CLaSp: In-Context Layer Skip for Self-Speculative Decoding
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Abstract

Speculative decoding (SD) is a promising
method for accelerating the decoding process
of Large Language Models (LLMs). The ef-
ficiency of SD primarily hinges on the con-
sistency between the draft model and the ver-
ify model. However, existing drafting ap-
proaches typically require additional modules
to be trained, which can be challenging to im-
plement and ensure compatibility across vari-
ous LLMs. In this paper, we propose CLaSp,
an in-context layer-skipping strategy for self-
speculative decoding. Unlike prior methods,
CLaSp does not require additional drafting
modules or extra training. Instead, it employs
a plug-and-play mechanism by skipping inter-
mediate layers of the verify model to construct
a compressed draft model. Specifically, we de-
velop a dynamic programming algorithm that
optimizes the layer-skipping process by lever-
aging the complete hidden states from the last
verification stage as an objective. This enables
CLaSp to dynamically adjust its layer-skipping
strategy after each verification stage, without
relying on pre-optimized sets of skipped lay-
ers. Experimental results across diverse down-
stream tasks demonstrate that CLaSp achieves a
speedup of 1.3 X ~ 1.7X on LLaMA3 series
models without altering the original distribu-
tion of the generated text.

1 Introduction

Transformer-based Large Language Models
(LLMs) have achieved remarkable success across
a wide range of natural language processing
applications (Brown et al., 2020; Achiam et al.,
2023). Scaling the model size and extending
the context window significantly enhance perfor-
mance (Kaplan et al., 2020; Anil et al., 2023; Reid
et al., 2024), but also leads to a rapid increase in

“Equal contribution.
TCorresponding author.

Previous Self-Speculative Decoding

Verify

.
'y Fixed!

PN

[ Q, x 10000 o
T I ¢—— Training Corpus
4 Bayesian optimization
uw o uu

Prompts

Figure 1: Previous Self-SD method vs. CLaSp. Com-
pared to the previous Self-SD method, which requires
costly Bayesian optimization on training dataset to se-
lect a fixed set of skipped layers, CLaSp employs a dy-
namic layer-skipping strategy that adjusts in real-time
based on context.

inference latency. This latency primarily stems
from the autoregressive nature of LLMs, where
model parameters must be loaded into GPU
SRAM for each token generation, resulting in
underutilization of computational cores during the
decoding stage (Patterson, 2004; Shazeer, 2019;
Agrawal et al., 2023).

Inspired by speculative execution in computer
systems (Burton, 1985; Hennessy and Patterson,
2012), speculative decoding (SD) (Xia et al., 2023;
Leviathan et al., 2023; Chen et al., 2023) is pro-
posed as a lossless autoregressive decoding accel-
eration technique. SD accelerates autoregressive
decoding by introducing an efficient draft model
to pre-generate tokens, which are subsequently
validated by a slower verify model in parallel.
This technique significantly reduces the number
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of forward passes required by the verify model,
alleviating memory-bound inefficiencies caused
by frequent parameter access. While effective,
SD relies on finding or training a suitable draft
model that can closely mimic the behavior of the
verify model. This requirement is feasible for
open-sourced model families, such as LLaMA se-
ries (Touvron et al., 2023a,b; Dubey et al., 2024;
Yang et al., 2024), but becomes prohibitively dif-
ficult for specialized LL.Ms that lack pre-existing
compatible draft model counterparts.

The difficulty lies in achieving consistency
between the draft model and the verify model.
For general-purpose models, lightweight modules
have been proposed as substitutes for the draft
model (Cai et al., 2024; Li et al., 2024b; Du et al.,
2024; Liu et al., 2024). These modules are designed
to avoid retraining from scratch, but they struggle
to generalize across diverse tasks and contexts. As
a result, their acceptance rates drop sharply when
handling unseen tasks, making them unsuitable for
applications requiring robust performance across
varying scenarios.

