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Abstract

Weakly supervised video anomaly detection
(WSVAD) presents a challenging task focused
on detecting frame-level anomalies using only
video-level labels. However, existing methods
focus mainly on visual modalities, neglecting
rich multi-modality information. This paper
proposes a novel framework, Cross-Modality
Heterogeneous Knowledge Fusion (CMHKEF),
that integrates cross-modality knowledge from
video, audio, and text to improve anomaly
detection and localization. To achieve adap-
tive cross-modality heterogeneous knowledge
learning, we designed two components: Cross-
Modality Video-Text Knowledge Alignment
(CVKA) and Audio Modality Feature Adaptive
Extraction (AFAE). They extract and aggregate
features by exploring inter-modality correla-
tions. By leveraging abundant cross-modality
knowledge, our approach improves the discrim-
ination between normal and anomalous seg-
ments. Extensive experiments on XD-Violence
show our method significantly enhances accu-
racy and robustness in both coarse-grained and
fine-grained anomaly detection.

1 Introduction

Weakly supervised video anomaly detection (WS-
VAD) aims to use video-level labels (normal or
abnormal) to evaluate frame-level anomaly scores,
thereby reducing manual annotation costs. Most
existing WSVAD methods (Feng et al., 2021; Cho
et al., 2023; Karim et al., 2024) primarily distin-
guish between frame-level normal and abnormal
events by learning information from a single modal-
ity, specifically the video modality. However, rely-
ing solely on video modality struggles to localize
anomalies in ambiguous scenarios. Complemen-
tary modalities, such as audio and text, provide
additional contextual cues that help disambiguate
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complex anomaly patterns. Thus, integrating multi-
modality information is essential for WSVAD.

Current WSVAD methods consist of one-stage
Multiple Instance Learning (MIL) methods (Karim
et al., 2024; Sultani et al., 2018) and pseudo-label
self-training two-stage methods (Li et al., 2022;
Zhang et al., 2023). One-stage MIL methods use
ranking loss to prioritize higher scores in abnor-
mal segments. Nevertheless, they often miss minor
anomalies, limiting detection completeness. Two-
stage approaches use MIL for pseudo labels first,
then train the classifier in the second stage. How-
ever, pseudo label accuracy is unreliable, poten-
tially causing misdetections. Historically, most
WSVAD methods relied on single-modality data.
Recently, studies (Peng et al., 2023; Wu et al.,
2024c¢) have attempted to leverage multi-modality
information to enhance performance. However,
they often superficially fuse multi-modality data
without fully exploiting its potential.

Despite some progress, existing methods still
face two major challenges: 1) Single Modality.
Currently, most of both single-stage and two-stage
methods (Lv et al., 2023; Zhang et al., 2023) focus
on learning from video data, emphasizing conspicu-
ous visual anomalies. However, this strategy often
falls short in visually ambiguous scenarios where
the video modality lacks the sufficient discrimina-
tive power. For example, in a dust-filled scene,
video data might struggle to distinguish between
an anomalous event, such as an explosion, and a
normal occurrence like strong winds stirring up
dust. In these instances, audio and text modali-
ties can provide critical supplementary information.
Therefore, how to effectively fuse multi-modality
knowledge, including video, audio, and text, plays
an important role in these visual ambiguities. This
not only enhances detection robustness but also im-
proves system performance in complex or dynamic
environments. 2) Fusion Strategy. While a few
studies (Wu et al., 2020, 2022b) have started to
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harness the power of multi-modality knowledge,
they predominantly rely on independently learning
feature representations for each modality, achiev-
ing multi-modality fusion through straightforward
feature concatenation. However, this concatenation
fusion strategy only accomplishes a surface-level
integration of modalities at the feature level, funda-
mentally overlooking the potential correlations be-
tween modalities. In contrast, the core principle be-
hind adaptive cross-modality knowledge learning
is to allow the model to autonomously adjust the
interdependencies and contributions of each modal-
ity. By dynamically adapting these relationships
based on the complexity of specific scenes and
anomalous events, this method provides a multi-
dimensional representation of anomalies, thus fa-
cilitating the learning of high-level features. There-
fore, this more nuanced integration of cross-modal
knowledge is essential for advancing WSVAD.

In this study, we propose CMHKEF to address
these challenges. To address the first challenge,
we integrate video, audio, and text to jointly learn
feature representations. This enhances the dif-
ferentiation between normal and anomalous seg-
ments. To address the second challenge, we pro-
pose the Cross-Modality Video-Text Knowledge
Alignment (CVKA) and the Audio Modality Fea-
ture Adaptive Extraction (AFAE). CVKA lever-
ages CLIP to capture visual-semantic similarity,
dynamically aligning and adaptively aggregating
relevant text features. AFAE maps the visual-
semantic similarity obtained from CVKA to the
temporal saliency of audio features. To address
temporal misalignment, AFAE uses a Top-k win-
dow to bridge the fine-grained feature distribution
differences between video and audio. Finally, we
propose Multi-Modality Knowledge Adaptive Fu-
sion (MKAF) by extending Joint Cross-Attention
Model (Praveen et al., 2022). MKAF effectively
captures intra-modality and cross-modality correla-
tions while reducing inter-modality heterogeneity.

