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Abstract

An important trend in the realm of large lan-
guage models (LLMs) is the development of
longer context windows. However, training
LLMs with long context windows to acquire
the capability of effectively modeling lengthy
inputs is often hindered by the scarcity of nat-
urally long-context data. Existing methods for
constructing long-context data by concatenat-
ing short documents have overlooked a cru-
cial characteristic of long-context data quality,
namely semantic dependency. In this paper, we
propose a novel framework called Retrieval,
Dependency Recognition, and Reorder for data
synthesis (RE3SYN1), which leverages seman-
tic similarity to retrieve relevant documents and
form several batches. Within each batch, the
framework comprehensively recognizes depen-
dency and utilizes them, along with a reorder
algorithm, to organize the short documents into
coherent long-context data. Comprehensive ex-
periments on multiple benchmarks indicate that
the data generated by the RE3SYN has longer
dependencies and significantly enhances the
model’s long-context capabilities.

1 Introduction

The recent emergence of large language models
(LLMs), such as the Flan series (Chung et al.,
2022), LLaMA (Touvron et al., 2023a,b; Dubey
et al., 2024) and ChatGPT (OpenAI, 2022; Achiam
et al., 2023), has brought a paradigm shift in natu-
ral language processing (NLP) due to their impres-
sive performance. Their remarkable understanding
capabilities prompts more researchers to leverage
these models in tackling more complex NLP chal-
lenges (Brown, 2020), such as book summarization
or learning new tasks on the fly from many exam-
ples (Bai et al., 2023; Zhang et al., 2023), which

*Equal contribution.
†Corresponding authors: Li Kuang and Huiming Wang.
1https://github.com/ZY0025/RE3SYN

also poses a great challenge to the ability of LLMs
to process extremely long inputs.

Due to the fact that positional encodings
of LLMs (e.g., Rotary Position Embeddings
(RoPE) (Su et al., 2024)) usually exhibit weak gen-
eralization to sequences longer than those encoun-
tered during training, these LLMs mostly choose
to extend the context length by extrapolating po-
sitional encodings and fine-tuning with a small
amount of long-context data (referred to as Long-
Context Post-training) (Chen et al., 2023b; de Vries,
2023).

Despite their exciting performance, natural long
documents are often scarce and originate from
specific domains (e.g., arXiv, Wikipedia, books,
etc.) (Chen et al., 2024), and this uneven domain
distribution of such data will lead to a degradation
of the general capabilities of LLMs and affect their
performance (Fu et al., 2024). On the other hand,
studies by (Fu et al., 2023) et al. indicate that
the quality of long document data is crucial for un-
locking the long-context modeling capabilities of
LLMs. (Chen et al., 2024) et al. further reveals
that a significant characteristic of high-quality long
documents is their stronger forward and backward
dependencies. In summary, a promising direction
is to leverage short documents to be organized into
more coherent and higher-quality long documents.

Several data engineering approaches have been
proposed in previous researches to concatenate
short documents either randomly or based on simi-
larities (Staniszewski et al., 2023; Shi et al., 2023;
Zhao et al., 2024), as shown in Figure 1. However,
these methods of concatenating short documents do
not reliably generate dependencies, resulting in the
creation of numerous pseudo-long documents and
raising concerns about data quality. This highlights
the need for a more robust framework capable of
effectively recognizing dependencies between doc-
uments and constructing high-quality long context
data for post-training.
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Figure 1: Overview of Different Synthesis Methods. Standard methods randomly mix documents into contexts, while
similarity-based methods may group overly similar documents together, which can lead to document redundancy
(Gao et al., 2024a) and result in low-quality pseudo-long documents. In contrast, RE3SYN emphasizes the
dependencies between documents, thus synthesizing higher-quality long documents with more coherent semantics.

Motivated by this, in this work, we incorporate
dependencies into the synthesis of long context
data (Fu et al., 2023; Borgeaud et al., 2022). The
underlying principle of dependencies is that the
lower the perplexity (ppl) on a pre-trained model
for the target corpus, the more fluent the seman-
tics of that corpus are, indicating higher qual-
ity. We provide a novel framework for synthe-
sizing long context data, namely Retrieval, De-
pendency Recognition, and Reorder (RE3SYN).
RE3SYN effectively recognize dependencies be-
tween short documents and concatenates them into
long-context data of a specified length based on
these dependencies.