Self-speculative decoding (Self-SD) (Zhang
et al., 2024) addresses the challenge of compat-
ibility by using parts of the verify model itself as a
compressed draft model, bypassing the need for ad-
ditional modules or training. This approach creates
the draft model by sparsifying intermediate lay-
ers of the verify model, effectively skipping certain
computations. Similar to methods that require train-
ing, it also lacks robust generalization and heavily
relies on an time-consuming Bayesian optimiza-
tion process. SWIFT (Xia et al., 2024a) extends
Self-SD by dynamically optimizing skipped layers
as the number of user requests increases, but its
effectiveness diminishes when handling sparse or
unique task data.

To bridge this gap, we propose CLaSp, a dy-
namic in-context layer-skipping method for self-
speculative decoding. Unlike existing methods,
CLaSp dynamically adjusts the skipped layer set
at each decoding step based on the current con-
text, eliminating the need for pre-optimization or
retraining (see Figure 1). Our approach leverages
the observation of slowly changing embeddings
across layers (Liu et al., 2023) and employs a dy-
namic programming algorithm to identify the opti-
mal skipped layers with minimal additional latency.
By using the complete hidden states from the last
verification step as ground truth, CLaSp predicts
and adjusts the draft model’s sparsity in real-time,

achieving high acceptance rates while maintaining
acceleration benefits.

We evaluate CLaSp on the LLaMA3 series mod-
els using Spec-Bench (Xia et al., 2024b), a compre-
hensive benchmark for speculative decoding across
diverse scenarios. CLaSp achieves 1.3x ~ 1.7x
wallclock time speedup compared to conventional
autoregressive decoding while preserving the origi-
nal distribution of generated text. Our contributions
are summarized as follows:

* We introduce CLaSp, a self-speculative decod-
ing framework that dynamically adjusts the
layer-skipping strategy based on context.

* We propose performance optimization strate-
gies in CLaSp to fully leverage GPU paral-
lelism, making the extra latency from layer
optimization almost negligible.

* We conduct extensive experiments on Spec-
Bench, showing that CLaSp consistently
achieves 1.3x ~ 1.7x speedup without train-
ing, and provide a detailed analysis of its key
hyper-parameters.

2 Related Work

Speculative Decoding. Speculative decod-
ing (Xia et al., 2023; Leviathan et al., 2023; Chen
et al., 2023) has been proposed as an effective
strategy for lossless acceleration of LLM inference.
Some approaches aim to reduce the high cost of
training from scratch by introducing lightweight
modules as draft model. Medusa (Cai et al., 2024)
trains multiple decoding heads to predict the next
n tokens in parallel. EAGLE and EAGLE-2 (Li
et al., 2024b,a) integrate a lightweight plug-in (a
single transformer decoder layer) to existing LLMs.
Glimpse Draft Model (Du et al., 2024) reuses the
verify model’s KV cache to generate candidate
tokens that are more likely to be accepted by the
verify model. However, these approaches rely
heavily on pre-trained modules optimized for
specific contexts, making them less effective for
tasks with unseen data.

Retrieval-based methods, such as REST (He
et al., 2024) and Prompt Lookup Decoding (Sax-
ena, 2023), replace the draft model by retrieving
relevant drafts from a text corpus or context based
on input prompts. While these methods reduce
reliance on explicit draft model models, their per-
formance is highly sensitive to the quality and rele-
vance of the retrieved drafts.
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To address the challenges of designing compati-
ble draft model, Self-SD (Zhang et al., 2024) and
SWIFT (Xia et al., 2024a) directly leverage parts
of the verify model as a compressed draft model by
skipping intermediate layers of the original LLM.
Triforce (Sun et al., 2024) employs a partial KV
cache as the draft model and a full KV cache as the
verify model, reducing inference latency by mini-
mizing I/O operations, especially in long-context
tasks. Despite these innovations, static configu-
rations for layer skipping prevent these methods
from dynamically adapting to changing task re-
quirements or contexts, limiting their efficiency
and generalizability.

To further enhance speculative decoding, tree-
based attention mechanisms (Miao et al., 2024; Cai
et al., 2024; Chen et al., 2024; Svirschevski et al.,
2024) extend the decoding process from generating
a single candidate sequence to exploring a candi-
date tree. By providing the verify model with mul-
tiple options for validation, these methods improve
the acceptance rate of speculative decoding.