Overall, our contributioons are threefold:

o We propose CMHKEF to adaptively fuse cross-
modality heterogeneous knowledge from
video, audio, and text in WSVAD.

o We propose CVKA, AFAE, and MKAF for
adaptive modality adjustment and fusion.

e Experiments on XD-Violence show our
method outperforms others in coarse-grained
and fine-grained WSVAD tasks.

2 Related Work

2.1 Weakly Supervised Video Anomaly
Detection

Weakly supervised video anomaly detection (Cao
et al., 2023; Majhi et al., 2024; AlMarri et al., 2024)
has become a prominent research focus. Most
WSVAD methods use MIL(Sultani et al., 2018) to
learn features from weakly labeled data for frame-
level detection. The pioneering work (Sultani et al.,
2018) proposed a deep MIL model with ranking
loss. Subsequently, Zhou et al. (Zhou et al., 2023)
presented an Uncertainty Regulated Dual Mem-
ory Units model to improving the representation
learning of normal and anomalous data. Since
the aforementioned methods are constrained to
single-modality anomaly detection, recent studies
have proposed multi-modality approaches (Yang
et al., 2024; Peng et al., 2023) that outperform their
single-modality counterparts. However, these ap-
proaches primarily rely on basic multi-modality
feature fusion, overlooking latent interdependen-
cies among modalities. To address these limita-
tions, we propose an adaptive cross-modal knowl-
edge learning approach that integrates video, audio,
and text modalities.

2.2 Vision-Text Multi-Modality Models

Vision-text multi-modality has become a key re-
search area for tasks like pre-training (Li et al.,
2021; Lei et al., 2021) and vision-text retrieval(Tian
et al., 2024; Deng et al., 2023). One influential
work is Contrastive Language-Image Pretraining
(CLIP) (Radford et al., 2021), which uses two en-
coders to map images and text into a shared space
for contrastive learning. Trained on hundreds of
millions of image-text pairs, CLIP demonstrates re-
markable zero-shot transfer capabilities. Recently,
several studies (Wu et al., 2024c; Sun et al., 2024)
explored CLIP’s application in WSVAD. These
works are categorized into two types. The first type
(Joo et al., 2023; Sharif et al., 2023) uses CLIP’s im-
age encoder as a strong initialization for the video
encoder. The second type (Zanella et al., 2024; Wu
et al., 2024c) extends CLIP to video-label matching
for anomaly detection. However, these studies only
superficially exploit CLIP’s embedded knowledge.
In contrast, our research explores the relationship
between visual and semantic features, adaptively
fuses text information, and maps CLIP’s image-text
alignment capabilities to audio, deeply mining its
temporal saliency regions.
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Figure 1: The overall architecture of our proposed CMHKF.
3 CMHKF in effectively modeling temporal dependencies. In-

This section begins by defining the task of WSVAD.
Following this, we describe the overall architecture
of CMHKE. Finally, we provide a detailed explana-
tion of each module and its implementation.

3.1 Problem Statement

Given a dataset of M videos and audios, X =
{x}M,, Z = {z}M,, and video-level labels
Y = {y;}1,, where y; € {0,1}. If y; = 0, the
video is normal, meaning all its frames are free of
anomalous events. If y; = 1, the video is anoma-
lous, containing at least one anomalous frame. Dur-
ing training, only video-level labels are employed
to supervise the model, whereas during testing, the
model predicts frame-level anomaly confidence for
precise temporal localization.

3.2 Overall Architecture

Figure 1 illustrates the overall workflow of
CMHKE. Our method encodes videos, learnable
class prompt texts, and audio into feature embed-
dings using CLIP’s image and text encoders, along
with the VGGish network (Hershey et al., 2017).
This yields video features F, € RN*Pv, text
features F;, € RE*Pt and audio features F, €
RN*Da D Dy, and D, represent the feature di-
mensions of video, text, and audio, while N and C
represent the number of frames and class prompt
texts, respectively. Given CLIP is pretrained on
large-scale image-text pairs, it exhibits limitations

spired by (Wu et al., 2024c¢), we introduce Local
Transformer Encoder (Local TE) and Global Graph
Convolutional Network (Global GCN) to obtain
temporally dependent video features F, € RN*Do,
We propose the Cross-Modality Video-Text Knowl-
edge Alignment (CVKA) to leverage the correla-
tion between visual and textual modalities in the
CLIP feature space. CVKA dynamically aligns
and adaptively aggregates text features most se-
mantically similar to the video, yielding text fea-
tures F; € RN*P:. Concurrently, we employ
Bidirectional Long Short-Term Memory (BiLSTM)
(Huang et al., 2015) and Audio Modality Feature
Adaptive Extraction (AFAE) to capture temporal
saliency in audio features, yielding the audio fea-
ture Fa € RN*Da, Subsequently, we fuse Fv, Ft,
and F, using Multi-Modality Knowledge Adap-
tive Fusion (MKAF), resulting in the fused feature
Frysed € RN*Dy  Finally, F 'fused 1S processed by
a Binary Classifier to generate frame-level anomaly
confidence, enabling coarse-grained anomaly de-
tection (i.e., classifying frames as either normal or
anomalous). Additionally, by weighting the video
features with frame-level anomaly confidence and
fusing them with all category text features, we ob-
tain the feature th. Then, by calculating the simi-
larity between Fv and th, we further achieve fine-
grained anomaly classification (i.e., determining
whether a video frame is normal or belongs to a
specific type of anomaly).
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3.3 Multi-Modality Heterogeneous
Knowledge

