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Abstract

Cross-modal image-text retrieval is challeng-
ing because of the diverse possible associations
between content from different modalities. Tra-
ditional methods learn a single-vector embed-
ding to represent semantics of each sample, but
struggle to capture nuanced and diverse rela-
tionships that can exist across modalities. Set-
based approaches, which represent each sample
with multiple embeddings, offer a promising
alternative, as they can capture richer and more
diverse relationships. In this paper, we show
that, despite their promise, these set-based rep-
resentations continue to face issues including
sparse supervision and set collapse, which lim-
its their effectiveness. To address these chal-
lenges, we propose Maximal Pair Assignment
Similarity to optimize one-to-one matching be-
tween embedding sets which preserve semantic
diversity within the set. We also introduce two
loss functions to further enhance the representa-
tions: Global Discriminative Loss to enhance
distinction among embeddings, and Intra-Set
Divergence Loss to prevent collapse within
each set. Our method achieves state-of-the-
art performance on MS-COCO and Flickr30k
without relying on external data.

1 Introduction

Cross-modal retrieval methods aim to align differ-
ent modalities, such as images and text, by learn-
ing shared semantic representations (Frome et al.,
2013). The challenge lies in bridging the semantic
gap between modalities: each modality contributes
unique information, and aligning them requires
identifying which features to preserve or discard.
Moreover, the relationship between modalities is
often one-to-many (e.g., a single image can be de-
scribed by multiple captions, each emphasizing dif-
ferent aspects). Handling this complexity requires
learning robust embeddings that capture the diverse
semantic relationships that exist across modalities
(Song and Soleymani, 2019; Chun et al., 2021).

“A person doing an activity in 
the water on the beach.”

“The guy is flying the kite high 
in the air as he surfs.”

“A person walking on a 
beach near the ocean.”
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Figure 1: We illustrate how the same image can be
paired with multiple captions. Color-coded regions link
visual elements to corresponding textual descriptions.
Our method produces multiple embeddings for each
sample (image or caption) in a shared space where sim-
ilar visual and textual elements cluster (indicated by
colored groups and dashed boundaries). Icons on em-
beddings illustrate the model’s capacity to map multiple
image regions to relevant text descriptions.

Most existing approaches rely on learning a
single shared embedding space for images and
text (Faghri et al., 2018; Fu et al., 2023; Pham
et al., 2024) performing well on benchmarks like
Flickr30k and COCO (Plummer et al., 2015; Lin
et al., 2014) but struggling with abstract or nuanced
cross-modal relationships. To address this, some
methods use cross-attention networks that predict
similarity between images and text by attending to
both modalities simultaneously (Wei et al., 2020b;
Diao et al., 2021; Lee et al., 2018; Miech et al.,
2021), yet are computationally intensive, requiring
joint processing of image-text pairs for each query,
which limits their scalability. A common approach
is to use separate visual and textual encoders, which
allow for efficient search on precomputed embed-
dings (Gu et al., 2018; Messina et al., 2021). This
method scales well to large datasets but often fails
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to capture the diversity of cross-modal relationships
because each input is reduced to a single embed-
ding vector limiting the representation’s ability to
handle one-to-many relationships between queries
and potential matches.

A few recent works have proposed architectures
that aim to capture these diverse relationships us-
ing separate encoders (Song and Soleymani, 2019;
Chun, 2024; Kim et al., 2023). The goal is to re-
duce ambiguity and improve alignment between
modalities by representing multiple facets of each
input with a set of embedding vectors. Figure 1
shows how these embedding sets cluster similar
features from both modalities in a shared space.

While set-based embedding models offer a
promising solution for capturing diverse cross-
modal relationships, the loss and similarity func-
tions to train these methods lead to issues like
sparse supervision (where some embeddings are
unused) and set collapse (where embeddings col-
lapse into a single point). For example, PVSE
(Song and Soleymani, 2019) uses a distance func-
tion that relies on maximum similarity within the
set, leaving many embeddings undertrained. Our
analysis shows that Smooth-Chamfer similarity in
SetDiv (Kim et al., 2023), proposed as a solution to
this issue, leads to low variance across the embed-
dings within the set, reducing the ability to capture
diverse relationships in the data.

In this paper, we address these limitations
by introducing MaxMatch, a new Maximal Pair
Assignment Similarity mechanism and diversity-
promoting losses. Unlike previous work, our ap-
proach optimally matches pairs within the embed-
ding sets using a permutation-based similarity, en-
suring that every embedding in the set contributes
to the final objective. In addition, we design a
global discriminative loss that encourages each em-
bedding to diverge from a global reference vector,
and an intra-set divergence constraint that pushes
embeddings apart within the set. These strategies
effectively prevent set collapse and improve align-
ment across modalities. Specifically, our contribu-
tions include:

• We introduce a new similarity measure for mea-
suring the distance between sets of embeddings.
MaxMatch uses permutation-based assignments
and the Hungarian algorithm to match embed-
dings between sets and compute their distance.
We show that MaxMatch prevents degenerate em-
bedding sets unlike previous methods.

• We propose a novel loss which enforces a mar-
gin between residual embeddings and a global
reference embedding to encourage semantic di-
versity. We also introduce intra-set divergence
constraints to further discourage set collapse. We
show that these functions promote semantic di-
versity and improve the model’s discriminative
capability.

• We conduct a comprehensive experimental anal-
ysis of our proposed technique against a num-
ber of state-of-the-art methods, including em-
bedding space visualizations and analysis. Our
results show that MaxMatch learns richer, more
diverse embedding sets while outperforming sim-
ilar methods.

2 Related Work

Cross-modal Retrieval: Methods fall into two
main categories: independent-embedding and
interactive-embedding approaches. Independent-
embedding approaches use separate encoders for
each modality to learn a shared embedding space
(Faghri et al., 2018; Yan and Mikolajczyk, 2015;
Gu et al., 2018), enabling efficient retrieval through
precomputed embeddings. While researchers have
explored various improvements to similarity met-
rics (Wei et al., 2020a; Kim et al., 2023), loss func-
tions (Thomas and Kovashka, 2020; Chun et al.,
2021), and architectures (Gu et al., 2018), these
methods still struggle with complex cross-modal
relationships (Song and Soleymani, 2019). Recent
work like CORA (Pham et al., 2024) and 3SHNet
(Ge et al., 2024) achieve improvements by incor-
porating external knowledge (scene graphs, seg-
mentation), but this makes direct comparisons with
methods that do not use external data more difficult.

Interactive-embedding approaches instead use
cross-attention networks for direct similarity esti-
mation (Wei et al., 2020b; Diao et al., 2021), par-
ticularly when they are built on large pretrained ar-
chitectures like CLIP (Radford et al., 2021). While
effective, these methods are computationally in-
tensive as they require joint processing of each
query-candidate pair at inference time. In contrast,
MaxMatch focuses on improving independent em-
beddings to maintain efficiency while better captur-
ing complex relationships.
Multi-embedding Representations: Recently, a
few papers have emphasized the limitations of rep-
resenting each sample as a single embedding vector
for cross-modal retrieval (Pham et al., 2024; Faghri
et al., 2018; Chen et al., 2021; Fu et al., 2023;
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Figure 2: Left: An overview of the model architecture based on Kim et al. (2023) consisting of a visual encoder,
textual encoder, and set prediction modules for fV and fT . Local and global features are extracted from each
modality and input into a set prediction module to generate embedding sets SV and ST . We contribute three
key components which enable the model to learn diverse embedding sets: a Maximal Pair Assignment Similarity
function, Global Discriminative Loss, and Intra-Set Divergence Loss. Right: Our Global Discriminative Loss
pushes embeddings within each set away from the global embedding, preventing set collapse, while the Intra-Set
Divergence Loss ensures that individual embeddings within each set are distinct, promoting intra-set diversity.