Layer-wise Sparsity. Layer redundancy in
LLMs has been extensively studied, with meth-
ods such as LayerDrop (Fan et al., 2020), Lay-
erSkip (Elhoushi et al., 2024), structured prun-
ing (Zhang and He, 2020), SkipDecode (Corro
et al., 2023), and LayerSharing (Zhang et al., 2023)
demonstrating that not all layers are equally impor-
tant. These methods suggest that the importance of
each layer varies depending on the task and context,
and that certain layers can be skipped or removed
without significantly affecting model performance.
However, determining which layers to skip or op-
timize for different downstream tasks remains a
substantial challenge.

Deja Vu (Liu et al., 2023) and LISA (pan, 2024)
demonstrate the potential of leveraging sparsity to
accelerate LLM inference, either by exploiting con-
text sparsity or by optimizing a subset of layers
during training. Although effective, these methods
rely on lossy sparsification techniques, introducing
discrepancies between the sparse and original dis-
tributions. Similarly, Glavas et al. (2024) explore
dynamic inference methods such as layer skipping
and early exiting, which enable task-dependent ac-
celeration but lack compatibility with speculative
decoding, limiting their potential for lossless ac-
celeration. Thus, we aim to combine the strengths
of layer-wise sparsity and speculative decoding to
achieve lossless acceleration across diverse tasks.

Algorithm 1: CLaSp Skip Layer Strategy

Input: Num hidden layers L, num skip layers M,
hidden states X = {zo, z1,...,Z1-1},
DecoderLayer f;, hidden size d

Output: The optimal skipped layer set S

g < zeros(L + 1, M + 1,d), 9]0, 0] + xo

/I Dynamic programming

fori=1to L+ 1do

£+ min(i — 1, M)

g < fi_1(g[i — 1,1 A+ 1])

F < norm(cat(G, g[i — 1,: £]))

o < F - norm(z;)

if o[: £] > o[¢ :] then

| gl[1:04+1]«+ G

else
| gld[1:041] + g[i —1,: 4
if « < M then
< zeros(L)

S
/I Backtracking optimal skipped layer set S
while : > O and 7 > 0 do

ifg[l,j] = g[l - 1,.] - 1] then

Sli—1«1
Jji—1
t—1—1
return S
3 CLaSp

In this section, we first introduce the pipeline of
CLaSp from a global perspective. Then, we ex-
plore the main challenges (§3.2) faced by CLaSp
and formulate the problem of layer skipping (§3.3).
Subsequently, we provide a detailed description of
the CLaSp algorithm (§3.4 and §3.5) and efficiency
optimization strategies (§3.6 and §3.7).

3.1 Pipeline

CLaSp can be explained as a three-stage process:
(1) Drafting: The draft model autoregressively
generates K draft tokens from the given prompt se-
quence z1, ..., T;, denoted as x;4+1, ..., Tit K. (2)
Verification: The verify model verifies the tokens
generated during the drafting stage. This verifica-
tion is performed in a single forward pass, where
the LLM predicts the probability distribution for
each draft token and evaluates whether they align
with the full model’s predictions. Once a draft
token x; is rejected, the original LLM’s predic-
tion overwrites x;, and drafting resumes from to-
ken x; 1 in the next round. (3) Layer Optimiza-
tion: Using the hidden states of the last accepted
token x; as the optimization objective, the optimal
skipped layer set S* is updated to guide the next
round of drafting. As shown in Figure 2, before
each round of drafting, the draft model can be up-
dated to better adapt to the current context.
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Figure 2: The overall framework of CLaSp consists of three stages: (1) Draft, (2) Verify, (3) Layer Optimization.
After the Verify stage, CLaSp uses the information obtained to perform Layer Optimization, resulting in a new
optimal layer skipping set S*. This set guides the next Draft round, repeating the entire process.

3.2 Main Challenges

Compared to previous methods, CLaSp dynam-
ically updates the skipped layer set before each
drafting step, requiring solutions to two main chal-
lenges:

(1) How to determine which layers should be
skipped? This is the most critical issue addressed
by CLaSp, as it directly impacts drafting quality.
An ideal layer-skipping strategy must adapt to the
most recent context, ensuring that the drafted to-
kens are more likely to be accepted by the verify
model.

