Efficient Many-Shot In-Context Learning
with Dynamic Block-Sparse Attention

Emily Xiao, Chin-Jou Li, Yilin Zhang, Graham Neubig, Amanda Bertsch
Language Technologies Institute, Carnegie Mellon University
{emilyx,chinjoul, jasonzh3, gneubig, abertsch}@andrew.cmu.edu

Abstract

Many-shot in-context learning has recently
shown promise as an alternative to finetun-
ing, with the major advantage that the same
model can be served for multiple tasks. How-
ever, this shifts the computational burden from
training-time to inference-time, making deploy-
ment of many-shot ICL challenging to justify
in-practice. This cost is further increased if a
custom demonstration set is retrieved for each
inference example. We present Dynamic Block-
Sparse Attention, a training-free framework
for retrieval-based many-shot in-context learn-
ing. By combining carefully designed block-
sparse attention and retrieval of cached groups
of demonstrations, we achieve comparable per-
example latency to finetuning while maintain-
ing on average >95% of the best method’s accu-
racy across strong ICL and finetuning baselines.
We hope that this will further enable the deploy-
ment of many-shot ICL at scale.!

1 Introduction

When adapting large language models (LLMs) to a
specific task, practitioners typically use finetuning
or in-context learning (ICL). ICL has the advantage
of convenience— it requires no parameter updates,
adapts easily to new tasks and datasets, and does
not require serving task-specific models in a pro-
duction setting. In the standard few-shot setting,
ICL typically underperforms finetuning (Mosbach
et al., 2023) and requires a careful demonstration
curation process (Dong et al., 2024b).

Recently, many-shot ICL—which uses thou-
sands of demonstrations—shows performance com-
parable to or even surpassing finetuning for various
tasks (Bertsch et al., 2024; Agarwal et al., 2024).
However, scaling ICL to long contexts introduces a
new computational tradeoff: many-shot ICL shifts
the computational burden from fine-tuning to infer-
ence, creating significant efficiency challenges. If

'Data and code are available at https://github.com/
millix19/dbsa

Latency
100 Queries

10ﬂI
—

Accuracy

Average Performance

100,000 Queries

[)

Amortized Latency / Query (s)
Amortized Latency / Query (s)

Llama-3.1 90k

90

RetICL
80 Il RetlC

[FixedICL

70

Finetuning
60 I DBSA (ours)
50

Figure 1: DBSA maintains high accuracy while achiev-
ing the best overall efficiency when compared to many-
shot ICL baselines and finetuning, even under high re-
quest volumes.

Accuracy (%)

the same fixed set of demonstrations is used for all
requests, some computation can be cached; how-
ever, performance is higher when a custom set of
demonstrations is retrieved. Processing thousands
of demonstrations per request is orders of magni-
tude more expensive than zero-shot inference with
a fine-tuned model, making many-shot ICL imprac-
tical for high-throughput applications.

In this paper, we propose Dynamic Block-Sparse
Attention (DBSA), a training-free inference frame-
work that minimizes many-shot ICL latency while
maintaining >95% of the best accuracy on aver-
age across all baselines, including many-shot ICL,
retrieval ICL, and finetuning. We introduce key
optimizations to both demonstration pre-encoding
and inference.

During pre-encoding, we apply a structured
block-sparse streaming attention pattern (Xiao
et al., 2024b), where each demonstration attends
only to a fixed number of others and a global at-
tention sink. Then, during inference, we integrate
retrieval ICL with KV cache reuse, dynamically

31946

Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 31946-31958

July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

https://github.com/millix19/dbsa
https://github.com/millix19/dbsa

Inference

Encoding

KV Cache

S

Figure 2: DBSA pre-encodes the many-shot demonstra-
tion pool with block-sparse attention, and dynamically
selects relevant KV chunks during inference for each
test query.

selecting groups of relevant demonstrations that
were pre-encoded together for each test query. The
test query attends only to the KV cache of selected
groups to save computation.

Unlike standard key-value (KV) cache reuse,
with DBSA the encoding time for new demonstra-
tions remains constant as the demonstration pool
grows, a benefit for practical scenarios where the
demonstration pool may change over time. Im-
portantly, this mechanism works without any addi-
tional training or optimization. And unlike standard
retrieval ICL, DBSA reuses a pre-encoded cache,
combining the efficiency benefits of pre-encoding a
fixed demonstration set with the performance bene-
fits of retrieving custom demonstrations.

We evaluate DBSA on five datasets using Llama-
2 and Llama-3.1 models with up to 90k tokens of
in-context demonstrations. Our second-stage infer-
ence speed up is proportional to the retrieval ratio —
at a 30% retrieval ratio, our method achieves more
than 2x speedup over cached many-shot ICL; when
the selected KV cache is within 30k tokens, DBSA
reaches inference latencies comparable to a fine-
tuned Llama-3.1, with >1000x less setup time and
better accuracy. Our results demonstrate many-shot
ICL can be the most competitive solution in prac-
tice, even in scenarios with large request volumes.

2 Methodology

Dynamic Block-Sparse Attention treats many-shot
ICL as a two-stage process. First, there is a one-
time setup cost to encode the many-shot demonstra-
tions; and second, a dynamic KV-cache is selected
for each answer generation.

2.1 Stage 1: Many-Shot Encoding

In the first stage, we aim to encode the full demon-
stration set with minimal cost. Note that the full

demonstration set may exceed the maximum con-
text size of our model, even when using a long-
context model (e.g. if there are tens of thousands
of training examples).

Prior research (Bertsch et al., 2024; Acharya
et al., 2024; Lu et al., 2024) suggests that letting
each example attend to some number of other ex-
amples is beneficial, but attending to the entire
demonstration pool is often unnecessary to achieve
high performance. We use a structured sparse at-
tention pattern for efficiency.

Given a set of demonstrations D =
{dy,ds,...,d,}, where each demonstration
d; consists of a query-answer pair (g;, a;), we first
partition D into blocks: D = [by, b2, ..., by /1],
where each block b; contains k& demonstrations.
We encode D using a block-wise streaming
attention mechanism, where each block b; attends
to three key components: (1) an anchor block
b1 , (2) a fixed number (j) of previous blocks
{bi—j,...,bi—1}, and (3) itself using standard
causal attention. Because not all examples attend
to each other, the demonstrations do not all need to
be encoded in the same forward pass or even at the
same time; thus, new demonstrations can be added
to the demonstration pool at any point by encoding
an additional block with this attention pattern.

Following the same approach as Streamingl.LM
(Xiao et al., 2024b), we encode D using sequential
position ids [0, ...n — 1] and cache the KV states
for each block before applying the rotary position
transformation. However, unlike Streamingl.I.M,
we retain all KV cache entries, as each test query
benefits from a distinct set of demonstrations.

The many-shot encoding stage is implemented
using Flex Attention (Dong et al., 2024a), which
skips the computation for masked blocks and
achieves a proportional performance speedup com-
pared to FlashAttention-v2 (Dao, 2024).