Thomas and Kovashka, 2022). A single vector
often fails to capture the rich and diverse seman-
tics present in the data. One strategy to address
this challenge is set-based representation learning,
where multiple embeddings are generated for each
input, like in SetDiv, PVSE, and PCME (Chun
et al., 2021). These approaches aim to reduce am-
biguity by capturing the varied semantics of each
modality using a set-based embedding represen-
tation. SetDiv introduces smooth-Chamfer simi-
larity to overcome sparse supervision issues, but
it leads to a new problem of set collapse, where
embeddings lose diversity. To address sparse super-
vision and set collapse, we introduce a Maximal
Pair Assignment Similarity function that explicitly
preserves diversity. Even though PVSE and SetDiv
use diversity loss to encourage distinct represen-
tations by penalizing pairwise similarity but lack
global context, focusing only on residual embed-
dings before fusion. To address this, we propose
novel pushing losses to enhance intra-set diversity
and better capture modality relationships, achiev-
ing improved cross-modal retrieval performance
compared to prior methods.

3 Method
3.1 Feature Extraction

MaxMatch architecture consists of two encoders,
shown in Figure 2, each connected to a set predic-
tion model. For vision, a visual encoder fV takes
an image as input x and produces the image em-

bedding vector v = fV(x) ∈ R, and a text encoder
fT that takes in the text caption y and produces its
embedding t = fT (y) ∈ R. Each encoder has two
branches that compute local features and global
features from the input sample. The extracted lo-
cal features are given as input to the set prediction
modules, each of which fuses the local and global
features to encode them into an embedding set. We
follow the settings of previous works (Song and
Soleymani, 2019; Kim et al., 2023) for the visual
and textual feature extractors.
Visual Feature Extractor: We use one of two
types of visual feature extractors following pre-
vious works like PVSE and SetDiv: (1) Flat-
tened convolutional feature maps as local features
ψV(x) ∈ RN×D and their average pooled features
as the global feature ϕV(x) ∈ RD. (2) ROI features
from a pretrained object detector as local features
ψV(x) ∈ RN×D and their max-pooled representa-
tion as the global feature ϕV(x) ∈ RD.
Textual Feature Extractor: We use one of two
types of text feature extractors: (1) Bi-GRU:
An input caption y of L words is encoded us-
ing GloVe (Pennington et al., 2014), producing
300-dimensional word vectors as local features
ψT (y) ∈ RL×300. A Bi-GRU with H hidden units
processes these features, with the final hidden state
representing the global features ϕT (y) ∈ RD. (2)
BERT (Devlin et al., 2019): The hidden state out-
puts serve as local features ψT (y) ∈ RL×D, and
their max-pooled representation forms the global
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Figure 3: t-SNE visualization of learned embedding
spaces, where colors indicate different elements within
each set, and markers differentiate modalities (dots for
image embeddings, crosses for text embeddings). MIL
produces scattered embeddings, Smooth Chamfer col-
lapses them, while MaxMatch preserves semantic dis-
tinctiveness and strong alignment.

feature ϕT (y) ∈ RD.

3.2 Embedding Set Prediction Module
We next describe the set prediction module adapted
from Kim et al. (2023) that we utilize to gener-
ate set embeddings. As shown in Figure 2, slots
in the module iteratively compete to attend to in-
put features. Each of the L aggregation blocks
in the module contains a cross-attention layer fol-
lowed by a feed-forward network. K learnable
queries (“slots”) cross-attend to keys and values
from ψV(x), denoted El = AggBlock(El−1) =
MLP (Ēl) + Ēl ∈ RK×D, where Ēl represents
the slot states after cross-attention. The final em-
bedding set S is computed as S = LN(EL) +
[LN(ϕ(y))...×K ], where LN is a normalization
layer, and [LN(ϕ(y))...×K ] ∈ RK×D denotes K
repetitions of global features ϕ(y). Conceptually,
each slot represents an offset from the global fea-
ture ϕV(x). However, embeddings in standard Set-
Div have a tendency to cluster closely around the
global feature (i.e. set collapse). To encourage di-
versity, MaxMatch introduces a Maximal Pair As-
signment Similarity, Global Discriminative Loss,
and Intra-Set Divergence Loss.

3.3 Maximal Pair Assignment Similarity
MaxMatch aims to overcome issues related to set-
based embeddings and set-based similarity mea-
sures, particularly set collapse and sparse super-
vision. To better understand these limitations, we
first examine existing set-based similarity functions
such as Multiple Instance Learning (MIL) simi-
larity, introduced in PVSE, and smooth-Chamfer
similarity, introduced by SetDiv.

Given two sets of embeddings S1 =
{x1, x2, ..., xK} and S2 = {y1, y2, ..., yK}, and a
similarity function c(x, y) between vectors x ∈ S1

MIL Smooth Chamfer Ours
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Figure 4: Heatmaps showing average pairwise simi-
larities between image-text embeddings across all test
samples for models trained with different similarity
functions: MIL shows sparse supervision, leading to
isolated high similarities (only one embedding in the set
is used), Smooth Chamfer causes set collapse, resulting
in uniformly high similarities, and MaxMatch maintains
distinct alignment, and fully utilizing embeddings set.

and y ∈ S2, the MIL loss objective is defined
as SMIL(S1, S2) = maxx∈S1,y∈S2 c(x, y); while
MIL provides a simple mechanism for similar-
ity calculation between embedding sets, it suffers
from sparse supervision because the max function
passes gradients to a single element in each set.
By focusing only on maximum similarity during
training, it underutilizes the remaining elements in
the sets and leads to embedding sets where only
one element contributes during retrieval. Kim et al.
(2023) proposed smooth-Chamfer similarity to ad-
dress the sparse gradient issue. This averages the
similarity scores between all pairs from S1 and S2,
which allows all embeddings to receive gradients:

SSC(S1, S2) =
1

2α|S1|
∑

x∈S1

log
( ∑

y∈S2

eαc(x,y))

+
1

2α|S2|
∑

x∈S2

log
( ∑

y∈S1

eαc(x,y))
(1)

However, despite providing gradient signals for
the entire set, we show in Figures 3 and 4 that
Smooth-Chamfer similarity leads to set collapse
(i.e. all embeddings become the same), while MIL
leads to unused embeddings. Even with a high
α value, intended to emphasize stronger similari-
ties, the log function smooths out contributions and
leads to uniformly high similarity scores across
all elements (i.e. collapse). See our Appendix for
additional analysis. In sum, both existing tech-
niques for training set-based representations lead
to degenerate conditions. We propose Maximal
Pair Assignment Similarity, which learns optimal
matching between elements of embedding sets. By
no longer pulling all embeddings towards the mean,
sets are no longer encouraged to collapse, yet all
embeddings remain active in the matching process.
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MaxMatch leverages permutation-based assign-
ments, which we efficiently implement using block
processing and masking techniques. It finds the op-
timal pairing of embeddings from S1 and S2, where
the overall matching score of the sets is maximized.
We describe our approach in detail below.
Cosine Similarity Calculation: We begin by
computing the cosine similarity between the L2-
normalized set of image embeddings Vi =
{vi1, vi2, · · · , viK} ∈ RK×D and the set of text
embeddings Tj = {tj1, tj2, · · · , tjK} ∈ RK×D,
where K represents the number of embeddings
per sample. The similarity score between each
pair of sets is Sim(Vi, Tj) = S(Vi, Tj), where
S(Vi, Tj) ∈ RK×K is the similarity matrix
for the sets: Smn(Vi, Tj) =

vim·tjn
||vim||||tjn|| , where

Smn(Vi, Tj) denotes the element in the m-th row
and n-th column of S(Vi, Tj).
Hungarian Algorithm: To obtain the optimal
matching, we apply the Hungarian algorithm to
blocks of the similarity matrix S(Vi, Tj) between
embedding sets Vi and Tj which yields the per-
mutation π that maximizes the total similarity by
selecting the most semantically meaningful pairs:

π∗ = argmax
π

(tr(S(Vi, π(Tj)))) (2)

where π is a permutation of indices representing
the optimal matching between the image and text
embeddings and tr denotes trace. After that, we ap-
ply the optimal assignment on Sij that maximizes
the total similarity, where the outputs are a binary
mask Mij indicating the selected matches:

Mij =

{
1, if (Vi, π

∗(Tj)) is an optimal match
0, otherwise

The mask Mij is applied to the similarity matrix to
extract only the optimal matches:

MaxSim(SV
i , S

T
j ) =

K∑

k=1

Mij ⊙ Sij (3)

where Mij is a binary mask matrix that indicates
whether a particular pair (Vi, π∗(Tj)) is part of the
optimal one-to-one matching between the sets SV

i

and ST
j . Finally, we scale and sum them to calcu-

late the final similarity score SH for each image-
text pair:

SH(S
V
i , S

T
j ) =

1

K

K∑

i=0

K∑

j=0

((
exp

(
MaxSim(S

V
i , S

T
j )

))
− 1

)

(4)

where the exponential function exp is used to am-
plify the influence of pairs with higher similarity.
This approach aligns with the intuition that the
closest pairs, those that best capture the semantic
relationship between the image and text, should
have more weight in the final similarity score. For
example, if a particular image-text pair is closely
related, their similarity score after exponential scal-
ing will dominate, ensuring that these critical pairs
contribute more significantly to the overall score.

3.4 Training and Inference
We train MaxMatch to minimize standard objec-
tives presented in previous works (Kim et al., 2023;
Pham et al., 2024; Song and Soleymani, 2019):
triplet loss (TRI), diversity regularizer (Div), Maxi-
mum Mean Discrepancy (MMD) regularizer, and
Contrastive loss (CON). In addition, we introduce
a Global Discriminative Loss (GD) and Intra-Set
Divergence Loss (ISD) to prevent set collapse and
encourage the model to learn diverse embeddings.

L = LTRI + λGDLGD + λISDLISD

+λMMDLMMD + λDivLDiv + λCONLCON
(5)

Triplet loss with hardest negatives: Following
prior work (Kim et al., 2023; Song and Soleymani,
2019), we incorporate the a hinge-based Triplet
Loss with Hardest Negatives mining. Given a batch
of embeddings B = {(SV

i , S
T
i )}Ni=1, the triplet

loss is formulated as follows:

LTRI =
N∑

i=1

max
j

[
δ1 + SH(SV

i , S
T
j )

]
− SH(SV

i , S
T
i )

]

+

+
N∑

i=1

max
j

[
δ1 + SH(ST

i , SV
j )

]
− SH(ST

i , SV
i )

]

+

(6)

where δ1 > 0 denotes the margin. For each posi-
tive pair (SV

i , S
T
i ), the model identifies the hardest

negative sample ST
j closest to SV

i , and similarly
the hardest negative SV

j closest to ST
i .

Regularization and Stabilization Losses: To en-
sure robust and stable training, we employ a set
of losses following prior work (Kim et al., 2023).
The Maximum Mean Discrepancy (MMD) (Gret-
ton et al., 2006) minimizes the MMD between em-
bedding sets of images and text, helping to prevent
early divergence between modalities. The diversity
regularizer (Song and Soleymani, 2019) penalizes
similar element slots. Consistent with previous
findings (Chen et al., 2021), we observed that us-
ing the hardest triplet loss can lead to instability
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during early training. Therefore, following (Pham
et al., 2024), we also leverage contrastive loss to
align all matching image and text representations.
Global Discriminative Loss: pushes each embed-
ding away from the corresponding global reference
embedding (within a margin and with a scaling
factor) within each set to ensure the embedding
set captures meaningful semantics beyond what is
already captured in the global representation. The
key idea is to ensure that embeddings within each
set are gradually pushed away from their respective
global, encouraging distinct representations within
the set. The loss is defined as

LGD =
1

2N

N∑

i=1

(
exp

(
s ·

(
cos(vi, ϕ

V
(yi)) − δ2

))

+exp
(
s ·

(
cos(ti, ϕ

T
(yi)) − δ2

)))
(7)

where N is the batch size, δ2 is the separation
margin, and s is the scaling factor that controls
gradient smoothness. Here, cos(vi, ϕ

V(y)) and
cos(ti, ϕ

T (y)) represent the similarities between
each visual embedding vi or textual embedding ti
and their respective global references, ϕV(y) and
ϕT (y). The exponential function applied to the
scaled similarity encourages embeddings to spread
apart in the feature space if they exceed the margin
δ2, which promotes a well-distributed feature space
across both modalities.
Intra-Set Divergence Loss: is designed to encour-
age diversity among embeddings within each set
by penalizing high similarity between embeddings.
This loss reduces redundancy within the set to en-
courage sets to learn unique representations which
capture different aspects of the data. The loss is
formulated as:

LISD =
2

M(M − 1)

M−1∑

j=1

M∑

k=j+1

(
exp

(
s ·

(
cos(vi,j , vi,k) − δ3

))

+exp
(
s ·

(
cos(ti,j , ti,k) − δ3

)))

(8)

where M is the number of embeddings per set, δ3
is the similarity margin, and s is a scaling factor
that smooths the gradients. The cosine similar-
ity terms cos(vi,j , vi,k) and cos(ti,j , ti,k) measure
the alignment between each pair of non-identical
embeddings within the visual and textual sets, re-
spectively. By applying the exponential function
with scaling, the loss pushes embeddings further
apart in the feature space if they exceed the margin
δ3, encouraging a diverse distribution. The normal-
ization factor 2

M(M−1) averages the loss across all
non-matching pairs.

Inference: During inference, we select the top-k
most similar embeddings from the predicted sets
without applying the one-to-one matching process
used during training. This approach reduces the
computational complexity and significantly speeds
up the inference phase, making the model efficient
while still leveraging the diverse embeddings.

Flickr30k Test Images

Method CA
Image-to-Text Text-to-Image

R@1 R@5 R@10 R@1 R@5 R@10 RSUM

Resnet152 + Bi-GRU

VSE++ (Faghri et al., 2018) ✗ 52.9 80.5 87.2 39.6 70.1 79.5 409.8
PVSE (Song and Soleymani, 2019) ✗ 59.1 84.5 91.0 43.4 73.1 81.5 432.6
PCME (Chun et al., 2021) ✗ 58.5 81.4 89.3 44.3 72.7 81.9 428.1
Set Div (Kim et al., 2023) ✗ 61.8 85.5 91.1 46.1 74.8 83.3 442.6
MaxMatch ✗ 68.6 89.6 94.6 51.5 78.9 86.8 469.9

Faster R-CNN + Bi-GRU

SCAN† (Lee et al., 2018) ✓ 67.4 90.3 95.8 48.6 77.7 85.2 465
VSRN† (Li et al., 2019) ✗ 71.3 90.6 96.0 54.7 81.8 88.2 482.6
CAAN (Zhang et al., 2020) ✓ 70.1 91.6 97.2 52.8 79 87.9 478.6
SGRAF† (Diao et al., 2021) ✓ 77.8 94.1 97.4 58.5 83.0 88.8 499.6
VSE∞ (Chen et al., 2021) ✗ 76.5 94.2 97.7 56.4 83.4 89.9 498.1
NAAF† (Zhang et al., 2022) ✓ 81.9 96.1 98.3 61.0 85.3 90.6 513.2
CHAN (Pan et al., 2023) ✓ 79.7 94.5 97.3 60.2 85.3 90.7 507.8
HREM† (Fu et al., 2023) ✗ 81.4 96.5 98.5 60.9 85.6 91.3 514.2
CORA†‡ (Pham et al., 2024) ✗ 82.3 96.1 98.0 63.0 87.4 92.8 519.6
Set Div (Kim et al., 2023) ✗ 77.8 94.0 97.5 57.5 84.0 90.0 500.8
MaxMatch ✗ 80.8 95.9 97.4 59.3 84.7 90.9 509.1
MaxMatch † ✗ 82.1 95.6 98.3 61.6 86.3 91.9 515.8

