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Abstract

Low-bit quantization improves machine learn-
ing model efficiency but surprisingly favors
undertrained large language models (LLMs).
Larger models or those trained on fewer tokens
exhibit less quantization-induced degradation
(QiD), while smaller, well-trained models face
significant performance losses. To gain deeper
insights into this trend, we study over 1500+
quantized LLM checkpoints of various sizes
and at different training levels (undertrained or
fully trained) in a controlled setting, deriving
scaling laws for understanding the relationship
between QiD and factors: the number of train-
ing tokens, model size and bit width.

With our derived scaling laws, we propose a
novel perspective that we can use QiD to mea-
sure an LLM’s training levels and determine
the number of training tokens required for fully
training LLMs of various sizes. Moreover,
we use the scaling laws to predict the quan-
tization performance of different-sized LLMs
trained with 100 trillion tokens. Our projec-
tion shows that the low-bit quantization perfor-
mance of future models, which are expected
to be trained with over 100 trillion tokens,
may NOT be desirable. This poses a poten-
tial challenge for low-bit quantization in the
future and highlights the need for awareness of
a model’s training level when evaluating low-
bit quantization research. To facilitate future
research on this problem, we release all the
1500+ quantized checkpoints used in this work
at https://huggingface.co/Xu-Ouyang.

1 Introduction

Quantization (Jacob et al., 2018; Krishnamoorthi,
2018; Banner et al., 2019; Frantar et al., 2022; Shen
et al., 2024; Lin et al., 2024; Zhang et al., 2024) is
one of the most popular techniques for efficiently

*Work done while interning at Tencent AI Lab Seattle.
†Corresponding author

deploying large language models (LLMs) by reduc-
ing the model’s disk size, memory footprint, and
improving inference efficiency through lower preci-
sion weights and activations. As model sizes have
continued to grow over the past years, researchers
have moved beyond conventional 8-bit quantization
(Zafrir et al., 2019; Dettmers et al., 2022; Zhong
et al., 2024) and begun exploring even lower bit
width (Bai et al., 2020; Zhang et al., 2020; Wang
et al., 2023; Liu et al., 2023; Egiazarian et al., 2024;
Liu et al., 2024; Huang et al., 2024), sparking a
surge of research interest in low-bit quantization.

While low-bit quantization works well on some
LLM checkpoints with very little quantization-
induced degradation (QiD), we have observed that
these checkpoints typically with either larger model
sizes or fewer training tokens. In contrast, smaller
models or those trained with substantially more
tokens exhibit notable QiD when low-bit quantiza-
tion is applied. As shown in Figure 1(right), 3-bit
quantization results in negligible QiD for a 12 bil-
lion parameter LLM up to 1011 training tokens,
but beyond this point, QiD begins to become pro-
nounced; For smaller models (e.g., 160M and 1B
parameters), QiD degradation occurs much earlier
and is more severe. With even more extreme 2-bit
quantization as shown in Figure 1(left), the trend
is similar, but QiD worsens sooner and more sig-
nificantly. This observation suggests that low-bit
quantization tends to favor undertrained LLMs and
is less compatible with fully trained LLMs.

To gain deeper insights into this trend, we study
over 1500 quantized LLM checkpoints of various
sizes (ranging from 160M to 12B) and at differ-
ent training levels1 (trained with from 1B to 206B
training tokens), analyzing the impact of low-bit
quantization on them in a controlled setting. We de-

1Training levels in this work refer to the extent to which
an LLM has been trained (e.g., undertrained, fully trained, or
overtrained), which are related to both the number of training
tokens and the model size.
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Figure 1: Performance of LLMs after low-bit quantization at different sizes and training levels. It is obvious that the
models which are smaller or trained with more tokens suffer from greater quantization-induced degradation.

rive scaling laws to model QiD with respect to the
number of training tokens, model size, bit width.
According to the derived scaling laws, we propose
a novel perspective that we can use QiD to measure
an LLM’s training levels and determine the num-
ber of training tokens required for fully training an
LLM given its size. Moreover, we use the scaling
laws to predict the performance of different-sized
LLMs with 100 trillion training tokens when ap-
plying low-bit quantization. Our projection shows
that low-bit quantization of future models, which
are expected to be trained with over 100 trillion
tokens, may not be desirable, which indicates a
potential challenge for low-bit quantization in the
future and suggests that a model’s training level
should be considered in the evaluation of future
low-bit quantization research.

