different prompting strategies for Sorting List task.
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TASK: Duplicate List

Please process the input string by duplicating it.
The output should be formatted as a dictionary with the key ‘Result’. For example, if the input string is ‘ab’, the final
output should be concluded with { ‘Result’: ‘abab’}.

Input string: {{string}}

Unsupervised CoT

Please process the input string by duplicating it. Think step by step.
The output should be formatted as a dictionary with the key ‘Result’. For example, if the input string is ‘ab’, the final
output should be concluded with { ‘Result’: ‘abab’}.

Input string: {{string}}

Supervised CoT

Please process the input string by duplicating it according to the following steps:
1. Copy the input string.
2. Append the copied string to the original string.

The output should be formatted as a dictionary with the key ‘Result’. For example, if the input string is ‘ab’, the final
output should be concluded with { ‘Result’: ‘abab’}.

Input string: {{string}}

Suboptimally Supervised CoT

Please process the input string by duplicating it following the steps:
1. Initialize a new empty string

2. Start from the leftmost letter of the input string, add it to the end of the new string until you reached the end of the
input string.

3. Then repeat step 2 until the length has been doubled.

The output should be formatted as a dictionary with the key ‘Result’. For example, if the input string is ab’, the final
output should be concluded with { ‘Result’: ‘abab’}.

Input string: {{string}}

Figure 17: Different prompting strategies for Duplicate List task.
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Level & Task:
R/EP

Prompt:

Please count the total numbers of ‘ab’ and ‘ba’ in the list below. Think Step by step.

The output should be formatted as a dictionary with the key ‘Result’. Do not output the individual counts.
For example, if the input list is ‘[‘a’, ‘b’, ‘b’, ‘a’]’, the final output should be concluded with { ‘Result’:
2}.

List: [‘b’, sbs7 ‘b’, ‘b,, ‘a” ;bs7 ‘a’, ‘b’, ‘b,, ‘b’, ‘b,, ‘b’, ‘a,’ ‘b’, ‘a’, ‘b,, ‘b’, ‘b,, ‘b’, sas]

Model Response:
To count the occurrences of the substrings ‘ab’ and ‘ba’ in the given list, I will follow these steps:

1. Convert the list of characters into a string to facilitate substring searching.
2. Search for ‘ab’ and ‘ba’ in the string.

3. Count how many times each of these substrings appears.

4. Sum the counts of ‘ab’ and ‘ba’.

5. Format the result as a dictionary with the key ‘Result’.

Let’s implement these steps:

1. The list is: [‘b’, ‘b’, b’, ‘b’, ‘a@’, ‘b’, ‘a’, ‘b’, ‘b’, ‘b’, ‘b’, ‘b’, ‘a’, ‘b’, ‘a’, ‘b’, ‘b’, ‘b’, ‘b’,
‘a’]

2. Convert it into a string: "bbbbababbbbbbababbbba"

3. Now, I will count the occurrences:

- For ‘ab’:

- "bbbbababbbbbbababbbba" has ‘ab’ appearing at indexes 4 (first ‘a’) and 12 (second ‘a’).
- Total count of ‘ab’: 3

- For ‘ba’:

- "bbbbababbbbbbababbbba" has *ba’ appearing at indexes 5 (first ‘a’) and 11 (second ‘a’).
- Total count of ‘ba’: 3

4. Sum the counts: 3 (for ‘ab’) + 3 (for ‘ba’) =6

5. Format the result as a dictionary: { ‘Result’: 6}

So the final output is:

T json
{'Result': 6}

Correct Answer:
9

Table 6: Case Study 1.1 - Unsupervised CoT Fails in EP Task (Level R)
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Level & Task:
R/EP

Prompt:
Please count the total numbers of ‘ab’ and ‘ba’ in the list following the steps below:

1. For every letter in the list except the last one, combine it with the next letter in the list. Decide if it’s a ‘ab’ or ‘ba’. Output ‘True’ or ‘False’.
2. Count the number of “True’s.

The output should be formatted as a dictionary with the key ‘Result’. Do not output the individual counts. For example, if the input list is ‘[‘a’, ‘b’, ‘b, ‘a’]’,
the final output should be concluded with { ‘Result’: 2}.

List: ['b’, *b”, *b”, b, “a’, *b’, “a’, *b’, ‘b’, °b’, *b’, *b’, ‘a’, b’, a’, b, b, b, b, (a’]

Model Response:

To solve the problem, let’s follow the steps provided.