2.2 Stage 2: Dynamic Demonstration
Selection and Answer Generation

Prior research has demonstrated that retrieval ICL
can achieve strong performance using only a sub-
set of the available demonstration pool (Luo et al.,
2024). However, achieving peak performance still
requires hundreds of examples, which remains com-
putationally expensive with a naive implementation
that re-encodes the context for every test query. Our
method reduces this inference overhead by reusing
the precomputed KV caches from Stage 1.

Given a test query ¢*, a retrieval method is ap-

31947

plied to select a subset of demonstration blocks
D' c D, where D' = {b},b,,....,b,.}, m < n.
The anchor block b; is always included as) to
serve as the attention sink. We concatenate the KV
caches of the selected demonstrations, and re-apply
relative positional encoding based on new in-order
position IDs ranging from [0, |D’| — 1]. Finally,
we encode ¢* with full attention to the selected KV
cache, and generate the answer a* autoregressively.
DBSA provides the flexibility to plugin any re-
trieval method of choice, including text-based sim-
ilarity, cosine similarity, or diversity-focused re-
trievers (Dong et al., 2024b; Luo et al., 2024).
The choice of retrieval method also presents an
efficiency-performance tradeoff; for this work, we
use the inexpensive and relatively strong BM25
retriever (Robertson and Zaragoza, 2009).

3 Experimental Setup

Datasets. We evaluate DBSA on 5 language clas-
sification datasets—TREC (Hovy et al., 2001),
TREC-fine (Hovy et al., 2001), NLU (Xingkun Liu
and Rieser, 2019), Banking-77 (Casanueva et al.,
2020), and Clinc-150 (Larson et al., 2019). These
datasets span a diverse range of domains and la-
bel spaces, are commonly used in prior work in
ICL (Han et al., 2022; Ratner et al., 2023), and
have been explored in the many-shot ICL setting
(Bertsch et al., 2024; Yen et al., 2024). For further
evaluation, we also include results on MMLU (a
multitask QA benchmark) (Hendrycks et al., 2021)
and SAMSum (a generative summarization task)
(Gliwa et al., 2019) in Appendix B.

We consider two context lengths, 30k and 90k,
and construct the demonstration pool D by ran-
domly selecting the maximum number of demon-
strations that fit in-context; for these classification
datasets, which have short input/output pairs, thou-
sands of demonstrations fit in 90k context. Table 1
provides summary statistics for each dataset.

Dataset Domain # Labels (30i Iée(z)r:toe xt) (9()#(I()jzr:& xt)
TREC Questions 6 1050 3150
TREC Fine Questions 50 1000 3000
NLU Conversational 68 1150 3450
Banking-77 Financial 71 800 2400
Clinc-150 Multiple 151 1000 3000

Table 1: Dataset statistics.

Models. We consider 2 models in the Llama
model series for evaluation. Llama-2-7B (32k) (To-

getherAl, 2023) is the base Llama-2-7B model fine-
tuned with an extended 32k context window. We
also consider the more recent Llama-3.1-8B (Meta
Al, 2024), which supports a 128k context window
and incorporates Grouped-Query Attention (GQA)
for efficient long-context inference.

Baselines. We compare our method against three
baselines: Fixed ICL, Retrieval ICL, and finetuning.
Fixed ICL uses the entire 30k or 90k demonstration
set as context for every test query. We consider
the efficient implementation where the context is
encoded once and its KV cache reused across test
queries. Retrieval ICL (RetICL) dynamically se-
lects a subset of relevant demonstrations from the
30k or 90k demonstration pool for each test query.
In this scenario, a distinct context has to be en-
coded for each test query at inference time. As
retrieval strategy is a flexible choice, we use BM25
retriever (Bassani, 2023; Robertson and Zaragoza,
2009) for both this baseline and our method to en-
sure a fair comparison. Finetuning uses LoRA (Hu
et al., 2022) with lora rank 8. We choose the best
setup and hyperparameters based on ablation re-
sults in Bertsch et al. (2024). For additional details,
see Appendix C. For all ICL methods, we use con-
strained decoding to output only valid labels. For
finetuning, we finetune with a classification head.

Evaluation. Following prior work, we randomly
sample 250 test examples from each dataset. We
evaluate both accuracy and efficiency metrics, aver-
aged over 10 runs. We compare our method to the
baseline using FlashAttention-2 (Dao, 2024). All
methods with 30k context are run on a single L40S
GPU (48GB) and all methods with 90k context are
run on a single A100 GPU (80GB).

Configuration. We use 50 examples per block,
with demonstration blocks formed through random
grouping. Across all context lengths, we designate
the first block as the attention sink and allow each
block to attend to the two preceding blocks as lo-
cally attended context. For both the Retrieval ICL
baseline and our method, we retrieve 30% of the
total demonstration pool for each test query. This
retrieval ratio is used for all datasets.

4 Main Results

We compare DBSA to the baselines along two di-
mensions: efficiency and accuracy.

31948

"
S

"
S

0 IC)

z 9

] 2 ; —]

7 10 —— Fixed ICL © —— Fixed ICL

5 RetiCL T 101 / RetiCL

S 10! —— Fine-Tuning © —— Fine-Tuning
—— Our Method —— Our Method

T T T T 10° T
0 2000 4000 6000 8000 10000 4] 100 200

Number of Requests Number of Requests

(a) Llama-3.1-8B 90k (b) Llama-2-7B 30k

Figure 3: The total inference latency for each method,
including setup and per-request inference latency. We
use inference batch size 1.

4.1 Efficiency Comparison

Efficiency is the primary motivation behind our
method, which aims to close the inference latency
gap between many-shot ICL and zero-shot infer-
ence with a finetuned model. To evaluate efficiency,
we consider setup overhead, inference latency, and
storage cost of each method.

Figure 3 and 1 shows that DBSA is the most
efficient overall, even with more than 100,000 re-
quests. The latency comparison in Table 2 breaks
down the efficiency gains, showing that DBSA can
bring inference costs close to those of zero-shot
inference while maintaining a significantly lower
setup time than fine-tuning.

Setup overhead. Retrieval ICL incurs the lowest
setup time (in our case, only the time to construct
the BM25 retriever index). Fixed ICL is more ex-
pensive at setup time, as setup requires encoding
the full 30k or 90k demonstration set with full at-
tention. Fine-tuning has the highest setup cost, as
it requires training the model with LoRA for ap-
proximately 30 epochs to reach high performance.
In practice, finetuning took about 30 minutes with
a 30k demo pool, though here we exclude the time
for evaluation steps in our reported time.

DBSA involves both building the retriever index
and encoding the full demonstration pool. How-
ever, it still achieves a speedup over Fixed ICL
thanks to the structured sparse attention. While
setup cost is a one-time fixed cost with a static
demonstration pool, real-world demonstrations are
often non-static. In these cases, the speedup from
sparse encoding becomes particularly valuable.