In WSVAD, multi-modality heterogeneous knowl-
edge integrates complementary information from
video, audio, and text, each providing distinct in-
sights into anomalous events. Specifically, the
video modality offers spatial and temporal con-
text for anomaly detection. Anomalies manifest
through dynamic object interactions and scene tran-
sitions. However, when visual information is sparse
or ambiguous, the audio modality provides a cru-
cial complementary perspective. Unlike video, au-
dio conveys auditory signals correspond to the en-
vironment and deliver explicit cues for anomalous
events. Furthermore, the text modality enhances
semantic understanding by associating category
labels with video segments. By providing clear
definitions and features for each anomaly type, the
text modality ensures that the detection process
accurately captures the true nature of anomalous
events. Thus, by integrating knowledge from these
modalities, the model gains a more comprehensive
understanding of anomalous events.

3.4 Cross-Modality Knowledge Fusion for
WSVAD

To effectively integrate multi-modality heteroge-
neous knowledge, we propose two key components:
CVKA and AFAE. CVKA modulates text features
based on the semantic alignment between video
frames and text, thereby enhancing text-to-video
relevance. AFAE identifies temporally salient re-
gions in audio, focusing on the most anomalous
intervals to extract relevant audio features. These
modules refine the fusion of cross-modality knowl-
edge in our CMHKF framework.

Cross-Modality Video-Text Knowledge Align-
ment. This section discusses the dynamic align-
ment and adaptive fusion text features based on
the visual-textual semantic correlation, which en-
hances the distinction between normal and anoma-
lous segments. CVKA is illustrated in Figure 2.

To obtain the text features that are most semanti-
cally relevant to the video features, we employ text
features as queries to precisely capture the correla-
tion between text and video frames. Specifically,
we encode the video frames and class label texts
using the pretrained CLIP model, generating video
frame features F,, = {v,}_, and text features
Fy = {t.}<_,. We compute the cosine similarity
between each text and frame feature to create a

Video Features Text Features

Top-k visual-semantic
similarity k x N

visual-semantic
similarity matrix

Figure 2: Illustration of Cross-Modality Video-Text
Knowledge Alignment (CVKA). CVKA computes the
visual-semantic similarity matrix between video fea-
tures F), and text features F;. It then applies the Top-k
algorithm to dynamically select k texts and their corre-
sponding visual-semantic similarities. Finally, it adap-
tively aggregates the selected text features based on their
Top-k visual-semantic similarity.

visual-semantic similarity matrix s;; € RNXC
capturing fine-grained correlations. Mathemati-
cally, this process can be expressed as:

+T
Ultj

8ij = ———=
Y Tl

€]

where v; represents the feature of the i-th frame
and t; represents the text feature of the j-th class.

Next, we aggregate the similarity matrix along
the temporal dimension /N to obtain the similarity
score for each class text, resulting in the corre-
sponding video-level similarity vector S; € RC,
which represents the global relationship between
feature of the j-th class and the video. Subse-
quently, we apply the Top-k algorithm to dynami-
cally select the top k category texts most relevant to
the video semantics, forming an index set KC. Top-k
visual-semantic similarity can be obtained based
on . The formulas are as follows:

N
Si=> sy je{l2....C} @

i=1
oy ()

Finally, we perform adaptive aggregation of the
selected k class texts based on the Top-k visual-
semantic similarity to achieve video-text knowl-
edge alignment:

K = argtop(S) = {c1,c2,. ..

1 exp(sij/T)
-7 J

k jek ZfL exp(s;;/T) @)
F, = [Fy; Fo;...; Fy] € RNV

where 7 is a temperature parameter that controls
the distribution of similarity scores.

%
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Audio Modality Feature Adaptive Extraction.
In the CVKA module, we performed semantic
alignment between video and text along the tempo-
ral dimension. Next, we leverage video-text seman-
tic relevance to capture the temporal saliency of
audio features, mitigating audio noise interference.
AFAE is shown in Figure 3. Leveraging the robust
image-text alignment capabilities within the CLIP
feature space, we project the Top-k visual-semantic
similarity from CVKA onto the audio’s temporal
saliency. The projection method follows:

S 1 exp(Snj/T)

=— ~ ,ne{l,2,..,N}
’ k jek Zi:l eiUp(Sz'j/T)

4)
where Sc(ln) represents the temporal saliency of the
n-th audio frame. However, Top-k visual-semantic
similarity follows the video’s temporal sequence.
Fine-grained misalignment between video and au-
dio may lead to loss of crucial information if only
temporal saliency is used. Moreover, preserving
the continuity of anomalous events is essential. To
address these challenges, we propose a Top-k win-
dow mechanism to mitigate the fine-grained tem-
poral discrepancies between video and audio, en-
suring more accurate extraction and retention of
key event information. Specifically, we select the
top k salient frames from the audio, forming the
index set K = {Kj,Ko,...,K}. k is chosen
as |T/16] + 1). For each a; (j € K), we de-
fine a temporal window of size 2w + 1 around a;.
This window encompasses a; and its w preceding
and succeeding frames, forming the local region
W;={aj —w,...,aj,...,a; + w}. We then ex-
tend the temporal saliency of the central frame a;
to the other frames within the window, forming a
continuous and accurate temporal saliency region.
Mathematically, these can be formulated as:

ifdj € K andn € R;

a .
otherwise

" S(J) JrS(n)
(n) _ ) Pa T e
S = {Sc(bn)7

(6)
— w), min(a; + w, N)]|.
)

where R; € [max(1,a;
Finally, we aggregate the audio features using §§”
as follows:

Fy =Y F,S" (7)

where F,, represents the audio features extracted by
adaptively focusing on temporal saliency regions.