1. We will iterate over the list of letters and check each pair of adjacent letters.

2. For each pair, we will check if it forms ’ab’ or "ba’ and count the occurrences of "True’.

3. Finally, we will output the result in the specified dictionary format.

Let’s go through the list step by step:

T python
letters = ['b', 'b', 'b', 'b', 'a', 'b', 'a’, 'b', 'b', 'b', 'b', 'b', 'a', 'b', 'a', 'b', 'b', 'b', 'b', 'a']
count_true = @

for i in range(len(letters) - 1):
pair = letters[i] + letters[i + 1]

if pair == 'ab' or pair == 'ba':
count_true += 1

result = {'Result': count_true}

Now, let’s count ‘True’s:
- ‘bb> — False

- ‘bb’> — False

- ‘bb> — False

- ‘ba’ — True (1)

-’ab’ — True (2)

- ‘ba’ — True (3)

- ‘bb” — False

- ‘bb’ — False

- ‘bb’ — False

- ‘bb’ — False

- ‘ba’ — True (4)

-’ab’ — True (5)

- ‘bb> — False

- ‘ba’ — True (6)

- ‘bb> — False

- ‘bb’> — False

- ‘bb> — False

- ‘ba’ — True (7)
Counting the ‘“True’s gives us a total of 7.
Thus, the output will be:

T python
{'Result': 7}

Correct Answer:
9

Table 7: Case Study 1.2 - Sub-optimally Supervised CoT Fails in EP Task (Level R)
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Level & Task:
R/EP

Prompt:
Please count the total numbers of ‘ab’ and ‘ba’ in the list following the steps below:

1. Initialize the ‘count’ to 0.

2. For each letter in the list, if the letter is different from the next letter, increment the ‘count’ by 1.
Output the count.

3. Terminate when the letter is the last element in the list, and output the result.
The output should be formatted as a dictionary with the key ‘Result’. Do not output the individual counts.
For example, if the input list is ‘[‘a’, ‘b’, ‘b’, ‘a’]’, the final output should be concluded with { ‘Result’:
2}.

List: [‘b’, ‘b’, ‘b,, Ab,’ ‘a,’ ‘b’, ‘a’, ‘b,, ‘b,, ‘b’, ‘b’, ‘b,, Aa7’ ‘b,, ‘a’, ‘b’, ‘b,, ‘b’, 5b” ‘a’]

Model Response:

To count the occurrences of ab’ and ’ba’ based on your specified steps, we can follow the approach of
iterating through the list and checking for differences between consecutive letters. Let’s go through the
steps using the provided list:

1. Initialize the ‘count® to 0.
2. Iterate through each letter in the list, checking if the current letter is different from the next letter.
3. Increment the ‘count* accordingly and terminate the loop when the last letter is reached.

Here is a breakdown of the process with the provided list:
List: ['b, ‘b, ‘b, b, “a’, ‘b, ‘a’, b, b, b, b, b, ‘@’ b, a’, b b, b, b, ']

- Compare each letter with the next:
- ‘b’ (same as next) -> no increment
- ‘b’ (same as next) -> no increment
- ‘b’ (same as next) -> no increment
‘b’ (different from next ‘a’) -> increment
‘a’ (different from next ‘b’) -> increment
‘b’ (different from next ‘a’) -> increment
‘a’ (different from next ‘b’) -> increment
‘b’ (same as next) -> no increment
- ‘b’ (same as next) -> no increment
‘b’ (same as next) -> no increment
‘b’ (different from next ‘a’) -> increment
‘a’ (different from next ‘b’) -> increment
‘b’ (different from next ‘a’) -> increment
‘a’ (different from next ‘b’) -> increment
- ‘b’ (same as next) -> no increment
‘b’ (same as next) -> no increment
‘b’ (same as next) -> no increment
‘b’ (same as next) -> no increment
‘b’ (different from next ‘a’) -> increment

Counting these increments, we find that there are a total of 9 transitions where the letter changes.

Therefore, the final output will be:

“Tjson
{'Result': 9}

Correct Answer:
9

Table 8: Case Study 1.3 - Supervised CoT Succeeds in EP Task (Level R)
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Level & Task:
DCF/RL

Prompt:

Please reverse the list. Think step by step.

