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Abstract

We present 𝛿-Stance, a large-scale dataset of
stances involved in legal argumentation. 𝛿-
Stance contains stance-annotated argument
pairs, semi-automatically mined from millions
of examples of U.S. judges citing precedent in
context using citation signals. The dataset aims
to facilitate work on the legal argument stance
classification task, which involves assessing
whether a case summary strengthens or weak-
ens a legal argument (polarity) and to what ex-
tent (intensity). To assess the complexity of this
task, we evaluate various existing NLP methods,
including zero-shot prompting proprietary large
language models (LLMs), and supervised fine-
tuning of smaller open-weight language models
(LMs) on 𝛿-Stance. Our findings reveal that
although prompting proprietary LLMs can help
predict stance polarity, supervised model fine-
tuning on 𝛿-Stance is necessary to distinguish
intensity. We further find that alternative strate-
gies such as domain-specific pretraining and
zero-shot prompting using masked LMs remain
insufficient. Beyond our dataset’s utility for the
legal domain, we further find that fine-tuning
small LMs on 𝛿-Stance improves their perfor-
mance in other domains. Finally, we study
how temporal changes in signal definition can
impact model performance, highlighting the
importance of careful data curation for down-
stream tasks by considering the historical and
sociocultural context. We publish the associ-
ated dataset1 to foster further research on legal
argument reasoning.

1 Introduction
Argumentation plays an important role in many ar-
eas (e.g., science, law, governance, and journalism),
where decision-making requires professionals to
sort through contradictory evidence to construct
well-reasoned, grounded arguments that acknowl-
edge (and sometimes rebut) alternative viewpoints

1https://github.com/slanglab/deltastance

(Palau and Moens, 2009). However, manual inter-
pretation of such arguments and associated evidence
is often challenging, where practitioners must nav-
igate vast amounts of information. For example,
U.S. federal courts have produced approximately
1.7 million published judicial opinions, resulting
in millions of potentially relevant precedents that
could be cited in new cases (Mahari et al., 2024).

Current tools offer limited support for this work.
LLM-based chatbots or writing assistants can gener-
ate generic text but lack strong evidence grounding,
resulting in fabricated facts and citations (Weiser,
2023). Contemporary search engines and retrieval
methods can suggest which documents are relevant,
but analysts must still manually determine how each
document connects to their argument. To help auto-
mate the drafting and analysis of legal arguments at
scale, we propose the task of legal argument stance
classification that aims to assess whether a case
summary strengthens or weakens a legal argument
(polarity) and to what extent (intensity).

Our task can be useful for many applications.
Identifying precedents relevant to an author’s argu-
ment is fundamental to legal practice. While previ-
ous methods help retrieve all relevant precedents,
the results can be superficial (see, e.g., Chapman,
2024) and require significant manual engagement.
In contrast, a legal argument stance classifier can
provide deeper analysis by helping to infer argument
stances–whether the retrieved precedents strengthen
or weaken the argument. The classifier can also
be integrated as a tool with function-calling LLMs
(Schick et al., 2023) to identify a retrieved prece-
dent’s relationship to a legal argument or evaluate
LLM-generated responses by examining the rele-
vance of cited cases to the overall argument.

Further, such technology could be incorporated
into writing assistance systems to help authors better
articulate the connection between their work and
prior research (Luu et al., 2021). For instance, it can
help assess an argument’s strength by visualizing
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stance distribution among retrieved precedents (e.g.,
if most are strengtheners, the context may be a well-
supported argument), identify flaws in an argument
by retrieving only weakeners, or detect mis-citations
in legal texts. Our task can also help identify
relationships between cases that do not cite each
other (e.g., contemporaneous cases intentionally or
unintentionally omitted as precedents).

In this work, we utilize citations to precedents
found in judicial opinions and legal writing con-
ventions to semi-automatically mine a dataset to
support our task. Specifically, we curate and re-
lease 𝛿-Stance, a large-scale dataset with millions
of annotated argument pairs, each structured as
a triple containing an argument context, a case
summary, and a stance value. These triples are
extracted from U.S. judicial opinions accessed via
the Caselaw Access Project.2 To identify the triples,
we exploit systematic regularities in prescriptive
citation signal words used by experts as part of
routine legal practice (Landes et al., 1998). Unlike
prior methods that rely on collecting costly, time-
consuming annotations by experts (Habernal et al.,
2024; Poudyal et al., 2020) or using educational
material (Bongard et al., 2022), our dataset uses a
semi-automated process to mine naturally occur-
ring expert-annotated triples grounded in real-world
historical legal practice.

