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Abstract

Bilevel optimization has shown its utility across
various machine learning settings, yet most al-
gorithms in practice require second-order in-
formation, making it challenging to scale them
up. Only recently, a paradigm of first-order
algorithms has emerged in the theoretical liter-
ature, capable of effectively addressing bilevel
optimization problems. Nevertheless, the prac-
tical efficiency of this paradigm remains unver-
ified, particularly in the context of large lan-
guage models (LLMs). This paper introduces
the first scalable instantiation of this paradigm
called ScaleBiO, focusing on bilevel optimiza-
tion for large-scale LLM data reweighting. By
combining with a recently proposed memory-
efficient training technique called LISA, our
novel algorithm allows the paradigm to scale to
∼30B-sized LLMs on 8×H100 GPUs, marking
the first successful application of bilevel opti-
mization under practical scenarios for large-
sized LLMs. Empirically, extensive experi-
ments on data reweighting verify the effective-
ness of ScaleBiO for different-scaled models,
including Llama-3-8B, Gemma-2-9B, Qwen-
2-7B, and Qwen-2.5-32B, where bilevel opti-
mization succeeds in instruction-following and
math reasoning tasks, outperforming several
popular baselines, including uniform sampling,
influence-aware data filtering, and reference-
model-based sampling methods. Theoretically,
ScaleBiO ensures the optimality of the learned
data weights, along with a convergence guaran-
tee matching the conventional first-order bilevel
optimization paradigm on smooth and strongly
convex objectives.

1 Introduction

Data quality plays a crucial role in the success
of Large Language Models (LLMs) (Gunasekar
et al., 2023; Yang et al., 2024a; Dubey et al., 2024).
Among various techniques for improving data qual-
ity, data reweighting has gained increasing atten-

* Equal Contribution.

tion for advancing LLMs, particularly in areas
such as enhancing fairness (Roh et al., 2021, 2020,
2023), accelerating pre-training (Xia et al., 2024a;
Xie et al., 2024), strengthening training robust-
ness (Jain et al., 2024), and boosting transfer learn-
ing (Xia et al., 2024b). It is widely acknowledged
that data reweighting and filtering techniques can
lead to significant improvements across a diverse
range of tasks (Gunasekar et al., 2023; Xu et al.,
2024; Hu et al., 2024; Yang et al., 2024a; Liu et al.,
2024).

On the other hand, Bilevel Optimization (BO)
has emerged as a prominent area of research for
solving this data re-weighting task, which draws
substantial attention due to its effectiveness in nu-
merous machine learning applications, such as hy-
perparameter optimization (Domke, 2012; Maclau-
rin et al., 2015; Franceschi et al., 2017; Lorraine
et al., 2020), meta-learning (Andrychowicz et al.,
2016; Franceschi et al., 2018; Rajeswaran et al.,
2019) and reinforcement learning (Konda and Tsit-
siklis, 1999; Hong et al., 2020). In its standard for-
mulation, bilevel optimization involves a two-level
hierarchical structure with inner-outer dependence,

min
λ∈Λ

L(λ) = L1(λ,w∗(λ))

s.t. w∗(λ) = argmin
w

L2(λ,w). (1)

For example, on data reweighting tasks, λ are
weights of different data sources, w represents the
trainable model parameters, w∗(λ) means the opti-
mal parameters trained on a weighted dataset, while
outer function L1 and inner function L2 stand for
validation and training losses, respectively.

Despite the inherent flexibility and applicabil-
ity of bilevel optimization across a wide range of
problems, its extensive utilization in large-scale
problems has been relatively limited thus far. The
primary obstacle hindering the scalability of bilevel
optimization arises from the interdependence be-
tween the upper-level and lower-level problems.
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The natural gradient-based iterative method of solv-
ing Problem (1) is to compute (or estimate) the
hyper-gradient

∂L(λ)
∂λ

=
∂L1(w∗(λ), λ)

∂λ
+

∂L1(w∗, λ)
∂w∗

∂w∗(λ)
∂λ

,

(2)

where the main challenge lies in efficiently comput-
ing or approximating the derivative ∂w∗(λ)/∂λ in
(2). There is a line of research (Domke, 2012; Pe-
dregosa, 2016; Grazzi et al., 2020; Lorraine et al.,
2020; Franceschi et al., 2017; Shaban et al., 2019;
Grazzi et al., 2020; Ghadimi and Wang, 2018;
Hong et al., 2020; Yang et al., 2021; Ji et al., 2021;
Chen et al., 2022) have been tempted to address
this challenge. However, these works all require
the computation of Hessian, Jacobian, or their prod-
ucts with vectors, which can be computationally
expensive and memory-intensive for large-scale
problems. Recently, Kwon et al. (2023) proposed
a fully first-order method for stochastic bilevel op-
timization via only the first-order gradient oracle.
This approach addresses the challenges associated
with second-order computations and offers promis-
ing potential for stochastic bilevel optimization.

Despite these groundbreaking advancements in
algorithms and theory, the practical performance
of theoretically-optimal bilevel optimization algo-
rithms in large-scale real-world settings has yet
to be thoroughly investigated. Aiming to close
this gap, this paper considers a practical scenario
where LLMs are fine-tuned with different sources
of datasets. We identify a significant challenge
in determining the optimal sampling weights for
each data source. For instance, Wang et al. (2024)
have demonstrated that LLMs’ task-specific perfor-
mance degrades in the presence of certain training
datasets. However, the inclusion and combination
of various datasets should intuitively enhance the
models’ overall performance with proper sampling
weights. This data-task misalignment poses a pri-
mary challenge in training LLMs with multiple
data sources:

How to balance each data source in the training
dataset to obtain optimal performance?

Various methods have been proposed in attempting
to address this challenge. However, they either rely
on intuitive preset (Zhou et al., 2024; Muennighoff
et al., 2022; Du et al., 2022b; Almazrouei et al.,
2023) or lacks theoretical guarantees (Xia et al.,
2024b; Xie et al., 2024; Xia et al., 2024a), leading

to suboptimal sampling weights. To this end, we
test theoretical-optimal bilevel optimization in data
re-weighting tasks for LLMs, aiming to overcome
the limitations of existing methods. Our primary
contributions are summarized as follows:

• We propose the first scalable and theoretically-
optimal instantiation of bilevel optimization
on large-sized LLM training problems, which
is capable of scaling to models with ∼30 bil-
lion parameters.

• We successfully bridge the gap between theo-
retical advancements in bilevel optimization
and their application in data reweighting, al-
lowing the optimal data weights to be learn-
able for large-scale LLMs.

• We provide both experimental and theoreti-
cal results to demonstrate the effectiveness of
ScaleBiO. Empirically, ScaleBiO outperforms
popular data filtering/reweighting baselines,
including uniform sampling, LESS (Xia et al.,
2024b), and RHO-LOSS (Mindermann et al.,
2022a), surpassing them by a non-trivial mar-
gin of 1% − 9% in GSM8K (Cobbe et al.,
2021) and MATH (Hendrycks et al., 2021b).
This superiority of ScaleBiO also holds in
instruction following tasks. Theoretically,
ScaleBiO’s convergence guarantee matches
the results of Kwon et al. (2023) on smooth
and strongly convex objectives.

2 Related Work

2.1 Bilevel Optimization

Traditional bilevel optimization algorithms are ma-
jorly categorized into two classes: 1) approximate
implicit differentiable (AID) methods (Domke,
2012; Pedregosa, 2016; Grazzi et al., 2020; Lor-
raine et al., 2020), or 2) iterative differentiable
(ITD) methods (Domke, 2012; Maclaurin et al.,
2015; Franceschi et al., 2017; Shaban et al., 2019;
Grazzi et al., 2020). Both approaches follow a two-
loops manner and require huge computational cost
for large-scale problems. To reduce the cost, at-
tempts in stochastic bilevel optimization have been
made (Ghadimi and Wang, 2018; Hong et al., 2020;
Ji et al., 2021; Chen et al., 2022; Khanduri et al.,
2021), which significantly improve the efficiency
of traditional methods, but still lack practicality
for large-scale settings due to the requirements of
second-order information, such as Jacobian- and

31960



Method Description Task Model Size

RMD (Bengio, 2000) 2-nd order, deterministic hyperparameter optimization Linear <1M
CG (Grazzi et al., 2020) 2-nd order, deterministic equilibrium models CNN <1M
stocBiO (Ji et al., 2021) 2-nd order, stochastic meta learning CNN <1M
FdeHBO (Yang et al., 2023) 1-st order, stochastic hyper-representation LeNet <1M
BOME (Liu et al., 2022) 1-st order, stochastic data hyper-cleaning Linear <1M
SOBA (Dagréou et al., 2022) 2-nd order, stochastic data reweighting Transformers 7M
PZOBO (Sow et al., 2022) 1-st order, stochastic few-shot meta-learning ResNet 12M
SAMA (Choe et al., 2023) 2-nd order, stochastic noisy fine-tuning BERT 110M
BFTSS (Somayajula et al.,
2023)

1-st order, stochastic task-dependent structure learning BERT 336M

(FG)2U (Shen et al., 2024) 1-st order, stochastic online adaptation GPT-2-XL 1.5B

ScaleBiO (Ours) 1-st order, stochastic data reweighting Qwen-2.5-32B 32B

Table 1: In this table, we compare the maximal model size implemented in their original paper, where ’M’ stands for
million and ’B’ stands for billion. We also summarize their methods in Description and report the task they tested.

Hessian-vector products for estimating the hyper-
gradient. Sow et al. (2022); Yang et al. (2023) at-
tempt to approximate the Jacobian matrix ∇y∗(x)
in (2) by finite differences, but the finite-different
estimation can be sensitive to the selection of the
smoothing constant and may suffer from some
numerical issues in practice (Jorge and Stephen,
2006).

