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Abstract

Large language models (LLMs) often strug-
gle to accurately read and comprehend ex-
tremely long texts. Current methods for im-
provement typically rely on splitting long con-
texts into fixed-length chunks. However, fixed
truncation risks separating semantically rele-
vant content, leading to ambiguity and com-
promising accurate understanding. To over-
come this limitation, we propose a straight-
forward approach for dynamically separating
and selecting chunks of long context, facil-
itating a more streamlined input for LLMs.
In particular, we compute semantic similari-
ties between adjacent sentences, using lower
similarities to adaptively divide long contexts
into variable-length chunks. We further train
a question-aware classifier to select sensitive
chunks that are critical for answering specific
questions. Experimental results on both single-
hop and multi-hop question-answering bench-
marks show that the proposed approach consis-
tently outperforms strong baselines. Notably,
it maintains robustness across a wide range of
input lengths, handling sequences of up to 256k
tokens. Our datasets and code are available at
the following link: https://github.com/ECNU-
Text-Computing/DCS.

1 Introduction

Recent advances in large language models (LLMs)
(OpenAI, 2024; Touvron et al., 2023a,b; Bai et al.,
2023) have revolutionized the landscape of natu-
ral language processing (NLP), demonstrating re-
markable capabilities in various tasks such as ma-
chine translation (Lu et al., 2024; Xu et al., 2024),
text summarization (Tam et al., 2023; Zhang et al.,
2024), and reading comprehension (Samuel et al.,
2024). While LLMs are designed to process long
texts, they still encounter challenges in achieving
accurate understanding in real-world applications
(Liu et al., 2024). This issue is particularly evident

*Corresponding author

Context: Artificial Intelligence evolves fast. AI \\\ 
research began in the 1950s. It aims to \\\ create smart 
machines. Machines that can \\\ perform tasks without 
human help. Deep \\\ learning is a key part of AI. It 
uses \\\ neural networks with many layers. These \\\ 
layers help machines learn complex patterns. \\\ This 
technology powers many modern innovations. \\\ AI's 
future looks very promising.
Question: What is a key part of AI mentioned in the 
passage? 
Target: Deep learning
Answer: AI learning

!

Figure 1: A failure case of a fixed-length chunking
method in the QA task. The context is segmented into
fixed-length chunks, with \\\ indicating the split points.
The blue underlines highlight the chunks selected by
the method as relevant. However, the key phrase Deep
learning is split across two separate chunks, preventing
the LLM from capturing its full meaning. As a result,
the LLM produces an incorrect answer.

when LLMs answer specific questions based on
very lengthy texts.

On the one hand, there are inherent flaws in
the pre-trained Transformer Decoder architecture
(Wang et al., 2024). Notably, the scope of posi-
tional encoding limits the input context window
to a fixed length; the quadratic attention compu-
tational complexity constrains input length based
on available computational resources. On the other
hand, empirical studies show that LLMs tend to dis-
proportionately allocate attention to the beginning
and end of input (Liu et al., 2023). Therefore, when
question-sensitive information is located in the mid-
dle, LLMs often fail to incorporate these critical
details into their answer generation. These limi-
tations lead to poor performance, driving the de-
velopment of methods that efficiently enhance the
long-context understanding capabilities of LLMs.

Intuitive improvements hinge on breaking
lengthy text into manageable pieces and applying
targeted operations to them to enhance the adapt-
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ability of LLMs to long texts (Xiao et al., 2024;
Song et al., 2024; An et al., 2024). However, cur-
rent methods often only divide the input into fixed-
length chunks, which can severely compromise se-
mantic coherence. As shown in Figure 1, when the
input context is segmented by fixed lengths, break-
points frequently occur in the middle of sentences,
resulting in only a small portion of sentences be-
ing fully preserved within a single chunk. First
of all, this fragmentation undermines the logical
structure of the original text, making it difficult to
grasp the semantic connections between chunks
during the selection process. This can hinder over-
all comprehension of the context. Moreover, if a
sentence contains crucial information or answers,
fragmentation risks distorting its meaning, leading
to the exclusion of related sentences and result-
ing in inaccurate responses. To address this issue,
it is essential to dynamically determine chunking
boundaries based on semantic structure and flexibly
select the most relevant chunks.

In this paper, we propose a straightforward ap-
proach for LLMs, termed Dynamic Chunking and
Selection (DCS). This approach aims to effectively
tackle the challenge of reading comprehension
within extensive contexts. In particular, we utilize
Sentence-BERT (Reimers and Gurevych, 2019) to
encode lengthy context at the sentence level. Then,
by assessing the semantic similarity among adja-
cent sentences, we dynamically segment the con-
text into variable-length chunks. This ensures that
each chunk retains its inherent coherence and se-
mantic integrity. Next, we train a question-aware
classifier to select chunks based on the provided
question. This classifier rigorously evaluates the
relevance of each chunk to the question, selecting
only those that contain essential information. This
process allows LLMs to preserve maximum rele-
vant content while adhering to length constraints.
Finally, the selected chunks are concatenated in
their original order and fed into the LLM. The con-
ciseness and comprehensiveness of the input en-
able the LLM to generate accurate responses while
maintaining the integrity of the original narrative
structure. As a result, this approach could enhance
the LLM’s ability to process and understand exten-
sive contexts.

To evaluate the performance of our approach,
we conduct comprehensive experiments based on
three base LLMs: Llama-3-8B-Instruct (AI@Meta,
2024), Mistral-7B-Instruct (Jiang et al., 2023),
and Vicuna-7B (Zheng et al., 2023). Our evalu-

ation encompasses 12 diverse long-context reading
comprehension datasets, covering both single-hop
and multi-hop question-answering (QA) tasks. To
further scrutinize our approach’s capabilities, we
also test it on significantly longer datasets (up to
256k tokens). The results demonstrate that our ap-
proach consistently outperforms recent state-of-the-
art (SOTA) methods across most datasets. More-
over, experiments on ultra-long texts underscore
our approach’s robustness and potential for effec-
tively handling extensive contexts.

In summary, our main contribution is the in-
troduction of Dynamic Chunking and Selection
(DCS). This approach is both straightforward and
highly effective, addressing the challenges of long-
context reading comprehension without requiring
complex architectures. DCS involves Sentence-
BERT for sentence embeddings, dynamically seg-
ments texts based on semantic similarity, and uti-
lizes a question-aware classifier to select relevant
chunks. This minimalist design ensures ease of im-
plementation and minimal training overhead while
achieving significant performance improvements.
Our approach offers a reliable and efficient solution
for LLMs dealing with extensive contexts.