The contributions of this work are threefold:

• We reveal that low-bit quantization favors un-
dertrained LLMs but suffers from significant
quantization-induced degradation (QiD) when
applied to fully trained LLMs. This insight
has been largely overlooked in previous low-bit
quantization research: very few studies have
considered the training level of a quantized
LLM when evaluating their proposed low-bit
quantization approaches.

• We derive scaling laws to model QiD with the
number of training tokens, model size and bit
width. Using these scaling laws, we propose to
use QiD as a signal to measure whether an LLM
is fully trained and estimate the number of train-
ing tokens required for LLMs of different sizes
to reach a fully trained state. Moreover, we use
the scaling law to predict the performance of
low-bit quantization for different-sized LLMs
trained with 100 trillion tokens. Our projec-

tion indicates potential challenges for the future
application of low-bit quantization.

• We release all the 1500+ quantized checkpoints
used in this work to facilitate future research.

2 Preliminary: Scaling Laws for Large
Language Models

Scaling laws for large language models (Kaplan
et al., 2020; Hoffmann et al., 2022) are crucial for
understanding how these models’ performance im-
proves with increased scale, including the number
of parameters and training tokens:

Number of Parameters LLMs’ performance
typically follows a power-law improvement as the
number of parameters increases, allowing larger
models to better fit on the same dataset:

L(N) =
a

Nα
+ ϵ (1)

where L(N) is the loss function2 dependent on N
(the number of non-embedding parameters), a is
a constant (i.e., coefficient), α is the scaling ex-
ponent, and ϵ represents the error term. This rela-
tionship indicates larger models are generally more
capable of capturing the complexities of language,
leading to better generalization and lower loss.

Training Tokens Increasing the number of train-
ing tokens enhances performance in a power-law
manner, enabling better capture of languages.

L(D) =
b

Dβ
+ ϵ (2)

where D denotes the number of training tokens, b
is a constant (i.e., coefficient) and β is the scaling

2We mainly discuss cross entropy loss for language model-
ing in this paper.
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Figure 2: The fitted scaling law of QiD with respect to the number of training tokens in the form of (Equation 5),
where β is fitted to be 0.5316.

exponent for training tokens. More training tokens
enhance an LLM’s ability to learn and generalize,
allowing it to achieve better language modeling
performance with lower loss.

When scaling both the number of parameters N
and the amount of training data D simultaneously,
the scaling law can be expressed as a function that
accounts for the combined effects of both:

L(N,D) = [(
Nc

N
)
αN
αD +

Dc

D
]αD (3)

This scaling law allows us to estimate the perfor-
mance of language models at unprecedented scales
of model size and training data effectively before
conducting actual training runs.

3 Scaling Laws for Low-bit Quantization

In this section, we propose scaling laws for low-bit
quantization. Unlike the scaling laws discussed in
section 2, the focus here is to understand how QiD
changes when low-bit quantization is applied to
LLMs of varying training scales. Formally, QiD is
defined as follows:

∆qLoss = Lossq − Loss16-bit (4)

where Lossq is the cross-entropy loss of a quan-
tized LLM, and Loss16-bit is the cross-entropy loss
of its pre-quantized, fp16 or bf16 counterparts.
∆qLoss, denoting QiD, represents the loss differ-
ence before and after applying low-bit quantization.

Inspired by conventional scaling laws for lan-
guage modeling, we investigate the impact of
model size and the number of training tokens on
QiD. Additionally, we consider bit width (i.e., the
precision of quantized weight values).

3.1 Experimental Setting

We utilize open-sourced LLMs from the Pythia
suite (Biderman et al., 2023) in our experiments.
The Pythia suite offers diverse model sizes and

provides complete access to checkpoints across its
training trajectory (spanning from initialization to
300 billion tokens). This comprehensive access en-
ables controlled experimentation and facilitates the
derivation of scaling laws for low-bit quantization.

We choose 6 different sizes of Pythia LLMs:
160M, 410M, 1B, 2.8B, 6.9B, and 12B. For each
size, we sample 20 checkpoints (see Appendix A.1)
up to 98k steps.3

For quantization, we employ one of the most pop-
ular LLM quantization techniques – GPTQ (Frantar
et al., 2022) – to quantize the Pythia checkpoints
to 2-bit, 3-bit and 4-bit levels.