Recently, a new paradigm of fully first-order
penalty-based methods has been introduced, which
reformulate the inner-level problem into the op-
timality constraint (Liu et al., 2022; Kwon et al.,
2023; Chen et al., 2023). Liu et al. (2022) first find
the hypergradient only involving first-order infor-
mation, while the method only applies to determin-
istic functions. Kwon et al. (2023) introduced a
first-order gradient-based approach that avoids the
estimations of Hessian or Jacobian. This method is
easily adapted and extended to stochastic bilevel op-
timization settings. Chen et al. (2023) provided the
near-optimal sample complexity, which improves
the theoretical result of (Kwon et al., 2023) in the
deterministic bilevel optimization. These results
verify the effectiveness of the proposed paradigm in
theory, yet its practical applications in large-scale
LLM settings remain unexplored.

On the practical side, bilevel optimization has
been explored in various NLP tasks. Somaya-
jula et al. (2023) use bilevel optimization to learn
the task-dependent similarity structure. Although
their approach demonstrates effectiveness on BERT
models (Devlin et al., 2018), the finite difference
approximation suffers from high error and therefore
lacks the scalability in LLMs with billions of pa-

rameters. Grangier et al. (2024) adopt SOBA (Da-
gréou et al., 2022) to modify the training data distri-
butions for language modeling under domain shift.
However, the algorithm still requires gradient ap-
proximation and Hessian-vector products, posing
challenges to scalability and engineering for large-
scale problems. We summarize typical bilevel al-
gorithms and their model sizes in Table 1, where
to the best of our knowledge, no approach listed
in the table has been successfully applied to over
3B-sized LLM models.

2.2 Data Reweighting

The proportion of training data sources signifi-
cantly affects the performance of large language
models (Du et al., 2022a; Xie et al., 2023). To
this end, various methods have been proposed to
reweight data sources for optimal training data mix-
ture. For example, Mindermann et al. (2022b)
utilizes the loss gap between a trained model and
a base model to identify learnable data samples,
assigning them higher weights on the fly. Thakkar
et al. (2023) propose to use a self-influence score
to guide the reweighting in mini-batch during pre-
training. Xia et al. (2024a) leverages reference
losses on validation sets and adjusts the weights
dynamically, adding minimal overhead to standard
training. DoReMi (Xie et al., 2024) applies distri-
butionally robust optimization (DRO) to tuning the
domain weights without knowledge of downstream
tasks. Nevertheless, none of the aforementioned
methods ensures the optimality of the learned data
weights, let alone scalable experiments on over
30B-sized models.
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Algorithm 1 ScaleBiO for high-dimensional and large-scale minimax problems

1: Input: step-sizes {ηu, ηω, ηλ}, penalty α, and initialization λ0, u0, w0

2: for k = 0 : K − 1 do
3: Uniformly and independently select two jk, rk block coordinates from {1, 2, · · · , J}, respectively
4: Generating i.i.d. samples

{
Dk

tr, D
k
val

}
from training dataset Dtr and validation dataset Dval

5: ujkk+1 = ujkk − αηu∇jkL2(λk, uk;D
k
tr)

6: uk+1 = uk + Ujk(u
jk
k+1 − ujkk ) ▷ Map the permuted block parameters back

7: wrk
k+1 = wrk

k − ηw
(
∇rkL1(λk, wk;D

k
val) + α∇rkL2(λk, wk;D

k
tr)
)

8: wk+1 = wk +Wrk(w
rk
k+1 − wrk

k ) ▷ Map the permuted block parameters back
9: λk+1 = λk − ηλ

(
∇L1(λk, wk;D

k
val) + α

(
∇L2(λk, wk;D

k
tr)−∇L2(λk, uk;D

k
tr)
))

10: end for
11: Output: (λK , wK , uK)

3 Methods

In this section, we elaborate on our ScaleBiO
method for finding the optimal sampling weights
when training large-scale LLMs. We first formulate
this problem as a bilevel optimization problem in
Section 3.1 and then develop an efficient training
method for our formulation in Section 3.2.

3.1 Problem Formulation
Suppose that m data sources are available for train-
ing, e.g. Alpaca (Taori et al., 2023), FLAN (Wei
et al., 2021), and ShareGPT (Chiang et al., 2023),
where each source Si is a set of ni examples
Si = {ai1, ai2, . . . , aini

}. The desired dataset mix-
ture can be obtained by assigning each data source
Si a sampling weight pi that satisfies

∑m
i=1 pi = 1.

Accordingly, each data source Si contributes
pi|Dtrn| samples to the training dataset Dtrn, where
the sampling weights can be optimized to minimize
the model’s loss on validation set Dval. This leads
to the following bilevel optimization problem:

min
p∈Λ

Lval(w
∗(p))

s.t. w∗(p) = argmin
w

m∑

i=1

pi
ni

ni∑

j=1

Ltrn(w, a
i
j)

where w denotes the parameters of LLM, {pi} is
the probability distribution over m data sources,
Lval and Ltrn respectively denote the language
modeling loss on Dval and Dtrn. To ensure non-
negativity of the sampling weights {pi}mi=1, an ad-
ditional trainable variable λ ∈ Rm is introduced to
represent pi = eλi/

∑m
j=1 e

λj .

3.2 Fully First-order Hypergradient Method
Recent advancements in the theoretical literature of
bilevel optimization allow scalable methods to be

developed. The main idea is actually quite similar
to merging digits in radix sort. The first step is to
decouple two “digit” terms and view the inner-level
problem in (1) as a higher-order digit,

min
λ∈Λ,w

L1(λ,w)

s.t. L2(λ,w)−min
u

L2(λ, u) = 0. (3)

Here the auxiliary variable u is introduced to de-
tach the inner-outer dependency, which transforms
the inner problem w∗(λ) = argminw L2(λ,w) to
be the constraint L2(λ,w) − minu L2(λ, u) = 0.
By prioritizing the “high-order” constraint term of
(3) with multiplier α > 0, the minimax formula-
tion in Kwon et al. (2023); Lu and Mei (2023) is
recovered:

min
λ∈Λ,w

max
u

Lα(λ,w, u). (4)

where

Lα(λ,w, u) = L1(λ,w) + α (L2(λ,w)− L2(λ, u))

In this way, the approximation of both inner con-
straint and outer optimum can be obtained during
the same optimization process, and α controls the
priority. When α → ∞, the bilevel problem (1)
is equivalent to the minimax problem (4) under
certain smoothness assumptions.

To precisely describe the optimality of the min-
imax problem with the stationarity of the bilevel
problem, the following notations in (4) are over-
loaded and defined as

Φα(λ,w) := max
u

Lα(λ,w, u); (5)

u∗(λ) := argmax
u

Lα(λ,w, u); (6)

Γα(λ) := min
w

Φα(λ,w); (7)

wα
∗ (λ) = argmin

w
Φα(λ,w). (8)
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Additionally, the following assumptions are made
for the proposed minimax problem throughout this
paper.

Assumption 1. Suppose that

(1) L1(λ,w) is twice continuously differentiable,
ℓ10-Lipschitz continuous in w; ℓ11-gradient
Lipschitz.

(2) L2(λ,w) is ℓ21-gradient Lipschitz, ℓ22-
Hessian Lipschitz, and µ2-strongly convex in
w.

Lemma 1. Under Assumption 1, if α > 2ℓ11/µ2,
we have

|L(λ)− Γα(λ)| ≤ O
(
1

α

)
(9)

∥∇L(λ)−∇Γα(λ)∥ ≤ O
(
1

α

)
(10)

∥∥∇2Γα(λ)
∥∥ ≤ O(κ3) (11)

where the condition number κ is defined by
max {ℓ10, ℓ11, ℓ21, ℓ22} /µ2.

Under Assumption 1, as indicated by Lemma 1,
if α goes to infinity, the stationary point of the min-
imax problem (4) is also a stationary point of the
bilevel problem (1). Intuitively, it is like finding
a way to the same peak of the mountain with dis-
tinct paths, where bilevel optimization suggests a
winding road, and minimax utilizes a helicopter.

3.3 Proposed Algorithm
To solve this reformulated large-scale min-max
problem, we introduce ScaleBiO in Algorithm 1,
a single-loop framework that is capable of scal-
ing up to 30B-sized models. To further reduce
memory consumption, randomized block coordi-
nate methods are employed to update the inner
variables u,w (Nesterov, 2012; Pan et al., 2024),
where Uj ,Wj ∈ Rd×dj denotes the block matri-
ces that map the permutation of parameters back
to model weights. The optimizer choice varies de-
pending on the backbone model, where Adam or
AdamW (Kingma and Ba, 2015; Loshchilov, 2017)
is much preferable for LLMs. The penalty coeffi-
cient α is predefined with a large factor that ensures
the min-max solution is a good approximation of
the original bilevel problem.

3.4 Theoretical Results
In this part, we provide a convergence analysis of
Algorithm 1, explaining how fast the algorithm can

reach a desired stationary point. Before showing
the details of theoretical results, we introduce the
notations for partitions. Let

{
x1, x2, · · · , xJ

}
with

xj ∈ Rdj×1 be J non-overlapping blocks of x. Let
the matrix Uj ∈ Rd×dj be dj columns of a d × d
permutation matrix U corresponding to j block
coordinates in x. For any partition of x and U ,

x =
J∑

j=1

Ujx
j , xj = UT

j x. (12)

The essential lemmas are available in Ap-
pendix C to show the theoretical properties of min-
imax objective Lα in (4), as well as its optimiz-
ers u∗ and wα

∗ . Lemma 1 provides clear evidence
that Γα(λ) is smooth with parameter ℓΓ = O(κ3)
which is independent on the multiplier α.

Theorem 1. Suppose that Assumptions 1 holds
and the parameter α and step-sizes ηu, ηw, ηλ are
properly chosen such that

α = K1/7, ηu = ηw =
η0

K4/7
, ηλ =

ηλ0
K5/7

.