2 Related Work

Since the emergence of LLMs, extensive research
has focused on enabling them to process longer
contexts.
Context Length Extrapolation. Chen et al. (2023)
introduced Position Interpolation (PI), a methodol-
ogy that expands the context window dimensions of
RoPE-based LLMs (Su et al., 2024) while maintain-
ing relative positional relationships. Subsequent
developments such as YaRN (Peng et al., 2023)
demonstrate superior performance compared to ex-
isting RoPE interpolation approaches. This opti-
mized technique serves as a direct substitute for
PI implementations while substantially expanding
their applicability, maintaining backward compati-
bility with existing architectures. However, these
methods only address the issue of long input. They
do not fully address the challenge of LLMs in cap-
turing long-context dependencies.
Sparse Attention. StreamingLLM (Xiao et al.,
2023) employs a dual-component architecture com-
bining sliding-window attention with attention-sink
mechanisms, enabling stable processing of arbitrar-
ily long text sequences without model retraining.
LM-Infinite (Han et al., 2024) implements two ele-
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ments: a Λ-shaped attention mask for gradient sta-
bilization and a distance ceiling parameter, while
strategically reintroducing intermediate top-k to-
kens to optimize downstream task performance.
Longformer (Beltagy et al., 2020) employs a lin-
early scaling attention mechanism combining local
and global attentions. This enables efficient pro-
cessing of lengthy documents. Although sparse
attention mechanisms can enhance the ability of
LLMs to comprehend long contexts. Their reliance
on predefined methods to reduce the computational
cost of attention inevitably limits the potential for
significant performance improvements.
Tokens Eviction. Heavy Hitter Oracle (H2O)
(Zhang et al., 2023) introduces a novel KV cache
eviction policy. It identifies and retains "Heavy
Hitter" tokens that significantly contribute to atten-
tion scores. By dynamically balancing recent and
critical tokens, H2O can comprehend long inputs.
Token Omission Via Attention (TOVA) (Oren et al.,
2024) is another training-free compression policy
for reducing the key-value cache size. By concep-
tualizing decoder-only transformers as unbounded
multistate RNNs, TOVA uses in some cases only
1/8 of the original cache size to handle longer se-
quences. Chunked Instruction-aware State Evic-
tion (CItruS) (Bai et al., 2024a) integrates attention
preferences relevant to downstream tasks into the
eviction process. It improves performance on long
sequence comprehension and retrieval tasks while
maintaining language modeling perplexity. Token
eviction methods effectively balance model per-
formance and resource usage. However, they fail
to fully preserve the original semantic structure
of the text, thereby constraining potential perfor-
mance improvements. In contrast, our chunk-level
approach effectively addresses this limitation.
Chunk-level Processing. InfLLM (Xiao et al.,
2024) addresses memory constraints through dis-
tributed context storage, utilizing specialized mem-
ory units with content-aware indexing for efficient
retrieval during attention computations. Hierar-
chical Memory Transformer (HMT) (He et al.,
2024) establishes a biologically-inspired architec-
ture that emulates human memory organization
through multi-granular memory consolidation. The
framework employs pyramidal memory cells with
differential retention policies. It also combines
segment-level recurrence with content-based mem-
ory reactivation to maintain coherent long-range
dependencies. However, the methods mentioned
above segment the text into fixed lengths, poten-

tially undermining the semantic integrity of the
original text. In contrast, our approach employs
a dynamic segmentation to preserve the semantic
coherence of the input text.
Tuning based Methods. Building upon Low-
Rank Adaptation (LoRA) (Hu et al., 2021), Chen
et al. (2024) devised LongLoRA, which combines
modified sparse attention patterns with optimized
low-rank decomposition strategies to efficiently
extend LLMs’ context processing capacity while
preserving computational frugality. Unlimiformer
(Bertsch et al., 2023) involves a memory-efficient
adaptation strategy. It enables the processing of
arbitrarily long sequences through context-aware
clustering with cross-attention. MEGALODON
(Ma et al., 2024) presents an efficient neural archi-
tecture framework for unbounded sequence mod-
eling. This architecture incorporates three core
components: complex exponential moving aver-
age operators for temporal dependency modeling,
learnable timestep normalization layers, and en-
hanced attention mechanisms with adaptive span
control. Although these methods can achieve sat-
isfactory results, they require extensive training
that consumes significant computational resources,
both in terms of space and time. In contrast, our ap-
proach achieves substantial improvements in model
performance with minimal training overhead.

3 Methodology

This section introduces Dynamic Chunking and Se-
lection (DCS) for LLMs towards reading compre-
hension. DCS dynamically segments long-context
inputs into discrete chunks. Then it meticulously
filters out irrelevant text fragments. After that, it
concatenates the remaining text to fit within the pre-
defined context window constraints of LLMs. This
methodology significantly enhances the ability of
LLMs to process contextual information effectively.
The overall structure of DCS is shown in Figure 2.
We also place a notation table as shown in Table 6
to facilitate readers’ reference.

3.1 Dynamic Chunking

Our approach initiates with semantic segmentation
(Kamradt, 2023) applied to input context C, struc-
tured through three components: [initial informa-
tion, context, question]. The context component un-
dergoes punctuation-driven decomposition, gener-
ating sentence sequence [s0, s1, · · · , sn−1] where
n denotes total sentence count.
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s3'

s0 sn-2
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…

…
separate by punctuation

concatenate adjacent sentences

e0 e1 e2 en-2 en-1e3 …
encode by PLM
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similarity

s1 sn-1s3s0 sn-2…
chunk with constraints
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(a) Dynamic Chunking
chunk1 chunk2 chunk3 chunkl

Short
Q&A

Datasets

context question

context question✗

⊕ ⊕ collect
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✓

question-aware
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…
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✗

✓
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(b) Chunk Selection

s1s0 sn-1sn-2

…

init question

Finally, the initial information, the reduced context, and the 
question are provided to the LLM for inference.

response

Figure 2: The overall structure of the proposed DCS. It includes two small modules to compress the input to help
the LLM understand long context better and derive the correct answer.

To preserve the semantic integrity of individual
sentences when they are separated from the broader
context, it is necessary to concatenate adjacent sen-
tences before encoding them. Specifically, given
the predefined chunk length parameter l, contextual
expansion is performed via neighborhood merging:

s′i =





s0 ⊕ s1 i = 0,

si−1 ⊕ si ⊕ si+1 1 ≤ i ≤ n− 2,

sn−2 ⊕ sn−1 i = n− 1,

(1)

yielding enhanced context segments
[s′0, s

′
1, · · · , s′n−1].

The merged segments undergo encoding via pre-
trained sentence-BERT to obtain contextual embed-
dings [e0, e1, · · · , en−1] ∈ Rd. Adjacent embed-
ding pairs then undergo similarity measurement
through cosine similarity computation:

sim(i, i+ 1) =
e⊤i ei+1

∥ei∥∥ei+1∥
, (2)

where similarity scores monotonically increase
with semantic congruence. For boundary detection
between context chunks, the semantic dissimilarity
metric is derived through cosine distance transfor-
mation:

dis(i) = 1− sim(i, i+ 1). (3)

The semantic cosine distance sequence
[dis0, dis1, · · · , disn−2] undergoes ascending-
order sorting to produce ordered indices

[k0, k1, · · · , kn−2] where disk0 ≤ disk1 ≤
· · · ≤ diskn−2 . A percentile-based segmentation
threshold α ∈ [0, 1] determines boundary selection
through quantile computation:

K =
[
k⌈(1−α)n⌉, · · · , kn−2

]
, (4)

which preserves the top (1−α) proportion of max-
imal dissimilarity indices as segmentation bound-
aries. The original document C is partitioned at
positions K through binary splitting, generating
final document segmentation:

C =
[
c
(0)
0 , c

(0)
1 , · · · , c(0)m0

]
, m0 = |K|. (5)

The segmentation refinement phase ensures com-
pliance with pre-specified chunk length constraint l
through iterative optimization. The initial segmen-
tation C(0) undergoes recursive reprocessing until
iteration j where maxk |c(j)k | > l triggers termi-
nation. The preceding iteration’s output C(j−1) =

[c
(j−1)
0 , · · · , c(j−1)

mj−1 ] is selected as baseline segmen-
tation. Given the current significant variability in
chunk sizes, further merging of the blocks is per-
formed to make each chunk as close as possible to
the predefined chunk size l. Specifically, for each
starting chunk ci, find the smallest integer u such
that:

i+u∑

j=i

|cj | ≤ l ⇒ ci ⊕ · · · ⊕ ci+u,

ci, · · · , ci+u ∈ C(j−1). (6)
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After merging, we update the index i to i+u+1
and continue processing the next unmerged chunk
and yield final chunks C = [c0, · · · , cm] with
|ck| ≤ l,∀k ≤ m. The processed document struc-
ture maintains the original framing components:

Cprocessed = [initial, C, question]. (7)

3.2 Chunk Selection
A question-aware classification model is subse-
quently trained to optimize chunk selection through
question-relevance assessment.
Training Data Collection. The training data is
curated from question-answering corpora with con-
trolled complexity and scale. Authentic context-
question pairs [C,Q] are extracted as positive train-
ing samples through exhaustive enumeration. Com-
plementary negative samples are generated via neg-
ative sampling strategy S : D → D−, where D
denotes original dataset and D− represents seman-
tically uncorrelated pairs. For each processed pair
[C,Q], context and question tokens are concate-
nated into a unified sequence:

X = [C0, · · · , Cp−1;Q0, · · · , Qq−1] ∈ N(p+q)×d,
(8)

where p = |C| and q = |Q| denote sequence length.
This composite sequence is encoded through the
LLM’s transformer layers, producing final-layer
representations:

H = [h
(d)
0 , h

(d)
1 , · · · , h(d)p+q−1] ∈ R(p+q)×d, (9)

and multi-head attention scores:

A ∈ Rnh×nl×nl (nl = p+ q, d ∈ N+), (10)

where nh indicates the number of parallel attention
heads.

Utilizing complete sequence encodings H ∈
Rnl×d for classifier training induces prohibitive
computational complexity O(n2

l ). To mitigate this,
we implement feature distillation through strategic
state selection from the final transformer layer. The
extraction protocol first captures boundary tokens:

Hb = [h
(d)
0 , h

(d)
p−1, h

(d)
p , h

(d)
p+q−1]. (11)

And the attention scores are averaged along the
head dimension:

Ah = 1
nh

nh−1∑

i=0

Ai ∈ Rnl×nl (12)

Then the attention matrix Ah ∈ Rnl×nl is de-
composed into four submatrices through block par-
titioning:

Ah =

[ ACC ∈ Rp×p ACQ ∈ Rp×q

AQC ∈ Rq×p AQQ ∈ Rq×q

]
, (13)

where AQC captures cross-attention between ques-
tion tokens and context tokens (Q→C), while AQQ

represents intra-attention within question tokens
(Q→Q). Column-wise mean pooling is applied to
both submatrices:

aC =
1

q

q∑

j=1

AQC(j, :) ∈ Rp, (14)

aQ =
1

q

q∑

j=1

AQQ(j, :) ∈ Rq. (15)

These attention weights are then used to compute
context-specific and question-specific representa-
tions:

h
(d)
C = aC · [h(d)0 , · · · , h(d)p−1]

⊤ ∈ Rd, (16)

h
(d)
Q = aQ · [h(d)p , · · · , h(d)p+q−1]

⊤ ∈ Rd. (17)

The final feature matrix concatenates boundary
tokens with attention-pooled vectors:

H = [h
(d)
0 ;h

(d)
C ;h

(d)
p−1;h

(d)
p ;h

(d)
Q ;h

(d)
p+q−1] ∈ R6×d,

(18)
which serves as the classifier input tensor.
Classifier Training. The classifier employs a three-
layer MLP architecture for binary prediction tasks.
The model learns to estimate answerability prob-
ability p(y|H) based on fused context-question
representations H ∈ R6×d, with positive label
(y = 1) indicating answerable pairs and negative la-
bel (y = 0) otherwise. The optimization objective
minimizes the binary cross-entropy loss:

L = − 1

N

N∑

i=1

[
yi log σ(hθ(Hi))

+ (1− yi) log(1− σ(hθ(Hi)))
]
, (19)

where N ∈ N+ presents total training instances,
yi ∈ {0, 1} denotes ground-truth label for i-th sam-
ple, hθ : R6×d → [0, 1]2 presents MLP with sig-
moid activation σ(·), and Hi ∈ R6×d denotes con-
catenated feature matrix for i-th input.
Chunk Selection. For processed context se-
quence [initial, c0, c1, ..., cm, question], each con-
text chunk ci is paired with the question com-
ponent to form context-question pair Xi =
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[ci; question] ∈ R(|ci|+|question|)×d. Then use the
above method to generate the classifier input Hi ∈
R6×d. Through the classifier hθ : R6×d → [0, 1]2,
we obtain class-conditional probabilities pi =
[Ti, Fi] through sigmoid-activated prediction heads,
where:

Ti = P (y = 1|Xi) = σ(hθ(Xi)0), (20)

Fi = P (y = 0|Xi) = σ(hθ(Xi)1). (21)

The relevance score set T = {Ti}mi=0 is aggregated
for chunk selection. The compression ratio αc ∈
(0, 1] is dynamically determined by:

αc =
lC
lT

(lC =
m∑

i=0

|ci|, lT ≤ Lmax), (22)

where Lmax denotes the LLM’s context window
limit and lT denotes the target context length. The
selection criterion retains the top-⌊m/α⌋ chunks
{cj} with maximal Tj values. The final com-
pressed context is constructed as:

Hcomp = [initial; {cj}j∈top-k; question]

(k = ⌊m/α⌋), (23)

which preserves original structural components
while satisfying |Hcomp| ≤ Lmax.
LLM Outputs. Subsequently, the compressed in-
put is fed into the backbone LLM. Then the LLM
will generate answers to corresponding questions.

4 Experimental Settings

4.1 Datasets

We utilize both single-hop and multi-hop QA
datasets to collect empirical evidence of our pro-
posed DCS.
Single-hop QA. For single-hop QA tasks, the cor-
rect answer can be derived by identifying and uti-
lizing a single piece of evidence from the provided
context. The datasets include MultiFieldQA_en 1

(Bai et al., 2024b; Yuan et al., 2024), NarrativeQA
(Koˇ ciský et al., 2018), Qasper (Dasigi et al., 2021),
Loogle-SD (Li et al., 2023), and Factrecall (Yuan
et al., 2024). For the datasets MultiFieldQA_en,
Loogle-SD, and Factrecall, we select versions rang-
ing from 16k to 256k tokens.

1For this dataset, we adopt two distinct construction meth-
ods: one derived from LongBench (Bai et al., 2024b), and the
other from LV-Eval (Yuan et al., 2024).

Multi-hop QA. For multi-hop QA tasks, accurately
deriving an answer requires the integration of mul-
tiple pieces of information scattered across differ-
ent parts of the context. The datasets include Hot-
potQA (Yang et al., 2018), 2WikiMQA (Ho et al.,
2020), Musique (Trivedi et al., 2022), Loogle-MR
(Li et al., 2023), HotpotwikiQA (Yuan et al., 2024),
and Loogle-CR (Li et al., 2023). For the datasets
including Loogle-MR, HotpotwikiQA, and Loogle-
CR, we select versions ranging from 16k to 256k
tokens.

A more comprehensive introduction to the
datasets and tasks is provided in Appendix B.

4.2 Baselines

We conduct experiments based on Llama-3-8B-
Instruct (AI@Meta, 2024), Mistral-7B-Instruct-
V0.1 (Jiang et al., 2023), and Vicuna-7b-v1.5
(Zheng et al., 2023) as our backbone LLMs.
The maximum length of Llama-3-8B-Instrcut and
Mistral-7B-Instruct-v0.1 is 8K and the maximum
length of Vicuna-7b-v1.5 is 4K. And we compare
our approach with the recent competitive baselines:
StreamingLLM (Xiao et al., 2023), LM-Infinite
(Han et al., 2024), InfLLM (Xiao et al., 2024), and
MoICE 2 (Lin et al., 2024). We adhere to the origi-
nal settings of all baselines.