The RE3SYN framework consists of two main
steps. Firstly, considering that the likelihood of
dependencies between documents with low seman-
tic similarity is also low, RE3SYN connects non-
redundant short documents based on semantic sim-
ilarity and divides them into several batches for sig-
nificant optimization of computational efficiency.
Secondly, it evaluates the perplexity scores of dif-
ferent combinations of short documents within
each batch using a small model to recognize de-
pendencies, and then reorders the documents ac-
cording to these dependencies. This ensures that
the RE3SYN framework can distribute dependen-
cies throughout the long documents, enhancing the
long-range modeling capabilities of LLMs. Fur-
ther, we adopt various strategies to optimize the
computational efficiency, including chunked com-
putation and evaluating perplexity with small mod-
els. Through these two steps, we concatenate short
documents into long documents with stronger de-
pendencies.

Experimental results on multiple benchmarks
and data evaluation frameworks indicate that the

training data generated by RE3SYN significantly
outperforms current data synthesis method and en-
hances the LLM’s long-context modeling capabili-
ties. Highlights of our contributions are as follows:

• To the best of our knowledge, this is the first
study to utilize dependency instead of similarity to
synthesize high-quality long-context data.

• We propose a simple yet effective data synthe-
sis framework, RE3SYN, which organizes meta-
data into more meaningful long-context data with
clearer preceding and following dependencies
through similarity retrieval and document order
adjustment.

• We balance the effectiveness and efficiency of
the RE3SYN framework, resulting in a data pro-
cessing step overhead of approximately 10% and
5% throughout the post-training process for the 7B
and 13B models, respectively.

• Compared to standard or similarity-based con-
catenation, the data obtained from RE3SYN frame-
work leads to models that demonstrate superior
performance on both short-text and long-context
benchmarks.

2 Related Work

2.1 Long-Context LLMs
There are primarily two types of methods for ex-
tending the context window of LLMs. The first
category involves directly adjusting the LLM’s
positional encodings or attention matrices (Han
et al., 2023; Xiao et al., 2023) to accommodate
longer contexts without any additional fine-tuning.
The second category builds upon this by post-
training (Xiong et al., 2023), which typically re-
sults in better performance. Some studies, includ-
ing Position Interpolation (Chen et al., 2023b),
NTK-aware (bloc97, 2023), and YaRN (Peng
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Figure 2: Framework of RE3SYN.

et al., 2023), modify the Rotary Position Encoding
(RoPE) and then perform post-training for a cer-
tain number of steps to expand the model’s context
window. MPT-7B-StoryWriter (Team et al., 2023)
utilizes the books3 dataset as the training set, fine-
tuning MPT-7B (Team et al., 2023) on sequences
of length 65K. LongLoRA (Chen et al., 2023c) im-
plements fine-tuning with LoRA (Hu et al., 2021),
expanding LLama2 (Touvron et al., 2023b) from a
4k context to 100k.

However, as reported by de Vries (de Vries,
2023), for the post-training phase, the scarcity of
long-context data presents the real challenge. As
opposed to randomly stitching together unrelated
short texts to reach a predetermined length (Chen
et al., 2023c; Li et al., 2023; Chen et al., 2023a;
Tworkowski et al., 2024), a viable direction is to
concatenate metadata into higher-quality long texts.

2.2 Long-Context Data Engineering

Recently, many studies have explored the role of
data engineering in LLM training. (Shi et al., 2023)
proposed a similar method, ICLM, placing simi-
lar documents into the same pre-training window
while ensuring that documents do not appear more
than once, focusing on training from scratch. (Gao
et al., 2024a) synthesizes long-context data by pre-
dicting queries for documents, extracting keywords,
and concatenating them based on shared keywords.

However, compared to merely "similar" docu-
ments, recent studies have delved deeper into the
definition of high-quality training data. (Chen
et al., 2024) found that the characteristic of high-
quality long-context data lies in the existence of
stronger dependency, proposing a data filtering
method called Prolong based on this insight. Al-
though data quality is ensured, data filtering meth-
ods cannot resolve the issue of the shortage of long-

context data.
Researchers have also attempted to construct

training data with clearer sequential relevance us-
ing explicit hyperlinks between documents. (Ya-
sunaga et al., 2022) merged Wikipedia documents
containing hyperlinks or citations into the input
context and pre-trained a masked language model,
but as most data sources do not come with inherent
hyperlinks, they are not a universal solution. In-
stead, we use the relative results calculated from
perplexity between documents as an basis to judge
the dependencies between documents, which pro-
vides an efficient and generalizable solution.