Our major contributions include:

• We detail the construction of 𝛿-Stance (§3)
and provide dataset statistics and underlying
socio-cultural context (§4).

• We evaluate various stance classification ap-
proaches (§5), including zero-shot prompting
and supervised fine-tuning on our task. Our
results show that prompting proprietary LLMs
can effectively identify stance polarity, though
supervised fine-tuning is necessary to distin-
guish the intensity, underscoring the complex-
ity of legal stance classification (§5.2).

• We further conduct additional analyses in-
cluding alternative zero-shot approaches using
masked language models (§5.3), and examine
the impact of domain pre-training (§5.4) and
temporal changes in signal definitions (§5.5).

• Finally, we show 𝛿-Stance’s broader applica-
bility beyond the legal domain by demonstrat-
ing that LMs trained on this dataset improve

2https://case.law/

their argument reasoning abilities in other do-
mains (§5.6).

Overall, our work demonstrates an example of
using normative standards to harvest useful lin-
guistic data at scale, enabling the development of
automated stance/reasoning models and conducting
empirical legal studies. While 𝛿-Stance is based
on the U.S. legal citation system, our data cura-
tion methodology could be adapted to any other
jurisdiction employing citation signals in their le-
gal writing (e.g., Australia,3 Canada4), offering
promising avenues for future research.

2 Related Work
Our work engages with the following research areas:

NLP for law. Legal text presents unique NLP
challenges, including extraordinarily long docu-
ments, technical language requiring specific exper-
tise, intentional ambiguity (Chalkidis et al., 2022;
Li et al., 2023; Dai et al., 2022), and complex argu-
ment structures (Habernal et al., 2024). Moreover,
legal texts are also quite diverse in subject matter—
from local property codes to presidential powers
during national emergencies (Katz et al., 2023).

Legal reasoning. Several benchmarks evalu-
ate legal reasoning in LLMs (Guha et al., 2024;
Chalkidis et al., 2022), including statutory reason-
ing (Holzenberger et al., 2020), identifying the
best supporting statement for an argument (Zheng
et al., 2021; Liang et al., 2023) or the most likely
continuation of a given argument (Chlapanis et al.,
2024). Guha et al. (2024) introduced a compre-
hensive benchmark following the IRAC framework,
with similar efforts emerging for other jurisdic-
tions (Joshi et al., 2024; Niklaus et al., 2023; Fei
et al., 2024). Our work complements these efforts
by focusing on the fine-grained stances among le-
gal texts as expressed through citation signals, an
essential aspect of legal reasoning that has not been
addressed in prior benchmarks.

Legal retrieval. Prior work has developed
datasets and methods for the retrieval of supporting
cases (Goebel et al., 2023) or paragraphs (Mahari
et al., 2024; Goebel et al., 2024) for given queries.
Our work augments this by predicting stances for
retrieved cases or assisting in retrieving cases of
specific stances (e.g., weakeners).

Other semantic tasks. Our work relates closely
to case-based reasoning (CBR) (Kolodner, 1992;

3https://law.unimelb.edu.au/mulr/aglc/about
4https://lawjournal.mcgill.ca/cite-guide/
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Aamodt and Plaza, 1994; Das et al., 2021; Ashley
and Rissland, 1987), a computational framework
for retrieving and reusing solutions from prior ex-
periences to interpret new situations. The US legal
system is a natural domain for studying CBR as it
operates under the principle of stare decisis, Latin
for ‘to stand by things decided.’ Accordingly, our
dataset can be useful for studying CBR, where
the citation signals help assess the relevance of
retrieved precedents. Our task is also related to
defeasible reasoning, in which conclusions can be
revised or withdrawn as new information becomes
available (Koons, 2022; Rudinger et al., 2020). In
legal argumentation, conclusions may be strength-
ened or weakened by different precedents, with
citation signals indicating how each precedent af-
fects the argument. Further, the work can be viewed
as a practical application of the ordinal entailment
task (Zhang et al., 2016), where the classes have a
natural ordering among them, as do our citations.