(2) How to reduce the additional latency caused
by layer optimization? The dynamic skipping strat-
egy inevitably introduces computational delays due
to the need for repeated searches to identify the cur-
rent optimal layer subset. To ensure that layer opti-
mization does not become the primary bottleneck,
minimizing these additional delays is essential for
maximizing the speedup benefits.

3.3 Problem Formulation of Layer Skip

Let M, be the verify model and M, be the
draft model obtained by skipping certain interme-
diate layers from the original LLM. Fr¢, (X) and
Fam, (X)) represent the output hidden states on the
top of the last token of current input X, passing
through the verify model or the draft model respec-
tively. Our goal is to find the optimal skipped layer

set S that minimizes the cosine similarity between
FMU(X) and FMd(X)I

S§* = argmin cosine(Fa, (X), Famp, (X)),
S
s.t. S € {0,1}F
ey
where L represents the number of transformer lay-
ers in the verify model.

3.4 Approximate Dynamic Programming

The principle behind selecting information for layer
optimization is to minimize additional computa-
tional overhead by utilizing information already
obtained in previous steps. In speculative decod-
ing, we observed that the hidden states of the last
accepted token after each verification step are not
fully utilized. To address this, we propose leverag-
ing this feedback information to predict the draft
model configuration for the next drafting stage.
Specifically, let the input tokens to a Transformer
model be denoted as X, with an embedding layer
that maps token indices to token embeddings hy.
The Transformer model consists of L layers, where
the [-th Transformer layer performs a transforma-
tion f, evolving the embeddings as:

hiyr = filhg)

Let D(i, j) represent the maximum cosine sim-
ilarity between h; and the optimal hidden state
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Figure 3: (a) Sparse Persistence Observation: Skipped layer sets selected for adjacent tokens exhibit high
similarity, with this similarity gradually decreasing as the token gap increases. This observation enables layer
optimization on the current token to guide subsequent drafting processes. (b) Approximate Markov Property:
Cosine similarity comparisons of hidden states obtained using Brute Force, Random, and CLaSp’s dynamic
programming configurations against the full forward pass demonstrate the approximate Markov property inherent to
CLaSp. (c) Efficiency Optimization Strategies: Latency breakdown per query shows that Layer Optimization
introduces only 4.8% additional delay, underscoring its negligible impact on overall latency.

g(i,7) obtained by skipping j layers among the
first ¢ transformer layers. So we design a dynamic
programming transition equation defined as:

D(i,7) = max{cosine(h;, g(i — 1,5 — 1)),

cosine(h;, fi—1(gli —1,7)))} @

where cosine is used to calculate the cosine sim-
ilarity between two vectors. The CLaSp skip layer
algorithm process is shown in Algorithm 1.

3.5 Approximate Markov Property

A crucial prerequisite for dynamic programming
algorithms is the "no aftereffect" property, which
ensures that current decisions and state transitions
are independent of previous states. However, when
computing the optimal hidden states g(i, 7 ), CLaSp
does not strictly satisfy the Markov property, mak-
ing it theoretically impossible to find an exact opti-
mal solution using Algorithm 1.

Fortunately, due to the favorable property of
slowly changing embeddings across layers, we ob-
serve that CLaSp’s approximate algorithm closely
aligns with the results of a brute force search for
the optimal skipped layer set. To validate this, we
fixed the first and last 10 layers of the 32-layer
LLaMA3-8B model and compared the outcomes
of brute force search, random layer selection, and
CLaSp across the remaining 12 layers.

As shown in Figure 3b, the hidden states ob-
tained by skipping the layers selected by CLaSp
exhibit remarkable consistency with those from the
brute force search, demonstrating a high cosine sim-
ilarity with the hidden states of the original LLM.

In contrast, the results from randomly selected lay-
ers show relatively poor alignment.

These findings indicate that CLaSp approxi-
mates the Markov property effectively, allowing
it to find near-optimal solutions within an accept-
able error range.