3 RE3SYN Framework

Figure 2 illustrates the overall framework of
RE3SYN. For a given set of short documents, con-
sidering the low likelihood of dependency among
documents with lower similarity, documents can
first be clustered to reduce overhead. Specifically,
RE3SYN is accomplished through the following
two steps: (1) Leveraging an embedding model
and dense vector retrieval system, documents are
retrieved and grouped into batches based on se-
mantic similarity, with each batch maintaining a
fixed size. (2) For each batch, an enhanced topo-
logical sorting algorithm is employed to reordering
documents by analyzing their inter-dependency.

3.1 Document Clustering

As shown in the left half of Figure 2, to cluster
documents based on similarity, we first obtain the
similar documents for each document and then con-
struct the document graph based on similarity. In
this graph, each node corresponds to a document,
and the edges between nodes represent the seman-
tic similarities between the documents. Specifi-
cally, for any document di in Docs, we use the
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Algorithm 1 Greedy Similarity Search

1: Input: Docs Graph G = (N,E)
2: N = {di ∈ Docs}
3: Nbr(di) return the neighbors list of di
4: rand(S) return a random doc
5: Output: L : {d0, d1, . . .}
6: S ← set(N)
7: L ← []
8: while S is not empty
9: d← rand(S)

10: L.append(d)
11: S.remove(d)
12: while Nbr(d) ∩ S ̸= ∅
13: d← Nbr(d)[0]
14: L.append(d)
15: S.remove(d)
16: return L

embedding model to generate the corresponding
embedding vi for each document. Next, we em-
ploy the dense vector retrieval tool FAISS (Johnson
et al., 2019) to efficiently search in large batches for
the top-k documents that have the highest semantic
similarity to each document’s vector vi, which we
denote as Nbr(di). The documents in Nbr(di) are
arranged in descending order of similarity, ensuring
that the most similar documents can be retrieved
first during subsequent traversals.

Following this, we treat all documents as nodes
N = {di in Docs} and establish the similarity
relationships between documents as edges E =
{(di, dj) for dj in Nbr(di)} to create the document
graph G = (N,E). Previous studies (Shi et al.,
2023; Gao et al., 2024a) have shown that identical
training data can be detrimental to model perfor-
mance. Hence, our goal is to traverse the document
graph to obtain a sequence of documents that mini-
mizes duplication while keeping similar documents
as close as possible (Shi et al., 2023). Specifically,
we can use a greedy similarity traversal algorithm
to find an approximate solution in this scenario,
which can be shown in Algorithm 1.

Initially, an arbitrary node from the current node
set is selected to the target document sequence, and
removed from the node set. Next, RE3SYN tra-
verses the neighboring nodes of this node until it
finds the first neighbor that is not in the node set
(i.e., an unvisited node) and continues to traverse.
Once all neighboring nodes of the current node
are in the node set, a new random node is selected
from the set. This process continues until all nodes
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Figure 3: Calculate the ppl between two documents.

have been ordered. Through the greedy similar-
ity traversal, we obtain a sequence of documents
{doc0, doc1, ...}, in which similar documents are
kept close together. This process is similar to the
approach by (Shi et al., 2023; Staniszewski et al.,
2023) in constructing long-context data based on
document similarity, but with a suitably reduced
granularity to improve efficiency. Next, we divide
the document sequence into several batches, each
containing 128 documents, for subsequent depen-
dency recognition and reordering.

3.2 Dependency Recognition

As shown in the right half of Figure 2, for any
two documents di and dj within a batch, the de-
pendency between di and dj can be assessed using
perplexity under different concatenation orders.

Specifically, if there is a dependency from dj
to di (i.e., it is more coherent for di to pre-
cede dj), the ppl([di; dj ]) should be lower than
ppl([dj ; di]), where [di; dj ] indicates that the docu-
ment di is concatenated directly before the doc-
ument dj . Therefore, we can select a smaller-
sized language model to compute ppl([di; dj ]) and
ppl([dj ; di]). If ppl([di; dj ]) is lower, we connect
an edge from dj to di to indicate a dependency
between the two documents, and vice versa.