Inference latency, or the per-example cost, is
key to the practicality of deployment. Compared to
Fixed ICL, DBSA lowers latency by attending to
areduced KV cache context length. Theoretically,
inference latency grows linearly with the size of the

Setup Time
(Relative)

Inference Latency

Method (Relative)

30k Context Length w/ Llama-2-7B w/ single L40S gpu

RetICL (no cache) 1x 1x

Fixed ICL (cached) 4.5x 0.51x
Finetuning (LoRA) > 600x 0.12x
DBSA (ours) 3x 0.22x

30k Context Length w/ Llama-3.1-8B w/ single L.40S gpu

RetICL (no cache) 1x 1x

Fixed ICL (cached) 5x 0.11x
Finetuning (LoRA) > 600x 0.08x
DBSA (ours) 3x 0.10x

90k Context Length w/ Llama-3.1-8B w/ single A100 gpu

RetICL (no cache) 1x 1x

Fixed ICL (cached) 6.5x 0.06x
Finetuning (LoRA) > 1500x 0.046x
DBSA (ours) 4x 0.053x

Table 2: Relative latency of different methods com-
pared to RetICL baseline. Best method is bolded and
second best is underlined. Since the absolute numbers
depend on the computational environment, we present
the relative speedups here; the raw numbers for our
hardware setup are available in Appendix A

KV cache, a trend empirically shown in Agarwal
et al. (2024). Therefore, smaller retrieval ratios can
lead to further improvements.

While Retrieval ICL without cached encoding is
always the most expensive in terms of latency per
request, the latency gap between cached ICL and
finetuning narrows significantly when using Llama-
3.1 compared to Llama-2, making cached many-
shot ICL increasingly competitive. One major fac-
tor contributing to this speedup is Grouped-Query
Attention (GQA), which reduces the computational
cost of handling long sequences. All ICL methods
benefit from this speedup; however, as fixed ICL
uses the most demonstrations in-context, it is dis-
proportionately impacted. Despite this, DBSA is
still slightly faster per-example.

In Figure 1 and 3, we consider an alternate met-
ric: the total compute time necessary to accom-
plish the task, amortized over the total number of
inference requests. This includes both setup over-
head and the per-example latency. DBSA remains
more efficient than finetuning even when more than
100,000 requests are made.

Storage Cost Considerations. Beyond compu-
tational efficiency, we also evaluate the storage cost.

31949

1 Base Model
25 WM KV Cache

20

154

Storage (GB)

Base Model Cached ICL Cached ICL
(Llama3-8B) (30k) (90k)

Figure 4: Storage cost for Cached many-shot ICL,
which encompass Fixed ICL and DBSA

For Llama-3.1-8B, the KV cache requires 0.125
MiB per token, which is 3.7GB for a 30k demon-
stration pool and 11.1GB for 90k. While manage-
able for moderate demonstration sizes, this storage
demand may require offloading or re-encoding for
larger demonstration pools or multi-task settings.
Note that this is a shared cost across all many-shot
ICL methods with long context.

For a single task, the storage cost for LoRA fine-
tuning is significantly smaller. With Llama-3.1-8B
model and LoRA rank 8, the storage is 0.01GB
per task. However, in settings where hundreds or
thousands of tasks must be supported—such as
user-specific tasks—the cumulative storage cost of
fine-tuning also becomes substantial. Furthermore,
task-switching and task addition introduce addi-
tional overhead (Xia et al., 2024; Sheng et al., 2023;
Gabrielsson et al., 2024). In these cases, the fast
setup and flexibility of ICL provide a strong advan-
tage over fine-tuning— if storage cost is a limited
factor, demonstration caches can be recomputed
when needed instead of stored indefinitely.

4.2 Accuracy Comparison

Table 3 show that DBSA consistently achieves high
accuracy across datasets, closely matching the best
baseline method. This is particularly evident at
90k demonstration context, which is also where
accuracy of these datasets saturate, making it the
most relevant comparison point.

The success of our approach is largely due to
the effectiveness of Retrieval ICL, which is often
the best performing baseline. We set a fixed re-
trieval ratio of 30% across all datasets and context
lengths. Even without optimizing the retrieval ra-
tio, Retrieval ICL achieves accuracy comparable
to Fixed ICL using the entire demonstration pool.
Prior work suggests that Retrieval ICL can sur-

Dataset Fixed ICL Ret ICL Fine-Tuning DBSA (ours)

30k Context Length w/ Llama-2-7B

TREC 0.93 0.92 0.95 0.91 (96%)
TREC Fine 0.76 0.79 0.77 0.77 (97%)
Banking77 0.81 0.84 0.80 0.80 (95%)
Clinc 0.86 0.83 0.60 0.80 (93%)
NLU 0.85 0.86 0.74 0.84 (98%)
Average 0.84 0.85 0.77 0.84 (97%)
90k Context Length w/ Llama-3.1-8B

TREC 0.96 0.95 0.96 0.95 (99%)
TREC Fine 0.88 0.89 0.83 0.88 (99%)
Banking77 0.91 0.90 0.81 0.89 (98%)
Clinc 0.92 0.91 0.74 0.90 (98%)
NLU 0.89 0.90 0.82 0.88 (98%)
Average 0.91 0.91 0.83 0.90 (99%)

Table 3: Accuracy comparison. Bolded is the max ac-
curacy for each dataset. Blue percentage is how DBSA
compares to the best accuracy.

pass Fixed ICL when the retrieval ratio is tuned
optimally (Luo et al., 2024; Bertsch et al., 2024).
However, determining the ideal retrieval ratio is
non-trivial- performance initially improves with
more demonstrations, but eventually degrades due
to noise from less relevant demonstrations. While
we use a fixed retrieval ratio, our framework sup-
ports adaptive selection strategies to optimize re-
trieval for each query. Given that our method’s
accuracy ceiling is constrained by the upper bound
of Retrieval ICL, further improvements in retrieval
quality would benefit our method as well.

At 30k context length, we observe a more notice-
able accuracy gap between DBSA and Retrieval
ICL. This comes from two key design choices.
First, we always include the first 50-example block
as the attention sink, which may not always be rel-
evant to the test query. Second, we group blocks
randomly and treat each block as a unified text
chunk when computing relevant scores. This raises
the risk of missing highly relevant examples. In
Section 5.3 and Section 5.2, we analyze different
block grouping strategies and discuss potential re-
finements that can balance retrieval relevance and
diversity more effectively, and why block-level se-
lection is still necessary.

We observe that finetuning underperforms sig-
nificantly compared to many-shot ICL, even with
90k demonstration pool (3k demonstrations). This
aligns with previous findings (Bertsch et al., 2024),
which show that finetuning requires a larger num-
ber of demonstrations to achieve competitive or

31950

Dataset Fine-Tuning (90k) Fine-Tuning (All) DBSA (90k)

TREC 0.96 0.96 0.95
TREC Fine 0.83 0.89 0.88
Banking77 0.81 0.91 0.89
Clinc 0.74 0.89 0.90
NLU 0.82 0.87 0.88
Avg 0.832 0.904 0.900

Table 4: Accuracy comparison of finetuning with 90k
demonstration pool, or using the full training dataset.

higher performance. However, even when trained
on the maximum available data (5k to 20k demon-
strations for our datasets), finetuning fails to sub-
stantially surpass the best accuracy achieved by
many-shot ICL, as shown in Table 4.

5 Key Insights and Ablations

We conduct ablations to analyze the impact of vari-
ous design decisions in our framework.

5.1 Sparse Attention for Many-shot ICL

i e o o
(b) Sink + Prev + Self

(a) Full Attention

e
::u

" "
CE h | h

o o
B o

(c) Sink + Self

Tk

(d) Self

Figure 5: Visualization of block-sparse attention mech-
anisms for many-shot ICL in section 5.1.