4.3 Hyperparameters

For Sentence-BERT model, we select paraphrase-
multilingual-MiniLM-L12-v2 (Wang et al., 2020).
More details can be found in Appendix C. For
percentile-based segmentation threshold α, we se-
lect 60 for Llama3 and Mistral, and 65 for Vicuna.
For the target chunk size, we select 512 for all mod-
els. For the target context length, we select 7.5k
for Llama3, 7k for Mistral, and 3.5k for Vicuna.
The detailed settings of question-aware classifiers
can be seen in Table 15 in Appendix D. The train-
ing data is based on AdversarialQA (Bartolo et al.,
2020). More details can be seen in Appendix D.1.

5 Results

5.1 Results on Single-hop QA

The upper half of Table 1 demonstrates that our
DCS achieves an average score of 35.50 on Llama3,
representing a 28.62% improvement over the previ-
ous best score. In contrast, existing methods often

2Since it only reported results on Mistral and Llama2, our
study follows its setup and compares results only on Mistral
and Vicuna (which is based on Llama2).
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Single-hop QA MFQA_en Narrativeqa Qasper Loogle_SD MFQA_en_16k Factrecall_en Avg.

Llama-3-8B-Instruct 44.30 21.54 44.79 21.25 18.22 15.50 27.6
with Streaming 40.04 19.30 42.52 18.51 12.84 12.36 24.26

with LM-infinite 40.08 18.83 42.53 18.20 13.45 12.16 24.20
with Infllm 44.94 19.62 44.31 19.50 15.30 19.22 27.15
with DCS 45.83 23.89 44.59 45.10 23.70 29.89 35.50

Multi-hop QA Hotpotqa 2wikimqa Musique Loogle_MR Hotpotwikiqa Loogle_CR Avg.

Llama-3-8B-Instruct 46.74 35.66 21.72 10.50 14.22 16.49 24.22
with Streaming 43.60 35.79 18.81 9.90 12.45 14.50 22.51

with LM-infinite 43.85 35.79 19.87 10.96 11.98 14.26 22.79
with Infllm 47.53 35.49 24.37 10.79 7.74 15.55 23.58
with DCS 48.81 36.48 28.90 15.10 25.40 19.78 29.07

Table 1: The results on 12 long context reading comprehension datasets based on Llama-3-8B-Instruct. For
Loogle_SD, MFQA_en_16k, Factrecall_en, Loogle_MR, Hotpotwikiqa, and Loogle_CR, we select the 16k version
for experiments. Best results are bolded. The t-test proves that the improvement is statistically significant (p < 0.05).
The results based on Mistral and Vicuna are presented in Table 9 and Table 10 in Appendix.

encounter fragmentation issues when processing
lengthy texts, resulting in the loss of semantic co-
herence and key information. Our dynamic chunk-
ing strategy effectively addresses these limitations
by preserving semantic integrity and focusing on
relevant chunks, thereby enhancing overall under-
standing. These straightforward yet effective mod-
ules significantly enhance the robustness and versa-
tility of our approach, making it a reliable solution
for single-hop QA tasks.

The results based on Mistral and Vicuna are pre-
sented in Table 9 in Appendix, with our approach
achieving improvements of 5.8% on Mistral and
24.9% on Vicuna.

5.2 Results on Multi-hop QA

The lower half of Table 1 underscores the excep-
tional performance of DCS in multi-hop QA tasks.
Specifically, our approach gets an average score of
29.07. And it achieves a 20.02% improvement in
average scores on Llama3 compared to the previous
best scores. Current methods often struggle with
multi-hop questions due to their inability to effec-
tively integrate information from multiple sources.
Our dynamic chunking strategy, combined with a
question-aware classifier, overcomes this limitation
by accurately identifying and integrating relevant
chunks. Our approach significantly enhances the
LLMs’ capacity to handle complex reasoning tasks,
yielding more precise answers and ensuring reli-
able and consistent performance across a diverse
range of multi-hop QA tasks.

The results for Mistral and Vicuna are presented
in Table 10 in Appendix, with respective improve-
ments of 7.6% and 7.3%.

5.3 Results on Longer Datasets

To rigorously evaluate our approach’s long-context
capabilities, we conduct evaluations on extended
versions of six benchmark datasets (Loogle_SD,
MultifieldQA_en, Factrecall_en, Loogle_MR, Hot-
potwikiqa, and Loogle_CR), spanning context
lengths from 16k to 256k tokens.

As shown in Figure 3(a) and Figure 3(b), our
approach exhibits minimal performance degrada-
tion as context lengths increase. In contrast, base-
lines suffer from significant performance deteriora-
tion. This empirical evidence underscores our ap-
proach’s superior robustness in long-context com-
prehension tasks. The stability gap widens progres-
sively beyond 64k tokens, where conventional ap-
proaches lose critical contextual dependencies. Our
approach thus achieves significant improvements
in preserving semantic coherence across extended
sequences while maintaining robust performance
stability.

5.4 Discussion

5.4.1 The Selection of Hyperparameters
We conduct systematic hyperparameter optimiza-
tion experiments to identify the optimal configu-
ration. Take Llama3 as an example, specifically,
we evaluate different values for chunk length l and
percentile-based segmentation threshold α. The
results in Table 2 demonstrate that setting l = 512
yields the best overall performance. It achieves an
average score of 38.08 across all datasets, a signifi-
cant improvement over alternative configurations
(256, 768, or 1024). Similarly, within the tested
α range (55-70), α=60 produces the highest av-
erage score (38.08) while maintaining consistent

31863



16
k

32
k

64
k

12
8k

25
6k

length of context

5

10

15

20

25

30

sc
or

es

Llama-3-Origin
Llama-3-DCS
Mistral-Origin
Mistral-DCS
Vicuna-Origin
Vicuna-DCS

(a) Results on Single-hop QA (Loogle_SD,
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score of the model across three datasets.
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(b) Results on Multi-hop QA (Loogle_MR, Hot-
potwikiqa, and Loogle_CR). The x-axis represents
the length of the input context, ranging from 16k
to 256k. The y-axis shows the average score of the
model across three datasets.

Figure 3: Results on longer datasets.

performance across most datasets. Based on these
findings, we establish l = 512 and α=60 as the
model’s default hyperparameters. This configu-
ration not only delivers optimal performance as
measured by the evaluation metrics but also ex-
hibits strong robustness across varying parameter
settings.

5.4.2 Ablation Studies
We conduct systematic ablation studies to com-
pare dynamic chunking (DC) with fixed chunking
(FC) across three base LLMs. As shown in Ta-
ble 3, DC consistently outperforms fixed chunk-
ing, achieving average performance gains of 1.12-
1.54% across all LLM-task combinations. These
results confirm that our dynamic chunking, through
its context-aware optimization, surpasses fixed seg-
mentation approaches. The evidence strongly sup-
ports DC’s effectiveness in preserving semantic
continuity across chunk-level contexts.

We also compare our MLP-based question-
aware chunk selection method with a cosine simi-
larity (CS) selection approach. As shown in Table
4, the question-aware classifier consistently outper-
forms the CS across most LLMs and tasks, achiev-
ing significant performance improvements. These
results highlight the critical role of the question-
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Figure 4: Comparison of time spent by different ap-
proaches (relative to our approach).The x-axis repre-
sents different approaches. The y-axis is the ratio of time
consumption between other methods and our method.

aware classifier in chunk selection. The ability
of the question-aware classifier to capture nonlin-
ear feature interactions is crucial to our approach’s
ability to make informed chunk selections.