Our task can also be viewed as a fine-grained
argument relation classification task (Lawrence
and Reed, 2020), in which case summaries serve
as reasons (positive stance) or rebuttals (negative
stance) to the claims, useful for identifying the
most convincing legal arguments (Habernal and
Gurevych, 2016). The work also relates to stance
detection. In our project, case summaries serve as
stance-takers, similar to Mohtarami et al. (2018)),
and claims embedded in argument contexts are
stance objects (Mohammad et al., 2016). Unlike
affective or epistemic relations (Biber and Finegan,
1989), our stance relations are argumentative.

Data collection for sociocultural analysis. Our
work is also related to ongoing efforts on thoughtful
curation of sociocultural data in machine learn-
ing (Jo and Gebru, 2020; Dodge et al., 2021). For
instance, we leverage the CAP’s systematic digi-
tization of the US case law, which draws from a
well-defined scholarly universe of US legal prac-
titioners, exemplifying data curation as archival
science (Jo and Gebru, 2020) while preserving so-
ciocultural context. Prior work has also highlighted
the challenges in collecting historical corpora (e.g.,
Google Books corpus) and using them for socio-
cultural analyses, noting that changes in corpus
composition can significantly impact the validity
of analyses (Pechenick et al., 2015; Schmidt et al.,
2021). Our study in §5.5 on the effect of temporal
changes in signal definition on model performance
exemplifies this aspect.

3 𝛿-Stance Dataset

3.1 Corpus Description
Caselaw Access Project (CAP). We analyze legal
arguments drawn from 7 million published judicial
opinions from U.S. federal and state courts from
Harvard’s CAP, which provides access to raw opin-
ion texts along with opinion metadata (the court, the
decision date, etc.). The CAP collection cases date
back to 1658 and include official, book-published
U.S. case law through 2020. It encompasses ju-
dicial opinions from U.S. federal courts—the U.S.
Supreme Court, 13 federal appellate courts, and
94 district courts—and U.S. state courts, includ-
ing State Supreme Courts, Intermediate Courts of
Appeals, and State trial courts.

Legal citation writing conventions. Legal au-
thors must adhere to a rigid set of citation guidelines
outlined in the Bluebook: A Uniform System of Ci-
tation, an authoritative guide for legal citation in
the U.S. The Bluebook provides a comprehensive
set of legal writing rules to ensure consistency and
clarity in legal writing and has seen widespread
adoption in the legal community.5 As Gallacher
(2006) puts it, “the Bluebook is sometimes referred
to as the “Bible” of legal citation,” highlighting its
significance in the legal system.

We draw on two key features of legal citation
writing conventions, as prescribed in the Bluebook,
to curate 𝛿-Stance. First, the authors must explic-
itly state whether a cited case supports (or weakens)
their argument and state the level of support pro-
vided by the case via a prefix, commonly known
to legal practitioners as citation signals or intro-
ductory signals. The Bluebook also provides a
comprehensive list of citation signals along with
their definitions, outlining the appropriate contexts
for their use. Second, authors are also required to
explain the relevance of each cited precedent in a
brief parenthetical.

3.2 Argument Stance Classification Task
Based on the above legal writing conventions, we in-
terpret the following argument stance classification
task:

5In addition to the Bluebook, alternative citation guides
have emerged, most notably the ALWD Citation Manual: A
Professional System of Citation, first released in 2000. De-
spite alternatives, the Bluebook continues to dominate citation
instruction (Ryan, 2022). Critically for our work, the cita-
tion signals (and their meanings) central to our analysis are
preserved in the ALWD from the Bluebook (Dickerson, 1996).
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“The defendant claimed in his brief to this court that [..] the doc-
uments ‘were detailed, identified key persons with knowledge,
involved trial strategy, [...].’ In cases in which the communications
do not contain the defendant’s trial strategy, the burden is on the
defendant to establish a sixth amendment violation by showing
that he was prejudiced by the government’s intrusion into the com-
munications. See United States v. Steele, supra, 727 F.2d 586-87
(defendants failed to show sixth amendment violation when they
failed to show that government had obtained access to defense
strategy or had obtained tainted evidence); [...] cf. United States
v. Morrison, supra, 449 U.S. 365-66 (no relief available without
showing that interference in attorney-client relationship prejudiced
defendant); but see State v. Cory, 62 Wn. 2d 371, 376, 382 P.2d
1019 (1963) (defendant can establish violation of sixth amendment
without showing that he was prejudiced by government’s intrusion
into privileged communications). It is undisputed in the present
case that the privileged communications contained trial strategy.”—
State v. Lenarz, 301 Conn. 417.