Consider Algorithm 1, if α ≥ ℓ11/µ2, for ηλ0 ≤
1/(8ℓΓ), η0 ≤ 8J/µ2 and η0/η

λ
0 ≥ 6

√
2κ2J , then

E
[∥∥∥∇L(λ̃)

∥∥∥
2
]
≤ O

(
1

K2/7

)
(13)

where λ̃ is uniformly chosen from {λk}Kk=1.

When considering the batch size B = O(1), the
complexity of finding an ϵ-stationary point of Al-
gorithm 1 is O(ϵ−7), which matches that of (Kwon
et al., 2023). The proof of Theorem 1 is provided
in Appendix D.

4 Experiments

To verify the effectiveness of ScaleBiO, two types
of experiment are conducted: (1) Small Scale Ex-
periments in Section 4.1, which offers intuitions for
understanding ScaleBiO’s theoretical properties in
toy settings, and (2) Real-World Application Exper-
iments in Section 4.2 that validate its scalability in
larger-sized models on instruction-following and
mathematical reasoning tasks.

4.1 Small Scale Experiments
To understand the properties of ScaleBiO, experi-
ments with GPT-2 (124M) are conducted on three
tasks with synthetic datasets: data denoising, mul-
tilingual training, and instruction-following fine-
tuning. Full details are available in Appendix B.1.
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Figure 1: Data denoising with GPT-2: weights for
noisy data and clean data.

4.1.1 Data Denoising
In this experiment, ScaleBiO’s data denoising abil-
ity is tested, where noisy samples are expected to be
assigned with zero weights. The validation dataset,
denoted as Dval, comprises 1000 clean samples ran-
domly selected from the Alpaca dataset (Taori et al.,
2023). The training dataset, Dtrn, is derived from
two distinct sources: the first includes 1000 clean
samples also from Alpaca, while the second incor-
porates 9000 samples from Alpaca that have been
artificially corrupted with synthetic noise, where
the outputs are replaced with ".".

Figure 1 demonstrates that our approach has a ro-
bust capability to mitigate the influence of harmful
data sources via automatic data denoising, where
ScaleBiO assigns minimal weight to noisy data
sources, effectively filtering the irrelevant samples.

4.1.2 Multilingual Training
It is also intriguing to check if ScaleBiO can re-
cover optimal sampling weights for more general
distributions. To this end, the multilingual train-
ing experiments are introduced, where the valida-
tion data Dval comprises 600 random samples from
Alpaca-GPT4-ZH (Peng et al., 2023) and 400 ran-
dom samples from Alpaca-GPT4-EN (Peng et al.,
2023). Hence, the underlying optimal weight is 6:4.
In contrast, the training set Dtrn has a 1:1 mix ratio,
which consists of 40,000/40,000 random examples
from Alpaca-GPT4-EN and Alpaca-GPT4-ZH, re-
spectively.

As shown in Figure 2, ScaleBiO nearly repli-
cates the optimal 6:4 ratio after reweighting the
training data. This serves as another concrete
proof that ScaleBiO is capable of adapting training
data weights optimally to downstream validation

0 1000 2000 3000
Step

0.40

0.45

0.50

0.55

0.60

W
eig

ht

ZH EN

Figure 2: Multilingual reweighting with GPT-2:
weights of Chinese and English. Training set: 1:1; Vali-
dation set: 6:4.

datasets.

4.1.3 Instruction Following

In instruction-following fine-tuning tasks, there is a
fundamental tradeoff between diversity and quality.
To verify if ScaleBiO can deduce these implicit
weights of low- and high-quality datasets, experi-
ments are conducted on instruction-following tasks
with GPT-2, where Alpaca and Alpaca-GPT4 (Peng
et al., 2023) are employed. Here Alpaca-GPT4
shares the same instructions and input as Alpaca,
whose high quality is distinguished by its outputs
generated from a more sophisticated model GPT-
4 (Achiam et al., 2023). The validation data for
bilevel optimization Dval consists of 1000 random
samples from Alpaca-GPT4, while the training data
Dtrn consists of 2 separate parts: 1000 random sam-
ples from Alpaca-GPT4 and 9000 random samples
from Alpaca.

0 100 200 300 400
Step

0.2

0.4

0.6

0.8

W
eig

ht

Alpaca-GPT4 Alpaca

Figure 3: Instruction Following with GPT-2: weights
for Alpaca-GPT4 and Alpaca.
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Method Model
Llama-3-8B Qwen-2-7B Gemma-2-9B

SOBA (Dagréou et al., 2022) OOM OOM OOM
Uniform Weighting 6.11 6.66 5.31
LESS (Xia et al., 2024b) 6.06 7.18 7.20
RHO-LOSS (Mindermann et al., 2022a) 6.89 7.34 7.38

ScaleBiO 7.12 7.76 7.51

Table 2: Instruction Following. Here all methods are evaluated in MT-Bench (Zheng et al., 2023b) with GPT-4o
LLM judge, where scores range from 0 to 10. OOM stands for out of memory.

As shown in Figure 3, although Alpaca-GPT4
accounts for only a small proportion of the training
data (10%), it is highlighted by ScaleBiO, revealing
that it can effectively up-weights the high-quality
data source, leading to improved model outcomes.

4.2 Real-World Application Experiments

In this section, ScaleBiO is tested in real-world
data reweighting applications, including instruction
following and mathematical reasoning tasks, which
demonstrates its scalability and empirical benefits
in practice.

4.2.1 Instruction Following
In the instruction following setting, ScaleBiO is
validated under the real-world scenario where the
data collection is conducted in a non-filtered fash-
ion, e.g. datasets of weak correlations with the
downstream task may be included.

Setup Three ∼7B-sized LLMs, including Llama-
3-8B (Dubey et al., 2024), Qwen-2-7B (Yang et al.,
2024b), and Gemma-2-9B (Team et al., 2024) are
evaluated in the widely adopted benchmark of MT-
Bench (Zheng et al., 2023b), where a GPT-4o
judge (Hurst et al., 2024) is employed to score
the generated responses of each model on 80 high-
quality multi-turn questions. Different aspects of
the model, such as writing, role play, and STEM,
are scored by the GPT-4o judge and averaged in
the final MT-Bench score.

The training portfolio comprises ∼4.2M total
samples from 18 different sources, as detailed in
Table 10 in Appendix B.2. All datasets are col-
lected in a task-agnostic fashion, where datasets
necessary for general instruction following tasks,
but have weak correlations to MT-Bench are also
included. One typical example of such datasets is
multi-lingual conversations.

To form the training set, all data reweighting
methods are required to assign weights to 18
sources and extract 10K samples from the 4.2M

portfolio. The target model will be trained on the
training set and evaluated to produce the final MT-
Bench score.

Results As shown in Table 2, ScaleBiO is the
only bilevel algorithm capable of yielding mean-
ingful weights across data sources. On top of
that, SaleBiO outperforms popular influence-aware
data filtering method LESS (Xia et al., 2024b) and
reference-model-based data reweighting approach
RHO-LOSS (Mindermann et al., 2022a), both are
considered strong non-bilevel baselines in the data
reweighting literature.

4.2.2 Mathematical Reasoning
To further demonstrate ScaleBiO’s data reweight-
ing ability under scenarios with refined dataset
sources, a training portfolio similar to Dong et al.
(2024) is adopted for mathematical reasoning,
where datasets detailed in Table 3 are proven to be
conducive to downstream math tasks. Here coding
and instruction following datasets are considered
necessary, which allow the LLM to learn minimum
reasoning and instruction following abilities for
answering mathematical questions.

Dataset #Samples

hkust-nlp/dart-math-uniform 591K
Open-Orca/SlimOrca 518K
openbmb/UltraInteract_sft 289K
TIGER-Lab/MathInstruct 262K
microsoft/orca-math-word-problems-200k 200K
WizardLMTeam/WizardLM_evol_instruct_V2_196k 196K
ise-uiuc/Magicoder-Evol-Instruct-110K 110K
anon8231489123/ShareGPT_Vicuna_unfiltered 94K
teknium/GPTeacher-General-Instruct 89K
teknium/GPT4-LLM-Cleaned 55K

Total 2.4M

Table 3: Dataset for Mathematical Reasoning.

Setup Similar to Section 4.2.1, three models of
Llama-3-8B, Qwen-2-7B and Gemma-2-9B are
employed. For evaluation, the standard math
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Method GSM8K (Cobbe et al., 2021) MATH (Hendrycks et al., 2021b)
Llama-3-8B Qwen-2-7B Gemma-2-9B Llama-3-8B Qwen-2-7B Gemma-2-9B

SOBA OOM OOM OOM OOM OOM OOM
Uniform Weighting 53.6 65.0 56.3 14.2 36.7 24.8
RHO-LOSS 53.8 70.7 56.9 13.6 38.8 25.0
LESS 52.5 71.6 57.9 14.0 38.9 28.3

ScaleBiO 56.2 74.1 59.4 15.1 41.7 30.0

Table 4: Mathematical Reasoning. Here all metrics are accuracies ranging from 0 to 100. OOM stands for out of
memory.

benchmark of GSM8K (Cobbe et al., 2021) and
MATH (Hendrycks et al., 2021b) are utilized. The
reweighting methods are expected to extract 20K
samples from the given 10 sources to form the train-
ing set, with the target model fine-tuned on the set
and evaluated to produce the final accuracy.

Results As shown in Table 4, ScaleBiO consis-
tently outperforms all baselines across different
models and benchmarks, by a non-trivial margin of
1%-9%, which demonstrates ScaleBiO’s superior-
ity in reweighting task-oriented datasets.

Method GSM8K MATH

LESS OOM OOM
RHO-LOSS OOM OOM
Uniform Weighting 78.1 54.0

ScaleBiO 87.1 59.8

Table 5: Large-Scale Mathematical Reasoning on
Qwen-2.5-32B (Yang et al., 2024a). Here all metrics
are accuracies ranging from 0 to 100. OOM stands for
out of memory.