As shown in Figure 3, to mitigate the compu-
tation overhead associated with perplexity calcu-
lations, we employed a sampling and summation
strategy. Specifically, we sampled n fixed-length,
non-overlapping chunks from both di and dj , then
calculated the perplexity for n pairs of chunks in
the specified order and summed them up to obtain
ppl([di; dj ]) for that order.

3.3 Dependency-based Reorder

Through dependency recognition, we can deter-
mine the dependency relationships between any
two documents within a batch, allowing us to cre-
ate a document dependency graph Gd = (Nd, Ed).
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Algorithm 2 Dependency-based Reorder

1: Input: Document Dependency Graph Gd =
(Nd, Ed)

2: N = {di ∈ Docs_batch}
3: Nbr(di) return the list of dj if (dj , di) ∈ Ed

4: otd(di) return the out-degree of di
5: cand_nodes return nodes with out-degree 0
6: rm_cycle(G) remove cycles from the graph
7: Output: L : {d0, d1, . . .}
8: L ← []
9: orig_otd(di)← otd(di)

10: rm_cycle(Gd)
11: while |Nd| > 0 do
12: di ← argmind∈cand_nodesorig_otd(di)
13: L.append(di)
14: for each dj ∈ Nbr(di) do
15: otd[dj ]← otd[dj ]− 1
16: end for
17: end while
18: return L

Where the nodes represent the documents in the
current batch Nd = {di in Docs_batch}, and the
dependency relationships between the documents
serve as edges Ed = {(di, dj , wij) | di, dj ∈
Nb ∧ ppl([di; dj ]) < ppl([dj ; di])}, where wij =
ppl([doci;docj ])
ppl([docj ;doci])

represents the relative size of the de-
pendency between the two documents.

Our goal is to ensure that the concatenated docu-
ments retain only unidirectional dependency rela-
tionships after reordering, which can transform to
a topological sorting problem (Kahn, 1962). The
objective is to traverse the graph and ensure that
for each directed edge (j, i), node i appears be-
fore node j in the ordering. We design an en-
hanced algorithm based on topological sorting,
called Dependency-based Reorder tailored to our
specific problem scenario, which is illustrated in
Algorithm 2.

First, we traverse the graph, upon encounter-
ing cycles, we remove the edge with the smallest
weight wij within the cycle (indicating the weakest
dependency between the two documents) to elimi-
nate the cycle, thus transforming it into an acyclic
graph. Next, we obtain all nodes with an out-degree
of zero and select the node with the highest origi-
nal out-degree among them to add to the ordered
sequence, while updating the out-degrees of its
neighboring nodes. This process continues until
all nodes are ordered. The motivation for selecting
the node with the highest original out-degree is to

prioritize those nodes that directly impact a greater
number of other nodes, thereby facilitating a tighter
arrangement of interdependent nodes.

Finally, we use the sequences obtained after
dependency-based reorder to concatenate all doc-
uments and split them into fixed-size contexts for
training.

4 Experiment Setup

4.1 Training Details

We conduct post-training on LLama2 (Touvron
et al., 2023b) models with 7B and 13B. We ap-
plied an NTK-aware (bloc97, 2023) method with
a base of 160,000 to adjust position indices, ex-
tending the model’s capability to support a context
window of 32K tokens. Both model variants were
trained with the objective of next token prediction,
with the learning rate set to 2e-5, no weight de-
cay, and a single epoch, while the global batch size
was set to 128. Additionally, we utilized over 20
steps of linear learning rate warm-up, along with
the AdamW optimizer, where β1=0.9 and β2=0.95.

To enhance the reliability of our methods, mul-
tiple trials are necessary. Given the substantial
computational resource cost of a round of exper-
iments, we conducted a total of three rounds of
experiments. The results reported in the paper are
the averages of these rounds.

4.2 Training Data

We use the open-source dataset FineWeb (Penedo
et al., 2024) for training, which contains cleaned
and deduplicated English web data from Common-
Crawl (Wenzek et al., 2019). It is worth noting
that CommonCrawl accounts for more than 80%
of LLaMA’s training data (de Vries, 2023), which
ensures that the data distribution in the pre-training
stage and the post-training stage is basically con-
sistent. We randomly sampled 40B tokens in total
from the SAMPLE-350BT (Penedo et al., 2024) ver-
sion of FineWeb. We used the RE3SYN framework
to construct our training data, which has a length
of 32K. The training dataset remains completely
consistent across all our experiments.