Argument Context: The defendant claimed in his brief to
this court that [..] the documents ‘were detailed, identified
key persons with knowledge, involved trial strategy, [...].’
In cases in which the communications do not contain the

defendant’s trial strategy, the burden is on the defendant to
establish a Sixth Amendment violation by showing that he was

prejudiced by the government’s intrusion into the communications.

Case summary 1: defendants failed to
show sixth amendment violation when
they failed to show that government

had obtained access to defense strategy
or had obtained tainted evidence

Case summary 2: no relief
available without showing that
interference in attorney-client

relationship prejudiced defendant

Case summary 3: defendant
can establish violation of sixth
amendment without showing

that he was prejudiced by
government’s intrusion into
privileged communications

See (+2)

Cf. (+1)
But See (−2)

Figure 1: An example paragraph drawn from the judicial opinion, State v. Lenarz, 301 Conn. 417, showing a
preceding argument context (with relevant text underlined for illustration purposes), and three relevant case citations.
Each citation yields a stance-annotated tuple, extracted heuristically from the opinion based on the legal citation
writing conventions, consisting of an argument context, a case summary extracted from the parenthetical associated
with the cited case, and a stance value interpreted from the citation signal used in the original opinion.

Given an argument context and a case
summary, the task involves predicting
the stance value by determining how
the case summary modifies the argument
context by evaluating along two dimen-
sions: polarity (whether the case sum-
mary strengthens or weakens the argu-
ment context) and intensity (the degree
of that modification).

Figure 1 shows an example from State v Lenarz on
government intrusion of privileged attorney-client
communications. The argument context discusses
when defendants must prove harm from such in-
trusions to claim a violation, with three citations
showing different stance values: United States v.
Steele strongly supports the argument as both argue
that the harm must always be proven, United States v.
Morrison provides additional support though when
seeking relief instead of violation claim, while State
v. Cory opposes this requirement. 6

Stance values. Prior research has established
frameworks for analyzing semantic dimensions. For
instance, Saurí and Pustejovsky (2012) analyzed
event factuality using two dimensions: polarity
(distinguishes between positive and negative in-
stantiations of events) and modality (the degree of
certainty, such as possible or probable). Similarly,

6The original paragraph includes citations introduced with
multiple citation signals. For illustration, we show citations
cited via see and cf. signals to demonstrate varying intensity,
and the but see signal to show different polarities. Other
signals are omitted for visual clarity.

Osgood (1957) considers two dimensions when
studying semantic interpretations of adjectives:
evaluation (word pairs like good-bad, beautiful-
ugly, and happy-sad) and potency (word pairs like
large-small, strong-weak, and heavy-light).

Drawing upon these prior semantic frameworks,
we model our legal argument stances along two
dimensions: polarity and intensity. We divide the
polarity axis into positive (+) and negative (-), and
the intensity axis is real-valued, capturing the level
of support/opposition. A stance value is then char-
acterized as a pair <polarity, intensity>, containing
a polarity and intensity value (e.g., <+,2>, abbrevi-
ated as +2). Finally, we add a neutral value on both
axes to account for summaries that neither provide
support nor opposition.

Figure 2 presents the full set of stance values,
based on signal definitions prescribed in the Blue-
book.7While the polarity can help highlight dis-
agreements or contradictory cases for a given argu-
ment, intensity distinctions can help rank the cases
such as identifying the most convincing case to
build an argument (Gleize et al., 2019).