The success of our sparse encoding approach
shows that not all interactions within the demonstra-
tion set are necessary by default. However, sparse
attention paradigms have been extensively explored
since the introduction of self-attention, with vary-
ing applicability—some operate at inference time,
while others require retraining for adaptation. Here,

we ablate over design decisions in the sparse atten-
tion to determine what makes this pattern effective
without additional training.

While sparsity alone is not always optimal,
block-wise sparsity considers I/O and memory ef-
ficiency, making it practical for real-world usage
(Dong et al., 2024a; Dao, 2024; Guo et al., 2024).
In this section, we compare variations of structured
blockwise sparse attentions for many-shot encod-
ing, illustrated in Figure 5:

 Full Attention: Each token attends to all other
tokens.

* Sink + Prev + Self: Each block attends to
an anchor block, a few preceding blocks, and
itself. This is the pattern applied in DBSA.

* Sink + Self: Each block attends to a sink block
and itself only.

* Self-Only: Each block attends only to itself.

These mechanisms have been applied to some
extent in prior work, and are largely inspired by
StreamingLLLM (Xiao et al., 2024b). To evaluate
these patterns, we allow test queries to attend to the
full encoded context and compare the accuracies.

Dataset Full sink+prev+self sink+self — self
Banking77 0.81 0.80 0.34 0.02
Clinc150 0.85 0.80 0.33 0.02
NLU 0.86 0.82 0.27 0.06
TREC 0.93 0.91 0.24 0.21
TREC Fine 0.76 0.76 0.17 0.151
Avg 0.84 0.82 0.27 0.09

Table 5: Comparison of accuracies using different
sparse attention patterns, using Llama-2, 30k demo size,
and block size of 50 demos.

Table 5 shows that both an attention sink and
local context connections are necessary for sparse
attention to achieve performance comparable to full
attention without additional training.

These findings align with previous research that
applied similar patterns. The "Sink + Self" pat-
tern has been used in StarAttention (Acharya et al.,
2024) for training-free inference speedup, but the
results indicate that it performs well only when the
number of blocks remains small (fewer than four).
Other works also adopted this pattern (Lu et al.,
2024) (Sun et al., 2024), but they required finetun-
ing for adaption. Meanwhile, the "Sink + Prev +
Self" streaming attention (Xiao et al., 2024b), com-
monly used in KV eviction strategies (Xiao et al.,

31951

2024a; Li et al., 2024), performs surprisingly well
in our many-shot ICL setting. It remains scalable
as demo size increase, as the same block size cause
minimum degration for both 30k and 90k setting.
At 90k context, the attention mask is over 90%
sparse while maintaining strong performance.
The scalability means that new demonstrations
simply needs to attend to a fixed length of context
as demo pool grows. Additionally, when KV cache
storage is limited, applying this sparsity improves
inference efficiency even in no-cache settings.

5.2 Block vs. Individual Demonstration
Selection

In our framework, we group demonstrations into
blocks for encoding and KV selection, rather than
selecting individual examples like the Retrieval
ICL baseline. In this section, we compare the two
and separate the effects of using different selected
examples and re-using KV cache segments.
Consider a set of demonstrations [1, 2, 3, 4, 5,
6, 7, 8] with sparse encoding, where [1] serves as
the attention sink and each demonstration attends
to itself and one preceding example (e.g., 5 attends
to [1, 4, 5]). If we use example-level retrieval
and retrieve [3, 6], 6 would not have attended to 3
during encoding. In contrast, if we select [3, 4] as
a block, then it would be a contiguous KV cache
segment. We hypothesize that block-level selection
could better preserve intra-context relationships
during encoding, and thus have better performance.
To test this hypothesis, we run block-level and
example-level selection with DBSA, and see how
each compare with the standard inference without
sparse encoding and KV cache reuse. We make
sure that the DBSA and standard inference use the
same examples in context to isolate the effect of
segmented KV cache reuse. Results in Table 6
show that example-level selection with DBSA is
also effective, but block-level selection has slightly
higher accuracy; it also has faster retrieval time and
memory efficiency when handling KV caches.

block
(DBSA)

example

example (DBSA) diff block

Setting diff

30k - Llama-2 0.82 079 0.03 0.79 0.79 0.00
30k - Llama-3.1 0.86 0.82 0.04 084 0.82 0.02
90k - Llama-3.1 0.90 0.86 0.04 089 0.88 0.01

Table 6: Accuracy comparison of block-level and
example-level retrieval, using standard inference vs.
DBSA with sparse encoding and KV reuse. All use
a 10% retrieval ratio.

5.3 Block Grouping

In our main experiments, we randomly group the
demonstration pool into blocks before encoding
and retrieval. However, the way demonstrations
are grouped may impact accuracy. In this section,
we explore whether alternative grouping strategies
lead to improved performance.

We evaluate three grouping strategies: (1) ran-
dom grouping, (2) k-means clustering based on
lexical similarity (see Appendix F), and (3) start-
ing with clusters, we swap 10% examples between
clusters to introduce diversity within each block.

Table 7 shows that introducing some diversity
within blocks improves performance compared to
strictly clustered examples. Interestingly, random
grouping remains competitive, sometimes outper-
forming clustering-based methods. A possibility is
that random grouping naturally leads to diversity
within a block, thus achieving the same goals.

Dataset Random Clustered Clu.stere.d
(w/ diversity)
Banking77 0.820 0.696* 0.740*
Clinc 0.796 0.792 0.796
NLU 0.840 0.792* 0.832
TREC 0.912 0.910 0916
TREC Fine 0.766 0.692* 0.764
Avg 0.827 0.764 0.810

Table 7: Comparison of block grouping strategies with
DBSA. * denotes results significantly different than
random grouping (using a t-test, p < 0.05).

5.4 Dynamic Block Ordering

The "Lost in the Middle" phenomenon suggests
that long-context models are sensitive to the posi-
tion of relevant information, with content placed
at the beginning or end of the context having a
stronger influence (Liu et al., 2024b; Jin et al.,
2024).

We evaluate whether, within our framework, the
KV cache of demonstrations is robust to reordering
and whether reordering strategies can be leveraged
to enhance performance. Using BM25 relevance
scores, we rank blocks for each test query and com-
pare three reordering approaches: (1) maintaining
the original encoded order, (2) re-arranging blocks
from low to high relevance, and (3) reversing the
encoded order. We keep the position of the sink
block consistent in all experiments.

As shown in Table 8, reversing the order of
cached embeddings significantly decreases perfor-

31952

DBSA Non-cached
Dataset In. L-to-H Rev. In. L-to-H Rev.
Banking 0.807 0.798 0.737" 0.821 0.828 0.811
Clinc 0.846 0.832 0.772* 0.868 0.863 0.854
NLU 0.832 0.838 0.804" 0.848 0.855 0.850
TREC 0.923 0.927 0914 0.929 0931 0.928
TREC Fine 0.759 0.782 0.738 0.845 0.850 0.840
Avg 0.834 0.835 0.794* 0.862 0.865 0.857

Table 8: Comparison of block ordering strategies with
Llama-2 30k context. * indicates statistical significance
(p<0.05) in a T-test against the original encoded order
(In.). L-to-H represents ordering from low to high rele-
vance, and Rev. refers to reverse ordering.

mance. We believe this ordering dependence is be-
cause each block is permitted a small amount of lo-
cal attention (i.e. to the previous two blocks) when
encoding, imposing a loose ordering of blocks.