To further validate ScaleBiO’s scalability in even
larger-sized LLMs, Qwen-2.5-32B (Yang et al.,
2024a) is adopted in the same setting. As presented
in Table 5, ScaleBiO is the only data reweighting
implementation capable of scaling up to this size.
Here LESS and RHO-LOSS both run out of GPU
memories due to their non-scalable implementa-
tion or requirement for extra reference models. In
contrast, ScaleBiO has the same space complex-
ity as full parameter fine-tuning, allowing it to be
applicable in any single-node training scenarios.

5 Discussion

Existence of Optimal Datasets? As ScaleBiO
is capable of learning optimal task-orient data
weights for different models, it serves as a great
tool to inspect data weight transferability across
different models. As it is unsurprising to find

that Llama-3-8B-learned data weights can be trans-
ferred to Llama-3-70B and still yield certain im-
provement (Table 6), it is more intriguing to ob-
serve that the learned data weights vary signifi-
cantly across different model families, as shown in
Table 7 of Appendix A.1.

Model MT-Bench score

Llama-3-8B → Llama-3-70B
Uniform Weighting 7.85
ScaleBiO 8.05

Table 6: MT-Bench results of Llama-3-70B with transfer
trained weights from Llama-3-8B.

It is worth noticing that the weight difference is
much smaller inside the same model family. This
phenomenon is conjectured to stem from the dif-
ference in LLMs’ pre-training dataset distributions,
where the strengths of different models may vary
from each other and need distinct datasets to adapt
to the same downstream task. In that case, opti-
mal dataset weights across models would be im-
possible for small-sized dataset settings, leaving
model-dependent reweighting be the only choice.

6 Conclusion

In this paper, we propose ScaleBiO, the first bilevel
optimization instantiation that is capable of scal-
ing to over 30B-sized LLMs on data reweighting
tasks. Theoretically, ScaleBiO ensures optimality
of the learned data weights and enjoys the same
convergence guarantees as conventional first-order
penalty-based bilevel optimization algorithms on
smooth and strongly convex objectives. Empiri-
cally, ScaleBiO enables data reweighting on >30B-
sized models, bringing forth an efficient data fil-
tering and selection pipeline for improving model
performance on various downstream tasks.
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Limitations

The proposed algorithm of ScaleBiO has yet to be
verified in large-scale pre-training settings, where a
huge amount of computation resources are required
for conducting such experiments. We hope the suc-
cess of ScaleBiO in large-scale fine-tuning settings
can be the first step towards this direction.

The potential risks of ScaleBiO are the same as
other data reweighting techniques, where optimiz-
ing the sampling weights on a single loss metric
may lead to models that neglect other aspects, such
as safety or ethics. In that case, multi-objective
losses and post-training alignments are highly rec-
ommended to compensate for this deficiency.

The positive aspect of ScaleBiO is that it helps
reweight data more effectively, thus allowing the
training cost of large language models to be further
reduced.

Ethical Considerations

In conducting our experiments on a diverse set
of datasets for instruction following, we have
given careful consideration to ethical concerns
that may arise. Our work involves datasets such
as ShareGPT, OpenOrca, WildChat, AlpacaChat,
LMSYS-Chat, Airoboros, etc. We list the license
for each dataset in the Appendix and ensure compli-
ance with the licensing agreements for each dataset.
Furthermore, all these data sources are publicly
available and do not involve privacy issues.
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A Additional Experiments

A.1 Data Weights across Model Families

Table 7 shows the learned data weights from ScaleBiO for different backbone models under the instruction
following setting.

Llama-3-8B Llama-3-13B1 Qwen-2-7B Gemma-2-9B GPT-NeoX-20B Yi-34B

source weight source weight source weight source weight source weight source weight

WildChat 0.711 WildChat 0.711 SlimOrca 0.945 Alpaca-pt 0.198 Airoboros 0.986 ShareGPT4 0.627
Airoboros 0.154 ShareGPT4 0.137 LMSYS-Chat 0.008 Alpaca-ko 0.180 ShareGPT4 0.005 Airoboros 0.111
ChatAlpaca 0.119 ChatAlpaca 0.021 ShareGPT4 0.004 Alpaca-it 0.080 ChatAlpaca 0.003 WildChat 0.105
Total 0.984 Total 0.869 Total 0.957 Total 0.458 Total 0.994 Total 0.843

Table 7: Data sources with top-3 weights for LLaMA-3-8B, LLaMA-3-13B, Qwen-2-7B, Gemma-2-9B, GPT-
NeoX-20B and Yi-34B in Instruction Following tasks.

Llama-3-8B Qwen-2-7B Gemma-2-9B

source weight source weight source weight

TIGER-Lab/MathInstruct 0.131 TIGER-Lab/MathInstruct 0.132 TIGER-Lab/MathInstruct 0.121
teknium/GPT4-LLM-Cleaned 0.119 ise-uiuc/Magicoder-Evol-Instruct-110K 0.125 DART-Math 0.114
anon8231489123/ShareGPT_Vicuna_unfiltered 0.107 teknium/GPTeacher-General-Instruct 0.102 openbmb/UltraInteract_sft 0.110
Total 0.357 Total 0.359 Total 0.345

Table 8: Data sources with top-3 weights for LLaMA-3-8B, Qwen-2-7B, Gemma-2-9B in Mathematical Reasoning
tasks.

A.2 Mathematical Reasoning: Stronger Benchmarks

We conducted additional experiments on mathematical reasoning using stronger benchmarks and a smaller
but higher-quality dataset.

Setup Specifically, we collect 8K prompts uniformly from DART-Math (Tong et al., 2024), Ultra-
Interact (Yuan et al., 2024), MathInstruct (Yue et al., 2023), and Orca-Math (Mitra et al., 2024). We
then use Deepseek-R1 (DeepSeek-AI et al., 2025) to generate responses with thinking paths to construct
question-answer pairs. After obtaining the data, we select 4K training samples using the ScaleBiO method
alongside baseline methods and fine-tune the DeepSeek-R1-Distill-Qwen-1.5B model (DeepSeek-AI
et al., 2025). The fine-tuned models are then evaluated on the reference sets of AIME24, AIME25, and
AIMO25, which contain 30, 30, and 10 questions, respectively.

Method (pass@1) Method (cons@64)
Method AIME 2024 AIME 2025 AIMO 2025 AIME 2024 AIME 2025 AIMO 2025

Uniform 26.7 20.0 10.0 33.3 33.3 30.0
LESS 26.7 20.0 10.0 33.3 36.7 30.0
RHO-LOSS 30.0 20.0 20.0 33.3 33.3 30.0
ScaleBiO 33.3 26.7 20.0 33.3 36.7 30.0

Table 9: Comparison of methods on AIME2024, AIME2025, and AIMO2025 datasets under pass@1 and cons@64
metrics for DeepSeek-R1-Distill-Qwen-1.5B (DeepSeek-AI et al., 2025).

Results As shown in Table 9, ScaleBiO consistently outperforms the baseline methods across the three
benchmarks under the pass@1 metric. For the Cons@64 accuracy, ScaleBiO achieves performance

1https://huggingface.co/Replete-AI/Llama-3-13B
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comparable to the baselines. We conjecture that the narrowing gap is due to the limited diversity of the
small-sized dataset, which we expect to improve with the inclusion of a larger amount of data. In summary,
ScaleBiO demonstrates stable and competitive performance on challenging benchmarks across different
evaluation metrics, highlighting the effectiveness of our data selection method.

B Experimental Details

B.1 Small Scale Experiments

Throughout our small-scale experiments, we use GPT-2 (Radford et al., 2019) with 124 million parameters
as the backbone model. For bilevel optimization hyperparameters, we set the learning rate to 10−2 for
sampling weights λ and 10−5 for models u,w. We run our algorithm for 3 epochs with a batch size of 64
and alpha of 10 while adopting AdamW (Loshchilov and Hutter, 2017) for optimization.

B.2 Large Scale Experiments

Datasets #Samples Kind License

AlpacaGPT4 (Peng et al., 2023) 52K Instruction Apache-2.0

ShareGPT4 (Chiang et al., 2023) 6K Conversation Apache-2.0

SlimOrca (Lian et al., 2023) 518K Instruction MIT

AlpacaChat (Bian et al., 2023) 20K Conversation Apache-2.0

OpenOrcaGPT4 (Mukherjee et al., 2023) 1M Instruction MIT

WildChat (Zhao et al., 2024) 1M Conversation AI2 ImpACT

LMSYS-Chat (Zheng et al., 2023a) 1M Conversation LMSYS-Chat-1M

GPTeacher ("Teknium", 2023) 89K Instruction MIT

Airoboros (Durbin, 2023) 59K Conversation CC-BY-4.0

Alpaca-es2 52K Instruction CC-BY-4.0

Alpaca-de3 50K Instruction Apache-2.0

Alpaca-ja4 52K Instruction CC-BY-NC-SA-4.0

Alpaca-ko5 50K Instruction CC-BY-NC-4.0

Alpaca-ru6 30K Instruction CC-BY-4.0

Alpaca-it7 52K Instruction CC-BY-NC-SA-4.0

Alpaca-fr8 55K Instruction Apache-2.0

Alpaca-zh9 49K Instruction CC-BY-4.0

Alpaca-pt10 52K Instruction CC-BY-NC-4.0

Table 10: Training data sources for the Instruction Following task.