Top-k visual-semantic similarity

Window
| RES B Top k N
Nx1
Audio Features
NxD, N x D,

Figure 3: Illustration of the Audio Modality Feature
Adaptive Extraction (AFAE). The AFAE is introduced
to process audio features. Initially, AFAE projects
the Top-k visual-semantic similarity onto the temporal
saliency of the audio. This is followed by the application
of the Top-k windowing mechanism to mine temporal
saliency regions. Finally, the temporal saliency regions
are aggregated with the audio features to yield enhanced
audio features.

Multi-Modality Knowledge Adaptive Fusion.
After obtaining cross-modal knowledge from video,
text, and audio, we need to effectively fuse them
for WSVAD.

At the outset, we merge the video features F,,
text features Ft, and audio features Fa to construct
the multi-modality joint representation J € RN,
Subsequently, each modality feature F,, F}, and
F, undergoes individual processing with J through
a cross-attention mechanism, followed by a feed-
forward layer to derive the interacted modality rep-
resentations Fi™, Fi"t and Fi", These interacted
features are concatenated and then added with J,
and collectively passed through a linear projection
layer to yield the ultimate fused multi-modality rep-
resentation Fryseq € RY*P#. This holistic method-
ology effectively amalgamates the distinct modality
features to form a cohesive representation that en-
capsulates the diverse multi-modality information
inherent in the dataset.

3.5 Objective Function

For coarse-grained binary classification, we use a
Binary Classifier to project Fy,s.q into category
space, yielding a frame-level anomaly score. Fol-
lowing (Wu et al., 2022b), we average the top k
anomaly scores for the video-level prediction p..
We then compute the binary cross entropy between
p. and ground-truth for classification loss LpcE.
For fine-grained multi-class classification, we
introduce the MIL-Align mechanism (Wu et al.,
2024c¢). We compute the alignment map A by eval-
uating the similarity between video frame features
and all category text features. The top k similar-
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ity scores for each category are averaged, yielding
the vector M = {m, ..., m¢c}. We then perform
multi-class prediction to ensure that the similarity
between the video and the correct text surpasses
that of the incorrect texts. First, the procedure for
computing the multi-class prediction is as follows:

i exp (mi/7)
Py = C ®)
Zj:l exp (m;/T)
Next, we compute the binary cross entropy between
the video prediction plj} and ground-truth to obtain
the loss LycE-

In addition, we introduce a contrastive loss Ly 4
based on normal and abnormal categories to distin-
guish between normal and abnormal text features.
We propose a contrastive loss £ 4 4 based on abnor-
mal categories to differentiate between features of
different abnormal classes. The two loss functions
are defined as follows:

1 oot
Lang= —— (1+” “i) 9)
C—-1 Z tnll|lta; |l

Loax = I
(€~ 1)(C~2) 25 2 |Tta e |
(10)

where ¢ = 1 corresponds to the text feature ¢,, of
the normal category, and ¢,; represents the text
feature for the j-th anomalous category.

Overall, objective function £ as follows:

L=Lpcg+LnceE+MLNna+ XLyga (11)

4 Experiments and Results

4.1 Dataset and Evaluation Metric

XD-Violence (Wu et al., 2020) is widely used in
WSVAD and is the only dataset that includes both
visual and auditory modalities. It consists of 4,757
untrimmed videos (totaling 217 hours) from real-
world domains, including films, sports, online plat-
forms, and surveillance, featuring six types of vio-
lent incidents. The dataset poses challenges due to
its rich artistic content, such as perspective shifts
and dynamic camera movements. Previous ap-
proaches used datasets (Sultani et al., 2018; Liu
et al., 2018) as benchmarks, but these unimodal
datasets are inadequate for evaluating cross-modal
interactions.

Table 1: Coarse-grained comparisons on XD-Violence.
Best result is bolded and second best result is
underlined. * indicates re-implemented by fusing audio
and visual features as inputs.