Faster R-CNN + BERT

DSRAN† (Wen et al., 2021) ✗ 77.8 95.1 97.6 59.2 86.0 91.9 507.6
VSE∞ (Chen et al., 2021) ✗ 81.7 95.4 97.6 61.4 85.9 91.5 513.5
MV-VSE† (Diao et al., 2021) ✗ 82.1 95.8 97.9 63.1 86.7 92.3 517.5
CHAN (Pan et al., 2023) ✓ 80.6 96.1 97.8 63.9 87.5 92.6 518.5
CODER (Wang et al., 2022) ✓ 83.2 96.5 98.0 63.1 87.1 93.0 520.9
HREM† (Fu et al., 2023) ✗ 84.0 96.1 98.6 64.4 88.0 93.1 524.2
CORA†‡ (Pham et al., 2024) ✗ 83.4 95.9 98.6 64.1 88.1 93.1 523.3
Set Div (Kim et al., 2023) ✗ 81.3 95.5 97.7 62.4 86.5 91.4 514.8
MaxMatch ✗ 84.2 96.1 97.9 63.2 87.3 92.2 520.8
MaxMatch † ✗ 86.2 95.7 98.4 64.8 88.8 93.2 527.1

Table 1: Recall@K (%) and RSUM on the Flickr30k
dataset. The best RSUM scores are marked in bold,
and the second-best scores are underlined. CA, ‡, and †
indicate models using cross-attention, models that use
external data, and ensemble models of two hypotheses.

4 Experiments

4.1 Datasets and Evaluation Metric

We evaluate MaxMatch on Flickr30k and COCO
datasets. We follow the standard train, validation,
test splits and evaluation practices from prior work.
For COCO, we average performance over five folds
of 1K test images and on the full set of 5K test im-
ages, while for Flickr30k, we use the test set. In
both datasets, each image has five matching cap-
tions. Performance is measured using Recall@K
(K ∈ {1, 5, 10}) and the RSUM metric, which
sums Recall@K scores for image-to-text and text-
to-image retrieval (Faghri et al., 2018). Implemen-
tation details are provided in the Appendix.
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COCO 1K Test Images COCO 5K Test Images

Method CA
Image-to-Text Text-to-Image Image-to-Text Text-to-Image

R@1 R@5 R@10 R@1 R@5 R@10 RSUM R@1 R@5 R@10 R@1 R@5 R@10 RSUM

Resnet152 + Bi-GRU

VSE++ (Faghri et al., 2018) ✗ 64.6 90.0 95.7 52.0 84.0 92.0 478.6 41.3 71.1 81.2 30.3 59.4 72.4 355.7
PVSE (Song and Soleymani, 2019) ✗ 69.2 91.6 96.6 55.2 86.5 93.7 492.8 45.2 74.3 84.5 32.4 63.0 75.0 374.4
PCME (Chun et al., 2021) ✗ 68.8 - - 54.6 - - - 44.2 - - 31.9 - - -
Set Div (Kim et al., 2023) ✗ 70.3 91.5 96.3 56.0 85.8 93.3 493.2 47.2 74.8 84.1 33.8 63.1 74.7 377.7
MaxMatch ✗ 74.54 93.98 97.54 58.35 87.63 94.31 506.75 51.84 79.86 87.62 36.35 66 77.28 398.95
Faster R-CNN + Bi-GRU

SCAN † (Lee et al., 2018) ✓ 72.7 94.8 98.4 58.8 88.4 94.8 507.9 50.4 82.2 90 38.6 69.3 80.4 410.9
VSRN † (Li et al., 2019) ✗ 76.2 94.8 98.2 62.8 89.7 95.1 516.8 53 81.1 89.4 40.5 70.6 81.1 415.7
CAAN (Zhang et al., 2020) ✓ 75.5 95.4 98.5 61.3 89.7 95.2 515.6 52.5 83.3 90.9 41.2 70.3 82.9 421.1
SGRAF† (Diao et al., 2021) ✓ 79.6 96.2 98.5 63.2 90.7 96.1 524.3 57.8 84.9 91.6 41.9 70.7 81.3 428.2
VSE∞ (Chen et al., 2021) ✗ 78.5 96 98.7 61.7 90.3 95.6 520.8 56.6 83.6 91.4 39.3 69.9 81.1 421.9
NAAF† (Zhang et al., 2022) ✓ 80.5 96.5 98.8 64.1 90.7 96.5 527.2 58.9 85.2 92.0 42.5 70.9 81.4 430.9
CHAN (Pan et al., 2023) ✓ 79.7 96.7 98.7 63.8 90.4 95.8 525.0 60.2 85.9 92.4 41.7 71.5 81.7 433.4
HREM † (Fu et al., 2023) ✗ 80.0 96.0 98.7 62.7 90.1 95.4 522.8 58.9 85.3 92.1 40.0 70.6 81.2 428.1
CORA †‡ (Pham et al., 2024) ✗ 81.7 96.7 99.0 66.0 92.0 96.7 532.1 63.0 86.8 92.7 44.2 73.9 84.0 444.6
Set Div (Kim et al., 2023) ✗ 79.8 96.2 98.6 63.6 90.7 95.7 524.6 58.8 84.9 91.5 41.1 72.0 82.4 430.7
MaxMatch ✗ 80.4 96.4 98.4 64.6 91.0 96.0 526.6 59.5 85.8 94.0 42.3 72.8 83.0 436.1
MaxMatch † ✗ 81.7 96.5 98.7 65.4 91.6 96.5 530.3 61.9 86.86 93.1 43.1 73.8 83.9 443.1
Faster R-CNN + BERT

VSE∞ (Chen et al., 2021) ✗ 79.7 96.4 98.9 64.8 91.4 96.3 527.5 58.3 85.3 92.3 42.4 72.7 83.2 434.2
CODER (Wang et al., 2022) ✓ 82.1 96.6 98.8 65.5 91.5 96.2 530.7 62.6 86.6 93.1 42.5 73.1 83.3 441.2
MV-VSE† (Diao et al., 2021) ✗ 80.4 96.6 99.0 64.9 91.2 96.0 528.1 59.1 86.3 92.5 42.5 72.8 83.1 436.3
CHAN (Pan et al., 2023) ✓ 81.4 96.9 98.9 66.5 92.1 96.7 532.5 59.8 87.2 93.3 44.9 74.5 84.2 443.9
HREM † (Fu et al., 2023) ✗ 82.9 96.9 99.0 67.1 92.0 96.6 534.5 64.0 88.5 93.7 45.4 75.1 84.3 451.0
CORA†‡ (Pham et al., 2024) ✗ 82.8 97.3 99.0 67.3 92.4 96.9 535.6 64.3 87.5 93.6 45.4 74.7 84.6 450.1
Set Div (Kim et al., 2023) ✗ 82.1 95.9 95.9 65.1 91.2 96.2 529.1 62.3 86.2 92.6 42.8 72.8 82.8 439.6
MaxMatch ✗ 83.0 96.9 98.9 66.4 91.9 96.6 533.8 63.3 87.9 93.2 44.2 73.9 83.9 446.5
MaxMatch † ✗ 83.8 97.0 98.9 67.3 92.4 96.9 536.3 65.4 88.7 93.8 45.1 74.9 84.8 452.6

Table 2: COCO Recall@K (%) and RSUM results on both the 1K test setting (average of 5-fold test dataset) and 5K
test setting are presented. The best RSUM scores are marked in bold, and the second-best scores are underlined. CA,
‡, and † indicate models using cross-attention, models that use external data, and ensemble models, respectively.