2https://huggingface.co/datasets/bertin-project/alpaca-spanish
3https://huggingface.co/datasets/mayflowergmbh/alpaca-gpt4_de
4https://huggingface.co/datasets/fujiki/japanese_alpaca_data
5https://huggingface.co/datasets/Bingsu/ko_alpaca_data
6https://huggingface.co/datasets/IlyaGusev/ru_turbo_alpaca
7https://huggingface.co/datasets/mchl-labs/stambecco_data_it
8https://huggingface.co/datasets/jpacifico/French-Alpaca-dataset-Instruct-55K
9https://huggingface.co/datasets/llm-wizard/alpaca-gpt4-data-zh

10https://huggingface.co/datasets/dominguesm/alpaca-data-pt-br

31973

https://huggingface.co/datasets/bertin-project/alpaca-spanish
https://huggingface.co/datasets/mayflowergmbh/alpaca-gpt4_de
https://huggingface.co/datasets/fujiki/japanese_alpaca_data
https://huggingface.co/datasets/Bingsu/ko_alpaca_data
https://huggingface.co/datasets/IlyaGusev/ru_turbo_alpaca
https://huggingface.co/datasets/mchl-labs/stambecco_data_it
https://huggingface.co/datasets/jpacifico/French-Alpaca-dataset-Instruct-55K
https://huggingface.co/datasets/llm-wizard/alpaca-gpt4-data-zh
https://huggingface.co/datasets/dominguesm/alpaca-data-pt-br


Instruction Following Our training data consists of 18 distinct sources as detailed in Table 10. We
collect 9 high-quality datasets and 9 multilingual Alpaca datasets which serve as irrelevant data sources.
For each data source, we preprocess by filtering out conversations/instructions that exceed the max length
(1024 tokens in our experiments). For our reference dataset Dval that corresponds to loss L1, we prompt
GPT4 using the prompt

"Help me generate 3 sets of 2-turn instructions to evaluate the {category} ability of LLMs. The instruc-
tions for the second turn need to be highly relevant to the first turn. The following is an example.\n\n\n
EXAMPLE:{example}\n TURN1:{turn1}\n TURN2:{turn2}\n".

Here {category} represents one of the 8 categories in MT-Bench and {example} is one example from
MT-Bench. In this way, we obtain a reference dataset with 1,200 samples with a similar distribution to MT-
Bench. Furthermore, additional 600 samples generated in similar fashions are adopted for hyperparameter
tuning for all methods.

Concerning the data reweighting and training process, we first sample 3,000 data from each source for
reweighting. Then we sample 10,000 data according to the weights at the end of bilevel optimization to
train the backbone model.

For ScaleBiO, the data reweighting process lasts for 3 epochs with α equals to 100 and initial learning
rate 10−2 for weights λ. The learning rates of models u,w are set to be the same and searched in range
{10−6, 2 × 10−6, 3 × 10−6, 4 × 10−6, 5 × 10−6, 6 × 10−6, 8 × 10−6, 10−5}. For all the fine-tuning
processes, we train the LLM for 1 epoch with an initial learning rate of 8 × 10−6 and a global batch
size of 64. Throughout our experiments, we adopt randomized coordinate descent with AdamW (Pan
et al., 2024) and bfloat16 precision for efficient training and inference. Our experiments are conducted
on 8 NVIDIA H100 80GB GPUs, where the total computational cost is around ∼6K GPU hours. The
multi-GPU feature of ScaleBiO is enabled by Pytorch’s FSDP (Zhao et al., 2023).

For baselines, all of them are free to utilize the additional 1,800 MT-Bench-styled samples to ensure a
fair comparison with ScaleBiO, where

• Uniform Weighting: directly sample 10,000 / 18 ≈ 5556 samples from each source, along with the
additional MT-styled 1,200 samples to conduct supervised fine-tuning.

• LESS: we stick to settings in its original paper (Xia et al., 2024b), which adopts a warm-up training
setup of learning rate 10−5, batch size 32, maximum sequence length of 1024, number of epochs
4, optimizer Adam with linear decay learning rate schedule. The LoRA setup is also similar, with
r = 128, α = 512, dropout = 0.1.

• RHO-LOSS: a training setup of learning rate 10−5, batch size 32, maximum sequence length 1024,
number of epochs 1, optimizer of Adam with cosine decay learning rate schedule. Here the same
reference model Qwen-2-1.5B is employed for different settings, which according to the original
paper (Mindermann et al., 2022a), is fine given the algorithm’s non-sensitiveness to the reference
model.

Mathematical Reasoning The validation set comes from the validation sets (if available) or training sets
(if validation is not available) from the validation sources presented in Table 11, where 280 samples are

11https://huggingface.co/datasets/hkust-nlp/dart-math-uniform
12https://huggingface.co/datasets/Open-Orca/SlimOrca
13https://huggingface.co/datasets/openbmb/UltraInteract_sft
14https://huggingface.co/datasets/TIGER-Lab/MathInstruct
15https://huggingface.co/datasets/microsoft/orca-math-word-problems-200k
16https://huggingface.co/datasets/WizardLMTeam/WizardLM_evol_instruct_V2_196k
17https://huggingface.co/datasets/ise-uiuc/Magicoder-Evol-Instruct-110K
18https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
19https://huggingface.co/datasets/teknium/GPTeacher-General-Instruct
20https://huggingface.co/datasets/teknium/GPT4-LLM-Cleaned
21https://huggingface.co/datasets/EleutherAI/hendrycks_math
22https://huggingface.co/datasets/bigcode/self-oss-instruct-sc2-exec-filter-50k
23https://huggingface.co/datasets/cais/mmlu
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Datasets #Samples Kind License

DART-Math11 (Tong et al., 2024) 591K Math MIT

SlimOrca12 (Lian et al., 2023) 518K Instruction MIT

openbmb/UltraInteract_sft13 (Yuan et al., 2024) 289K Reasoning MIT

TIGER-Lab/MathInstruct14 (Yue et al., 2023) 262K Reasoning MIT

microsoft/orca-math-word-problems-200k15 (Mitra et al., 2024) 200K Math MIT

WizardLMTeam/WizardLM_evol_instruct_V2_196k16 196K Instruction MIT

ise-uiuc/Magicoder-Evol-Instruct-110K17 110K Coding Apache-2.0

anon8231489123/ShareGPT_Vicuna_unfiltered18 94K Instruction Apache-2.0

teknium/GPTeacher-General-Instruct19 89K Instruction MIT

teknium/GPT4-LLM-Cleaned20 55K Instruction Apache-2.0

GSM8K (Cobbe et al., 2021) 7.5K Math MIT

Competition Math21 (Hendrycks et al., 2021c) 12.5K Math MIT

bigcode/self-oss-instruct-sc2-exec-filter-50k22 50.7K Coding ODC-By

cais/mmlu23 (Hendrycks et al., 2020, 2021a) 116K Science MIT

ARC-Easy (Clark et al., 2018) 5.2K Instruction CC-BY-SA-4.0

ARC-Challenge (Clark et al., 2018) 2.6K Instruction CC-BY-SA-4.0

Table 11: Training (above the line) and validation data sources (below the line) for the Mathematical Reasoning
task.

randomly chosen from each source and form a validation set with 280× 6 = 1680 samples. For ScaleBiO,
the dataset is proportionally split into two sets with 1, 400 samples and 280 samples individually, where
the former is treated as the Dval for L1 in reweighting and the latter is adopted for hyperparameter tuning.
The whole validation set is available to other baselines. Other settings and statistics remain the same as
the instruction-following task.

C Important Lemmas

Suppose Assumption 1 hold, the functions Lα(λ,w, u) and Γα(λ) satisfy the following properties.

Lemma 2. Under Assumption 1, the followings hold:

(i) Lα(λ,w, u) is µ2α-strongly concave w.r.t. u;

(ii) Lα(λ,w, u) is µ2α/2-strongly convex w.r.t. w if α > 2ℓ11/µ2.

The results of Lemma 2 can be found in (Kwon et al., 2023) and Lemma B.1 of (Chen et al., 2023).
From Lemma B.7 in (Chen et al., 2023), the following result holds for Γα(λ):

Lemma 3. Under Assumption 1, if α > 2ℓ11/µ2, then Γα(λ) is ℓΓ-smooth, where ℓΓ = O(κ3) is a
constant that is independent on α.

Moreover, the functions wα
∗ (λ) and u∗(λ) satisfy the following properties.

Lemma 4. Under Assumption 1, we have

∥wα
∗ (λ)− w∗(λ)∥ ≤ C0

α

where C0 = ℓ10/µ2.

The result in Lemma 4 follows from Lemma B.2 of (Chen et al., 2023).

Lemma 5. Under Assumption 1, if α > 2ℓ11/µ2, then we have
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(i) u∗(λ) is κ-Lipschitz continuous;

(ii) wα
∗ (λ) is ℓu∗,0-Lipschitz continuous where ℓu∗,0 = 3κ.

where the condition number κ = max {ℓ10, ℓ11, ℓ21, ℓ22} /µ2

Claim (i) in Lemma 5 can be found in Lemma 2.2 of (Ghadimi and Wang, 2018) and Claim (ii) implies
from Lemma 3.2 (setting λ1 = λ2) of (Kwon et al., 2023).

Lemma 6. Under Assumption 1, if α > 2ℓf,1/µg, then u∗(λ) is ℓ∇u∗-smooth where ℓ∇∗ =

O
(
κ2

µ2
(ℓ21 + 1)

)
where the condition number κ = max {ℓ10, ℓ11, ℓ21, ℓ22} /µ2

Following Lemma A.3 of (Kwon et al., 2023) and recalling the Lipschitz continuous property of u∗(λ)
from Lemma 5, we have this claim is correct.

D Proofs of Theorem 1

Proof. We sample the function Lα by the following mini-batch approximation Lα
Dk

per iteration:

Lα
Dk

:= L1(λ,w;D
k
val) + α

(
L2(λ,w;D

k
tr)− L2(λ, u;D

k
tr)
)

(14)

where Dk
tr is i.i.d. from the training dataset Dtrain, Dk

val are i.i.d. from the validation dataset Dval and
independent with Dtrain. We use Fk to denote the random information before the iteration (λk, wk, uk),
that is Fk := σ ({(λk, ωk, uk), Dk−1, · · · , D1}). We use Ck = σ ({j1, j2 · · · , jt−1; r1, r2, · · · , rt−1}) to
denote the random information of variables u,w for the randomized block coordinates before the iteration
k.