3.6 Sequence Parallel

Unlike previous methods, CLaSp requires multi-
ple layer optimizations during a single inference
process. Therefore, the optimization process must
be both efficient and accurate to avoid introducing
additional delays while ensuring precise drafting
in subsequent decoding steps. To address this, we
employ parallelization strategies to minimize the
additional delay caused by the dynamic program-
ming process.

When CLaSp performs dynamic programming,
the updates for D(i,j) and g(i,j) are obtained
through a double loop, resulting in a time com-
plexity of O(LM). Importantly, when computing
the state at (4, 7), only the state at (i — 1, -) is re-
quired. This dependency allows computations for
different j values with the same ¢ to be performed
independently, enabling parallelization of the sec-
ond loop.

To further reduce the GPU memory footprint,
we avoid concatenating these states into a batch.
Instead, we design a specialized mask matrix that
enables parallelization of these states as a sequence.
This approach reuses the same KV cache without
duplicating it, significantly improving memory ef-
ficiency.
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Models Methods

MT-bench WMT14 CNN/DM NQ GSMSK DPR Overall

7 Speedup 7 Speedup T

Speedup 7 Speedup 7 Speedup T  Speedup ‘ Speedup

Greedy Setting: Temperature=0

AUTOREGRESSIVE 1.00 1.00x 1.00 1.00x 1.00

1.00x 1.00 1.00x 1.00 1.00x 1.00 1.00x 1.00x

LLaMA-3-70B SELF-SD 257 138x 410 1.55x 546 1.57x 260 142x 3.10 149x 359 1.43x 1.47x
SWIFT 313 1.26x 290 1.27x 393 135x 321 129x 286 127x 331 1.26x 1.28x

CLASP 455 1.64x 581 1.69x 7.19 1.66x 537 1.72x 6.77 1.75x 405 1.56x 1.67x
AUTOREGRESSIVE 1.00 1.00x 1.00 1.00x 1.00 1.00x 1.00 1.00x 1.00 1.00x 1.00 1.00x 1.00x

LLaMA-3-70B SELF-SD 140 1.23x 227 133x 150 124x 159 126x 3.00 1.40x 256 1.37x 1.31x
-Chat SWIFT 441 1.15x 554 1.27x 452 122x 483 120x 6.19 131x 597 1.33x 1.25x%
CLASP 261 1.35x 472 1.51x 348 139x 332 139x 528 1.53x 5.61 1.54x 1.45x
AUTOREGRESSIVE 1.00 1.00x 1.00 1.00x 1.00 1.00x 1.00 1.00x 1.00 1.00x 1.00 1.00x 1.00x

LLaMA-3-8B SELF-SD 128 1.07x 135 1.13x 1.73 1.17x 145 1.13x 144 1.15x 233 121Ix 1.14x
SWIFT 275 1.07x 251 1.09x 276 1.13x 291 1.13x 272 1.10x 296 I1.11x 1.11x

CLASP 3.68 1.24x 414 123x 622 1.22x 403 127x 526 126x 417 1.22x 1.24x

Non-Greedy Setting:

Temperature=1

AUTOREGRESSIVE 1.00 1.00x 1.00 1.00x 1.00

1.00x 1.00 1.00x 1.00 1.00x 1.00 1.00x 1.00x

LLaMA-3-70B SELF-SD 1.64 123x 253 139x 361 143x 153 124x 201 133x 217 124x 1.31x
SWIFT 206 1.10x 196 1.08x 197 1.09x 197 1.08x 198 1.09x 201 1.07x 1.09x

CLASP 313 149x 333 1.50x 538 1.54x 356 1.54x 432 1.59x 251 1.36x 1.50x
AUTOREGRESSIVE 1.00 1.00x 1.00 1.00x 1.00 1.00x 1.00 1.00x 1.00 1.00x 1.00 1.00x 1.00%

LLaMA-3-70B SELF-SD .15 1.14x 201 123x 119 1.15x 121 1.17x 197 134x 171 1.26x 1.22x
-Chat SWIFT 2.68 096x 264 099x 267 098x 262 099x 279 1.01x 276 1.04x 1.00x
CLASP 1.96 1.28x 390 145x 232 1.29x 228 130x 440 147x 403 143x 1.37x
AUTOREGRESSIVE 1.00 1.00x 1.00 1.00x 1.00 1.00x 1.00 1.00x 1.00 1.00x 1.00 1.00x 1.00x