4.2 Comparisons with Other Methods

We report results for the Flickr30k and COCO
datasets in tables 1 and 2, respectively. We evalu-
ate our method across two visual feature extractors:
ImageNet pretrained ResNet152 (He et al., 2016),
and Faster R-CNN with pre-extracted region-of-
interest (ROI) features (Ren et al., 2015). We use
either Bi-GRU or BERT for the text feature extrac-
tion. Following PVSE, SetDiv, CORA, etc., we
report ensemble results by averaging similarities
from two checkpoints with different seeds. Addi-
tionally, the results for the Faster R-CNN + BERT
configuration were obtained using the official code-
base, as this setting was not reported in the original
paper (Kim et al., 2023).

We observe that MaxMatch outperforms state-
of-the-art methods by an impressive margin ex-
cept when using Bi-GRU as a semantic concept en-
coder with the Faster R-CNN visual features. How-
ever, MaxMatch achieves the second-best results in
this setting. Note that the top-performing method,
CORA enhances text representations through a

graph generated by an external large language
model-based parser (Li et al., 2023), introducing an
additional model and text processing step. Using
ResNet152 extracted visual features, MaxMatch
substantially outperforms all other methods with
a jump in RSUM by +27.3 on Flickr30k dataset
and an increase in RSUM by +24.55 on COCO
5K. With BERT as the semantic concept encoder
and Faster-RCNN as the visual feature extractor,
MaxMatch outperforms all state-of-the-art methods
by a significant margin. In particular, MaxMatch
achieves +2.9 RSUM improvement over HREM
on Flickr30k, and +1.6 RSUM on COCO 5K. It
is also worth mentioning that MaxMatch outper-
forms CHAN by +2.3 RSUM on Flickr30k, and
+2.6 RSUM on COCO 5K which requires cross-
attention during inference time, making CHAN
more computationally expensive.

4.3 Ablation Study

Table 3 ablates the different similarity functions
(MIL, smooth-Chamfer, and Maximal Pair Assign-
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Similarity Div MMD GD ISD RSUM
MIL ✓ ✓ 438.98

Smooth-Chamfer ✓ ✓ 439.57
Smooth-Chamfer ✓ ✓ ✓ 441.76
Smooth-Chamfer ✓ ✓ ✓ 442.43
Smooth-Chamfer ✓ ✓ 443.11
Smooth-Chamfer ✓ ✓ ✓ ✓ 444.10

Maximal Pair Assignment ✓ ✓ 441.23
Maximal Pair Assignment ✓ 442.67
Maximal Pair Assignment ✓ 443.49
Maximal Pair Assignment ✓ ✓ 444.49

Maximal Pair Assignment ✓ ✓ ✓ ✓ 446.53

Table 3: Ablation study of the proposed similarity func-
tion and different similarity measures (MIL and Smooth
Chamfer) combined with various loss settings, including
Div, MMD, GD, and ISD, on the overall performance,
measured by RSUM on COCO.

ment) in combination with various loss functions
(Div, MMD, GD, and ISD) to analyze their impact
on overall performance, as measured by RSUM
on the 5k MS-COCO testing dataset. The Maxi-
mal Pair Assignment function achieves the highest
RSUM score of 446.53 when combined with all
four loss settings (Div, MMD, GD, and ISD), result-
ing in the best performance among all tested config-
urations. This highlights Maximal Pair Assignment
as the most effective similarity function when com-
bined with the appropriate losses. In contrast, other
combinations, such as MIL or smooth-Chamfer
with selected loss functions, achieve lower RSUM
scores, suggesting reduced effectiveness at captur-
ing the desired relationships. Notably, Maximal
Pair Assignment with GD and ISD losses exhibits
strong performance, achieving RSUM scores above
441, showing the importance of these loss functions
in improving the model’s performance.

4.4 Embedding Set Element Analysis

We analyze the role of individual embedding set
elements in both SV and ST modalities in Table
4. Applying a max operation to pair embeddings
from both modalities yields identical results, indi-
cating a robust alignment mechanism. Retaining
all embeddings consistently achieves the best per-
formance, with the highest RSUM score of 446.53,
highlighting their collective contribution. When
using only SV(3) or ST (1), the RSUM drops to
437.91, emphasizing the critical role of all compo-
nents. These findings underscore the advantage of
leveraging complete embedding sets, unlike prior
methods (e.g., PVSE and SetDiv). The bottom sec-

tion reports circular variance = 1 −
∥∥∥
∑

x∈S x

|S|

∥∥∥
2
,

where lower log(Var.) values indicate stronger set

Evaluation RSUM
SV(1) SV(2) SV(3) SV(4) MIL Smooth Chamfer MaxMatch

✓ ✓ ✓ ✓ 438.98 439.57 446.53
✓ 439.08 212.12 440.89

✓ 389.97 439.03 443.78
✓ 400.06 439.50 437.91

✓ 302.14 438.84 442.39
ST (1) ST (2) ST (3) ST (4)

✓ ✓ ✓ ✓ 438.98 439.57 446.53
✓ 438.84 439.24 437.91

✓ 393.10 438.12 440.89
✓ 293.50 438.12 442.39

✓ 412.32 439.14 443.78

Circular variance of embedding set MIL Smooth Chamfer MaxMatch
RSUM 483.3 500.8 509.1
log(Var.) -7.35 -2.13 -1.68

Table 4: RSUM on COCO dataset for SV (top) and
ST (middle). This highlights the impact of selectively
removing components on overall performance and em-
bedding stability across three methods: MIL, Smooth
Chamfer, and MaxMatch . The circular variance of
the embedding set (bottom) on Flickr30k, where lower
log(Var.) values indicate stronger collapse.

collapsing, where MaxMatch maintains a higher
log(Var.), indicating less set collapse compared to
other method, ensuring better disentanglement and
a more diverse embedding space.
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Figure 5: Visual comparison of image retrieval results
between our method and Set Div. For each embed-
ding in the set, we show the top retrieved image. Our
method generates embeddings that retrieve diverse im-
ages, while Set Div’s embeddings tend to collapse, re-
sulting in retrieval of identical or highly similar images.

4.5 Qualitative Analysis

To compare the semantic diversity of our learned
embeddings with prior work, we perform cross-
modal retrieval using each embedding in our em-
bedding set independently. Given a set of em-
beddings for a query, we retrieve the closest test
sample for each query embedding by selecting the
best-matched embedding from the test sample’s set.
This evaluates how well our embeddings capture
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diverse semantics. Qualitative results in Figure 5
show that SetDiv representations collapse, retriev-
ing identical or highly similar samples, whereas our
embeddings retrieve diverse yet semantically con-
sistent results. The left side of the figure indicates
which query embedding was used for retrieval.

5 Conclusion

We introduced a novel set-based embedding frame-
work for cross-modal retrieval with Maximal Pair
Assignment Similarity and a combination of new
loss functions. The Maximal Pair Assignment Sim-
ilarity, utilizing permutation-based assignments, re-
solves challenges of sparse supervision and set col-
lapsing, improving accurate image-text similarity
scoring. Global Discriminative Loss further en-
hances the model’s ability to differentiate between
embeddings, while the Intra-Set Divergence Loss
mitigates set collapsing by encouraging diversity
within each set. Our approach achieves superior
performance on standard benchmarks compared to
previous methods, and we plan to extend it to other
modalities and tasks in future work.
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7 Limitation

While our proposed MaxMatch demonstrates
strong performance for cross-modal retrieval and
overcomes many important limitations related to
representation set collapse, several important lim-
itations remain unaddressed. While MS-COCO
and Flickr30k are standard benchmarks, they rep-
resent a relatively constrained subset of real-world
cross-modal scenarios. Most image captions in
these datasets focus on describing concrete objects
and actions, rather than abstract concepts, emo-
tional content, or diverse cultural interpretations
that might benefit from multiple distinct representa-
tions. Future work should explore more diverse and
challenging datasets that better reflect the complex-
ity of human visual and linguistic understanding.
In addition , while effective for image-text pairs,
the current formulation of MaxMatch is specific
to bi-modal retrieval. Extending the framework

to handle additional modalities or simultaneous
alignment across three or more modalities would
require substantial modifications to both the match-
ing mechanism and loss functions. This limits its
immediate applicability in broader multimodal sce-
narios involving audio, video, or other data types.
These limitations point to several promising direc-
tions for future research, including more efficient
matching algorithms, adaptive set size mechanisms,
and generalization to broader multimodal contexts.
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A Appendix

This Appendix provides additional details and re-
sults that complement the main paper. Section
B outlines our comprehensive implementation for
various model configurations. In Section C, we
show that smooth Chamfer similarity encourages
set collapse. Methodological considerations regard-
ing external knowledge integration are discussed
in Section D. Section E evaluates our approach
using stronger visual backbones, and Section F ex-
amines its performance on the PVSE architecture.
Finally, Section H presents pseudocode for our key
components.