We evaluate QiD on 1,000 randomly sampled
texts from RefinedWeb (Penedo et al., 2023).

3.2 Training Tokens

In contrast to prior language modeling scaling laws
where the number of training tokens D appears
in the denominator, we propose the relationship
between training tokens and QiD as follows:

∆qLoss(D) ≈ b ·Dβ (5)

As observed in Figure 1, QiD becomes increas-
ingly pronounced with a greater number of training
tokens, emphasizing its growing significance.

We use the above functional form to fit the QiD
observed in the quantized Pythia checkpoints in
Figure 2, obtaining β = 0.5316, which fits the
trend of QiD with respect to the change in training
tokens quite well.

3.3 Model Size

As mentioned in Figure 1, the larger the size of the
model, the smaller the QiD tends to be. Therefore,
we propose the relationship between model size

398k steps correspond to approximately 206 billion tokens,
which is equivalent to one epoch of Pythia’s training data.
Although Pythia was trained for 143k steps, we skipped check-
points beyond 98k steps to avoid the influence of duplicated
data, as the data beyond 98k steps represents the second epoch.
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Figure 3: The fitted scaling law of QiD with respect to the model size (i.e., the number of non-embedding parameters)
in the form of Equation 6, where α is fitted to be 0.2276.
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Figure 4: The fitted scaling law of QiD with respect to the bit width in the form of Equation 7, where γ is fitted to
be 5.4812.

(i.e., the number of non-embedding parameters)
and QiD as follows:

∆qLoss(N) ≈ a

Nα
(6)

Using the described functional form, we fit the QiD
of quantized Pythia checkpoints shown in Figure 3,
yielding α = 0.2276.

3.4 Bit Width

Bit width is a factor not present in conventional
scaling laws. Considering that the role of bit width
is similar to that of the number of parameters (both
aim to increase the model’s expressiveness), we
propose a similar functional form as in subsec-
tion 3.3 to model bit width in Equation 7:

∆qLoss(P ) ≈ c

P γ
(7)

We fit the QiD of quantized Pythia checkpoints
shown in Figure 4, yielding γ = 5.4812.

3.5 Unified Scaling Law

With the basic scaling laws derived in Sections
3.2 (the number of training tokens), 3.3 (model
size), and 3.4 (bit width), we study how to model
QiD with all three factors together. Inspired by
Kaplan et al. (2020), we consider the following
four principles for unifying the factors:

• Fixing D and P, sending N → ∞, we expect
∆qLoss → 0.

• Fixing N and P, sending D → 0, we expect
∆qLoss → 0.

• Fixing N and D, sending P ≥ 16, we expect
∆qLoss → 0.

• Fixing N and D, sending P → 0, we expect
∆qLoss → ∞.

We propose the unified scaling law for low-bit
quantization as follows:

∆qLoss(N,D,P ) = k · Dβ

NαP γ
(8)

where k is the joint coefficient, and both the coeffi-
cient and exponents (α, β, γ) are positive. Figure 5
displays the fitted curves using this functional form.
The jointly fitted exponents α, β, and γ closely
match those obtained by fitting these variables in-
dependently, further validating the effectiveness of
the joint function form ∆qLoss(N,D,P ).

Given the unified scaling law for ∆qLoss and
the definition of ∆qLoss in Equation 4, we can
easily predict a quantized LLM’s performance as
Lossq = Loss16-bit + ∆qLoss, as illustrated in
Figure 6, which fits well with the observations.
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Figure 5: The unified scaling law we fit based on Equation 8 with the GPTQ-quantized LLMs from the Pythia suite:
∆qLoss(N,D,P ) = 0.017D0.5251/(N0.2261 · P 5.4967)
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can be predicted by the conventional LLM’s scaling law which is fitted based on the function form of Equation 3
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3.6 Validation with Ablation Studies

We validate the scaling law derived in subsec-
tion 3.5 with different test data, quantization meth-
ods and foundation models.

3.6.1 Test Data
We compare the results obtained using RefinedWeb
and Wikitext-2 (Merity et al., 2016) as test data
in Figure 7, demonstrating that the QiD results on
these two test datasets are almost identical. This
suggests that the trends of QiD are largely indepen-
dent of the test data.