6 Related Work

Many-shot ICL. While our experiments focus on
classification datasets, many-shot ICL has demon-
strated potential across a wide range of tasks, in-
cluding sequential parity, sentiment analysis, sum-
marization, and translation (Agarwal et al., 2024;
Li et al., 2023; Bertsch et al., 2024). Agarwal et al.
(2024) showed it to be comparable to finetuning in
translation, while Yin et al. (2024) found it more
effective than finetuning in datasets with implicit
structures. These work motivate many-shot ICL
beyond our considered datasets and models.

ICL demonstration selection. ICL demonstra-
tion selection is an active area of research. Key
approaches include demonstration augmentation,
demonstration pool curation, retrieval ICL (Dong
et al., 2024b). The effectiveness of retrieval ICL is
influenced by multiple factors. However, Luo et al.
(2024) shows that a simple and efficient BM25
retriever is effective across datasets, performing
within 0.5% of a dual encoder-based retriever
(GTR) across five tasks. To improve retrieval effi-
ciency, CPU-based retrieval-augmented generation
(RAG) techniques and approximate nearest neigh-
bor (ANN) indexing (Malkov and Yashunin, 2020)
can also be incorporated into DBSA.

Sparse Attention Mechanisms have been ex-
plored extensively in Transformers and LLMs to
increase efficiency, with various patterns such as
block-wise sparse attention (Child et al., 2019; Za-
heer et al., 2020; Wang et al., 2024; Acharya et al.,
2024), hierarchical attention (Yang et al., 2016),

and layer or head-dependent sparsity. These meth-
ods primarily aim to improve training and inference
efficiency together. However, our approach focus
on efficiency without training.

A related training-free approach is Parallel Con-
text Windows (Ratner et al., 2023), which also uses
block-sparse attention. However, its goal is differ-
ent: to extend the context length of limited-context
models by reusing the same positional embeddings
across blocks. This results in a weaker baseline
compared to our approach, which operates on mod-
els that already support long contexts.

Among existing approaches, Lu et al. (2024) and
Sun et al. (2024) are most similar to our method,
but in the RAG setting. Like our approach, they
incorporate a sparse attention encoding phase and
optimize key-value (KV) cache re-utilization. How-
ever, a key difference is that these methods require
fine-tuning to adapt to the sparse attention pattern.
As discussed in Section 5.1, we hypothesize that
this arises due to the absence of a local context
component in their design.

Key-value (KV) cache compression. A com-
mon approach is token-level KV cache eviction
to reduce memory overhead and speedup infer-
ence (Xiao et al., 2024b,a; Zhang et al., 2023).
Streamingl.LM (Xiao et al., 2024b) discovered the
"attention sink" phenomenon and popularized to-
ken eviction by retaining only the initial and re-
cent KV pairs. More recent methods (Li et al.,
2024; Zhang et al., 2023; Liu et al., 2025) refine
this approach by selectively retaining some KV
pairs. However, eviction-based strategies are not
well suited for many-shot ICL, as different test
queries benefit from attending to distinct sets of
demonstrations.

Beyond eviction, other KV cache compression
methods focus on quantization and low-rank ap-
proximation to reduce storage requirements while
retaining all tokens (Liu et al., 2024a; Zhang et al.,
2024). These strategies can potentially be inte-
grated with DBSA to achieve further memory re-
ductions while maintaining inference quality.

7 Conclusion

We expect that many-shot ICL will be most useful
in settings where the available data may change
over time, either because of liability and privacy
concerns (Liu et al., 2024c¢) or because of the con-
tinual addition of data in an online learning setting
(Hoi et al., 2018). Unlike traditional cached ICL

31953

or finetuning, the cost of setup when adding ad-
ditional demonstrations to the demonstration pool
using Dynamic Block-Sparse Attention is linear,
and the increased cost at inference time is marginal,
depending on the retrieval method used.

By improving inference efficiency while preserv-
ing accuracy, we hope that DBSA opens the door
for adoption of many-shot ICL in real-world appli-
cations.

8 Limitations

The exact tradeoff between finetuning, Fixed ICL,
and Dynamic Block-Sparse Attention depends on
the context length and details of the model chosen
(e.g. the use of GQA (Ainslie et al., 2023)); it is
possible that there are some combinations of model,
context length, and dataset where the marginal per-
formance and efficiency gains of DBSA may be
small or even nonexistent. For instance, because
our method uses retrieval-based ICL, tasks where
retrieval-based ICL is ineffective also will not ben-
efit from our framework. In particular, tasks that
require synthesizing information from all demon-
strations (e.g. estimating the percentage of Amazon
reviews that are positive (Shaham et al., 2023)) will
not benefit from these efficiency speedups.

Acknowledgments

We would like to thank Xiang Yue, Emmy Liu, and
Vashisth Tiwari for useful discussions about this
work.

AB was supported by a grant from the National
Science Foundation Graduate Research Fellowship
Program under Grant No. DGE2140739. Any opin-
ions, findings, and conclusions or recommenda-
tions expressed in this material are those of the
author(s) and do not necessarily reflect the views
of the sponsors.

References

Shantanu Acharya, Fei Jia, and Boris Ginsburg. 2024.
Star attention: Efficient llm inference over long se-
quences. arXiv:2411.17116.

Rishabh Agarwal, Avi Singh, Lei Zhang, Bernd Bohnet,
Luis Rosias, Stephanie Chan, Biao Zhang, Ankesh
Anand, Zaheer Abbas, Azade Nova, John D. Co-
Reyes, Eric Chu, Feryal Behbahani, Aleksandra
Faust, and Hugo Larochelle. 2024. Many-shot in-
context learning. In Advances in Neural Information
Processing Systems, volume 37, pages 76930-76966.
Curran Associates, Inc.

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury
Zemlyanskiy, Federico Lebrén, and Sumit Sanghai.
2023. Gqa: Training generalized multi-query trans-
former models from multi-head checkpoints. In Pro-
ceedings of the 2023 Conference on Empirical Meth-
ods in Natural Language Processing, pages 4895—
4901. Association for Computational Linguistics.

Elias Bassani. 2023. retriv: A python search engine for
the common man. Released on 2023-05-28.

Amanda Bertsch, Maor Ivgi, Uri Alon, Jonathan Berant,
Matthew R Gormley, and Graham Neubig. 2024. In-
context learning with long-context models: An in-
depth exploration. arXiv preprint arXiv:2405.00200.

Ifnigo Casanueva, Tadas Temcinas, Daniela Gerz,
Matthew Henderson, and Ivan Vuli¢. 2020. Efficient
intent detection with dual sentence encoders. In Pro-
ceedings of the 2nd Workshop on Natural Language
Processing for Conversational Al, pages 38—45, On-
line. Association for Computational Linguistics.