3.3 Tuple extraction process
We split judicial opinions into paragraphs using
double-line breaks, then split each paragraph at the
first citation signal. The text preceding the signal

7The Bluebook has released several editions from 1926-
present, each featuring a list of signals and their definitions.
By the 1980s, these definitions largely stabilized into the form
we present here. For a detailed comparison of definitions in
different editions, see Dickerson (1996) and Appendix A.3:
Table 4. For its impact on model performance, see §5.5.
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Strengthener (+)Weakener (−)

Contra(−3.0)

But see (−2.0)

But Cf. (−1.0)

See generally (0)

Cf. (+1.0)
See also (+1.5)

See (+2.0)
Accord (+2.5)

E.g./No Signal (+3.0)

-3 -2 -1 0 1 2 3

0

1

2

3

Stance value = Intensity × Polarity

In
te

ns
ity

Figure 2: Stance values, ordered along two linguistic
dimensions: polarity and intensity.

serves as argument context, excluding tuples with
the context length ≤ 50 words. Manual inspec-
tion suggests this preceding text provides sufficient
context to understand citation use.

We extract cited precedents and parenthetical
texts from the text following the signal. To ensure
each precedent correctly links to its relevant context,
we restrict precedent extraction to the first sentence8

after the signal—this avoids confusion when multi-
ple arguments and precedents appear in the same
paragraph. We then extract the case summary from
the parenthetical text that appears directly after the
citation.9 To distinguish substantive explanations
from citation metadata (dates, court information),
we keep only spans >8 words.

Finally, we determine the stance values based on
the definitions of the citation signals. We use the
Bluebook’s broad categorization of signals (sup-
port/opposition) to assign polarity and signal defi-
nitions to assign intensity values. Cf has the lowest
intensity (+1) as it only "supports a proposition
different from the main proposition but sufficiently
analogous." See also ranks lower than see as it
"supports the proposition, a bit less directly than
a see cite." Signal pairs with opposite polarity but
equivalent functions (e.g., see / but see; cf / but cf )
receive equal intensity values with opposite signs.
We assign the neutral value of 0 to see generally,
defined as "cited authority provides background [..],
without providing support for the conclusion."

Annotation quality. The stance labels in the ex-
tracted tuples are based on the citation signals
assigned by actual US judges writing the legal opin-

8We built a sentence segmenter suited for legal texts, using
a logistic regression model trained on lexical features (Gillick,
2009). Details are in Appendix A.2.

9We use eyecite (Cushman et al., 2021) to identify the
location of a citation in a given text.

ions. As a result, our dataset contains high-quality
professional annotations grounded in expert legal
knowledge and normative linguistic rules, as defined
in the Bluebook, which provides explicit guidance
on the signal meaning followed by an expert com-
munity for a century. This approach also connects
to established NLP traditions of dictionary-based
semantics (e.g., Jurafsky and Martin (2025, Ch. 6)
on lexical semantics, or word sense disambiguation
as in Agirre and Rigau (1996); Yarowsky (1992))
and codebook-guided annotation (Halterman and
Keith, 2024), also offering advantages over behav-
ioral annotation-centric approaches that can face
significant practical challenges in specialized do-
mains such as law, including the requirement for
highly specialized annotators and prohibitive costs
of collecting such expert annotations.

4 Dataset Statistics

The average argument context length is 100 words
(min:20, max:2545) while case summaries aver-
age 24 words (min:10, max:189). Support signals
dominate, with the see signal being most frequent,
followed by see also (Table 1), allowing authors to
demonstrate well-supported arguments. Contradic-
tory signals are less prevalent (contra rarest, then
but cf ), as practitioners often address contradictory
cases substantively in text rather than just citing
them with negative signals. Such negative signals
are also more commonly found in academic writing,
an interesting avenue to explore for future work.
From a machine learning perspective, the significant
class imbalance in stance labels presents challenges
for multi-class classification, requiring balancing
techniques (Japkowicz and Stephen, 2002), while
the natural ordering of stances makes our dataset
valuable for ordinal classification.

Signal Stance Value Total Occurrences

e.g., +3 244,545
accord +2.5 33,697
see +2 1,265,172
see also +1.5 515,103
cf. +1 152,786
see generally 0 23,962
but cf. -1 5,371
but see -2 26,954
contra -3 1,772

All - 2,269,362

Table 1: Number of tuples extracted per signal with
corresponding stance values.