During the document clustering, we use the em-
bedding model all-MiniLM-L6-v2 (Reimers and
Gurevych, 2019) to generate corresponding embed-
dings for each document, with a maximum retrieval
number k = 10. To improve computational effi-
ciency in the dependency recognition, we choose
OPT-350m (Zhang et al., 2022) as the smaller lan-
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Method Test set Avg. Evaluation Context Window Size

2048 4096 8192 16384 32768

Standard proofpile 3.47 3.92 3.54 3.38 3.29 3.25
ICLM proofpile 3.16 3.81 3.35 3.05 2.85 2.74
RE3SYN proofpile 3.11 3.74 3.30 3.01 2.82 2.71

Standard PG19 10.11 10.86 10.27 9.95 9.77 9.70
ICLM PG19 10.17 11.69 10.66 9.93 9.41 9.18
RE3SYN PG19 9.87 11.08 10.25 9.68 9.28 9.07

Table 1: Sliding window perplexity (stride S=1024) of 32k-length documents truncated to evaluation context window
size on different data systhesis method base on LLaMA2 7B.

guage model to calculate perplexity, which has
been shown to maintain high accuracy with faster
speed (Chen et al., 2024). The chunk sampling
number and size are set to 4 and 128, respectively.

4.3 Baseline

We compared the RE3SYN framework with two
baseline methods: (1) The Standard randomly
concat documents in the corpus until a preset con-
text window is reached, after which it is trun-
cated (Roziere et al., 2023; Chen et al., 2023c;
Tworkowski et al., 2024; Li et al., 2023). (2)
ICLM (Shi et al., 2023) concatenates the current
document with the most similar documents in the
corpus, using the traveling salesman algorithm to
avoid duplicates. We use this open-sourced method
to represent similarity-based data concatenation so-
lutions of the same type. All methods are processed
and synthesised on the same data, going through
the same number of post-training steps to ensure
consistent computational costs.

4.4 Task Setting

We comprehensively evaluate the model’s perfor-
mance under different data processing methods,
which includes the following three tasks:

Language Modeling Task Language modeling
task measures the perplexity of the LLM on the
test set corpus, serving as one of the key indicators
for assessing LLM performance. We follow (Chen
et al., 2023c, 2024) to randomly sampled 128 doc-
uments from the total proof-pile (Azerbayev et al.,
2022) and PG19 test split, and all perplexity calcu-
lations used a sliding window method with a stride
of s = 1024.

Long-Context Task We used LongBench (Bai
et al., 2023) to evaluate the LLM’s perfor-
mance on real-world long-context tasks, including

single/multi-document question answering, sum-
marization, code completion, etc. The average
length of the tasks ranges from 5K to 15K, which
poses a significant challenge for the LLM’s un-
derstanding capabilities in ultra-long contexts. In
addition, Needle in a HayStack Task is also an
important benchmark for evaluating the retrieval
ability of LLMs. The evaluation results of Needle
in a HayStack Task can be found in AppendixA.2.

Standard Benchmark We assessed the LLM
against a selection of standard short benchmarks
from the HuggingFace Open LLM harness (Gao
et al., 2024b), thereby validating its foundational
comprehension and modeling skills.

5 Experiment Result

5.1 Language Modeling Task
We evaluated the language modeling perplexity
of LLMs trained on concatenated data using the
RE3SYN and baseline methods. Results are shown
in Table 1. Firstly, the perplexity of the RE3SYN

method is significantly better than that of the sim-
ilarity concatenation method, indicating that the
data constructed using the RE3SYN method better
stimulates the language modeling capabilities of
LLMs. Additionally, we observed that on PG19,
the performance of ICLM is slightly inferior to that
of the Standard method. We speculate this is due
to the concatenation of overly similar documents
when the context length increases to 32k, leading to
document redundancy and thus causing a decline in
performance, and the dependency recognition and
reorder of RE3SYN avoid excessive redundancy
and enhance the inter-document coherence.