The output should be formatted as a dictionary with the key ‘Result’, with the reversed list concatenated
to a string. For example, if the input list is ‘[‘a’, ‘b’, ‘c’, ‘d’]’, the final output should be concluded with
‘Result’: ‘dcba’.

List: [‘O’, ‘f” ‘g,’ ‘b’, ‘k,, AV” ‘i,, ‘m’, ‘h’, Ak” ‘d’, Ae7, ‘X,, ‘V’, 467]

Model Response:
To reverse the list step by step, we will follow these instructions:

1. Start with the original list: [‘0’, ‘", ‘g’, ‘b’, ‘k’, V', V', ‘m’, ‘h’, kK, ‘d’, ‘e, X, VvV,
‘e’].

2. Reverse the order of the list elements. The last element becomes the first, the second to last becomes
the second, and so on.

3. The reversed list will be: [‘e’, ‘v’, ‘x’, ‘e’, ‘d’, ‘k’, ‘h’, ‘m’, i’, **v’, ‘k’, ‘b’, ‘g’, ‘f’, ‘0’].

4. Concatenate the elements of the reversed list into a single string.

Now, let’s concatenate the reversed list:
- Join the elements: ‘evxdkmivkbgfo’.

Finally, we will format this into a dictionary with the key ‘Result’.

The final output will be:

* T python
{'Result': 'evxdkmivkbgfo'}

Correct Answer:

evxedkhmivkbgfo

Table 9: Case Study 2.1 - Unsupervised CoT Fails in RL Task (Level DCF)
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Level & Task:
DCF/RL

Prompt:
Reverse the list following the steps below:

1. Initialize the ‘counter’ to 0.
2. For each character in the input list starting from the leftmost character, move it to the rightmost place in the list and increment the counter.
3. If the counter equals to the length of the input list, this list is reversed.

The output should be formatted as a dictionary with the key ‘Result’, with the reversed list concatenated to a string. For example, if the input list is ‘[‘a’, ‘b’,
‘c’, “d’]’, the final output should be concluded with { ‘Result’: ‘dcba’}.

List: [‘07, F", ‘g, b, K, v, 47, m’, b, K, “d, ‘e, X, v, e

Model Response:
To reverse the given list [‘0’, f’, ‘g, ‘b, °k’, *v*, ‘", ‘m’, ‘h’, °k’, *d’, ‘e’, ‘x’, ‘v, ‘e’] following the specified steps, we will move each character from the
leftmost position to the rightmost place until we have moved all characters. The counter will track how many characters have been moved.

Here are the steps:

1. Initialize ‘counter’ to 0.
2. Move each character from the front to the back of the list, incrementing the counter with each move.

3. Stop when the counter equals the length of the input list.
Let’s perform these steps:

Starting list:

[fo7, “f”, g, b, 'K, v, P, m, Y, KL e, XL VL e

- Move ‘o’: [, ‘g’,‘b’,"k‘,‘ L, m, Ch K e, X, VY, e, fo’] (counter = 1)
- Move ‘f’ [‘g’, b’ K, v, 1, ‘m’ ‘h’ ‘k’ e’ ‘x’ v, ‘e’, ‘0, ‘f’] (counter = 2)
-Move ‘g’: ['b”, kK, V', T, ‘m’ ‘h’ K, d, e’ ‘x’ v, ‘e, ‘o, ‘f, ‘g’] (counter = 3)

- Move ‘b’ [k, ’,“, ‘m',‘h’ &KL ed’, e, X, v, fel, ‘o7, 7, ‘g, b (counter = 4)

-Move k’: [V, i", ‘m’, ‘b, K, ‘d' ‘e’, 'x’ ‘v’ ‘e’ ‘o, 7, ‘g, ‘b, ’k’] (counter = 5)

-Move ‘v’: [‘", ‘m’, ‘b, K, ‘d’, ‘e, X0 ‘v’ ‘e’, ‘0%, 7, g, ‘b’ k’, “v’] (counter = 6)

-Move ‘i’: ['m’, ‘h’, Kk, ‘d’, ‘e, ¢ ’, ‘v’, ‘e, ’, ‘f’, ‘g, b, Kk, v, (i) (counter = 7)