LLaMA-3-8B SELF-SD 098 0.89x 1.01 094x 136 1.02x 1.09 092x 1.09 096x 182 1.03x 0.96 x
SWIFT 1.90 080x 192 0.85x 1.85 083x 197 084x 195 083x 190 0.80x 0.83x

CLASP 262 111x 278 1.08x 426 111x 270 1.08x 376 1.10x 235 1.02x 1.08 <

Table 1: Comparison between CLaSp and prior plug-and-play methods. We report the average acceptance length 7
and speedup ratio under greedy (Temperature=0) and non-greedy (Temperature=1) settings. Bold numbers denotes

the best Speedup.

3.7 Lower Optimization Frequency

CLaSp updates the optimal skipped layer set af-
ter each verification step, using the feedback from
the last accepted token. However, the time cost
of performing this update is comparable to that
of a verification step, which introduces a bottle-
neck for CLaSp’s inference latency. Fortunately,
we observe a phenomenon we term Sparse Persis-
tence: the skipped layer sets required by adjacent
tokens tend to exhibit high similarity. To quantify
this, we calculate the Jaccard similarity between
the skipped layer sets of adjacent tokens. As shown
in Figure 3a, the similarity remains high when the
token distance is within a certain range and only de-
creases significantly as the distance between tokens
increases.

Based on this observation, we further found that
the optimal skipped layer set does not change dras-
tically after every update. This allowed us to adjust
the update frequency by accumulating several veri-
fication steps before performing an update, rather
than updating after every single verification step.
While adopting a lower update frequency slightly
reduced the average acceptance rate of draft to-
kens, the reduction in update latency led to a sub-
stantial improvement in the overall speedup ratio.
This trade-off highlights the efficiency benefits of

leveraging Sparse Persistence to optimize the layer
update process.

4 Experiments

This section evaluates CLaSp across various text
generation tasks to demonstrate its efficiency and
effectiveness.

Model and Testbed. We evaluate CLaSp using
four different sizes of LLaMA models (Dubey et al.,
2024): LLaMA3-8B, LLaMA2-13B, LLaMA3-
70B, and LLaMA3.1-405B. The models are de-
ployed on NVIDIA A800 GPUs with 80GB of
memory. Specifically, the 8B and 13B models are
deployed on a single A800 GPU, while the 70B
and 405B models utilize 2 and 8 A800 GPUs, re-
spectively, with pipeline parallelism enabled by Ac-
celerate (Gugger et al., 2022). All models use FP16
precision, except for LLaMA3.1-405B, which em-
ploys INT8 quantization for improved memory ef-
ficiency. Unless otherwise specified, the batch size
is set to 1 for all models.

Datasets. We benchmark the performance of
CLaSp on Spec-Bench (Xia et al., 2024b), a com-
prehensive evaluation suite covering a wide range
of datasets and tasks. Spec-Bench includes six sub-
tasks: multi-turn conversation, translation, summa-
rization, question answering, mathematical reason-
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Figure 4: The impact of key hyper-parameters on speedup: (a) Number of Skipped Layers; (b) Layer Optimization
Interval; (c) Draft-Existing Threshold. The experiment results were all obtained using the LLaMA-3-70B model on
MT-Bench.

ing, and retrieval-augmented generation. Specifi- reflect the overhead introduced by the draft model.
cally, Spec-Bench consists of 80 randomly selected
instances from each of MT-bench (Zheng et al.,
2023), WMT14 DE-EN, CNN/Daily Mail (Nallap- ~ As shown in Table 1, we report the performance
ati et al., 2016), Natural Questions (Kwiatkowski  of CLaSp and prior plug-and-play methods on
et al., 2019), GSM8K (Cobbe et al., 2021), and  text generation tasks from Spec-Bench under both
DPR (Karpukhin et al., 2020). To control the gen-  greedy (Temperature = 0) and non-greedy (Temper-
eration length across tasks, we set the maximum  ature = 1) settings. The experimental results reveal
sequence length to 1024 tokens, following prior  the following findings.

experimental setups (Xia et al., 2024b). CLaSp demonstrates superior efficiency com-
pared to previous methods, achieving consistent
speedups of 1.3x ~ 1.7x over vanilla autore-
gressive decoding across various models and tasks.
Prior methods relying on Bayesian optimization
exhibit lower performance, particularly when data
volume is limited.