5.4.3 Classifier Robustness to Training Data

To rigorously assess the stability of our question-
aware classifier across diverse training data,
we conduct extensive experiments based on
three benchmark datasets: AdversarialQA, CoQA
(Reddy et al., 2019), and SQuAD (Rajpurkar et al.,
2018). These datasets, which are well-established
in the field, provide a robust basis for evaluation.
All experiments adhere to the consistent data pro-
cessing protocols detailed in our methodology sec-
tion. As shown in Table 5, the question-aware clas-
sifier exhibits stable performance across different
training datasets when evaluated on three backbone
LLMs. These results affirm the robust stability of
our question-aware classifier’s architecture.

5.4.4 Latency

We conduct comprehensive experiments on the
LongBench samples based on Llama-3-8B-Instruct,
comparing our approach with Streaming, LM-
Infinite, and InfLLM. The latency results can be
seen in Figure 4. The attention mechanism of LLM
typically has a complexity of O(n2), which can lead
to significant time consumption. In contrast, our
approach employs chunking, resulting in a com-
plexity of O(nl), where n is the sequence length
and l is the chunk length (with l << n). This com-
plexity is comparable to other long-text approaches,
meaning that our approach has limited impact on
latency.
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Chunk Length (*l*) NarrativeQA HotpotQA 2WikiMQA MFQA_en Qasper Musique Avg

256 22.22 46.42 36.61 42.96 44.17 31.57 37.33
Our (512) 23.89 48.81 36.48 45.83 44.59 28.90 38.08

768 20.71 50.82 35.58 45.06 43.97 25.10 36.87
1024 20.75 48.07 35.64 44.96 44.13 26.75 36.72

Threshold (α) NarrativeQA HotpotQA 2WikiMQA MFQA_en Qasper Musique Avg

55 20.41 48.33 36.95 46.02 43.66 29.19 37.43
Our (60) 23.89 48.81 36.48 45.83 44.59 28.90 38.08

65 23.06 47.34 36.35 45.07 44.64 29.55 37.67
70 21.83 47.79 36.87 44.40 43.91 27.01 36.97

Table 2: The results of the selection of hyperparameters on 6 long context reading comprehension datasets based on
Llama-3-8B-Instruct. Best results are bolded.

Single-hop QA Multi-hop QA Avg.

Llama3-8B 36.87 34.71 35.78
w/ DC 38.10 38.06 38.08
w/ FC 36.66 37.26 36.96

Mistral-7B 30.63 25.01 27.82
w/ DC 30.52 28.79 29.65
w/ FC 30.54 27.44 28.98

Vicuna-7B 25.52 15.47 20.50
w/ DC 26.51 17.34 21.93
w/ FC 25.43 16.39 20.91

Table 3: A comparison of average results among the
original LLM, dynamic chunking method (w/ DC), and
fixed chunking method (w/ FC) on the single-hop QA
(Multifieldqa_en, Narrativeqa and Qasper) and Multi-
hop QA (Hotpotqa, 2wikimqa and Musique). Best re-
sults are bolded.

6 Conclusion

This paper proposes a simple yet effective approach
to enhance the very long-context reading com-
prehension capabilities of LLMs. Our approach
dynamically segments long context into semanti-
cally coherent chunks. Then it includes a question-
aware classifier to select crucial chunks. Finally,
these selected chunks are then concatenated in their
original order to fit within the pre-trained con-
text window constraints of the backbone LLMs.
Experimental results demonstrate consistent per-
formance improvements across various backbone
LLMs when applying our approach. It not only
outperforms SOTA methods in terms of average
scores but also achieves top rankings across multi-
ple datasets. Notably, it exhibits exceptional robust-
ness, maintaining stable performance despite vari-
ations in input length and changes in the training
data configuration of the question-aware classifier.

Single-hop QA Multi-hop QA Avg.

Llama3-8B 18.32 13.74 16.03
w/ Classifier 32.90 20.36 26.85

w/ CS 33.07 18.60 25.84

Mistral-7B 12.68 10.00 11.34
w/ Classifier 18.30 12.38 15.34

w/ CS 16.16 12.00 14.08

Vicuna-7B 11.57 9.94 9.94
w/ Classifier 22.44 12.00 17.22

w/ CS 19.81 11.29 15.55

Table 4: A comparison of average results among
the original model, question-aware classifier method,
and cosine similarity method on the single-hop QA
(Loogle_SD, Multifieldqa_en_16k and Factrecall_en)
and Multi-hop QA (Loogle_MIR, Hotpotwikiqa and
Loogle_CR). CS means cosine similarity. Best results
are bolded.

SHQA MHQA Avg.

Llama-3-8B-Instruct

w/ AdversarialQA 38.10 38.06 38.08
w/ CoQA 38.01 38.11 38.06
w/ Squad 38.09 37.78 37.93

Mistral-7B-Instruct

w/ AdversarialQA 30.52 28.79 29.65
w/ CoQA 30.46 27.62 29.04
w/ Squad 30.59 28.47 29.53

Vicuna-7B

w/ AdversarialQA 26.51 17.34 21.93
w/ CoQA 26.06 16.12 21.09
w/ Squad 26.39 17.66 22.02

Table 5: A comparison of average results among the
question-aware classifier training on different datasets.
SHQA represents single-hop QA (Multifieldqa_en, Nar-
rativeqa and Qasper). MHQA represents multi-hop QA
(Hotpotqa, 2wikimqa and Musique).
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7 Limitations

The DCS proposed in this paper primarily ad-
dresses long text reading comprehension tasks.
However, further exploration of other long text
applications warrants more research. Due to limita-
tions in computing resources, this study focuses on
only three backbone LLMs and twelve QA datasets.
Future experiments could involve additional large
models and diverse scenarios to better validate the
effectiveness of the proposed DCS. Furthermore,
directly applying the modules within the DCS to
existing chunk-based methods may yield valuable
insights into both the task and the methodology.

8 Ethics Statement

The research presented in this paper is founded
on open-source LLMs and utilizes publicly avail-
able datasets. Consequently, we do not anticipate
that our study will have any direct adverse effects.
However, it is crucial to recognize that any genera-
tive AI technology, including the contributions of
our research, must be implemented with caution to
avert potentially harmful outcomes.
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Appendix

A Notation Table

We place a notation table in Table 6 to facilitate
reader reference.

B Benchmarks

B.1 LongBench

LongBench is introduced as the pioneering bilin-
gual, multi-task benchmark specifically designed
to evaluate long context understanding in LLMs.
This benchmark provides a rigorous assessment
platform for tasks involving longer sequence in-
puts that exceed the typical capacity of most lan-
guage models. LongBench includes 21 datasets,
spanning six task categories in both English and
Chinese. The average text length is 6,711 words
for English and 13,386 characters for Chinese texts.
These datasets cover different application areas,
including single-document QA, multi-document
QA, summarization, few-shot learning, synthetic
tasks, and code completion. The inclusion of these
diverse and extensive datasets, standardized into
a unified format, facilitates automatic evaluation
of LLMs’ performance in processing and compre-
hending lengthy textual content.

In our paper, we choose 6 datasets from single-
document QA and multi-document QA. The length
of datasets can be seen in Table 7. The prompts of
each dataset can be seen in Figure 5 and Figure 6.