5.2 Performance on LongBench
We use a real-world benchmark LongBench to as-
sess models trained with different data synthesis
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Method Model size Avg. Sgl. Multi. Sum. Few. Syn. Code.

Standard 7B 23.94 17.32 17.76 13.95 60.67 2.5 31.45
ICLM 7B 29.01 24.09 23.12 22.13 66.71 2.38 35.62
RE3SYN 7B 30.31 24.43 24.84 23.61 66.27 3.28 39.43

Standard 13B 21.28 14.72 19.93 12.59 61.00 3.14 16.31
ICLM 13B 27.95 22.28 17.23 17.49 66.29 3.0 41.46
RE3SYN 13B 29.13 21.49 23.78 18.55 66.27 3.75 40.95

Table 2: Experimental results of models with 32k context length on LongBench.

Method Model size Avg. MMLU Winogrande Hellaswag ARC_E ARC_C

Standard 7B 0.622 0.411 0.652 0.774 0.773 0.501
ICLM 7B 0.627 0.411 0.671 0.785 0.771 0.499
RE3SYN 7B 0.634 0.422 0.672 0.782 0.783 0.512

Standard 13B 0.670 0.500 0.677 0.805 0.810 0.558
ICLM 13B 0.671 0.501 0.664 0.812 0.820 0.565
RE3SYN 13B 0.674 0.502 0.673 0.810 0.815 0.569

Table 3: Performance comparison of different models on different short text benchmarks.

methods, the average results of the six categories of
tasks in LongBench are shown in Table 2. Detailed
results can be found in Appendix A.1. From this,
we can see that our method significantly outper-
forms other baseline methods overall. Specifically,
on the 7B model, RE3SYN improves by an aver-
age of 6.37% compared to standard method, and
by an average of 1.3% compared to ICLM. On the
13B model, RE3SYN improves by an average of
7.85% compared to standard method, and by an av-
erage of 1.18% compared to ICLM. These results
demonstrate the effectiveness of using the RE3SYN

framework to concatenate metadata into longer de-
pendency texts for training, suggesting that from a
data perspective, it can further address real-world
long-context tasks.

5.3 Standard Benchmark

We assessed LLMs corresponding to different
data concatenation methods on several standard
benchmarks from the Hugging Face Open LLM
leaderboard, including MMLU (Hendrycks et al.,
2020), Winogrande (Sakaguchi et al., 2021),
Hellaswag (Zellers et al., 2019),ARC_Easy and
ARC_Challenge (Clark et al., 2018). As shown
in Table 3, we can see that LLMs obtained with
RE3SYN also maintain stronger performance on
short benchmarks, outperforming baseline meth-
ods or being roughly on par. This is crucial be-

cause it indicates that the LLMs trained on concate-
nated texts with longer dependencies have not lost
their short-text capabilities while improving long-
context abilities, further validating the robustness
of our method.

6 Analysis

6.1 Balance between Effectiveness and
Efficiency

Considering that in practical applications, data pro-
cessing steps should not incur excessive overhead,
we provide some more efficient techniques, such as
clustering in Section 3.1 and chunked computation
in dependency recognition in Section 3.2, which
help us complete data preparation more quickly.

Taking 40B training tokens and a 7B model as
an example, we present the overhead (GPU·hours)
and proportions of the three stages in the entire
process in Table 4. Specifically, the three stages are
as follows: Clustering: get semantically similar
documents and greedy similarity search; Reorder:
dependency recognition and reorder; Training: We
perform post-training on the LLama2 7B using
A800 GPUs. It can be seen that the costs of Clus-
tering and Reorder are roughly equal. For the 7B
model, these two steps account for 4.6% and 5.6%
of the total cost, respectively, while the entire data
processing constitutes about 10% of the whole pro-
cess. For the 13B model, the costs of these two
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Stage GPU·Hour Proportion

Clustering 312 4.6%
Reorder 384 5.6%
Training 6144 89.8%

Table 4: The proportion of each process overhead in the
entire training phase.

stages will be reduced to 2.4% and 2.9%, respec-
tively. As the model size increases, this proportion
will decrease further, which is within an acceptable
range. On the other hand, the synthesized data us-
ing our method can be reused repeatedly and even
applied to tasks such as dialogue data construction,
further ensuring the versatility of our approach.