CLaSp consistently improves average accep-
tance length, acceptance rate, and speedups. This
efficiency is primarily due to CLaSp’s ability to
leverage model layer sparsity effectively. By skip-
ping 50% to 60% of layers during experiments,
CLaSp maintains both a high average acceptance
length and acceptance rate, contributing to supe-
rior acceleration. Generally, longer acceptance
Performance Metrics. CLaSp is essentially still ~ lengths lead to higher speedups. However, there
speculative sampling, which has been proven to en-  are cases where speedups remain low despite long
able lossless acceleration (Leviathan et al., 2023).  acceptance lengths, as drafting additional tokens
Therefore, we focus solely on acceleration perfor-  increases time spent, reducing acceptance rates and
mance rather than generation quality. The follow-  overall speedups.
ing metrics are used for evaluation: Speedup Ra- The performance advantage of CLaSp is more
tio: The actual test speedup ratio relative to vanilla ~ pronounced on larger models, such as LLaMA3-
autoregressive decoding, providing a direct mea- 70B, compared to smaller models like LLaMA2-
sure of acceleration. Average Acceptance Length  13B and LLaMA3-8B. This suggests that CLaSp
(7): The average number of tokens generated per  can better leverage the greater layer sparsity present
drafting-verification cycle, corresponding to the  in larger models, enhancing adaptability and effi-
number of tokens accepted from the draft. This  ciency.
metric is independent of hardware and runtime en- Opverall, the robust performance of CLaSp across
vironment, while its limitation is that it does not  different models highlights its effectiveness as a
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4.1 Experimental Result

Comparison. For our main experiments, we
use vanilla autoregressive decoding as the base-
line, serving as the benchmark for speedup ra-
tios (1.00x). We compare CLaSp against existing
training-free layer skip methods, including Self-
Speculative Decoding (Zhang et al., 2024) and
SWIFT (Xia et al., 2024a). Other speculative de-
coding (SD) methods are excluded from the com-
parison as they require additional modules or ex-
tensive training, which limits their generalizability.
Since the speedup ratio is hardware-dependent, all
methods were evaluated on the same devices to
ensure a fair comparison.
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Figure 5: Model Size Scaling Laws of CLaSp.

plug-and-play solution, offering a versatile method
to enhance inference speed for a range of LLMs.

5 Analysis

We present an extensive analysis of CLaSp, focus-
ing on three key aspects: the benefits of the parallel
strategy (Section 5.1), compatibility with different
LLMs (Section 5.2), and the impact of key hyper-
parameters (Section 5.3).

5.1 Sequence Parallel

As discussed in Section 3.6, our dynamic program-
ming (DP) algorithm requires O(LM) layer for-
ward passes. To assess the time overhead, we con-
ducted experiments on LLaMA3-70B using two
NVIDIA A800 GPUs. Without any parallel strat-
egy, a single DP run to filter half of the layers takes
approximately 2.5 seconds, whereas a single round
of verification only takes about 0.1 seconds. Af-
ter implementing our parallel strategy, the time for
a single DP run is reduced to 0.14 seconds, com-
parable to the time for a single verification. This
significantly reduces the additional latency intro-
duced by layer optimization.

We further analyzed the per-query latency dis-
tribution of each stage, as illustrated in Figure 3c.
The results show that the latency proportion of
layer optimization is significantly reduced with the
parallel strategy. Additionally, with a lower up-
date frequency, the extra update latency of CLaSp
becomes almost negligible.

5.2 Model Size Scaling Laws

To assess the scalability of CLaSp, we evalu-
ated its performance across a range of model
sizes, including LLaMA2-13B and LLaMA3.1-
405B, in addition to LLaMA3-8B and LLaMA3-
70B. For LLaMA2-13B, the model was deployed

on an A800 GPU using FP16 precision, while
for LLaMA3.1-405B, we used INT8 quantiza-
tion (Dettmers et al., 2022) to deploy it on a single
node with 8 A800 GPUs.