Rewon Child, Scott Gray, Alec Radford, and Ilya
Sutskever. 2019. Generating long sequences with
sparse transformers. In Advances in Neural Infor-
mation Processing Systems (NeurIPS), pages 11862—
11872.

Tri Dao. 2024. Flashattention-2: Faster attention with
better parallelism and work partitioning. In Proceed-
ings of the International Conference on Learning
Representations (ICLR).

Juechu Dong, Boyuan Feng, Driss Guessous, Yanbo
Liang, and Horace He. 2024a. Flex attention: A pro-
gramming model for generating optimized attention
kernels. arXiv preprint arXiv:2412.05496.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Jingyuan
Ma, Rui Li, Heming Xia, Jingjing Xu, Zhiyong Wu,
Baobao Chang, Xu Sun, Lei Li, and Zhifang Sui.
2024b. A survey on in-context learning. In Proceed-
ings of the 2024 Conference on Empirical Methods
in Natural Language Processing, pages 1107-1128.
Association for Computational Linguistics.

Rickard Briiel Gabrielsson, Jiacheng Zhu, Onkar Bhard-
waj, Leshem Choshen, Kristjan Greenewald, Mikhail
Yurochkin, and Justin Solomon. 2024. Compress
then serve: Serving thousands of 1o0RA adapters with
little overhead.

Bogdan Gliwa, Iwona Mochol, Maciej Biesek, and Alek-
sander Wawer. 2019. Samsum corpus: A human-
annotated dialogue dataset for abstractive summariza-
tion. In Proceedings of the 2nd Workshop on New
Frontiers in Summarization. Association for Compu-
tational Linguistics.

Junxian Guo, Haotian Tang, Shang Yang, Zhekai Zhang,
Zhijian Liu, and Song Han. 2024. Block Sparse
Attention. https://github.com/mit-han-1lab/
Block-Sparse-Attention.

31954

https://proceedings.neurips.cc/paper_files/paper/2024/file/8cb564df771e9eacbfe9d72bd46a24a9-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/8cb564df771e9eacbfe9d72bd46a24a9-Paper-Conference.pdf
https://doi.org/10.18653/v1/2023.emnlp-main.298
https://doi.org/10.18653/v1/2023.emnlp-main.298
https://doi.org/10.5281/zenodo.7978820
https://doi.org/10.5281/zenodo.7978820
https://doi.org/10.18653/v1/2020.nlp4convai-1.5
https://doi.org/10.18653/v1/2020.nlp4convai-1.5
https://arxiv.org/abs/1904.10509
https://arxiv.org/abs/1904.10509
https://arxiv.org/abs/2307.08691
https://arxiv.org/abs/2307.08691
https://arxiv.org/abs/2412.05496
https://arxiv.org/abs/2412.05496
https://arxiv.org/abs/2412.05496
https://openreview.net/forum?id=hHNVn4hFPk
https://openreview.net/forum?id=hHNVn4hFPk
https://openreview.net/forum?id=hHNVn4hFPk
https://doi.org/10.18653/v1/d19-5409
https://doi.org/10.18653/v1/d19-5409
https://doi.org/10.18653/v1/d19-5409
https://github.com/mit-han-lab/Block-Sparse-Attention
https://github.com/mit-han-lab/Block-Sparse-Attention

Zhixiong Han, Yaru Hao, Li Dong, Yutao Sun, and
Furu Wei. 2022. Prototypical calibration for few-
shot learning of language models. arXiv preprint
arXiv:2205.10183.

Dan Hendrycks, Collin Burns, Steven Basart, Andy
Zou, Mantas Mazeika, Dawn Song, and Jacob Stein-
hardt. 2021. Measuring massive multitask language
understanding. Proceedings of the International Con-
ference on Learning Representations (ICLR).

Steven C. H. Hoi, Doyen Sahoo, Jing Lu, and Peilin
Zhao. 2018. Online learning: A comprehensive sur-
vey. Preprint, arXiv:1802.02871.

Eduard Hovy, Laurie Gerber, Ulf Hermjakob, Chin-
Yew Lin, and Deepak Ravichandran. 2001. Toward
semantics-based answer pinpointing. In Proceedings
of the First International Conference on Human Lan-
guage Technology Research.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. Lora: Low-rank adaptation of
large language models. In The Tenth International
Conference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022. OpenReview.net.

Bowen Jin, Jinsung Yoon, Jiawei Han, and Sercan O.
Arik. 2024. Long-context 1lms meet rag: Over-
coming challenges for long inputs in rag. Preprint,
arXiv:2410.05983.

Stefan Larson, Anish Mahendran, Joseph J. Peper,
Christopher Clarke, Andrew Lee, Parker Hill,
Jonathan K. Kummerfeld, Kevin Leach, Michael A.
Laurenzano, Lingjia Tang, and Jason Mars. 2019. An
evaluation dataset for intent classification and out-of-
scope prediction. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-1JCNLP),
pages 1311-1316, Hong Kong, China. Association
for Computational Linguistics.

Mukai Li, Shansan Gong, Jiangtao Feng, Yiheng Xu,
Jun Zhang, Zhiyong Wu, and Lingpeng Kong. 2023.
In-context learning with many demonstration exam-
ples. Preprint, arXiv:2302.04931.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat
Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle Cai,
Patrick Lewis, and Deming Chen. 2024. Snapkv:
LIm knows what you are looking for before genera-
tion. arXiv preprint arXiv:2404.14469.

Akide Liu, Jing Liu, Zizheng Pan, Yefei He, Gholam-
reza Haffari, and Bohan Zhuang. 2024a. Minicache:
Kv cache compression in depth dimension for large
language models. Preprint, arXiv:2405.14366.

Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paran-
jape, Michele Bevilacqua, Fabio Petroni, and Percy
Liang. 2024b. Lost in the middle: How language
models use long contexts. Transactions of the Asso-
ciation for Computational Linguistics, 12:157-173.

Sijia Liu, Yuanshun Yao, Jinghan Jia, Stephen Casper,
Nathalie Baracaldo, Peter Hase, Yuguang Yao,
Chris Yuhao Liu, Xiaojun Xu, Hang Li, Kush R.
Varshney, Mohit Bansal, Sanmi Koyejo, and Yang
Liu. 2024c. Rethinking machine unlearning for large
language models. Preprint, arXiv:2402.08787.

Xiang Liu, Zhenheng Tang, Peijie Dong, Zeyu Li, Bo Li,
Xuming Hu, and Xiaowen Chu. 2025. Chunkkv:
Semantic-preserving kv cache compression for ef-
ficient long-context llm inference. arXiv preprint
arXiv:2502.00299.

Songshuo Lu, Hua Wang, Yutian Rong, Zhi Chen, and
Yaohua Tang. 2024. Turborag: Accelerating retrieval-
augmented generation with precomputed kv caches
for chunked text. ArXiv, abs/2410.07590.

Man Luo, Xin Xu, Yue Liu, Panupong Pasupat, and
Mehran Kazemi. 2024. In-context learning with re-
trieved demonstrations for language models: A sur-
vey. arXiv preprint arXiv:2401.11624.

Yury A. Malkov and Dmitry A. Yashunin. 2020. Effi-
cient and robust approximate nearest neighbor search
using hierarchical navigable small world graphs.