B Implementation Details

Following prior work (Kim et al., 2023; Song
and Soleymani, 2019), we use two types of fea-
ture extractors and set the embedding dimension
D = 1024. We obtain convolutional visual features
by applying a 1 × 1 convolution to the final fea-
ture map of a CNN. Then, we use the pre-extracted
2048-dimensional region features from Faster R-
CNN (Ren et al., 2015) as BUTD (Anderson et al.,
2018). Both feature types were transformed to the
embedding space via a two-layer MLP with resid-
ual connections. We set K = 4 and Dh = 1024
for convolutional features and Dh = 2048 for re-
gion features (Kim et al., 2023). We process textual
features using a BiGRU with either GloVe (Pen-
nington et al., 2014) or BERT (Devlin et al., 2019)
embeddings.

Our implementation uses PyTorch (Paszke et al.,
2017) v2.0.1, leveraging the model architecture
from the SetDiv codebase (Kim et al., 2023). We
employ automatic mixed precision to improve train-
ing speed and efficiency. Each input batch consists
of either 128 or 200 images along with their corre-
sponding captions. We train our model using the
AdamW optimizer, with both MMD loss (λMMD)
and diversity loss (λDiv) weighted at 0.01 across
all configurations. While the main paper describes
the key implementation details, specific training pa-
rameters vary based on the feature extractors used.

ResNet152 + BiGRU: We train the model for 120
epochs using initial learning rates of 1e-3 for MS-
COCO (Lin et al., 2014) and 2e-3 for Flickr30k
(Plummer et al., 2015). For the set prediction mod-
ule, these learning rates are scaled by factors of
0.1 and 0.01 for MS-COCO and Flickr30k, respec-
tively. Following (Song and Soleymani, 2019; Kim

31779

https://doi.org/10.1109/CVPR42600.2020.01095
https://doi.org/10.1109/CVPR42600.2020.01095
https://doi.org/10.1109/tcsvt.2020.3030656
https://doi.org/10.1109/tcsvt.2020.3030656
https://doi.org/10.1109/CVPR52688.2022.01521
https://doi.org/10.1109/CVPR52688.2022.01521
https://doi.org/10.1109/CVPR42600.2020.00359
https://doi.org/10.1109/CVPR42600.2020.00359


et al., 2023), we apply step-wise learning rate decay
with a factor of 0.1 every 20 epochs. During the
first 50 epochs, the CNN weights are kept frozen.
Training is performed on dual NVIDIA A40 GPUs
with a batch size of 200. For the loss configura-
tion, the triplet margin (δ1) is set to 0.2, while both
Global Discriminative Loss (λGD) and Intra-Set
Divergence Loss (λISD) use weights of 0.1. The
margin parameters (δ2,3) and scaling parameter (s)
are set to 0.6 and 0.5, respectively. Contrastive loss
is not included in this configuration.

Faster R-CNN + BiGRU: The model is trained
for 80 epochs with an initial learning rate of 1e-3,
employing cosine annealing (Loshchilov and Hut-
ter, 2017) and weight decay of 1e-4. For the set
prediction module, the learning rate is scaled by 0.1
for both datasets. Following (Chen et al., 2021), we
apply a dropout of 20% to both ROI features and
word embeddings during training. Training is con-
ducted on a single NVIDIA A40 GPU with a batch
size of 200. For the loss configuration, the triplet
margin (δ1) is set to 0.3, while both Global Dis-
criminative Loss (λGD) and Intra-Set Divergence
Loss (λISD) use weights of 0.1 for MS-COCO and
0.05 for Flickr30K. The margin parameters (δ2,3)
and scaling parameter (s) are set to 0.6 and 0.5,
respectively. The contrastive loss weight is set to
0.001.

Faster R-CNN + BERT: The model trains for 45
epochs with an initial learning rate of 1e-3, employ-
ing cosine annealing and weight decay of 5e-4. For
the set prediction module and BERT, the learning
rates are scaled by 0.5 and 0.1, respectively. Fol-
lowing previous configurations, we apply dropout
of 20% to both ROI features and word embeddings
during training. Training is conducted on dual
NVIDIA A40 GPUs with batch sizes of 200 for
MS-COCO and 128 for Flickr30k. For the loss
configuration, the triplet margin (δ1) is set to 0.15,
while both Global Discriminative Loss (λGD) and
Intra-Set Divergence Loss (λISD) use weights of
0.1. The margin parameters (δ2,3) and scaling pa-
rameter (s) are set to 0.8 and 0.5, respectively. The
contrastive loss weight is set to 0.001.

C Smooth Chamfer Leads to Set Collapse

We consider the smooth Chamfer similarity defined
as

SSC(S1, S2) =
1

2α|S1|
∑

x∈S1

log

(∑

y∈S2

eαc(x,y)

)

+
1

2α|S2|
∑

y∈S2

log

(∑

x∈S1

eαc(x,y)

)
. (9)

In what follows, we show, under suitable assump-
tions (e.g. when c(x, y) is affine in x, as in
c(x, y) = x⊤y), that the objective is minimized
when all elements in each set are identical. For
clarity, we detail the argument for S1, and a sym-
metric argument applies to S2.

Let S1 = {x1, x2, . . . , xn}. Assume that
S2 is fixed. Define the function L(x) ≜

log

(
∑

y∈S2
eα c(x,y)

)
. Then, the contribution

of S1 to the overall objective is f(S1) =
1

2αn

∑n
i=1 L(xi). (We omit the constant prefac-

tor 1/(2α) in what follows, as it does not affect the
location of the minimum.)

Assume that c(x, y) is affine in x for every fixed
y; for example, if c(x, y) = x⊤y, then for fixed
y the map x 7→ α c(x, y) is affine. Since the
exponential is convex and increasing, the com-
position x 7→ eα c(x,y) is convex. Moreover, the
sum over y of convex functions is convex, and the
logarithm of a sum of exponentials (the log-sum-
exp function) is also convex. Thus, the function

L(x) = log

(
∑

y∈S2
eα c(x,y)

)
is convex in x.

Let the arithmetic mean of the embeddings in S1
be x̄ = 1

n

∑n
i=1 xi. Then by Jensen’s inequality

we have:

1

n

n∑

i=1

L(xi) ≥ L

(
1

n

n∑

i=1

xi

)
= L(x̄) . (10)

Equality holds if and only if all xi are equal. That
is, for any fixed mean x̄, the minimum of

f(S1) =
1

n

n∑

i=1

L(xi) (11)

is achieved if and only if

x1 = x2 = · · · = xn = x̄. (12)

Thus, any deviation (i.e., any diversity among the
xi) increases the objective.
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This also becomes obvious when analyzed from
the perspective of the gradient. Consider the gradi-
ent of L(x) with respect to x. By the chain rule,

∇xL(x) =

∑
y∈S2

α eα c(x,y)∇xc(x, y)∑
y∈S2

eα c(x,y)
. (13)

Thus, each xi receives a gradient that is
a softmax-weighted average of the vectors
α∇xc(x, y) (for example, when c(x, y) = x⊤y,
one has ∇xc(x, y) = y).