Method ‘ Publication ‘ Modality ‘ AP (%)
Unsupervised learning based methods
SVM baseline NIPS’99 Video 50.78
Hasan et al. (Hasan et al., 2016) CVPR’16 Video 30.77
GODS(Wang and Cherian, 2019) | ICCV’19 Video 61.56
CLAP (Al-Lahham et al., 2024) CVPR24 Video 77.65
‘Weakly supervised learning based methods
Sultani et al. (Sultani et al., 2018) | CVPR’18 Video 73.20
HL-Net(Wu et al., 2020) ECCV’20 Video + Audio 78.64
RTFM (Tian et al., 2021) ICCVv 21 Video 77.81
RTFM* (Tian et al., 2021) ICCVv 21 Video + Audio 78.10
Lietal. (Liet al., 2022) AAAT22 Video 78.28
S3R (Wu et al., 2022a) ECCV’22 Video 80.26
MACIL-SD (Yu et al., 2022) ACMMM’22 | Video + Audio 83.40
TEVAD (Chen et al., 2023a) CVPR’23 Video + Text 79.80
Mgfn (Chen et al., 2023b) AAAT'23 Video 80.11
Cho et al. (Cho et al., 2023) CVPR’23 Video 81.30
UR-DMU (Zhou et al., 2023) AAAT'23 Video 81.66
UR-DMU* (Zhou et al., 2023) AAAT'23 Video + Audio 81.77
Zhang et al. (Zhang et al., 2023) CVPR’23 Video + Audio 81.43
REWARD (Karim et al., 2024) WACV’24 Video 77.71
Wu et al. (Wu et al., 2024a) CVPR24 Video + Text 76.03
TPWNG (Yang et al., 2024) CVPR’24 Video + Text 83.68
VadCLIP (Wu et al., 2024c) AAAT24 Video + Text 84.51
Ours(light) — Video + Audio + Text | 84.65
Ours(full) — Video + Audio + Text | 86.57

Table 2: Fine-grained comparisons on XD-Violence.
Best result is bolded and second best result is
underlined.

mAP@IoU (%)
Method 01 02 03 04 05 AVG
Random Baseline 037 027 006 003 001 0I5
Sultani et al. (Sultani et al., 2018) | 20.08 1372 844 506 2.81 10.02
3C-Net (Narayan et al., 2019) 2377 1778 1190 828 587 1352
W-TALC (Paul et al., 2018) 2627 1887 1383 950 655 1500
Wu et al. (Wu et al., 2022b) 3535 2802 2094 1501 1033 21.93
VadCLIP (Wu et al., 2024¢) 37.03 3084 2338 17.90 1431 24.70
Ours(light) 3774 2998 2409 1867 13.84 24.86
Ours(full) 3831 3212 2568 2093 1647 2670

Evaluation Metrics. We follow standardized
protocols for fair comparisons. For coarse-grained
WSVAD, we use frame-level Average Precision
(AP) as the evaluation metric (Chen et al., 2023b;
Tan et al., 2024). For fine-grained WSVAD, we
use mean Average Precision (mAP) under different
Intersection over Union (IoU) thresholds, following
video action detection protocols (Wu et al., 2023).

4.2 Implementation Details

In our network architecture, the image and text en-
coders use pre-trained CLIP (ViT-B/16)(Radford
et al.,, 2021), and VGGish for audio fea-
tures(Hershey et al., 2017). Feature dimension D
is 512. Hyperparameters include k£ = 2 (Eq. 3),
w = 2 (Eq. 6), 7 = 0.07 (Eq. 8), \y = 1 x 1073,
and Ay = 1 x 107* (Eq. 11). Video sequences
are capped at 256 frames during training. The
model was trained using PyTorch on an NVIDIA
RTX 3090 GPU, with the AdamW optimizer for
10 epochs and learning rate of 1 x 107°.
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4.3 Comparison with State-of-the-Art
Methods

Our method addresses both coarse-grained and fine-
grained WSVAD tasks. We present its performance
and compare it with state-of-the-art methods on
both WSVAD tasks.

Coarse-grained WSVAD Results. We com-
pare our method with state-of-the-art methods and
present AP results on XD-Violence (Table 1). Our
method achieves an AP of 86.57%, surpassing
the best unsupervised method (Al-Lahham et al.,
2024) by 8.92% and previous single-modality meth-
ods (Zhou et al., 2023) by 4.91%. Furthermore,
compared to recent multi-modality weakly super-
vised methods, our approach outperforms the best-
performing visual-audio method (Yu et al., 2022)
by 3.17%, and exceeds the best video-text method
(Wu et al., 2024c¢) by 2.06%. To further validate
the effectiveness of our CVKA and AFAE, we per-
formed light fusion of audio, video, and text fea-
tures while retaining the structure of other mod-
ules. Without CVKA, we input all text features
to demonstrate the performance of simple multi-
modality integration, resulting in a lower AP of
84.65%. Results indicate that superior performance
arises not only from the richer combination of au-
dio, video, and text modalities but also from CVKA
and AFAE facilitating modality-aware interactions
for more accurate detection. In conclusion, our
method outperforms both identical input modality
and other multimodal approaches, validating its
effectiveness.

Fine-grained WSVAD Results. Table 2
presents a comparison between CMHKF and other
methods on the fine-grained task. As the data
indicate, fine-grained WSVAD is evidently more
challenging than coarse-grained WSVAD, as it re-
quires considering both multi-class classification
accuracy and the continuity of detected segments.
From Table 2, it can be observed that our method
significantly outperforms previous works on the
XD-Violence dataset, achieving an AVG mAP of
26.70%, which is 2.00% higher than the best perfor-
mance of previous works (24.70%). Similarly, we
performed light fusion of the audio, video, and text
features, resulting in a lower AVG mAP of 24.86%.
This further demonstrates the effectiveness of our
method in adaptive cross-modal knowledge learn-
ing, optimizing the utilization of multi-modality
data for WSVAD tasks.