We recall the iterating formula of λ in the stochastic version of the minimax algorithm that λk+1−λk =
−ηλ∇λLα

Dk
(λk, wk, uk). At each iteration,

E[∇Lα
Dk

(λk, ωk, uk) | Fk] = ∇Lα(λk, ωk, uk). (15)

By the smoothness of Γα (see Lemma 3), we have

Γα(λk+1) ≤ Γα(λk) + ⟨∇Γα(λk), λk+1 − λk⟩+
ℓΓ
2
∥λk+1 − λk∥2

= Γα(λk)− ηλ
〈
∇Γα(λk),∇λL

α
Dk

(λk, ωk, uk)
〉
+

ℓΓη
2
λ

2

∥∥∇λLα
Dk

(λk, ωk, uk)
∥∥2 . (16)

Taking conditional expectation w.r.t. Fk, Ck on the above inequality, we have

E[Γα(λk+1) | Fk, Ck]

≤ Γα(λk)− ηλ
〈
∇Γα(λk),E[∇λLα

Dk
(λk, ωk, uk) | Fk, Ck]

〉
+

ℓΓη
2
λ

2
E
[∥∥∇λLα

Dk
(λk, ωk, uk)

∥∥2 | Fk, Ck
]

≤ Γα(λk)− ηλ ⟨∇Γα(λk),∇λLα(λk, ωk, uk)⟩+
ℓΓη

2
λ

2
E
[∥∥∇λLα

Dk
(λk, ωk, uk)

∥∥2 | Fk, Ck
]

(17)

where the inequality follows the fact that Lα
Dk

is an unbiased estimation of Lα and

E
[∥∥∇λLα

Dk
(λk, ωk, uk)

∥∥2 | Fk, Ck
]

= E
[∥∥∇λLα

Dk
(λk, ωk, uk)−∇λLα(λk, ωk, uk) +∇λLα(λk, ωk, uk)

∥∥2 | Fk

]

≤ E
[∥∥∇λLα

Dk
(λk, ωk, uk)−∇λLα(λk, ωk, uk)

∥∥2 | Fk

]
+ ∥∇λLα(λk, ωk, uk)∥2

≤ σ2
1 + 2α2σ2

2

B
+ ∥∇λLα(λk, ωk, uk)∥2 (18)
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where the variance of the minibatch stochastic gradients (with batch size B) is bounded

E
[∥∥∥∇L1(λ,w;D

k
val)−∇L1(λ,w)

∥∥∥
2
]
≤ σ2

1

B
, E

[∥∥∥∇L2(λ,w;D
k
tr)−∇L2(λ,w)

∥∥∥
2
]
≤ σ2

2

B
, (19)

then

E
[∥∥∇λLα

Dk
(λk, ωk, uk)−∇λLα(λk, ωk, uk)

∥∥2 | Fk

]

= E
[∥∥∥∇λL1(λk, wk;D

k
val)−∇λL1(λk, wk)

∥∥∥
2
+ α2

∥∥∥∇λL2(λk, wk;D
k
tr)−∇λL2(λk, wk)

∥∥∥
2
| Fk

]

+ α2E
[∥∥∥∇λL2(λk, uk;D

k
tr)−∇λL2(λk, uk)

∥∥∥
2
| Fk

]

≤ σ2
1 + 2α2σ2

2

B
. (20)

Applying the above results, we have

E[Γα(λk+1) | Fk, Ck] ≤ Γα(λk)− ηλ ⟨∇Γα(λk),∇λLα(λk, ωk, uk)⟩+
ℓΓη

2
λ

2
∥∇λLα(λk, ωk, uk)∥2

+
ℓΓη

2
λ

2B

(
σ2
1 + 2α2σ2

2

)
. (21)

Let δk = ∥uk − u∗(λk)∥2 and rk = ∥wk − wα
∗ (λk)∥2. The inner product term of RHS of (21) is

estimated as follows:

− ⟨∇Γα(λk),∇λLα(λk, ωk, uk)⟩
=− ⟨∇Γα(λk),∇λLα(λk, ωk, uk)−∇λLα(λk, wk, u∗(λk))⟩
− ⟨∇Γα(λk),∇λLα(λk, wk, u∗(λk))−∇λΦ

α(wα
∗ (λk), λk) +∇λΦ

α(wα
∗ (λk), λk)⟩

(a)
= − ⟨∇Γα(λk),∇λLα(λk, wk, uk)−∇λLα(λk, wk, u∗(λk))⟩

− ⟨∇Γα(λk),∇λΦ
α(λk, wk)−∇λΦ

α(λk, w
α
∗ (λk)) +∇Γα(λk)⟩

= −∥∇Γα(λk)∥2 − ⟨∇Γα(λk),∇λLα(uk, ωk, λk)−∇λLα(λk, wk, u∗(λk))⟩
− ⟨∇Γα(λk),∇λLα(λk, wk, u∗(λk))−∇λLα(λk, w

α
∗ (λk), u∗(λk))⟩

(b)

≤ − 1

2
∥∇Γα(λk)∥2 + ∥∇λLα(λk, wk, uk)−∇λLα(λk, wk, u∗(λk))∥2

+ ∥∇λLα(λk, wk, u∗(λk))−∇λLα(λk, w
α
∗ (λk), u∗(λk))∥2

(c)

≤ − 1

2
∥∇Γα(λk)∥2 + α2ℓ221 ∥uk − u∗(λk)∥2 + 2

(
ℓ211 + α2ℓ221

)
∥ωk − ωα

∗ (λk)∥2

=− 1

2
∥∇Γα(λk)∥2 + α2ℓ221δk + 2

(
ℓ211 + α2ℓ221

)
rk (22)

where (a) uses the optimality of Φ over w that ∇λΦ
α(wα

∗ (λk), λk) = ∇Γα(λk) =
∇λLα(λk, w

α
∗ (λk), u∗(λk)), (b) follows from the Cauchy-Schwartz inequality and (c) uses the smooth-

ness of L1 and L2. Next we turn to estimate the norm of gradient ∇λLα(λk, wk, uk) as follows

∥∇λLα(λk, wk, uk)∥2 = ∥∇λLα(λk, wk, uk)−∇Γα(λk) +∇Γα(λk)∥2

≤ 2
(
∥∇Γα(λk)∥2 + ∥∇λLα(λk, wk, uk)−∇Γα(λk)∥2

)

≤ 2 ∥∇Γα(λk)∥2 + 4 ∥∇λLα(λk, wk, uk)−∇λLα(λk, wk, u∗(λk))∥2

+ 4 ∥∇λLα(λk, wk, u∗(λk))−∇λLα(λk, w
α
∗ (λk), u∗(λk))∥2

(a)

≤ 2 ∥∇Γα(λk)∥2 + 4α2ℓ211 ∥uk − u∗(λk)∥2 + 8
(
ℓ211 + α2ℓ221

)
∥ωk − ωα

∗ (λk)∥2

= 2 ∥∇Γ(λk)∥2 + 4α2ℓ211δk + 8
(
ℓ211 + α2ℓ221

)
rk (23)
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where (a) uses the smoothness of objectives L1, L2. Incorporating the above inequalities (22) and (23)
into (21) gives

E[Γα(λk+1) | Fk, Ck] ≤ Γα(λk)−
ηλ
2

∥∇Γα(λk)∥2 +
ℓΓη

2
λ

2

(
2 ∥∇Γα(λk)∥2 + 4α2ℓ211δk + 8

(
ℓ211 + α2ℓ221

)
rk

)

+ ηλ
(
α2ℓ211δk + 2

(
ℓ211 + α2ℓ221

)
rk
)
+

ℓΓη
2
λ

2

(
σ2
1 + 2α2σ2

2

)
. (24)

Then, we focus on estimating δk and rk. For the inner variables u,w, we use the randomized block
coordinates method with total J blocks and each block is uniformly chosen. By the strong concavity of
Lα with respect to u, we first achieve the following evaluations for δk:

E
[
∥uk+1 − u∗(λk)∥2 | Fk, Ck

]
= E

[∥∥uk − αηuUjt∇uL2

(
λk, uk;Dtr

k

)
− u∗(λk)

∥∥2 | Fk, Ck
]

= ∥u∗(λk)− uk∥2 − 2αηuE
[〈
uk − u∗(λk),∇uL2(λk, uk;Dtr

k)
〉
jt
| Fk, Ck

]

+ α2η2uE
[∥∥Ujt∇uL2(uk, λk;Dtr

k)
∥∥2 | Fk, Ck

]

(a)
= ∥u∗(λk)− uk∥2 −

2αηu
J

⟨uk − u∗(λk),∇uL2(λk, uk)⟩+
α2η2u
J

E
[∥∥∇uL2(λk, uk;Dtr

k)
∥∥2 | Fk

]

(b)

≤ ∥u∗(λk)− uk∥2 −
2ηuα

J

(
L2(λk, uk)− L2(λk, u∗(λk)) +

µ2

2
∥u∗(λk)− uk∥2

)

+
α2η2u
J

E
[∥∥∇uL2(λk, uk;Dtr

k)
∥∥2 | Fk

]

(c)
= ∥u∗(λk)− uk∥2 −

2ηuα

J

(
L2(λk, uk)− L2(λk, u∗(λk)) +

µ2

2
∥u∗(λk)− uk∥2

)

+
α2η2u
J

E
[∥∥∇uL2(λk, uk;Dtr

k)−∇uL2(λk, uk)
∥∥2 | Fk

]
+

α2η2u
J

∥∇uL2(λk, uk)∥2

(d)

≤ ∥u∗(λk)− uk∥2 −
2ηuα

J

(
L2(λk, uk)− L2(λk, u∗(λk)) +

µ2

2
∥u∗(λk)− uk∥2

)

+
α2η2u
J

E
[∥∥∇uL2(λk, uk;Dtr

k)−∇uL2(λk, uk)
∥∥2 | Fk

]
+

2ℓ21η
2
uα

2

J
(L2(λk, uk)− L2(λk, u∗(λk)))