6.2 Document Redundancy and
Long-Dependency

Research has shown that concatenating documents
based on similarity can lead to excessively simi-
lar content in long-context data, resulting in docu-
ment redundancy, which can decrease model perfor-
mance (Gao et al., 2024a). On the other hand, long
dependencies have been proven to be an important
indicator of the quality of long-context data (Chen
et al., 2024). One important goal in the design of
the RE3SYN is to reduce redundancy and enhance
the dependency relationships between documents.
Specifically, the documents in the dataset we used
have an average length of about 1.6k, and to con-
catenate 32k of data, approximately 20 documents
are needed. We perform dependency recognition
and reordering in batches of 128 documents, al-
lowing the documents to recognize dependency
relationships with other documents that are further
apart (i.e., less similar), while effectively resolving
overly redundency arising from similarity searches.

To evaluate whether our method can ulti-
mately lead to longer dependencies, we used
the Prolong (Chen et al., 2024) framework to
compute scores based on all data concatenated
through standard, ICLM, RE3SYN and its two
variants: RE3SYNknn (use knn (Guu et al., 2020;
Levine et al., 2021) for document clustering) and
RE3SYN64doc (reorder using batches of 64 docu-
ments), taking the average. The results are shown
in Table 5. We can see that the scores obtained
using our method are significantly higher than both
baseline methods, nearly five times the random
concatenation score, and an improvement of 46%

Method Prolong score

Standard 19.432
ICLM 64.741
RE3SYN 94.587

RE3SYNknn 72.476
RE3SYN64doc 83.130

Table 5: The scores given by prolong under different
data synthesis methods for the same original data.

over similarity concatenation. This indicates that
RE3SYN surpasses current state-of-the-art methods
in synthesizing long-range dependencies in long-
texts data. Using knn for document clustering and
reordering smaller batches both lead to a reduction
in the final data dependencies. We believe this is
because the one-to-many similarity search in knn
increases document redundancy. This result also
underscores the importance of maintaining larger
batches to uncover more potential dependencies.

It is worth noting that, RE3SYN do not set longer
dependencies as an explicit synthesis goal, such as
separating two documents with dependencies as
much as possible. We believe that methods which
select the next document based on the similarity of
remaining candidate documents to the previous one,
lead to associations existing among only nearby
documents (Shi et al., 2023). In contrast, RE3SYN

calculates the dependencies between all documents
to be connected and applies an improved topologi-
cal sort to ensure that the overall sequence of docu-
ments remains more coherent, which is the source
of the long dependencies in the data produced by
RE3SYN.

7 Conclusion

In this paper, we introduce a simple and effective
data synthesis framework RE3SYN aimed at es-
tablishing stronger dependencies, which recognize
dependencies between discrete documents by rec-
ognizing dependencies on similar documents, re-
sulting in more coherent long-context data through
reordering. Extensive experiments on multiple
benchmarks demonstrate that RE3SYN can further
enhance the long context modeling capability of
LLMs. We believe this research can provide new
insights for future researchers in the direction of
high-quality data synthesis.
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8 Limitations

The following are some limitations that the
RE3SYN may face: (1) We implemented docu-
ment clustering for RE3SYN using a simple and
fast method, which could be improved by currently
available more precise similar document retrieval
methods. (2) Due to resource constraints, we vali-
dated the effectiveness of RE3SYN on the LLama2-
7B and LLama2-13B models, it is excepted to ob-
tain better performance with more base-models.
We will explore the above listed limitations further
in future studies.
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Our study do not carry any ethical concerns. Specif-
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A Experimental Details

A.1 32K Longbench Results
Table 6 and Table 7 report the detailed performance of different LLM on Longbench subtasks.

Method Model size Single-Doc QA Multi-Doc QA Code Completion

NarrativeQA Qasper MultiFieldQA HotpotQA 2WikiMultihopQA MuSiQue LCC RepoBench-P

Standard 7B 16.48 15.64 19.85 24.06 20.46 8.78 34.35 28.55
ICLM 7B 19.53 19.97 32.79 32.71 21.27 15.39 38.41 32.84
RE3SYN 7B 19.95 19.82 33.51 34.88 26.8 12.84 42.82 36.03

Standard 13B 16.03 15.96 12.18 30.06 20.28 9.47 16.72 15.89
ICLM 13B 15.02 24.89 26.93 29.02 14.49 8.19 41.15 41.77
RE3SYN 13B 12.06 23.44 28.97 36.31 21.92 13.1 42.16 39.73

Table 6: Evaluation Results on LongBench subtasks.