As illustrated in Figure 5, the speedup increases
with model size across various tasks. Specifically,
on the MT-bench, speedups range from 1.24x for
LLaMA3-8B to 1.73x for LLaMA3.1-405B. For
the GSM8K benchmark, speedups increase from
1.26x to 1.81x, while on the Natural Questions
benchmark, speedups range from 1.27x to 1.82x.
These results indicate that larger models exhibit en-
hanced layer sparsity, enabling CLaSp to leverage
its capabilities more effectively and achieve greater
speedups.

5.3 Key Hyper-Parameters

We show the effect of key hyper-parameters on the
acceleration benefits of CLaSp, where all exper-
iments were performed using the LLaMA3-70B
model on MT-Bench.

5.3.1 Number of Skipped Layers

Layer sparsity allows intermediate layers to be
skipped, but the number of skipped layers directly
influences performance. Adjusting this parame-
ter involves a trade-off between draft quality and
efficiency, both of which significantly impact the
speedup.

As shown in Figure 4a, for LLaMA3-70B, which
consists of 80 layers, the speedup increases as the
number of skipped layers rises, reaching an opti-
mal value of 1.64x when 44 layers are skipped.
Beyond this point, the benefits of a longer average
acceptance length are outweighed by the increased
cost of generating high-quality drafts, resulting in
a decline in speedup.

5.3.2 Layer Optimization Interval

Performing layer optimization after every verifica-
tion step is computationally expensive, as noted
in Section 3.7. Extending the Layer Optimization
Interval (LOI) reduces the additional delays intro-
duced by dynamic programming (DP) while hav-
ing only a minor impact on the average acceptance
length 7.

As illustrated in Figure 4b, the speedup initially
increases with the LOI but begins to decline as the
interval grows beyond 128. This decline is caused
by a significant drop in 7, which negatively impacts
overall speedup.

31615



5.3.3 Draft-Exiting Threshold

To balance draft efficiency and cost, skipping 40%
to 60% of layers achieves an optimal trade-off, as
noted in Section 5.3.1. However, the cost of a sin-
gle draft remains high, necessitating a sufficiently
high acceptance rate to maximize speedup.

EAGLE-2 (Li et al., 2024a) suggests leveraging
the draft model’s confidence score to approximate
the acceptance rate. By tuning the Draft-Exiting
Threshold (DET), we can control the acceptance
rate to optimize acceleration.

As shown in Figure 4c, adjusting the DET
around 0.7 results in the highest speedup. Even
with higher DET values, high speedup is main-
tained, demonstrating the robustness of this param-
eter for achieving acceleration gains.

6 Conclusion

In this paper, we propose CLaSp, a novel self-
speculative decoding framework that adaptively
adjusts the layer-skipping strategy based on con-
text. We discover the potential of context-aware
layer sparsity for generating high-quality drafts.
Leveraging this insight, CLaSp performs layer op-
timization before each draft stage with minimal
additional latency, significantly increasing the de-
coding efficiency. Through extensive experiments
across diverse text generation tasks, we demon-
strated that CLaSp achieves consistent speedups
of 1.3X ~ 1.7X over vanilla autoregressive de-
coding. Furthermore, detailed analysis reveals that
CLaSp generalizes well to different models and
tasks. For future work, we aim to explore ways
to better leverage the layer sparsity of LLMs to
further reduce inference latency in larger models.

Limitations

The CLaSp framework dynamically adjusts the
layer-skipping strategy based on context, making
the self-speculative decoding process of LLMs
more efficient. However, certain limitations exist.
Our experiments are conducted solely on NVIDIA
A800 GPUs with 80GB of memory and limited
to LLaMA series models, leaving the potential of
more powerful hardware and other models unex-
plored. Additionally, while CLaSp can function
alongside many existing speculative decoding in-
novations, we do not investigate these integrations.
We believe that addressing these limitations and ex-
ploring such combinations in future research could
lead to significant advancements.
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