3.6.2 Quantization Methods
We quantize Pythia checkpoints using two other
popular quantization methods – AWQ (Lin et al.,
2024) and bitandbytes4 in addition to GPTQ. We
show the QiD results and fitted scaling laws in Fig-
ure 8, and we find that QiD trends remain nearly
identical across different quantization methods, de-
spite slight variations in the fitted scaling laws.

3.6.3 Foundation Models
Figure 9 shows the fitting results of our scaling
laws function form, Equation 8, on the Spectra
suite (Kaushal et al., 2024) as well as the popular

4https://github.com/bitsandbytes-foundation/
bitsandbytes

open-sourced Llama (Touvron et al., 2023; Dubey
et al., 2024) and Qwen (Yang et al., 2024) models,
which verifies our laws are not only valid for Pythia
but are broadly applicable.

4 Discussion: Low-bit Quantization
Favors Undertrained LLMs

4.1 Intuition

Based on the scaling laws we derived in section 3,
we confirm low-bit quantization tends to favor mod-
els with fewer training tokens or larger model sizes,
which are essentially undertrained LLMs.

Figure 10 demonstrates the relationship between
QiD, model size, training token number, and bit
width. Points located in the upper-left region
are more fully trained, resulting in a substantially
higher QiD, while those in the bottom-right are
undertrained, exhibiting a lower QiD.

To understand this observation intuitively, we
illustrate changes in sampled model weights be-
tween adjacent checkpoints in Figure 11. It can
be observed that the early checkpoints exhibit sig-
nificant changes in weights. Due to the signifi-
cant fluctuations in weights during training, the
model becomes inherently robust to weight vari-
ations, meaning that even if low-bit quantization
introduces some precision loss, the overall impact
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Figure 8: QiD results and fitted scaling laws for different quantization methods. Note that the GPTQ function here
differs slightly from that in Figure 5, as it is fitted exclusively with 4-bit quantized Pythia checkpoints, whereas the
function in Figure 5 is fitted using all quantized Pythia checkpoints.

on the model remains limited. On the other hand,
checkpoints from the later stages of training, which
are more fully trained, show very small changes in
weights (often at a very small scale, even beyond
the 3rd-4th decimal place). In such cases, low-bit
quantization is very likely to shift weights outside
the small range of recent variations, potentially
causing the model to degrade or even collapse.

From another perspective, during the under-
trained stage, the model’s weights undergo signifi-
cant changes and have not yet fully exploited the
precision dimension. In the later, more fully trained
stage, as weight adjustments stabilize, the model
increasingly relies on precision to continue optimiz-
ing the training objective and improving language
modeling performance. This aligns with the two
phrases of representation learning in the informa-
tion bottleneck theory (Shwartz-Ziv and Tishby,
2017): during the early training phase, gradients
have a large mean and small variance, making high
precision unnecessary. However, in the later train-
ing phase, gradients have a small mean and large
variance, requiring higher precision for the model
to converge effectively.

4.2 QiD: A Signal that Measures an LLM’s
Training Level

Unlike previous work that often uses the inability of
the loss to decrease further as a signal to determine

whether an LLM is fully trained (i.e., saturated), we
introduce a novel perspective that we can use QiD
to determine whether an LLM is fully trained. If an
LLM exhibits QiD ≈ 0 after low-bit quantization,
it suggests that the LLM is likely undertrained, as it
has not yet exploited higher precision, as discussed
in subsection 4.1.

With the scaling law in Equation 8 derived in
subsection 3.5, we can estimate how many train-
ing tokens are needed for a given LLM size to be
considered fully trained based on QiD predictions.
Table 1 shows the number of training tokens re-
quired for different model sizes to achieve ∆qLoss
= {0.2, 0.3, 0.4, 0.5} when applying low-bit quan-
tization. For a 70B scale model, achieving a QiD
greater than 0.2 (corresponding to likelihood de-
crease by 20%) under 4-bit quantization requires
over 17 trillion training tokens. In contrast, for a
405B scale LLM, achieving a QiD above 0.2 un-
der 4-bit quantization requires nearly 50 trillion
training tokens – a scale far beyond what has been
achieved by now, indicating that current training
efforts for extremely large LLMs may be still far
from sufficient.