B.2 LVEval

LV-Eval is introduced as a sophisticated long-
context benchmark designed to address the lim-
itations of existing mainstream benchmarks. This
new benchmark challenges state-of-the-art LLMs
by featuring five length levels—16k, 32k, 64k,
128k, and 256k words—culminating in an unprece-
dented context length of 256k words. LV-Eval en-
compasses two primary tasks: single-hop QA and
multi-hop QA, which together include 11 datasets
in English or Chinese. To enhance its robustness
and fairness, the design of this benchmark incor-
porates three critical techniques. First, it inserts
confusing facts to test models’ discernment abili-
ties. Second, it replaces keywords and phrases to
challenge model comprehension. Third, it develops
keyword-recall-based metrics to provide more ac-
curate performance assessments. By providing con-
trollable evaluations across varying context lengths
and incorporating challenging test instances with

Symbol Meaning

C input context

si sentences of the input context

s′i merged sentences of the input context

l predefined chunk length parameter

ei embedding of merged sentences

sim(i, i+1) the cosine similarity between the i-th
sentence and the (i+ 1)-th sentence

dis(i) the cosine distance between the i-th
sentence and the (i+ 1)-th sentence

α percentile-based segmentation thresh-
old

K positions of maximal dissimilarity in-
dices as segmentation boundaries

c
(i)
j the i-th iteration’s output chunk

C the i-th iteration’s output

Q input question

X context and question tokens sequence

Ci tokens of context

Qi tokens of question

H hidden states sequence

h
(d)
i the i-th token’s hidden state of the d-th

layer

A the attention scores

Hb boundary tokens’ hidden state

Ah the attention scores are averaged along
the head dimension

AQC cross-attention between question to-
kens and context tokens

AQQ intra-attention within question tokens

AQQ intra-attention within context tokens

aC column-wise mean pooling result of
cross-attention between question to-
kens and context tokens

aQ column-wise mean pooling result of
intra-attention within context tokens

h
(d)
C context-specific representations

h
(d)
Q question-specific representations

L binary cross-entropy loss of the classi-
fier

αc compression ratio

lC length of context

lT the target context length

Lmax the LLM’s context window limit

Hcomp the final compressed context

Table 6: Notation Table
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Llama3 Mistral Vicuna

Multifieldqa_en 6939 7908 8116
Narrativeqa 29869 35298 36038

Qasper 5088 5693 5781
Hotpotqa 12854 14976 15331
2wikimqa 7168 8365 8485
Musique 15617 18149 18556

Table 7: The average number of tokens in the datasets
across three different models.

Llama3 Mistral Vicuna

16k 108100 108118 108272
32k 194643 194661 194815
64k 365083 365101 365255

128k 695415 695436 695590
256k 1351528 1351546 1351700

Table 8: The average number of tokens in different
length of datasets across three different models.

misleading information, LV-Eval mitigates issues
of knowledge leakage and facilitates more objec-
tive evaluations of LLMs. Furthermore, LV-Eval
highlights concerns about evaluation biases due to
knowledge leakage and inaccurate metrics, demon-
strating how these issues are effectively reduced
within its framework.

In our paper, we choose 6 English datasets. The
length of datasets can be seen in Table 8. The
prompts of each dataset can be seen in Figure 7 and
Figure 8.

B.3 More Results
B.3.1 Results on Single-hop QA
The lower portion of Table 9 highlights the signifi-
cant improvements achieved by our DCS approach
on the Mistral and Vicuna models. For the Mistral-
7B-Instruct model, DCS attains an average score
of 24.42, outperforming other methods. MoICE
achieves strong results with scores of 44.39 on
MFQA_en and 30.89 on Qasper. However, DCS
surpasses it on average, demonstrating its stabil-
ity and versatility. Similarly, for the Vicuna-7B
model, DCS exhibits superior performance with an
average score of 24.48. MoICE performs well on
MFQA_en (42.29) and Loogle_SD (14.63), while
Infllm shows strength in Qasper (24.35) and Factre-
call_en (16.65). Despite these strong performances,
DCS provides a more balanced and enhanced per-
formance across all datasets. These results under-
score the efficacy of the DCS approach in bolster-
ing the robustness and adaptability of LLMs for
single-hop QA tasks.

B.3.2 Results on Multi-hop QA
The lower portion of Table 10 highlights the out-
standing performance of our DCS approach in
multi-hop QA tasks for the Mistral and Vicuna
models. For the Mistral-7B-Instruct model, DCS
achieves an average score of 20.59, representing
a substantial improvement over other methods.
MoICE performs well, scoring 30.18 on Hotpotqa
and 20.87 on Loogle_CR. However, DCS consis-
tently outperforms it across multiple datasets, sig-
nificantly enhancing the model’s ability to han-
dle complex reasoning tasks. Similarly, for the
Vicuna-7B model, DCS demonstrates superior per-
formance with an average score of 14.67, surpass-
ing other methods. InfLLM and MoICE achieve
notable results in specific datasets: InfLLM scores
12.64 on Loogle_MR, and MoICE scores 15.74 on
Hotpotwikiqa. Despite these strong performances,
DCS maintains a more consistent and enhanced
performance across all datasets. These results un-
derscore the effectiveness of our dynamic chunking
strategy combined with a question-aware classifier.
This approach overcomes the limitations of current
methods that struggle with multi-hop questions.

B.3.3 Results on More Tasks
Our primary goal is to enhance the long-text read-
ing comprehension capabilities of LLMs, so we uti-
lize widely recognized benchmarks in this area. To
validate the generalization ability of our approach,
we conduct additional experiments on various tasks.
The results in Table 11 show that our approach
outperforms other baselines and the original LLM
(ori). While domain-specific long-text datasets are
currently limited, we recognize their importance
and will explore this direction in future work. Our
extensive validation in general domains suggests
that our approach has the potential to yield strong
results in specific domains as well.

B.3.4 Results on Larger LLM
To verify the generalizability of our approach, we
perform additional validation using the Vicuna-13B
model (larger than our original setting). The exper-
imental results in Table 12 demonstrate that our ap-
proach maintains its performance advantage at this
scale. This shows our potential on larger LLMs.

B.3.5 Compare with Overlapping Chunking
Method

We perform controlled experiments comparing our
dynamic approach with an overlapping chunking
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Model MFQA_en Narrativeqa Qasper Loogle_SD MFQA_en_16k Factrecall_en Avg.

Llama-3-8B-Instruct 44.30 21.54 44.79 21.25 18.22 15.50 27.6
with Streaming 40.04 19.30 42.52 18.51 12.84 12.36 24.26

with LM-infinite 40.08 18.83 42.53 18.20 13.45 12.16 24.20
with Infllm 44.94 19.62 44.31 19.50 15.30 19.22 27.15
with DCS 45.83 23.89 44.59 45.10 23.70 29.89 35.50

Mistral-7B-Instruct 40.81 20.89 30.19 19.13 16.62 2.29 21.66
with Streaming 33.87 12.60 17.19 11.80 14.18 29.64 19.88

with LM-infinite 34.23 12.87 17.30 12.06 14.10 31.36 20.32
with Infllm 42.66 14.59 22.08 18.15 16.27 24.64 23.07

with MoICE 44.39 17.03 30.89 20.81 16.62 2.64 22.06
with DCS 42.31 18.63 30.64 24.51 23.76 6.64 24.42

Vicuna-7B 38.24 14.95 23.38 14.11 13.79 6.81 18.55
with Streaming 32.67 15.37 23.38 13.11 13.82 2.74 16.85

with LM-Infinite 32.30 14.12 22.94 13.68 13.84 3.30 16.70
with InfLLM 37.16 16.07 24.35 11.29 5.92 16.65 18.57
with MoICE 42.29 14.84 23.30 14.63 14.23 8.27 19.59

with DCS 40.13 15.60 23.81 20.19 19.87 27.26 24.48

Table 9: Results on single-hop QA

Model Hotpotqa 2wikimqa Musique Loogle_MR Hotpotwikiqa Loogle_CR Avg.