Now, consider a small perturbation of the set S1
that preserves the overall mean.

xi = x̄+ δi, with
n∑

i=1

δi = 0. (14)

Because L is convex, its Hessian denoted by

H(x) = ∇2
xL(x), (15)

is positive semidefinite:

H(x) ⪰ 0. (16)

A standard result in convex analysis is that the
average

1

n

n∑

i=1

L(x̄+ δi) (17)

is minimized (with respect to the deviations {δi}
under the constraint

∑
i δi = 0) when all δi = 0.

In other words, any nonzero differences δi (i.e.,
any diversity among the embeddings) increases the
objective’s value. Hence, the Hessian is strictly
positive in the directions that would cause disper-
sion in S1. Thus, the gradients computed above
will push any xi that deviates from the mean x̄
back toward x̄. Hence, during training the optimal
(or at least a stationary) point is one where all em-
beddings in S1 are equal. A symmetric argument
applies to S2.

D Discussion on CORA and 3SHNet
External Knowledge Integration

Recent work by CORA (Pham et al., 2024)
achieves impressive results through the integration
of an external LLM as a scene graph parser (Li
et al., 2023), particularly when using Bi-GRU en-
coders. While this approach demonstrates strong
performance, it introduces important considera-
tions for fair comparison. CORA’s key innova-
tion lies in enhancing text representations by aug-
menting raw captions with structured scene graphs

derived from an LLM parser, effectively incorporat-
ing external semantic knowledge into the represen-
tation learning process. This external knowledge
particularly benefits simpler text encoders like Bi-
GRU, where the additional semantic structure helps
bridge the gap in language understanding capabili-
ties. CORA achieves state-of-the-art results even
with embeddings trained from scratch (as reported
in their supplementary material), highlighting how
the LLM parser significantly improves textual rep-
resentations.

In contrast, 3SHNet (Ge et al., 2024) takes a
different approach by integrating external visual
knowledge through semantic segmentation features.
Rather than relying on a language-based external
module, 3SHNet incorporates structured spatial
and object-level information using UPSNet to en-
hance object-region representations. This struc-
tured semantic-spatial self-highlighting method im-
proves image representation, making retrieval more
robust without requiring external textual scene
graphs.

These approaches raise important methodolog-
ical considerations. Unlike CORA and 3SHNet,
our method operates directly on raw captions using
a standard text encoder (GloVe or BERT) with-
out incorporating external knowledge or additional
preprocessing, and does not rely on UPSNet seg-
mentation beyond the basic steps used in prior
work (Song and Soleymani, 2019; Kim et al., 2023;
Fu et al., 2023; Faghri et al., 2018; Chen et al.,
2021). This distinction becomes particularly ev-
ident when using stronger language models like
BERT, where the benefits of external parsing di-
minish as the encoder itself becomes more capable
of understanding complex semantic relationships.
While CORA’s paper acknowledges that BERT ex-
cels at encoding longer text sequences, their ap-
proach primarily uses it to encode short phrases,
which loses the global context of the sentence. Our
method, in contrast, leverages BERT’s full capabil-
ity to process complete captions, achieving com-
petitive performance without requiring additional
scene graph parsing or external knowledge integra-
tion. This demonstrates the effectiveness of our
approach in maintaining semantic richness while
keeping the architecture simpler and more efficient.

E Testing with a Larger Backbone

In alignment with prior work (Kim et al., 2023), we
select ResNeXT101 (Xie et al., 2017) pretrained
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Image-to-Text Text-to-Image
RSUM

R@1 R@5 R@10 R@1 R@5 R@10
MS-COCO 1K Test Images
VSE∞ 84.5 98.1 99.4 72 93.9 97.5 545.4
Set Div 86.3 97.8 99.4 72.4 94 97.6 547.5
MaxMatch 86.9 98.12 99.38 72.22 94.12 97.6 547.84
MS-COCO 5K Test Images
VSE∞ 66.4 89.3 94.6 51.6 79.3 87.6 468.9
Set Div 69.1 90.7 95.6 52.1 79.6 87.8 474.9
MaxMatch 69.62 90.76 95.54 52.18 79.46 87.58 475.14
Flickr30k Test Images
VSE∞ 88.4 97.3 99.5 74.2 93.7 96.8 550.9
Set Div 88.8 98.5 99.6 74.3 94 96.7 551.9
MaxMatch 90.5 99 99.8 74.96 94.2 96.78 555.24

Table 5: Recall@K (%) and RSUM on MS-COCO and
Flickr30k dataset with ResNeXT101 and BERT back-
bones. The best RSUM scores are marked in bold, and
the second-best scores are underlined.

on the Instagram dataset (Li et al., 2019) as the
larger visual extractor paired with BERT (Devlin
et al., 2019). The model trains for 50 epochs with
an initial learning rate of 1e-4, which decays by
a factor of 0.1 every 20 epochs. Consistent with
(Faghri et al., 2018), the CNN’s learning rate is
scaled down by 0.1, and the CNN remains frozen
during the first epoch. During this initial phase, we
employ triplet loss without hard negative mining,
then transition to hardest negative mining in sub-
sequent epochs. For the loss configuration, both
Global Discriminative Loss (λGD) and Intra-Set
Divergence Loss (λISD) use weights of 0.1. The
margin parameters (δ2,3) and scaling parameter (s)
are set to 0.6 and 0.5, respectively, with a triplet
margin (δ1) of 0.1. Contrastive loss is not included
in this configuration. Training is performed on
dual A100 PCIe GPUs with a batch size of 128.
This visual backbone is also used in VSE (Chen
et al., 2021) and Set Div (Kim et al., 2023). The re-
sults on the MS-COCO and Flickr30K test sets are
displayed in Table 5, demonstrating performance
improvements with our method.

The results in Table 5 demonstrate the ef-
fectiveness of our method when combined with
stronger visual backbones. On Flickr30K, our
method achieves significant improvements over
both VSE∞ and Set Div baselines, with notable
gains in Image-to-Text retrieval (R@1 improves
from 88.8% to 90.5%). Similar improvements are
observed on MS-COCO, where our method con-
sistently outperforms previous approaches across
both 1K and 5K test sets. Particularly in the more
challenging 5K setting, we improve the RSUM
from 474.9 to 475.14, demonstrating our method’s
robustness to larger retrieval spaces.

Image-to-Text Text-to-Image
RSUM

R@1 R@5 R@10 R@1 R@5 R@10
VSE++ 52.9 80.5 87.2 39.6 70.1 79.5 409.8
PVSE 59.1 84.5 91 43.4 73.1 81.5 432.6
PCME 58.5 81.4 89.3 44.3 72.7 81.9 428.1
Set Div 61.8 85.5 91.1 46.1 74.8 83.3 442.6

MaxMatch + PVSE 65.4 88.1 93.7 45.4 74.7 83.2 450.6
MaxMatch 68.6 89.6 94.6 51.5 78.9 86.8 469.9

Table 6: Recall@K (%) and RSUM on Flickr30k dataset
on PVSE architicture. The scores for PVSE with our
method is in bold.

F Evaluating Method Performance on
PVSE

We evaluate the versatility and effectiveness of our
proposed method by applying it to the PVSE archi-
tecture, demonstrating its ability to enhance various
baseline models. While PVSE offers more mod-
est performance compared to recent methods like
SDE, it provides an excellent test case for assess-
ing our method’s generalizability. The results in
Table 6 show substantial improvements across all
metrics when our method is integrated with PVSE.
Specifically, our method improves PVSE’s Image-
to-Text R@1 performance from 59.1% to 65.4%, a
significant gain of 6.3 percentage points, surpass-
ing even the more recent Set Div model (61.8%).
In Text-to-Image retrieval, we achieve consistent
improvements, with R@1 increasing from 43.4%
to 45.4%. The overall RSUM metric improves by
18 points (from 432.6 to 450.6), demonstrating the
comprehensive enhancement our method brings to
the baseline model.