IEEE Transactions on Pattern Analysis and Machine
Intelligence, 42(4):824-836.

Sourab Mangrulkar, Sylvain Gugger, Lysandre De-
but, Younes Belkada, Sayak Paul, and Benjamin
Bossan. 2022. Peft: State-of-the-art parameter-
efficient fine-tuning methods. https://github.
com/huggingface/peft.

Meta Al 2024. Introducing llama 3.1: Our most capa-
ble models to date.

Marius Mosbach, Tiago Pimentel, Shauli Ravfogel, Di-
etrich Klakow, and Yanai Elazar. 2023. Few-shot
fine-tuning vs. in-context learning: A fair compari-
son and evaluation. In Findings of the Association for
Computational Linguistics: ACL 2023, pages 12284—
12314, Toronto, Canada. Association for Computa-
tional Linguistics.

Nir Ratner, Yoav Levine, Yonatan Belinkov, Ori Ram,
Inbal Magar, Omri Abend, Ehud Dov Karpas, Amnon
Shashua, Kevin Leyton-Brown, and Yoav Shoham.
2023. Parallel context windows for large language
models. In The 61st Annual Meeting Of The Associa-
tion For Computational Linguistics.

Stephen Robertson and Hugo Zaragoza. 2009. The
probabilistic relevance framework: Bm?25 and be-

yond. Foundations and Trends in Information Re-
trieval, 3(4):333-389.

Uri Shaham, Maor Ivgi, Avia Efrat, Jonathan Berant,
and Omer Levy. 2023. ZeroSCROLLS: A zero-shot
benchmark for long text understanding. In Find-
ings of the Association for Computational Linguis-
tics: EMNLP 2023, pages 7977-7989, Singapore.
Association for Computational Linguistics.

31955

https://arxiv.org/abs/2205.10183
https://arxiv.org/abs/2205.10183
https://arxiv.org/abs/1802.02871
https://arxiv.org/abs/1802.02871
https://arxiv.org/abs/2410.05983
https://arxiv.org/abs/2410.05983
https://doi.org/10.18653/v1/D19-1131
https://doi.org/10.18653/v1/D19-1131
https://doi.org/10.18653/v1/D19-1131
https://arxiv.org/abs/2302.04931
https://arxiv.org/abs/2302.04931
https://arxiv.org/abs/2405.14366
https://arxiv.org/abs/2405.14366
https://arxiv.org/abs/2405.14366
https://arxiv.org/abs/2402.08787
https://arxiv.org/abs/2402.08787
https://api.semanticscholar.org/CorpusID:273233795
https://api.semanticscholar.org/CorpusID:273233795
https://api.semanticscholar.org/CorpusID:273233795
https://doi.org/10.1109/TPAMI.2018.2889473
https://doi.org/10.1109/TPAMI.2018.2889473
https://doi.org/10.1109/TPAMI.2018.2889473
https://github.com/huggingface/peft
https://github.com/huggingface/peft
https://ai.meta.com/blog/meta-llama-3-1/
https://ai.meta.com/blog/meta-llama-3-1/
https://doi.org/10.18653/v1/2023.findings-acl.779
https://doi.org/10.18653/v1/2023.findings-acl.779
https://doi.org/10.18653/v1/2023.findings-acl.779
https://doi.org/10.1561/1500000019
https://doi.org/10.1561/1500000019
https://doi.org/10.1561/1500000019
https://doi.org/10.18653/v1/2023.findings-emnlp.536
https://doi.org/10.18653/v1/2023.findings-emnlp.536

Ying Sheng, Shiyi Cao, Dacheng Li, Coleman
Hooper, Nicholas Lee, Shuo Yang, Christopher
Chou, Banghua Zhu, Lianmin Zheng, Kurt Keutzer,
Joseph E. Gonzalez, and Ion Stoica. 2023. S-lora:
Serving thousands of concurrent lora adapters. arXiv
preprint arXiv:2311.03285.

East Sun, Yan Wang, and Lan Tian. 2024.
Block-attention for efficient rag. Preprint,
arXiv:2409.15355.

TogetherAl. 2023. Llama-2-7b-32k-instruct - and fine-
tuning for llama-2 models with together api.

Haonan Wang, Qian Liu, Chao Du, Tongyao Zhu, Cunx-
iao Du, Kenji Kawaguchi, and Tianyu Pang. 2024.
When precision meets position: Bfloat16 breaks
down rope in long-context training. arXiv preprint
arXiv:2411.13476.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38—45, Online. Association
for Computational Linguistics.

Yifei Xia, Fangcheng Fu, Wentao Zhang, Jiawei Jiang,
and Bin Cui. 2024. Efficient multi-task 1lm quan-
tization and serving for multiple lora adapters. In
Proceedings of the 38th Conference on Neural Infor-
mation Processing Systems (NeurIPS 2024), Santa
Clara, CA, USA. Poster Presentation.

Guangxuan Xiao, Jiaming Tang, Jingwei Zuo, Junxian
Guo, Shang Yang, Haotian Tang, Yao Fu, and Song
Han. 2024a. Duoattention: Efficient long-context 1lm
inference with retrieval and streaming heads. arXiv.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song
Han, and Mike Lewis. 2024b. Efficient streaming
language models with attention sinks. In The Twelfth
International Conference on Learning Representa-
tions.

Pawel Swietojanski Xingkun Liu, Arash Eshghi and
Verena Rieser. 2019. Benchmarking natural language
understanding services for building conversational
agents. In Proceedings of the Tenth International
Workshop on Spoken Dialogue Systems Technology
(IWSDS), Ortigia, Siracusa (SR), Italy. Springer.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He,
Alex Smola, and Eduard Hovy. 2016. Hierarchical
attention networks for document classification. In
Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies
(NAACL-HLT), pages 1480-1489.

Howard Yen, Tianyu Gao, Minmin Hou, Ke Ding,
Daniel Fleischer, Peter I1zsak, Moshe Wasserblat, and
Danqi Chen. 2024. Helmet: How to evaluate long-
context language models effectively and thoroughly.
Preprint, arXiv:2410.02694.

Qingyu Yin, Xuzheng He, Luoao Deng, Chak Tou
Leong, Fan Wang, Yanzhao Yan, Xiaoyu Shen, and
Qiang Zhang. 2024. Deeper insights without updates:
The power of in-context learning over fine-tuning.
Findings of the Association for Computational Lin-
guistics: EMNLP 2024, pages 4138-4151.

Manzil Zaheer, Guru Guruganesh, Avinava Dubey,
Joshua Ainslie, Chris Alberti, Santiago Ontafién,
Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang,
and Amr Ahmed. 2020. Big bird: Transformers for
longer sequences. In Advances in Neural Informa-
tion Processing Systems (NeurIPS), volume 33, pages
17283-17297.

Yanqi Zhang, Yuwei Hu, Runyuan Zhao, John C. S. Lui,
and Haibo Chen. 2024. Unifying kv cache compres-
sion for large language models with leankv. Preprint,
arXiv:2412.03131.