Table 3: Effectiveness of the CVKA. Best result is
bolded and second best result is underlined.

k
0 1 2 3 4 5 6 7
w/o CVKA@AP(%) 83.65 — — —

w/ CVKA@AP(%) — 8526 86.57 86.24 8586 8572 8549 8541
w/o CVKA@AVG mAP(%) | 2249 — — —
w/ CVKA@AVG mAP(%) — 2548 26,70 26.13 2574 2545 2537 25.19

Method

Table 4: Effectiveness of the AFAE. Best result is
bolded and second best result is underlined.

Method | w/o Top-k window w/ Top-k window | AP (%) AVG mAP (%)
w/o AFAE v 85.06 25.15

w/ AFAE v 85.81 26.03

w/ AFAE v 86.57 26.70

4.4 Ablation Study

Next, we conduct a series of ablation studies to
investigate the contributions of each component.
Effectiveness of the CVKA. We evaluated
CVKA’s impact on performance (Table 3). Ini-
tially, without CVKA (i.e., £ = 0), text features
were not integrated. The model achieved only
83.65% AP and 22.49% AVG mAP. After integrat-
ing CVKA and fusing all text categories (k = 7),
model achieved 85.41% AP and 25.19% AVG mAP.
This shows that semantically clear textual features
complement WSVAD. Furthermore, experiments
with k values (k = 0,1, 2,3,4,5,6,7) represented
fusion of the top k£ semantically relevant text cat-
egories. When k£ = 2, the model achieved the
highest AP of 86.57% and AVG mAP of 26.70%.
This confirms that selectively processing specific
text features in CVKA reduces interference from
irrelevant texts, aiding the model in capturing the
intrinsic characteristics of anomalous events.
Effectiveness of AFAE. To demonstrate AFAE’s
effectiveness on audio features, we conducted an
ablation study (Table 4). Results show that without
AFAE, baseline method achieved 85.06% AP and
25.15% mAP. As described in Section 2.1, AFAE
uses a Top-k window mechanism to mine audio
temporal saliency regions. When AFAE is intro-
duced with only visual-semantic similarity map-
ping for weighting audio features, excluding the
Top-k window mechanism, yields 85.81% AP and
26.03% AVG mAP. Complete AFAE delivers the
best performance. This demonstrates the effective-
ness of focusing on temporal saliency regions for
audio features, generating more compact and ben-
eficial features. Additionally, we tested different
window sizes in the Top-k mechanism (Table 5).
Window sizes W were setto 1,3,5,7,9,and 11.
Optimal performance was achieved at W = 5.
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Figure 4: The qualitative results of our method on the test videos of the XD-Violence dataset. The red line indicates
anomaly score distribution. Blue shaded regions mark anomalous event segments, with anomaly scores on the
Y-axis and video frame numbers on the X-axis. Frames with blue borders highlight anomalies, while gray-bordered

frames indicate normal segments.

Table 5: The AP and mAP results of CMHKF under
different window sizes W.

Table 7: Evaluation on Abnormal Videos Only. * in-
dicates the method was re-implemented for evaluating
performance exclusively on anomalous videos.

Method w
1 3 5 7 9 1 Method | AP (%) Ano-AP (%) | AVG mAP (%) Ano-AVG mAP (%)
AP(%) 8597 86.22 8657 8623 86.11 8573 VadCLIP* |~ 84.49 84.89 24.04 17.40
AVG mAP(%) | 25.67 2641 2670 26.03 2587 25.78 Ours 86.57 86.69 26.70 21.62

Table 6: Effectiveness of the Multi-Modality. Best result
is bolded and second best result is underlined.

Index Video Audio Text AP (%) AVG mAP (%)

1 v 81.59 21.13
2 v v 83.65 22.49
3 v v 84.81 24.32
4 v v v 86.57 26.70

Effectiveness of the Multi-Modality. Most
video anomaly detection studies have tradition-
ally focused on single modalities; only recently
have researchers begun exploring dual-modality
approaches, such as video—audio or video—text. In
contrast, our approach integrates video, audio, and
text. We tested four modality combinations: video-
only, video-audio, video-text, and video-audio-text,
as shown in Table 6. The absence of a modality can
disable the corresponding processing module. Our
experiments show that multi-modal combinations,
particularly video-audio-text, outperform single-
modal methods, improving AP and AVG mAP by
4.98% and 5.57%, respectively, compared to video
alone, and by 1.76% and 2.38% compared to the
best bimodal setup (video-text). These findings
validate the efficacy of cross-modal knowledge in-
tegration in enhancing video anomaly detection.

Evaluation on Abnormal Videos Only. Previ-
ous methods evaluated overall performance using
both normal and abnormal videos during testing.
However, evaluating performance solely on abnor-
mal videos is a crucial metric for assessing anomaly
detection capabilities. Thus, we excluded normal
videos from testing (see Table 7). Results show
that this exclusion improves coarse-grained AP. We
attribute this improvement to the more diverse and
random distribution of multi-modal features (e.g.,
video and audio) in normal videos, which intro-
duces cross-modal inconsistencies and increases
uncertainty in the model’s decision-making. In
contrast, abnormal videos contain more consistent
and salient anomaly cues. For example, explosions
show visual flashes and loud audio, offering aligned
signals. Such consistency facilitates anomaly de-
tection. However, fine-grained AVG mAP declines.
We believe that, although the consistency between
modalities enables the model to excel in distin-
guishing normal and anomalous events, different
types of anomalous events (e.g., car accidents and
explosions) are often correlated and share certain
similarities, posing a challenge in accurately iden-
tifying distinct anomalous events.
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Figure 5: The representations learned by (a) the original CLIP-based visual features and (b) the proposed CMHKF
method are visualized using t-SNE on the XD-Violence dataset.