4.3 QiD Prediction When Scaling to 100
Trillion Training Tokens

Figure 13 shows the trend in the number of train-
ing tokens for state-of-the-art 7B-scale LLMs from
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Figure 9: Left: Scaling laws for low-bit quantization, fitted on the LLM checkpoints of the Spectra suite, which are
all trained with 300B tokens; Right: Actual ∆qLoss VS Predicted ∆qLoss that is computed based on the scaling
laws fitted on Llama and Qwen.
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Figure 10: Fully trained LLMs suffer from much greater QiD (i.e., ∆qLoss) than undertrained LLMs.

2020 to the present, showing that the number of
training tokens has increased nearly 50× over the
past 4 years. Based on this trend, it is very likely
that LLMs in 2025-2026 will be trained with up to
100 trillion (1014) tokens5.

Using the scaling laws derived, we predict the
performance of quantized LLMs trained on 100
trillion tokens, as illustrated in Figure 12. In partic-
ular, performance degradation with 2-bit and 3-bit
quantization at the unprecedented training scale of
100 trillion tokens is predicted to be severe, which
is in stark contrast to the acceptable performance
at the current training scale of 1013 tokens. This
indicates a challenge for the practical application
of low-bit quantization to future LLMs.

4.4 From Low-bit Quantization to Low-bit
LLMs

Although this work mainly focuses on low-bit
(post-)quantization, we suspect that native low-bit
LLMs are also likely to favor undertrained LLMs.
We replicated the popular 1-bit LLM – BitNet

5Although there have been claims that internet data is
nearing exhaustion, recent continuous innovations in synthetic
data creation (Ge et al., 2024) lead us to believe that the
milestone of 100 trillion training tokens is achievable in the
next few years.

b1.58 (Ma et al., 2024) – to compare it with its
bf16 counterpart throughout training. Specifically,
we trained 120M and 1.2B decoder-only models
with both bf16 and BitNet. Figure 14 shows the
comparison of training losses between BitNet and
its 16-bit counterparts in the early- and mid-training
steps. It can be observed that, in the early stages of
training, the training loss curves of BitNet closely
match (and even outperform) those of bf16, as Bit-
Net tends to use a higher learning rate than bf16
training according to its training recipe. As train-
ing continues, the 120M BitNet gradually begins
to lag behind its bf16 counterpart, and after further
training steps, a noticeable gap starts to appear in
the 1.2B models, which is consistent with our ob-
servations for low-bit quantization. This indicates
that native low-bit LLMs such as BitNet6 may also
favor undertrained LLMs, though the gap manifests
later compared to post-quantization, as native low-

6We reviewed the original BitNet paper and some open-
sourced reimplementations, and found that their numbers of
training tokens were up to 100 billion. Considering their
model sizes and the fact that the performance gap of native low-
bit LLMs tends to emerge later compared to post-quantization,
we express concerns about their performance at larger training
scales (i.e., with more training tokens). We call for results of
native low-bit LLMs at larger training scales to better justify
their practical value.

32344



Low-bit quantization

Quantized weight

Low-bit quantization

Quantized weight

Low-bit quantization

Quantized weight

Low-bit quantization

Quantized weight

Figure 11: Changes in model weights between adjacent checkpoints. Early (undertrained) checkpoints exhibit
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small changes introduced by quantization have a limited impact on the model’s performance. In contrast, fully
trained checkpoints demonstrate very little weight fluctuations during training. As a result, low-bit quantization is
likely to push weights beyond the narrow range of recent variations, leading to performance degradation or even
model collapse.

Model Size
∆qLoss = 0.2 ∆qLoss = 0.3 ∆qLoss = 0.4 ∆qLoss = 0.5

2 bits 3 bits 4 bits 2 bits 3 bits 4 bits 2 bits 3 bits 4 bits 2 bits 3 bits 4 bits

1B 0.001 0.109 1.442 0.003 0.199 2.679 0.004 0.305 4.156 0.007 0.425 5.842

7B 0.003 0.304 4.507 0.006 0.555 8.369 0.010 0.851 12.984 0.015 1.186 18.253

70B 0.007 1.023 17.350 0.015 1.869 32.219 0.027 2.866 49.985 0.041 3.993 70.272

405B 0.015 2.581 48.486 0.033 4.715 90.040 0.057 7.231 139.689 0.087 10.075 196.383

Table 1: Prediction of the number of training tokens (in trillion) needed to achieve a given training level measured by
∆qLoss for different model sizes and bit widths. Note that ∆qLoss = 0.2 means the likelihood is reduced to 80%
of its original value (e−0.2 ≈ 0.8), while ∆qLoss = 0.5 means the likelihood is reduced to 60% (e−0.5 ≈ 0.6).