Method Model size Few-shot Summarization Synthetic Tasks

TriviaQA SAMSum TREC GovReport QMSum MultiNews PassageRetrieval PassageCount

Standard 7B 79.54 38.47 64.0 11.66 20.5 9.7 4.5 0.5
ICLM 7B 86.22 42.93 71.0 28.98 21.11 16.31 4.25 0.5
RE3SYN 7B 86.47 42.71 69.5 29.02 21.44 20.36 5.0 1.55

Standard 13B 81.87 37.65 63.5 10.72 19.25 7.8 5.27 1.0
ICLM 13B 83.73 41.65 73.5 25.25 23.77 3.45 5.0 1.0
RE3SYN 13B 82.92 42.38 73.5 26.02 23.78 5.84 6.0 1.5

Table 7: Evaluation Results on LongBench subtasks.

Furthermore, table 8 and table 9 report the evaluation results for LongBench-E. LongBench-E is
designed with uniform length-based sampling, ensuring a comparable amount of test data across the 0-4k,
4-8k, and 8k+ length intervals. This makes it more suitable for evaluating a model’s ability to handle
variations in input lengths.

Method Model size Avg. passage_count samsum lcc trec 2wikimqa multi_news

ICLM 7B 27.60 1.00 39.99 43.25 67.33 9.62 13.20
RE3SYN 7B 28.51 2.98 40.35 47.61 67.33 10.03 17.42

ICLM 13B 28.49 3.05 40.93 43.26 73.67 10.22 7.33
RE3SYN 13B 29.46 4.26 40.08 50.35 70.33 11.84 8.28

Table 8: Evaluation Results on LongBench-E.

A.2 Needle in a HayStack Task
Needle in a Haystack Task This task places a random statement in the middle of a long context window,
requiring the model to retrieve and output this text, evaluating the LLM’s retrieval ability in long contexts.
We set the maximum context length to 32K. The evaluation results for the LLMs corresponding to the
three methods are shown in Figure 4. RE3SYNobtains 94% needle in a haystack accuracy across all tested
depths and context length, representing a significant improvement over the 86% accuracy of the ICLM
method, and far surpassing the random synthesis method. This further highlights that using our method to
synthesis long-dependency data for LLM training can enhance the retrieval capabilities of LLMs.

A.3 32K RULER Result
This task(Hsieh et al., 2024) offers a more comprehensive evaluation of long-context language models
than simple retrieval-based benchmarks. It comprises a diverse set of tasks designed to probe a model’s
true long-context understanding and reasoning capabilities, including multihoptracing, aggregation, and
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Method Model size triviaqa multifieldqa hotpotqa gov_report repobench passage_retrieval qasper

ICLM 7B 85.32 16.67 10.68 29.37 27.85 6.50 8.30
RE3SYN 7B 82.21 16.71 11.37 28.57 31.34 6.11 8.63

ICLM 13B 84.45 14.84 10.62 25.77 39.85 8.11 8.26
RE3SYN 13B 84.42 16.03 11.57 26.92 37.50 13.39 8.02

Table 9: Evaluation Results on LongBench-E.

Method Model size Avg. 4K 8K 16K 32K

Standard 7B 66.7 82.1 71.4 62.4 50.7
ICLM 7B 71.4 85.5 76.6 65.4 57.9
RE3SYN 7B 73.8 87.0 76.2 69.7 62.1

Standard 13B 67.7 82.7 72.3 63.8 51.8
ICLM 13B 72.6 86.9 76.7 68.5 58.2
RE3SYN 13B 74.7 88.2 77.8 69.5 63.3

Table 10: Experimental results of models with 32k context length on RULER.

complex question answering, rather than merely assessing its ability to locate specific information. We
evaluated our methods in 32K RULER, and the detailed results are presented in Table 10. Our proposed
RE3SYNconsistently outperforms both the standard and ICLM methods in all context lengths tested (4K,
8K, 16K, and 32K).

Re3Syn-7b

ICLM-7b

Figure 4: Performance of ICLM-7B and RE3SYN-7B in Needle In A Haystack.
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