4.5 Qualitative Results

To fully evaluate our proposed CMHKE, we also
conduct extensive qualitative experiments.

Coarse-grained Qualitative Visualization. Fig-
ure 4 shows CMHKEF’s predicted anomaly scores
on the XD-Violence dataset, demonstrating its ef-
fectiveness. In Figures 4a, 4e, and 4g, our method
accurately localizes anomalous intervals and pre-
dicts precise scores for prolonged abnormal regions.
Figures 4c, 4d, and 4f further demonstrate its capa-
bility to detect and score discontinuous anomalies.
Notably, in the darker environment of Figure 4f, the
method detects a shooting event, highlighting audio
and text contributions. Figure 4b illustrates detec-
tion of anomalies spanning entire regions. More-
over, Figure 4h shows the method’s capacity to min-
imize false positives in challenging normal videos.
High anomaly sensitivity and low normal scores
confirm the method’s robustness.

Embedding features. We used t-SNE (Van der
Maaten and Hinton, 2008) to visualize the raw
CLIP features and the representations learned by
our CMHKF model. As shown in Figure 5, the
learned representations from our model exhibit a
more distinguishable and separable feature distri-
bution than the raw input features extracted by the
CLIP model. In the feature space generated by our
model, normal and anomalous features are clearly
separated, with a distinct boundary between them.
Additionally, different types of anomalies are dis-
tinguishable, indicating that the CMHKF model
excels in both coarse-grained detection of normal
versus anomalous events and fine-grained differen-
tiation between specific anomalous event types.

5 Conclusions

In this work, we propose a novel framework named
CMHKEF, aimed at effectively integrating cross-
modality heterogeneous knowledge from video,
audio, and text. To further enable adaptive cross-
modality knowledge learning, we developed two
key modules: CVKA and AFAE. Specifically,
CVKA dynamically aligns and aggregates seman-
tically relevant text features. In parallel, AFAE is
engineered to mine temporally salient regions of
audio features, focusing on capturing key charac-
teristics within the audio. We conducted extensive
evaluations on XD-Violence, the only large-scale
audio-visual dataset, and the experimental results
demonstrate its effectiveness. In the future, we
plan to construct a new audio-visual dataset to fur-
ther validate and benchmark the effectiveness of
multi-modality approaches in this domain.

6 Limitations

While the CMHKF framework achieves significant
results, there are still some limitations. Firstly, the
evaluation of the model is currently limited to the
XD-Violence dataset, which is the only available
multimodal dataset for audio-visual violence de-
tection. Future work will focus on constructing
new multimodal datasets to more comprehensively
validate and assess the performance of the method.
Secondly, due to the limitations of weakly super-
vised learning, the text modality relies on learnable
class labels. Future research will explore the use of
large language models to generate richer textual de-
scriptions for video data to enhance the expressive
power of the text modality.
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7 Ethics Statement

The data used in this paper are sourced from open-
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A Appendix
A.1 Added Dataset and Result

In this section, we evaluate our model on the UCF-
Crime dataset, performing both coarse-grained and
fine-grained WSVAD experiments, despite the lack
of audio information, to demonstrate its effective-
ness.

UCF-Crime is a widely used, large-scale video
surveillance anomaly detection dataset, spanning
128 hours of real-world footage. It comprises
1,900 untrimmed videos across 13 anomaly cat-
egories—such as explosions, arrests, and road acci-
dents—providing diverse scenario coverage. The
dataset is split into 800 normal and 810 anoma-
lous videos for training, while 140 normal and 150
anomalous videos are used for testing.

Implementation Details. The image and text
encoders are based on the pre-trained CLIP model
(ViT-B/16) (Radford et al., 2021), with a feature
dimension of D = 512. We set the following
key hyperparameters: the Top-k selection param-
eter £ = 4 in Eq. 3; temperature 7 = 0.07 in
Eq. 8; loss-balancing weights A\; = 1 x 1073 and
Ay = 1 x 107*in Eq. 11. We trained the model
in PyTorch on a single NVIDIA RTX 3090 GPU,
employing the AdamW optimizer for 20 epochs
with a batch size of 32 and an initial learning rate
of 2 x 107°.

Coarse-grained WSVAD Results. We compare
our method with state-of-the-art methods, present-
ing the AUC results on the UCF-Crime dataset
in Table 8. Given that the UCF-Crime dataset
lacks audio data, we omit audio-related modules
in our framework and adapt the MKAF module
to facilitate the fusion of video and text modali-
ties. Despite operating with an incomplete model,
our method achieves competitive performance, at-
taining an AUC score of 88.24%. This outper-
forms the best-performing video-text dual-modal
method, STPrompt (Wu et al., 2024b), and sur-
passes the strongest single-modal approach, UR-
DMU (Zhou et al., 2023), by 1.27% in AUC. The
superior performance of our method underscores
the effectiveness of the proposed architecture, par-
ticularly the CVKA and MKAF modules. These
components demonstrate a robust ability to learn
cross-modality heterogeneous knowledge between
video and text, establishing our method as highly
effective in coarse-grained anomaly detection, even
under conditions with incomplete modality integra-
tion.