Notably, our method’s performance with PVSE
not only surpasses the original PVSE results but
also outperforms several more recent approaches
including PCME and approaches the performance
of Set Div. This is particularly impressive given
PVSE’s relatively simpler architecture. A key dis-
tinction of our approach is its ability to utilize
the entire embedding set during training and infer-
ence, whereas traditional Multiple Instance Learn-
ing (MIL) approaches in PVSE only select a sin-
gle embedding from the set. This comprehensive
utilization enables our method to better capture di-
verse nuanced meanings from the samples, leading
to more robust representations. When further com-
bined with Set Div, our method achieves even more
substantial gains, reaching state-of-the-art perfor-
mance with an RSUM of 469.9, highlighting its
complementary nature to existing advanced tech-
niques. These results convincingly demonstrate
that our method is architecture-agnostic and can
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Figure 6: Visual comparison of image retrieval results
between our method and Set Div. For each embed-
ding in the set, we show the top retrieved image. Our
method generates embeddings that retrieve diverse im-
ages, while Set Div’s embeddings tend to collapse, re-
sulting in retrieval of identical or highly similar images.

effectively enhance both simple and sophisticated
models, validating its broad applicability in cross-
modal retrieval tasks.

G Qualitative Analysis for Image-to-Text
Retrieval

Following Section 4.5, we extend our qualitative
analysis to image-to-text retrieval. We perform
cross-modal retrieval using each embedding in our
set independently, selecting the closest test sample
for each query embedding. This evaluates the se-
mantic diversity captured by our embeddings com-
pared to prior work. As shown in Figure 6, SetDiv
representations tend to collapse, retrieving nearly
identical samples, whereas our embeddings yield
diverse yet semantically coherent results. The left
side of the figure indicates the query embedding
used for retrieval.
Failure Cases and Limitations: While our
method generally produces more semantically di-
verse and accurate retrievals compared to SetDiv,
we also observe certain failure cases where diver-
sity is reduced or retrievals collapse. As shown in
the rightmost column of Figure 7, our embeddings
occasionally yield highly similar or even repeated
captions across different slots, especially for im-
ages with limited semantic variation or dominant
foreground objects. This suggests that, in scenar-
ios where visual content is overly focused or lacks
contextual richness, the learned embeddings may
converge to similar representations. To further char-
acterize these limitations, we include additional
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Figure 7: Failure cases in image-to-text retrieval using
our method. While our approach typically retrieves se-
mantically diverse captions, some examples particularly
those with visually homogeneous content result in re-
peated or overly similar captions across the set. This
highlights a limitation in capturing fine-grained diver-
sity for certain input images.

qualitative examples in the appendix, including
cases where our model retrieves semantically plau-
sible yet not part of the ground truth captions, a
common occurrence in image-text datasets.

H Code Availability

We provide pseudocodes of our key components
illustrating the Global Discriminative Loss, Intra-
Set Divergence Loss, and Maximal Pair Assign-
ment Similarity functions. These code snippets
demonstrate the conceptual implementation of our
method in PyTorch notation, highlighting both the
efficiency and simplicity of our approach. We will
release the codebase on GitHub.
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Maximal Pair Assignment Similarity
def mask_max_similarity(sim_matrix ,

text_indices , img_indices):
"""
Generate a binary mask to identify

maximum similarity pairs in a
similarity matrix.

Args:
sim_matrix (Tensor): Similarity

matrix between text and
image embeddings.

text_indices (Tensor): Indices
corresponding to text
embeddings.

img_indices (Tensor): Indices
corresponding to image
embeddings.

Returns:
Tensor: Binary mask with 1s at

maximum similarity pairs.
"""
# Step 1: Extract similarities at

specified indices
selected_similarities = sim_matrix[

text_indices , img_indices]

# Step 2: Find indices of maximum
similarity for each pair

max_indices = selected_similarities
.argmax(dim=1)

# Step 3: Create binary mask with 1
s at maximum similarity indices

mask = torch.zeros_like(sim_matrix)
mask[text_indices[max_indices],

img_indices[max_indices ]] = 1

return mask

Listing 1: Generate a mask for maximum similarity
pairs in a similarity matrix.

def create_index_permutations(
num_embeddings , row_size , col_size):
# Generate permutations of indices

for matrix operations.
# Step 1: Generate all permutations

of the embeddings
permutations = torch.tensor(list(

itertools.permutations(range(
num_embeddings))), dtype=torch.
long)

# Step 2: Repeat permutations to
match the required row size

row_indices = permutations.repeat(
row_size // num_embeddings , 1)

# Step 3: Create column indices to
match the required column size

col_indices = torch.arange(col_size
).repeat(row_indices.size (0), 1)

# tuple: Two tensors representing
row and column indices.

return row_indices , col_indices

Listing 2: Create index permutations for matrix
operations.

def maximal_pair_assignment_similarity(
img_embs , txt_embs):
"""
Compute assignment of maximum

similarity between image and
text embeddings.

Args:
img_embs (Tensor): Image

embeddings.
txt_embs (Tensor): Text

embeddings.

Returns:
Tensor: Maximum similarity

tensor.
"""
# Step 1: Compute cosine similarity

between normalized embeddings
dist = cosine_sim(l2norm(img_embs),

l2norm(txt_embs))

# Step 2: Determine row and column
sizes based on batch and set
sizes

row_size = image_batch_size *
img_set_size # Number of image
embeddings

col_size = text_batch_size *
txt_set_size # Number of text
embeddings

# Step 3: Generate all possible
index permutations for matching

text_index_all , image_index_all =
create_index_permutations(
img_set_size , row_size , col_size
)

# Step 4: Create a mask for maximum
similarity pairs

mask = mask_max_similarity(dist.
detach (), text_index_all ,
image_index_all)

# Step 5: Calculate maximum
similarity scores

max_similarity = mask * dist

# Step 6: Apply exponential scaling
and average pooling

max_similarity = avg_pool(torch.exp(
max_similarity.unsqueeze (0)) -
1) * img_set_size

return max_similarity.squeeze ()

Listing 3: Function to compute assignment of maximum
similarity between embeddings.
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Intra-Set Divergence Loss

def Intra_Set_Divergence_Loss(set_emb ,
margin , scale):
# Compute pairwise similarity

between all embeddings in the
set

A = torch.bmm(set_emb , set_emb.
transpose(1, 2)) # [bs, K, K]

# Create a mask to exclude self -
similarities and include only
upper triangular matrix elements

num_embeddings = set_emb.size (1)
mask = torch.triu(torch.ones(

num_embeddings , num_embeddings ,
device=set_emb.device), diagonal
=1).bool()

mask = mask.unsqueeze (0) # Expand
mask to match batch dimension

# Apply the mask to extract unique
pairwise similarities

A_masked = A.masked_select(mask)

# Compute the loss using the smooth
exponential function with margin
and scale

loss = torch.exp(( A_masked - margin)
* scale)

# Normalize the loss over the batch
and number of unique pairs

return loss.sum() / (set_emb.shape
[0] * (set_emb.shape [1] * (
set_emb.shape [1] - 1) / 2))

Listing 4: Intra-Set Divergence Loss

Global Discriminative Loss

def Global_Discriminative_Loss(Set_emb ,
global_emb , margin , scale):
# Add a singleton dimension to

global_embedding for batch
matrix multiplication

global_emb= global_emb.unsqueeze (1)
#[bs ,1,D]

# Transpose embeddings to match
dimensions for batch matrix
multiplication

Set_emb= Set_emb.transpose(1, 2) #[
bs,D,K]

# Compute pairwise similarity
between global embedding and the
set of embeddings

A= torch.bmm(global_emb , Set_emb).
squeeze () #[bs,K]

# Compute the loss by applying the
margin and scale , then take the
mean

loss= torch.mean(torch.exp(scale * (
A - margin)))

return loss

Listing 5: Global Discriminative Loss
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