(e)

≤
(
1− αµ2ηu

J

)
∥u∗(λk)− uk∥2 +

α2η2uσ
2
2

JB
. (25)

where (a) use the truth that since the jk block coordinate is uniformly chosen from {1, 2, · · · , J}, we
have

E
[〈
uk − u∗(λk),∇uL2(λk, uk;Dtr

k)
〉
jt
| Fk, Ck

]
=

1

J
E
[〈
uk − u∗(λk),∇uL2(λk, uk;Dtr

k)
〉
| Fk

]

=
1

J
⟨uk − u∗(λk),∇uL2(λk, uk)⟩ (26)

and

E
[∥∥Ujt∇uL2(uk, λk;Dtr

k)
∥∥2 | Fk, Ck

]
=

1

J
E
[∥∥∇uL2(λk, uk;Dtr

k)
∥∥2 | Fk

]
(27)

(b) follows from the strong convexity of L2 w.r.t. u which implies that

L2(λk, u∗(λk)) ≥ L2(λk, uk) + ⟨∇uL2(λk, uk), u∗(λk)− uk⟩+
µ2

2
∥uk − u∗(λk)∥2 ,

(c) uses the relationship E
[
∇uL2(λk, uk;D

k
tr) | Fk

]
= ∇uL2(λk, uk) which induces that

E
[∥∥∇uL2(λk, uk;D

str
k )
∥∥2 | Fk

]
= E

[∥∥∇uL2(λk, uk;Dstr
k )−∇uL2(λk, uk)

∥∥2 | Fk

]
+ ∥∇uL2(λk, uk)∥2

(28)
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and (d) uses the optimality of u∗(λ) and the smoothness of L2 such that

L2(λk, u∗(λk))− L2(λk, uk) ≤ L2(λk, ũ)− L2(λk, uk)

≤ L2(λk, uk) + ⟨∇uL2(λk, uk), ũ− uk⟩+
ℓ21
2

∥ũ− uk∥2 − L2(λk, uk)

= − 1

2ℓ21
∥∇uL2(λk, uk)∥2 (29)

where ũ = uk − 1
ℓ21

∇uL2(λk, uk) and (e) uses

E
[∥∥∇uL2(λk, uk;Dstr

k )−∇uL2(λk, uk)
∥∥2 | Fk

]
≤ σ2

2

B
. (30)

and ηu ≤ 1/(αℓ21). Then we make the following recursive estimation for δk:

δk+1 = ∥u∗(λk+1)− uk+1∥2 = ∥u∗(λk+1)− u∗(λk) + u∗(λk)− uk+1∥2
(a)

≤ (1 + γ1) ∥u∗(λk+1)− u∗(λk)∥2 + (1 + 1/γ1) ∥u∗(λk)− uk+1∥2
(b)

≤(1 + γ1)κ
2 ∥λk+1 − λk∥2 + (1 + 1/γ1) ∥u∗(λk)− uk+1∥2

(c)

≤(1 + γ1)κ
2 ∥λk+1 − λk∥2 + (1 + 1/γ1)

((
1− αµ2ηu

J

)
δk +

α2η2uσ
2
2

JB

)

(d)

≤(1 + γ1)κ
2η2λ ∥∇λLα(uk, ωk, λk)∥2 + (1 + 1/γ1)

(
1− αµ2ηu

J

)
δk + (1 + 1/γ1)

α2η2uσ
2
2

JB
(e)

≤(1 + γ1)κ
2η2λ

(
2 ∥∇Γα(λk)∥2 + 4α2ℓ221δk + 8

(
ℓ211 + α2ℓ221

)
rk

)
+ (1 + 1/γ1)

(
1− αµ2ηu

J

)
δk

+ (1 + 1/γ1)
α2η2uσ

2
2

JB

=
(
4α2(1 + γ1)κ

2η2λℓ
2
21 + (1 + 1/γ1)

(
1− αµ2ηu

J

))
δk + 8(1 + γ1)κ

2η2λ
(
ℓ211 + α2ℓ221

)
rk

+ 2(1 + γ1)κ
2η2λ ∥∇Γα(λk)∥2 + (1 + 1/γ1)

α2η2uσ
2
2

JB
(31)

where (a) follows from Cauchy-Schwartz inequality with γ1 > 0; (b) uses the Lipschitz continuity of u∗
from Lemma 5; (c) follows from the inequality (25); (d) uses the iterating formula of λk+1; (e) follows
from the inequality (23).

Since L1 + αL2 is strongly convex with respect to w with parameter αµ2/2 if α ≥ 2ℓ21/µ2. Similar
to δk, we can achieve the following result for rk

E
[
∥ωα

∗ (λk)− ωk+1∥2 | Fk, Ck
]
≤
(
1− αµ2ηw

2J

)
rk +

η2w
(
σ2
1 + α2σ2

2

)

JB
. (32)

Following the same procedure as in (31), we estimate the recursion rk as below

rk+1 ≤ (1 + γ2) ∥ωα
∗ (λk+1)− ωα

∗ (λk)∥2 + (1 + γ−1
2 ) ∥ωα

∗ (λk)− ωk+1∥2

≤ (1 + γ2)κ
2 ∥λk+1 − λk∥2 + (1 + γ−1

2 )

((
1− αµ2ηw

2J

)
rk +

η2w
(
σ2
1 + α2σ2

2

)

JB

)

≤
(
4(1 + γ2)κ

2η2λ
(
ℓ211 + α2ℓ221

)
+ (1 + 1/γ2)

(
1− αµ2ηw

2J

))
rk + 8(1 + γ2)κ

2η2λα
2ℓ221δk

+ 2(1 + γ2)κ
2η2λ ∥∇Γα(λk)∥2 + (1 + 1/γ2)

η2w
(
σ2
1 + α2σ2

2

)

JB
(33)

where γ2 > 0.
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We define the Lyapunov function

Rk = Γα(λk)− Γα
min + ξ1kδk + ξk2rk (34)

where ξ1k, ξ
2
k > 0 are non-increasing sequences and Γα

min is the minimum of Γα. We must have Rk ≥ 0.
Incorporating the results of (24), (31), (33) gives

E[Rk+1 | Fk, Ck]

≤ Rk −
ηλ
2

∥∇Γ(λk)∥2 +
ℓΓη

2
λ

2

(
2 ∥∇Γα(λk)∥2 + 4α2ℓ221δk + 8

(
ℓ211 + α2ℓ221

)
rk

)

+ ηλ
(
α2ℓ221δk + 2

(
ℓ211 + α2ℓ221

)
rk
)
+

ℓΓη
2
λ

2

(
σ2
1 + 2α2σ2

2

)
+
(
ξ1k+1δk+1 − ξ1kδk

)
+
(
ξ2k+1rk+1 − ξ2krk

)

≤ Rk −
(ηλ
2

− ℓΓη
2
λ − 2ξ1k+1(1 + γ1)κ

2η2λ − 2ξ2k+1(1 + γ2)κ
2η2λ

)
∥∇Γα(λk)∥2 + ϕ1δk + ϕ2rk

+
ℓΓη

2
λ

2

(
σ2
1 + 2α2σ2

2

)
+ ξ1k+1(1 + γ−1

1 )
α2η2uσ

2
2

JB
+ ξ2k+1(1 + γ−1

2 )
η2w
(
σ2
1 + α2σ2

2

)

JB
(35)

where

ϕ1 = ξ1k+1

(
4α2(1 + γ1)κ

2η2λℓ
2
21 + (1 + 1/γ1)

(
1− αµ2ηu

J

))
− ξ1k + 2ℓΓη

2
λα

2ℓ221 + ηλα
2ℓ221

+ 8ξ2k+1(1 + γ2)κ
2η2λ

(
ℓ211 + α2ℓ221

)

ϕ2 = ξ2k+1

(
4(1 + γ2)κ

2η2λ
(
ℓ211 + α2ℓ221

)
+ (1 + 1/γ2)

(
1− αµ2ηw

2J

))
− ξ2k + 4ℓΓη

2
λ

(
ℓ211 + α2ℓ221

)

+ 2ηλ
(
ℓ211 + α2ℓ221

)
+ 8ξ1k+1(1 + γ1)κ

2η2λα
2ℓ221. (36)

Let ηu = ηω = η0/K
a and ηλ = η0λ/K

b, and α = Kc where 0 ≤ a ≤ b and c > 0, and ℓ =
max {ℓ11, ℓ21} then ϕ1 and ϕ2 can be re-written as:

ϕ1 = ξ1k+1

(
4(1 + γ1)κ

2(η0λ)
2

K2(b−c)
ℓ2 + (1 + 1/γ1)

(
1− µ2η0

JK(a−c)

))
− ξ1k +

2ℓΓℓ
2(η0λ)

2

K2(b−c)
+

ℓ2η0λ
K(b−2c)

+
8ξ2k+1(1 + γ2)κ

2ℓ2(η0λ)
2

K2(b−c)

ϕ2 = ξ2k+1

(
4(1 + γ2)κ

2(η0λ)
2

K2(b−c)
ℓ2 + (1 + 1/γ2)

(
1− µ2η0

2JK(a−c)

))
− ξ2k +

4ℓΓℓ
2(η0λ)

2

K2(b−c)
+

2ℓ2η0λ
K(b−2c)

+
8ξ1k+1(1 + γ1)κ

2ℓ2(η0λ)
2

K2(b−c)
. (37)

In order to achieve ϕ1 ≤ 0 and ϕ2 ≤ 0, we might let γ1 = γ2 = 4JK(a−c)/(µ2η0)− 1, then

(1 + 1/γ1)
(
1− µ2η0

JK(a−c)

)
≤ 1− 3µ2η0

4JK(a−c)

(1 + 1/γ2)
(
1− µ2η0

2JK(a−c)

)
≤ 1− µ2η0

4JK(a−c)
. (38)