Zhenyu (Allen) Zhang, Ying Sheng, Tianyi Zhou, Tian-
long Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark W. Barrett,
Zhangyang Wang, and Beidi Chen. 2023. H2o:
Heavy-hitter oracle for efficient generative inference
of large language models. ArXiv, abs/2306.14048.

31956

https://arxiv.org/abs/2409.15355
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://openreview.net/forum?id=HfpV6u0kbX
https://openreview.net/forum?id=HfpV6u0kbX
https://arxiv.org/abs/1606.02361
https://arxiv.org/abs/1606.02361
https://arxiv.org/abs/2410.02694
https://arxiv.org/abs/2410.02694
https://arxiv.org/abs/2007.14062
https://arxiv.org/abs/2007.14062
https://arxiv.org/abs/2412.03131
https://arxiv.org/abs/2412.03131
https://api.semanticscholar.org/CorpusID:259263947
https://api.semanticscholar.org/CorpusID:259263947
https://api.semanticscholar.org/CorpusID:259263947

A Efficiency metrics

In the main results § 4, we show the relative
speedup. Here we report the raw metrics given
our computational environment. The inference
throughput is an average of 5 runs and rounded;
for all settings, the standard deviation for this value
is within 0.1. We evaluate inference with Hugging
Face transformers (Wolf et al., 2020) using Flash
Attention 2 (Dao, 2024), and applying Flex Atten-
tion (Dong et al., 2024a) for DBSA pre-encoding.

Method Accuracy Throughput (g/s)
FixedICL (1 shot) 0.621 29.0
FixedICL (20 shot) 0.640 27.8
FixedICL (200 shot) 0.652 18.9
RetICL (20 from 200) 0.683 2.5
DBSA (20 from 200) 0.671 25.6

Table 10: MMLU results comparing DBSA with fixed
and retrieval ICL baselines using a single A100 gpu.
retlCL and DBSA uses BM25 retrieval. DBSA uses 1

sink block, 2 preceding blocks, and 1 example per block.
2

Method Setup Time Inference T‘hroughput
(queries/s)

30k Context Length w/ Llama-2-7B w/ single L40S GPU Method ROUGE1/2/L Throughput (qg/s)
RetICL (no cache) 2 sec 0.8 FixedICL (1 shot) 0.453/0.218 /0.370 0.65
Fixed ICL (cached) 9 sec 15 FixedICL (20 ShOt) 0.480/0.237/0.397 0.65
Finetuning > 20 min 6.6 FixedICL (200 shot) 0.491/0.252/0.410 0.55

RetICL (20 from 200) 0.503 /0.264 / 0.417 0.45
DBSA 6 sec 34

DBSA (20 from 200) 0.499/0.259/0.411 0.65
30k Context Length w/ Llama-3.1-8B w/ single L40S GPU

Table 11: SAMSum results comparing DBSA with

RetICL (no cache) 2 sec 13 fixed and retrieval ICL baselines using a single A100
Fixed ICL (cached) 10 sec 11.6 gpu. retICL and DBSA uses BM25 retrieval. DBSA
Finetuning > 20 min 15.8 uses 1 sink block, 2 preceding blocks, and 1 example
DBSA 6 sec 12.8 per block.

90k Context Length w/ Llama-3.1-8B w/ single A100 GPU

RetICL (no cache) 2 sec 0.4
Fixed ICL (cached) 13 sec 6.8
Finetuning > 40 min 8.9
DBSA 7 sec 7.7

Table 9: Setup time and inference throughput (queries/s)
across different methods and context lengths on Llama
models with specified GPUs.

B Additional Datasets

To further evaluate the effectiveness of DBSA, we
include results on two additional datasets: MMLU
(Hendrycks et al., 2021) and SAMSum (Gliwa
etal., 2019). MMLU is a widely used benchmark
for multitask multiple-choice question answering
that covers a broad range of subjects. In addition to
classification datasets, we also evaluate on SAM-
Sum, a generative task on dialogue summarization.

Results in Tables 10 and 11 show strong perfor-
mance using DBSA. Notably, DBSA outperforms
fixedICL in terms of both task performance and
efficiency (inference throughput).

2Expelriment setup is as described in Section 3, which

may differ from the official Llama 3 report, including prompt
formatting, decoding strategy, and data preprocessing details.

C Finetuning Setup

We follow the same setup as Bertsch et al.
(2024) for LoRA finetuning, using Hugging Face
transformers (Wolf et al., 2020) along with the
peft package (Mangrulkar et al., 2022). All fine-
tuning is run on a single L40S GPU (48G). We
finetune for 30 epochs, with LoRa rank r = 8§,
scaling factor a = 32, and dropout 0.1. We use
a learning rate of 0.001, a batch size of 32, and a
weight decay of 0.01.

D Accuracy Trend

In the main results (§ 4), we consider only the 30k
(about 1k demos) or 90k (about 3k demos) demon-
stration pool. In Figures 6 and 7, we report two
examples of the accuracy trend for each method
as the size of demonstration pool increases. The
trends we describe at 30k and 90k are consistent
at other context lengths, although DBSA seems
slightly less effective at very short context lengths;
we do not believe this is a concern, as the relative
efficiency gain from sparsity is minimal in short-
context ICL.

31957

100
v v
v L
s 90 ® M
80r w 0 v
'Y v
> 60r
© v
3
3
< 40
Retrieval ICL
20F m Fixed ICL
¢ DBSA
v Finetuned
0 — =
10 10

Number of Demonstrations Available
Figure 6: Performance trend for Banking 77.

1001

. [4 v
» e v v
80 » ¢ ¢ v

v

Accuracy
[=)]
o

N
o

Retrieval ICL
Fixed ICL

¢ DBSA

v Finetuned

N
o
L}

103 104
Number of Demonstrations Available

Figure 7: Performance trend for NLU.

E Number of Preceding Blocks

In the main experiments the number of preceding
blocks is set to 2. However, this is a hyperparam-
eter choice, with more preceding blocks leading
to higher accuracy. We show its impact on perfor-
mance in Table 12.

Dataset 0 1 2 4 8 all (48-66)
banking77 0.828 0.875 0.883 0.881 0.895 0.913
clinc150 0.859 0.893 0.892 0911 0912 0.919
nlu 0.821 0.853 0.861 0.879 0.887 0.895
trec 0.875 0929 0.941 0.955 0.964 0.967
trecfine 0.737 0.792 0.828 0.861 0.869 0.889
Avg Acc 0.824 0.869 0.881 0.897 0.905 0.917
Recover (%) 89.9 9476 96.13 9791 98.78 100

Table 12: Effect of changing number of preceding
blocks in main experiment setting with Llama 3.1 8B
90k context length. Averaged over 3 runs.

F Demonstration clustering
implementation

In the ablations in Section 5.3, we use BM25 to con-
struct a feature vector for each demonstration by
first obtaining the vocabulary space of the demon-
stration pool. Then, we treat each vocabulary term

as a query and obtain BM25 scores for each demon-
stration, resulting in a vector representation for
each demonstration. This method is similar in
concept to TF-IDF, which is commonly used in
conjunction with k-means, especially before the
popularity of semantic embeddings. We then run
k-means clustering with the vector representations.
To compare against this method, we randomly swap
10% examples between clusters to introduce diver-
sity within each block.

31958