Figure 12: Scaling laws for predicting Quantization-induced Degradation (QiD, denoted as ∆qLoss) in 7B, 70B,
and 405B models trained on up to 100 trillion (1014) tokens. While low-bit quantization yields acceptable QiD
for undertrained LLMs (trained with ≤ 1012 tokens), it is predicted to become undesirable when applied to fully
trained LLMs (e.g., trained with 100 trillion tokens, a milestone expected to be reached in the next few years),
particularly for smaller models. Note that the gray areas in this figure indicate levels of QiD that degrade the
model’s predictions to a level worse than random guessing.

bit training keeps the model capable of operating
under low bit throughout the training.

5 Conclusion

We derive scaling laws for low-bit quantization
from over 1500 quantized LLM checkpoints and
reveal that low-bit quantization favors undertrained
LLMs. We provide an interpretation for this phe-
nomenon and introduce a novel perspective of us-
ing QiD as a signal to determine a model’s train-

ing level. Moreover, we use the derived scaling
laws to predict the effect of low-bit quantization
on LLMs trained with 100 trillion tokens. This, on
one hand, challenges the future practical value of
low-bit quantization, and on the other hand, sug-
gests that future research on low-bit quantization
should consider the model’s training level during
evaluation. Alongside concurrent research (Kumar
et al., 2024; Feng et al., 2024) that takes a serious
look at the limits of low-bit LLMs, we hope this
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Figure 13: The number of training tokens for the state-of-the-art 7B-scale LLMs increase by nearly 50× over the
past 4 years. According to this trend, it is expected that the future models will have much more training tokens.
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Figure 14: Training losses of BitNet and its 16-bit counterparts show a trend similar to that of low-bit quantization –
they tend to perform well when undertrained but struggle to match the performance of fully trained LLMs.

work can help the community cool down from the
surrounding hype, and foster deeper reflection and
critical examination in this field.

6 Limitations

This work includes the following limitations:

• Although we have done our best to conduct ex-
tensive experiments and derive the scaling laws
from over 1500 quantized checkpoints, it is still
not extensive enough. For example, the train-
ing tokens used in our experiments with Pythia
only amount to 300 billion. We expect more ob-
servations from a greater number of quantized
checkpoints in the future to refine the scaling
laws we have derived.

• The scaling laws derived in this work are pri-
marily focused on single-stage pre-trained lan-
guage models. However, advanced LLMs today
often employ multi-stage training strategies in-
cluding supervised fine-tuning and preference
optimization, and even within pre-training, mul-
tiple stages are often involved (e.g., Llama-3.1

focuses more on high-quality text, math, reason-
ing, and code data during the final pre-training
stages). Such multi-stage training strategies may
cause the behavior of the model after quantiza-
tion to be significantly different, which we plan
to explore in future work.

• Our study focuses on dense models. However,
mixture-of-experts (MoE) models are increas-
ingly prevalent. Extending our laws to MoE ar-
chitectures is an important direction for future
work, as they may exhibit different pretraining
dynamics.

• Alternative functional forms are also possible.
Our scaling law, ∆qLoss(N,D,P ), is con-
structed based on power-law formulations, which
demonstrate strong empirical performance in
modeling QiD, both independently and collec-
tively. Nonetheless, we experimented with other
functional forms, including linear, exponential,
and logarithmic laws. These forms may also pro-
vide reasonable empirical fits. We aim to conduct
more comparisons based on experiment results
in future work.
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A Appendix

A.1 Implementation Details

Checkpoints of the Pythia We choose the fol-
lowing 20 checkpoints of the Pythia models at the
following steps for fitting the scaling laws: {512,
1k, 2k, 4k, 6k, 8k, 10k, 12k, 14k, 20k, 24k, 29k,
36k, 43k, 57k, 71k, 86k, 93k, 95k, 98k}.

Tokenization consistency To ensure consistency
in token counts for computing cross entropy loss,
which can vary with different tokenizers, we use the
token counts generated by the Llama-3 8B (Dubey
et al., 2024) tokenizer for all QiD calculations in
this work.
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