For η0 ≤ 8J
µ2

, we have µ2η0
4J ≤ 1

2 . Consider that ξ1k and ξ2k are non-increasing sequence, then ξ1k ≥ ξ1k+1

and ξ2k ≥ ξ2k+1, we have

ϕ1 ≤ ξ1k

(
1 +

(η0λ)
2ℓ2κ2J

µ2η0K(2b−c−a)
− 3µ2η0

4JK(a−c)

)
− ξ1k +

2ℓΓℓ
2(η0λ)

2

K2(b−c)
+

ℓ2η0λ
K(b−2c)

+ ξ2k
8J(η0λ)

2ℓ2κ2

µ2η0K(2b−c−a)
≤ 0

ϕ2 ≤ ξ2k

(
1 +

(η0λ)
2ℓ2κ2J

µ2η0K(2b−c−a)
− µ2η0

4JK(a−c)

)
− ξ2k +

4ℓΓℓ
2(η0λ)

2

K2(b−c)
+

2ℓ2η0λ
K(b−2c)

+ ξ1k
8J(η0λ)

2ℓ2κ2

µ2η0K(2b−c−a)
≤ 0

If η0λ ≤ 1/(2ℓΓ) and η0/η
0
λ ≥ 6

√
2κ2J , for b ≥ a and k > 1, then

2ℓΓℓ
2(η0λ)

2

K2(b−c)
≤ ℓ2η0λ

K(b−2c)
,
9(η0λ)

2ℓ2κ2J

µ2η0
≤ µ2η0

8J
.
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The inequalities of ϕ1, ϕ2 can be simplified as

ϕ1 ≤ ξ1k

(
1− 53µ2η0

72JK(a−c)

)
− ξ1k +

ℓ2η0λ
K(b−2c)

+ ξ2k
µ2η0

9JK(a−c)
≤ 0 (39)

ϕ2 ≤ ξ2k

(
1− 17µ2η0

72JK(a−c)

)
− ξ2k +

2ℓ2η0λ
K(b−2c)

+ ξ1k
µ2η0

9JK(a−c)
≤ 0 (40)

We might solve the above inequalities and properly set

ξ1k =
− 53µ2η0

72JK(a−c)

2ℓ2η0λ
K(b−2c) −

ℓ2η0λ
K(b−2c)

µ2η0
9JK(a−c)

µ2η0
9JK(a−c)

µ2η0
9JK(a−c) − 17µ2η0

72JK(a−c)
53µ2η0

72JK(a−c)

=

114ℓ2η0λ
K(b−2c)

837µ2η0
72JK(a−c)

=
10ℓ2η0λ
µ2η0

J

K(b−a−c)

ξ2k =
− 17µ2η0

72JK(a−c)

ℓ2η0λ
K(b−2c) −

2ℓ2η0λ
K(b−2c)

µ2η0
9JK(a−c)

µ2η0
9JK(a−c)

µ2η0
9JK(a−c) − 17µ2η0

72JK(a−c)
53µ2η0

72JK(a−c)

=
3ℓ2η0λ
µ2η0

J

K(b−a−c)

to guarantee that ϕ1 ≤ 0 and ϕ2 ≤ 0. Then the main inequality (35) can be estimated as

E[Rk+1 | Fk, Ck] ≤ Rk −
(ηλ
2

− ℓΓη
2
λ − 2ξ1k+1(1 + γ1)κ

2η2λ − 2ξ2k+1(1 + γ2)κ
2η2λ

)
∥∇Γα(λk)∥2

+
ℓΓη

2
λ

2

(
σ2
1 + 2α2σ2

2

)
+ ξ1k+1(1 + γ−1

1 )
α2η2uσ

2
2

JB
+ ξ2k+1(1 + γ−1

2 )
η2w
(
σ2
1 + α2σ2

2

)

JB
.

If we set η0λ ≤ 1/(8ℓΓ), then ℓΓη
2
λ ≤ ηλ

8 . For b ≥ a and k ≥ 1, if we set η0/η0λ ≥ 8
√
3κ2J

ξ1k(1 + γ1)κ
2ηλ ≤ 40(η0λ)

2K(a−c)ℓ2κ2J2

µ2
2η

2
0K

bK(b−a−c)
=

40(η0λ)
2ℓ2κ2J2

µ2
2η

2
0K

(2b−2a)
≤ 1

16

ξ2k(1 + γ2)κ
2ηλ ≤ 12(η0λ)

2K(a−c)ℓ2κ2J2

µ2
2η

2
0K

bK(b−a−c)
=

12(η0λ)
2ℓ2κ2J2

µ2
2η

2
0K

(2b−2a)
≤ 1

16
.

Then

E[Rk+1 | Fk, Ck] ≤ Rk −
ηλ
4

∥∇Γα(λk)∥2 +
ℓΓη

2
λ

2

(
σ2
1 + 2α2σ2

2

)
+

8ξ1k+1

7

α2η2uσ
2
2

JB
+

3ξ2k+1

4

η2w
(
σ2
1 + α2σ2

2

)

JB
.

Telescoping the above inequality gives

E
[∥∥∥∇Γα(λ̃)

∥∥∥
2
]
=

1

K

K∑

k=1

E
[
∥∇Γα(λk)∥2

]

≤ 4

Kηλ

(
T∑

k=1

E[Rk | Fk−1, Ck−1]− E[Rk+1 | Fk], Ck
)

+
4

Kηλ

K∑

k=1

(
ℓΓη

2
λ

2

(
σ2
1 + 2α2σ2

2

)
+

8ξ1k+1

7

α2η2uσ
2
2

JB
+

3ξ2k+1

4

η2w
(
σ2
1 + α2σ2

2

)

JB

)

≤ 4E[R1]K
b

η0λK
+

4Kb

η0λ

ℓΓ(η
0
λ)

2
(
σ2
1 +K2cσ2

2

)

2K2b

+
4Kb

η0λ

(
80ℓ2η0η

0
λK

2cK−2aσ2
2

7µ2BK(b−a−c)
+

9ℓ2η0η
0
λK

−2a
(
σ2
1 +K2cσ2

2

)

4µ2BK(b−a−c)

)
.

Recalling the result of Lemma 1 states the relation between the stationarity of the minimax problem and
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the original bilevel problem, we have

E
[∥∥∥∇L(λ̃)

∥∥∥
2
]
=

1

K

K∑

k=1

E
[
∥∇L(λk)∥2

]

≤ 2

K

K∑

k=1

(
E
[
∥∇L(λk)−∇Γα(λk)∥2

]
+ E

[
∥∇Γα(λk)∥2

])

≤ 2

α2
+

2

K

K∑

k=1

E
[
∥∇Γα(λk)∥2

]

≤ 2

K2c
+

8E[R1]K
b

η0λK
+

8Kb

η0λ

ℓΓ(η
0
λ)

2
(
σ2
1 +K2cσ2

2

)

2K2b

+
8Kb

η0λ

(
80ℓ2η0η

0
λK

2cK−2aσ2
2

7µ2BK(b−a−c)
+

9ℓ2η0η
0
λK

−2a
(
σ2
1 +K2cσ2

2

)

4µ2BK(b−a−c)

)
.

Let c = 1/7, a = 4/7, and b = 5/7, we have

E
[∥∥∥∇L(λ̃)

∥∥∥
2
]
=

1

K

K∑

k=1

E
[
∥∇L(λk)∥2

]

≤ O
(

1

K2/7

)
+O

(
E[R1]

η0λK
2/7

)
+O

(
(1 + ℓκη0)σ

2
1

BK4/7

)
+O

(
(1 + ℓκη0)σ

2
2

BK2/7

)
.

Note that the initial state R1 can be controlled by a constant which is independent with α:

R1 = Γα(λ1)− Γα
min + ξ11δ1 + ξ12r1

= Γα(λ1)− Γα
min +O

(
Jκηλ0/η0

(
∥w1 − wα

∗ (λ1)∥2 + ∥u1 − u∗(λ1)∥2
))

(41)

where

Γα(λ1)− Γα
min ≤ Lα(λ1, w

α
∗ (λ1), u∗(λ1))− Lα(λ∗, wα

∗ (λ∗), u∗(λ∗))

= L1(λ1, w
α
∗ (λ1))− L1(λ

∗, wα
∗ (λ

∗)) + α (L2(λ1, w
α
∗ (λ1))− L2(λ1, u∗(λ1)))

+ α (L2(λ
∗, wα

∗ (λ
∗))− L2(λ

∗, u∗(λ∗)))

= L1(λ1, w∗(λ1))− L1(λ
∗, w∗(λ∗)) + L1(λ1, w

α
∗ (λ1))− L1(λ1, w∗(λ1))

+ L1(λ
∗, w∗(λ∗))− L1(λ

∗, wα
∗ (λ

∗)) + α (L2(λ1, w
α
∗ (λ1))− L2(λ1, u∗(λ1)))

+ α (L2(λ
∗, wα

∗ (λ
∗))− L2(λ

∗, u∗(λ∗)))

≤L(λ1)− L(λ∗) + ℓ10 ∥wα
∗ (λ1)− w∗(λ1)∥+ ℓ10 ∥wα

∗ (λ
∗)− w∗(λ∗)∥

+ α
ℓ21
2

∥wα
∗ (λ1)− u∗(λ1)∥2 + α

ℓ21
2

∥wα
∗ (λ

∗)− u∗(λ∗)∥2

≤ L(λ1)− L(λ∗) +
2ℓ10C0

α
+ 2α

ℓ21
2

C2
0

α2

≤ L(λ1)− L(λ∗) +
2ℓ10C0µ2

ℓ11
+

ℓ21C
2
0µ2

ℓ11
= L(λ1)− L(λ∗) +O

(
κ2ℓ21

)
, (42)

where by definitions we know w∗(λ) = u∗(λ) and the first inequality follows from the gradient-Lipschitz
of L2 and the Lipschitz continuity of L1 in w, and the second inequality uses Lemma 4. The proof is
complete.
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