Llama-3-8B-Instruct 46.74 35.66 21.72 10.50 14.22 16.49 24.22
with Streaming 43.60 35.79 18.81 9.90 12.45 14.50 22.51

with LM-infinite 43.85 35.79 19.87 10.96 11.98 14.26 22.79
with Infllm 47.53 35.49 24.37 10.79 7.74 15.55 23.58
with DCS 48.81 36.48 28.90 15.10 25.40 19.78 29.07

Mistral-7B-Instruct 36.89 26.71 11.42 9.47 6.07 14.47 17.51
with Streaming 23.80 19.37 5.64 7.14 5.90 10.99 12.14

with LM-infinite 24.85 21.63 5.12 8.47 5.78 11.39 12.87
with Infllm 28.89 24.19 12.22 9.14 7.16 13.12 15.79

with MoICE 30.18 25.72 12.95 15.35 9.73 20.87 19.13
with DCS 39.36 28.27 18.75 10.59 11.53 15.02 20.59

Vicuna-7B 22.02 18.02 6.38 10.61 4.32 14.90 12.71
with Streaming 22.94 18.15 6.77 10.03 5.44 13.89 12.87

with LM-Infinite 21.80 18.12 7.29 10.17 5.46 14.57 12.91
with InfLLM 23.05 17.70 4.69 12.64 13.81 3.99 12.65
with MoICE 22.81 18.62 5.63 7.07 15.74 12.17 13.67

with DCS 24.57 19.42 8.04 12.52 8.33 15.14 14.67

Table 10: Results on multi-hop QA

baseline (chunk length = 384 + 128 overlap) on
Llama3-8B-Instruct. The results in Table 13 con-
firm that our approach outperforms this alternative
approach.

C Sentence-BERT

Sentence-BERT is a significant advancement over
BERT and RoBERTa, designed to generate seman-
tically meaningful sentence embeddings more effi-
ciently. By leveraging siamese and triplet network
structures during fine-tuning, Sentence-BERT en-
ables the encoding of sentences into embeddings
that can be compared using simple cosine sim-
ilarity. This approach dramatically reduces the
computational overhead for tasks such as identi-
fying the most similar pair in a collection of sen-

tences—from approximately 65 hours with BERT
to about 5 seconds with Sentence-BERT, while
maintaining BERT’s high accuracy. Evaluated on
standard semantic textual similarity (STS) tasks
and transfer learning tasks, both Sentence-BERT
and its RoBERTa-based variant (SRoBERTa) con-
sistently outperform other state-of-the-art sentence
embedding methods.

For our work, we select paraphrase-multilingual-
MiniLM-L12-v2. MiniLM is a compact language
model derived from larger pre-trained Transformer
models, such as BERT, through a process of knowl-
edge distillation. It focuses on deeply mimicking
the self-attention modules of the teacher model,
particularly those in the final Transformer layer,
to ensure efficiency while preserving performance.
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Model TREC Multi-News Passage Retrieval En Repobench-P Passkey Math.Find

Llama-3-8B-Instruct 0.00 27.78 67.00 14.17 6.78 32.00
with Streaming 0.50 27.73 48.50 12.16 6.78 13.43

with LM-infinite 0.50 27.66 48.00 11.73 6.78 12.86
with Infllm 0.00 27.61 74.50 11.63 100.00 16.57
with DCS 0.50 27.73 90.00 15.04 82.2 33.14

Table 11: Results on more tasks. TREC is a few-shot question answering task. Multi-News is a multi-document
summarization task. And RepoBench-P is a code generation task.

Model Narrativeqa Hotpotqa 2wikimqa MFQA_en Qasper Musique Avg.

Vicuna-13B 15.32 33.26 29.28 42.30 23.96 14.56 26.45
with Streaming 13.04 18.88 23.40 32.62 21.63 5.24 19.14

with LM-Infinite 13.67 21.68 24.31 33.04 21.58 5.47 19.94
with InfLLM 15.69 37.62 33.79 39.98 26.67 12.58 27.70

with DCS 14.60 38.14 30.65 46.75 28.35 18.76 29.54

Table 12: Results on Vicuna-13B

Unlike previous approaches that perform layer-to-
layer distillation, MiniLM’s method alleviates the
challenge of layer mapping between teacher and
student models and offers flexibility in the student
model’s layer number. Additionally, MiniLM intro-
duces distilling the scaled dot-product between val-
ues in the self-attention module as a form of deep
self-attention knowledge, alongside traditional at-
tention distributions. This approach allows for rela-
tion matrices with consistent dimensions without
additional parameters, accommodating arbitrary
hidden dimensions in the student model. The use
of a teacher assistant further enhances the effective-
ness of this distillation process.

D Question-aware Classifier

We selected three datasets as the training sets for
the classifier to use in experiments and compar-
isons, with their specific details shown in Table 14.
The detailed setups of question-aware classifiers
can be seen in Table 15.

D.1 AdversarialQA

AdversarialQA is a dataset specifically designed
to challenge and enhance reading comprehension
models by integrating them into the annotation pro-
cess. In this approach, human annotators craft ques-
tions in an adversarial manner, targeting the weak-
nesses of the reading comprehension (RC) model
to generate questions that are particularly difficult
to answer correctly. An example of AdversarialQA
is illustrated in Figure 10.

D.2 CoQA

The CoQA dataset was introduced to drive the de-
velopment of Conversational question-answering
systems, facilitating machines’ ability to gather in-
formation through natural dialogue. It comprises
127,000 questions and answers derived from 8,000
conversations across seven diverse domains, bridg-
ing the gap between human conversation and ma-
chine comprehension. The questions in CoQA are
designed to reflect conversational patterns, with
answers provided in the free-form text and cor-
responding evidence highlighted in the original
passages. A detailed analysis of CoQA reveals
that it encompasses complex phenomena such as
coreference and pragmatic reasoning, presenting
challenges not typically found in traditional read-
ing comprehension datasets. An example of CoQA
is illustrated in Figure 11.

D.3 Squad

SQuAD 2.0 is the latest iteration of the Stanford
Question Answering Dataset. It addresses limi-
tations in previous extractive reading comprehen-
sion systems by incorporating both answerable and
unanswerable questions. While earlier datasets
focused exclusively on questions with answers
present in the context or utilized easily identifiable,
automatically generated unanswerable questions,
SQuAD 2.0 integrates over 50,000 unanswerable
questions crafted adversarially by crowdworkers
to closely resemble answerable ones. This new
version challenges systems not only to locate cor-
rect answers within a context document but also
to recognize when a question cannot be answered
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Model Narrativeqa Hotpotqa 2wikimqa MFQA_en Qasper Musique Avg.

with overlapping 22.70 44.84 40.01 43.66 43.62 26.94 36.96
with DCS 23.89 48.81 36.48 45.83 44.59 28.90 38.08

Table 13: Results of comparison with overlapping chunking method on Llama-3

Train Valid Test

AdversarialQA 60000 6000 6000
CoQA 87418 4422 4422
Squad 74896 2398 2398

Table 14: Details of classifier training data

Llama3 Mistral Vicuna

trained on AdversarialQA

W0 24576*8192 24576*4096 24576*4096
W1 8192*1024 4096*256 4096*1024
W2 1024*2 256*2 1024*2

Epochs 20 10 20
Lr 1e-5 1e-5 1.5e-5

trained on CoQA

W0 24576*4096 24576*4096 24576*4096
W1 4096*256 4096*2048 4096*4
W2 256*2 2048*2 4*2

Epochs 20 20 20
Lr 2e-5 2e-5 3e-5

trained on Squad

W0 24576*4096 24576*8192 24576*8192
W1 4096*512 8192*1024 8192*128
W2 512*2 1024*2 128*2

Epochs 10 20 10
Lr 1.5e-5 1.5e-5 1.5e-5

Table 15: Hyperparameters of question-aware classifiers

based on the provided information, thereby requir-
ing them to abstain from guessing. The integration
of existing SQuAD data with these carefully de-
signed unanswerable questions makes SQuAD 2.0
a significantly more challenging task for natural
language understanding models. An example of
SQuAD can be seen in Figure 12.