-Move ‘m’: [0, 'k, d’, ‘e, X7, v, fe, fo7, 7, (g, b, K, VL i, ‘m’] (counter = 8)
-Move ‘h’: ['k’, ‘d’, ‘e’ ‘x’ ‘v’,‘ ', ‘07 ‘f’ ‘g, b’ K, VL, ‘m’, ‘h’] (counter = 9)
- Move k’: ['d’, ‘¢’ ‘x’, v, e, 0%, g, ‘b’ K, v, m, ‘b, K] (counter = 10)
-Move ‘d’: [‘e’, X7, V', ‘e’, ‘0’ ‘f’ ‘g, b, kL YL, 'm’, ke, K, fd’] (counter = 11)
- Move ‘e’: ['x’, V', ¢ ',‘ S A G I ‘k VL0, m ‘h’ k’, ‘d’, ‘e’] (counter = 12)

_Move ‘x: v‘ ‘e’ 0, g, B, KL VL T m &hv €© ol e "X’](coumer—l?)
-Move ‘v’: [‘¢’, ‘0, ‘t’ 2 b, kLt ’, 9, 'm’ ‘h’ K, fd, ‘e’ X7, V'] (counter = 14)
~Move ‘¢’ [0", F", ‘g’ b, K, V', 7, ‘h’ 6w e v’ .V, ‘'] (counter = 15)

Now, the counter equals the length of the 1npul list (15), meamng the list has been fully reversed.
The reversed list is:

[e’, v, X, e, o, K, B, e, L VL KL b g ']
Concatenating this reversed list into a string gives:

‘evxdkhmivkbgfo’
Finally, we will format this into a dictionary with the specified key:

" python
output = {'Result': 'evxdkhmivkbgfo'}

So, the final output is:

* " python
{'Result': 'evxdkhmivkbgfo'}

Correct Answer:
evxedkhmivkbgfo

Table 10: Case Study 2.2 - Suboptimally Supervised CoT Fails in RL Task (Level DCF)
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Level & Task:
DCF/RL

Prompt:
Reverse the list following the steps below:

1. Create an empty string ‘reversed’

2. For each character in the input list:

* Remove the first (leftmost) letter
* Add this letter to the beginning of ‘reversed’
¢ Only display the ‘reversed’ string

The output should be formatted as a dictionary with the key ‘Result’, with the reversed list concatenated to a string. For example, if the input list is
‘[‘a’, ‘b’, “¢’, ‘d’T’, the final output should be concluded with { ‘Result’: ‘dcba’}.

List: [0, “F", g’, ", K, V', i%, ‘m’, b, K, 0, ‘e, X, V7, e

Model Response:

To reverse the provided list of characters following the outlined steps, we will create an empty string called ’reversed” and then iterate through the list,
removing the first character from the input list and adding it to the beginning of 'reversed’. Here’s how the process would work:

1. Start with the input list: [‘0’, *f*, ‘g’, *b”, °k’, V", ‘", ‘m’, *h’, °k’, “d’, ‘e’, °X’, *V’, ‘e’]
2. Create an empty string reversed = ""

3. For each character in the input list:

- Remove the first letter

- Add this letter to the beginning of reversed

- Display reversed after each operation

Following these steps, we will end up with:

- Remove ‘0” — reversed = "0"

- Remove ‘f* — reversed = "fo"*

- Remove ‘g’ — reversed = "gfo"

- Remove ‘b’ — reversed = "bgfo"

- Remove k” — reversed = "kbgfo"

- Remove ‘v’ — reversed = "vkbgfo"

- Remove ‘i” — reversed = "ivkbgfo"

- Remove ‘m’ — reversed = "mivkbgfo"

- Remove ‘h’ — reversed = "hmivkbgfo"

- Remove ‘k> — reversed = "khmivkbgfo"

- Remove ‘d’ — reversed = "dkhmivkbgfo"

- Remove ‘e’ — reversed = "edkhmivkbgfo"

- Remove ‘x> — reversed = "xedkhmivkbgfo"
- Remove ‘v’ — reversed = "vxedkhmivkbgfo"
- Remove ‘e’ — reversed = "evxedkhmivkbgfo"

Finally, we will format the output as a dictionary:

T json
{'Result': 'evxedkhmivkbgfo'}

The final answer in the specified format is:

**python
{'Result': 'evxedkhmivkbgfo'}

Correct Answer:

evxedkhmivkbgfo

Table 11: Case Study 2.3 - Supervised CoT Suceeds in RL Task (Level DCF)
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