Table 8: Coarse-grained comparisons on UCF-Crime.
Best result is bolded and second best result is
underlined.

Method ‘ Publication ‘ Modality ‘ AUC (%)
Unsupervised learning based methods
SVM baseline NIPS’99 Video 50.10
Conv-AE (Hasan et al., 2016) CVPR’16 Video 50.60
CLAP (Al-Lahham et al., 2024) CVPR’24 Video 78.02
Weakly supervised learning based methods
Sultani et al. (Sultani et al., 2018) | CVPR’18 Video 75.41
GCN (Zhong et al., 2019) CVPR’19 Video 82.12
HL-Net(Wu et al., 2020) ECCV’20 Video 82.44
MIST (Feng et al., 2021) CVPR’21 Video 82.30
RTFM (Tian et al., 2021) ICCV’21 Video 84.30
MSL (Li et al., 2022) AAAT22 Video 85.30
S3R (Wu et al., 2022a) ECCV’22 Video 85.99
Cho et al. (Cho et al., 2023) CVPR’23 Video 86.10
Zhang et al. (Zhang et al., 2023) | CVPR’23 Video 86.22
UMIL (Lv et al., 2023) CVPR’23 Video 86.95
UR-DMU (Zhou et al., 2023) AAATI'23 Video 86.97
Puetal. (Puetal., 2024) TIP 24 Video + Text | 86.76
TPWNG (Yang et al., 2024) CVPR’24 Video + Text | 87.79
VadCLIP (Wu et al., 2024c) AAAT24 Video + Text | 88.02
STPrompt (Wu et al., 2024b) ACMMM’24 | Video + Text | 88.08
Ours — Video + Text 88.24

Table 9: Fine-grained comparisons on UCF-Crime. Best
result is bolded and second best result is underlined.

mAP@IoU (%)

Method 01 02 03 04 05 AVG
Random Baseline 021 0.14 004 002 00l 008
Sultani et al. (Sultani etal., 2018) | 5.73 441 2.69 193 144 324
Wu et al. (Wu et al., 2022b) 1027 701 625 342 329 605
VadCLIP (Wu et al., 2024c) 1172 783 640 453 293 6.68
Ours 1549 1199 895 640 4.88 9.54

Fine-grained WSVAD Results. Table 9
presents a comparison of CMHKEF with other meth-
ods for the fine-grained task. Despite the absence of
audio data and corresponding modules, our method
achieves a notable AVG mAP score of 9.54%, sur-
passing the previously best-performing method
(Wu et al., 2024c) by 2.86%. This result high-
lights the effectiveness of the CVKA module in
semantically aligning video and text features. By
incorporating text features that provide clearer and
more precise definitions of anomalous events, our
model effectively captures the intrinsic attributes
of various anomaly types, thus enabling more ac-
curate differentiation between distinct anomaly cat-
egories.

A.2 Added Ablation Study

Effectiveness of Loss. we conducted an ablation
study on the contrastive losses Lna and £aa, as
shown in Table 10. The results demonstrate that
Lna effectively separates normal from anomalous
textual features, while £ 5 distinguishes different
anomaly types. These losses improve the sepa-
ration of text embeddings, enabling the model to
better identify normal events and anomalies.
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Table 10: Effectiveness of the contrastive loss based
on anomaly categories Lna and L. Best result is
bolded and second best result is underlined.

Index Lpcp Lnce Lna Laa | AP(%) AVG mAP(%)
1 v v 86.15 25.98
2 v v v 86.41 26.39
3 v v v | 86.34 26.18
4 v v v v 8657 26.70

Table 11: Effectiveness of Multi-Modality Fusion Meth-
ods. Best result is bolded and second best result is
underlined.

Index Method AP (%) AVG mAP (%)
1 Bilinear & Concat 85.67 25.31
2 Bilinear & Additive  86.19 25.73
3 Concat Fusion 86.34 26.38
4 MKAF 86.57 26.70

Effectiveness of Multi-Modality Fusion Meth-
ods. We conducted ablation experiments to com-
pare different multi-modality fusion methods on
the XD-Violence dataset, with results presented
in Table 11. The fusion methods include Bilin-
ear & Concat, Bilinear & Additive, Concat Fusion,
and the Multi-Modality Knowledge Adaptive Fu-
sion (MKAF) method that we propose. Bilinear
& Concat processes features through linear layers
to ensure consistent dimensions, followed by con-
catenation. Bilinear & Additive through linear lay-
ers to ensure consistent dimensions, and combines
modality information through element-wise sum-
mation. Concat Fusion concatenates features from
the three modalities directly. The results demon-
strate that MKAF outperforms other fusion meth-
ods, achieving 86.57% AP and 26.70% AVG mAP.
This demonstrates the superiority of MKAF for
multi-modality fusion.
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