D.4 Reclor

ReClor (Reading Comprehension with Logical Rea-
soning) (Yu et al., 2020) is a specialized dataset to
evaluate machine reading comprehension through
logical reasoning tasks. It comprises 6,138 ques-
tions extracted from standardized exams such as the
GMAT (Graduate Management Admission Test)
and LSAT (Law School Admission Test). Each in-
stance includes a context passage, a question, and
four answer choices (only one correct). The dataset
is partitioned into training (4,638 examples), vali-

SHQA MHQA Avg.

Llama-3-8B-Instruct

w/ AdversarialQA 38.10 38.06 38.08
w/ CoQA 38.01 38.11 38.06
w/ Squad 38.09 37.78 37.93
w/ ReClor 38.15 37.52 37.83

Table 16: A comparison of average results among the
question-aware classifier training on different datasets.
SHQA represents single-hop QA (Multifieldqa_en, Nar-
rativeqa and Qasper). MHQA represents multi-hop QA
(Hotpotqa, 2wikimqa and Musique).

dation (500 examples), and testing set (1,000 exam-
ples). Unlike conventional reading comprehension
datasets that may contain redundant information,
ReClor uniquely requires rigorous logical reason-
ing, where every sentence in the passage is seman-
tically critical for deriving the correct answer.

To verify the robustness of the classifier, we con-
duct further experiments using the ReClor dataset.
The results in Table 16, consistently align with our
original findings across all three datasets, again
highlighting the robustness of our approach.
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Multifieldqa_en: Read the following text
and answer briefly. {context} Now, answer
the following question based on the above
text, only give me the answer and do not
output any other words. Question: {input}
Answer:
Narrativeqa: You are given a story, which
can be either a novel or a movie script, and a
question. Answer the question asconcisely
as you can, using a single phrase if possi-
ble. Do not provide any explanation. Story:
{context} Now, answer the question based
on the story asconcisely as you can, using a
single phrase if possible. Do not provide
any explanation. Question: {input} An-
swer:
Qasper: You are given a scientific article
and a question. Answer the question as con-
cisely as you can, using a single phrase or
sentence if possible. If the question cannot
be answered based on the information in the
article, write "unanswerable". If the ques-
tion is a yes/no question, answer "yes", "no",
or "unanswerable". Do not provide any ex-
planation. Article: {context} Answer the
question based on the above article as con-
cisely as you can, using a single phrase or
sentence if possible. If the question cannot
be answered based on the information in the
article, write "unanswerable". If the ques-
tion is a yes/no question, answer "yes", "no",
or "unanswerable". Do not provide any ex-
planation. Question: {input} Answer:

Figure 5: Prompts of Multifieldqa_en,Narrativeqa, and
Qasper.

Hotpotqa: Answer the question based on
the given passages. Only give me the an-
swer and do not output any other words.
The following are given passages.{context}
Answer the question based on the given pas-
sages. Only give me the answer and do not
output any other words. Question: {input}
Answer:
2wikimqa: Answer the question based on
the given passages. Only give me the an-
swer and do not output any other words.
The following are given passages. {context}
Answer the question based on the given pas-
sages. Only give me the answer and do not
output any other words. Question: {input}
Answer:
Musique: Answer the question based on
the given passages. Only give me the an-
swer and do not output any other words.
The following are given passages.{context}
Answer the question based on the given pas-
sages. Only give me the answer and do not
output any other words. Question: {input}
Answer:

Figure 6: Prompts of Hotpotqa, 2wikimqa, and
Musique.
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Loogle_SD: Please answer the following
question based on the given passages. Ques-
tions and answers are only relevant to one
passage. Only give me the answer and do
not output any other explanation and evi-
dence. Article: {context} Please answer
the following question based on the above
passages. Questions and answers are only
relevant to one passage. Only give me the
answer and do not output any other expla-
nation and evidence. Question: {input} An-
swer:
Multifieldqa_en: Please answer the follow-
ing question based on the given passages.
Questions and answers are only relevant to
one passage. Only give me the answer and
do not output any other explanation and ev-
idence. Article: {context} Please answer
the following question based on the above
passages. Questions and answers are only
relevant to one passage. Only give me the
answer and do not output any other expla-
nation and evidence. Question: {input} An-
swer:
Factrecall_en: Please answer the following
questions based on the given article. Article:
{context} Please answer the following ques-
tions based on the above article. Question:
{input} Answer:

Figure 7: Prompts of Loogle_SD, Multifieldqa_en, and
Factrecall_en.

Loogle_MR: Please answer the following
question based on the given passages. Ques-
tions and answers are only relevant to one
passage. Only give me the answer and do
not output any other explanation and evi-
dence. Article: {context} Please answer
the following question based on the above
passages. Questions and answers are only
relevant to one passage. Only give me the
answer and do not output any other expla-
nation and evidence. Question: {input} An-
swer:
Hotpotwikiqa: Answer the question based
on the given passages. Questions and an-
swers are only relevant to some passages.
Only give me the answer and do not output
any other explanation and evidence. Article:
{context} Please answer the following ques-
tion based on the above passages. Questions
and answers are only relevant to some pas-
sages. Only give me the answer and do not
output any other explanation and evidence.
Question: {input} Answer:
Loogle_CR: Please answer the following
question based on the given passages. Ques-
tions and answers are only relevant to one
passage. Only give me the answer and do
not output any other explanation and evi-
dence. Article: {context} Please answer
the following question based on the above
passages. Questions and answers are only
relevant to one passage. Only give me the
answer and do not output any other expla-
nation and evidence. Question: {input} An-
swer:

Figure 8: Prompts of Loogle_SD, Multifieldqa_en, and
Factrecall_en.
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<|begin_of_text|>Beyoncé Giselle Knowles-
Carter (/bijnse/ bee-YON-say) (born
September 4, 1981) is an American singer,
songwriter, record producer and actress.
... earned five Grammy Awards and
featured the Billboard Hot 100 number-
one singles "Crazy in Love" and "Baby
Boy".<|begin_of_text|>
Now, answer the question based on the
story asconcisely as you can, using a sin-
gle phrase if possible. Do not provide any
explanation.
Question: When did Beyonce start becom-
ing popular?
Answer:

Figure 9: An example of question-aware classifier input
data

Context: Another approach to brain func-
tion is to examine the consequences of dam-
age to specific brain areas. ... In animal
studies, most commonly involving rats, it is
possible to use electrodes or locally injected
chemicals to produce precise patterns of
damage and then examine the consequences
for behavior.

Question: What has been injected into rats
to produce precise patterns of damage?
Ispossitive: True

Figure 10: An example of context-question pairs of
AdversarialQA

Context: The Vatican Apostolic Library (),
more commonly called the Vatican Library
or simply the Vat, is the library of the Holy
See, located in Vatican City. ... Only a
handful of volumes survive from this period,
though some are very significant.

Question: When was the Vat formally
opened?
Ispossitive: True

Figure 11: An example of context-question pairs of
CoQA

Context: Beyoncé Giselle Knowles-Carter
(/bijnse/ bee-YON-say) (born September 4,
1981) is an American singer, songwriter,
record producer and actress. ... earned
five Grammy Awards and featured the Bill-
board Hot 100 number-one singles "Crazy
in Love" and "Baby Boy".

Question: When did Beyonce start becom-
ing popular?
Ispossitive: True

Figure 12: An example of context-question pairs of
Squad
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