Temporal variation. The earliest tuple is from
1933, which is also when the Bluebook gained
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popularity after its release in 1926 (Cooper, 1982).
A majority of tuples (74.68%) come from the
opinions published between 2000–2020 (Figure 7,
Appendix A.4).10 As a result, our dataset primar-
ily captures the contemporary citation practices
followed in the legal community.

Most frequently cited cases Our dataset demon-
strates strong face validity. The eight most fre-
quently cited cases (cited>1000 times) establish
key procedural standards governing how courts
manage and decide cases. Examples include An-
derson v. Liberty Lobby, Celotex Corp. v. Catrett,
Matsushita Electrical v. Zenith Radio for summary
judgments, and Ashcroft v. Iqbal, Bell Atlantic
v. Twombly for standards to survive a motion to
dismiss. Conversely, the cases receiving negative
signals often did less well in establishing new stan-
dards. For example, Solem v. Helm, frequently
cited negatively, has not been overruled, but nar-
rowed by Harmelin v. Michigan, and now exists
in legal limbo, illustrating how negative signals let
judges acknowledge precedents, but also hold that
it does not control their instant decision. For a
detailed discussion, see Appendix A.5.

5 Experiments

5.1 Experimental Setup
Dataset splits. We use 14,283 tuples for training,
450 for validation, and 1,215 for testing,11 with an
equal number of tuples per class, thus ensuring that
the model performance is not biased towards one
class owing to class imbalance. We leave other
class-balancing techniques for future work. We
also ensure that the cases contributing to training
tuples are disjoint from the cases for test tuples.

Models. Among proprietary LMs, we consider
OpenAI’s GPT-4o. We also evaluate BERT-base
(fully open encoder-only transformer-based model)
and Mistral-7B-Instruct (open-weight gener-
ative LM), along with their domain-pretrained
variants LegalBERT (pre-trained on CAP cor-
pus) and Saul-7B-Instruct (pre-trained on le-
gal texts from multiple English-speaking jurisdic-
tions (Colombo et al., 2024)), enabling analysis of
domain-pretraining effects.

10This period also spans the Bluebook editions (17th-21st)
during which citation signal definitions stayed consistent.

11A test set of 1,215 examples provides ±3% confidence
intervals at 95% confidence level (Card et al., 2020).

Classification approaches. We explore zero-shot
prompting, where we assume no labeled stance clas-
sification dataset is available. The goal is to assess
existing models’ performance without relying on
large-scale data curation. We provide generative
LMs with argument-summary pairs and signal defi-
nitions and ask them to classify the pair into one of
the signals. We also explore supervised fine-tuning
on 𝛿-Stance. We take two approaches: (a) fine-
tuning all parameters of the BERT-base (0.1B)
model and (b) parameter-efficient fine-tuning of the
Mistral-7B model using low-rank adaptation (Hu
et al., 2021). Training details/prompts are provided
in Appendix A.7.

Evaluation setup. For both zero-shot and super-
vised fine-tuning approaches, we develop a nine-
class classifier and report F1 scores at three levels
of granularity: nine, five, and three-class scale.
This multi-granular evaluation helps identify model
limitations and account for different use cases, from
basic polarity to fine-grained stance classification.

5.2 Existing models’ performance on the task.
Figure 3 compares model performance
across citation signals. Fine-tuned models,
FT-BERT-base(0.1B) and FT-Mistral-7B,
outperform zero-shot ZS-GPT4o on most signals.
While ZS-GPT4o performs well on coarse polarity
distinctions (weakener F1: 0.77, strengthener F1:
0.81), it struggles with nine-class distinctions
and distinguishing direct/indirect signals in the
five-class setting (F1:0.35-0.39). Alternative
prompting methods, like in-context learning
and chain-of-thought (Kojima et al., 2022),
show no significant improvements (Table 5 in
Appendix A.6). Finally, during our experiments,
two new models were released, o1 (OpenAI, 2024)
and DeepSeek-R1 (DeepSeek-AI, 2025). Given
their strong reasoning capabilities, we evaluated
them in a zero-shot setting using the same prompt
as GPT4o though found performance comparable
to GPT4o (Table 6 in Appendix A.6). We leave a
detailed analysis for future work.

Qualitative error analyses. We observe that zero-
shot models often fail to process complex sentence
structures prevalent in law. For instance, they
often fail to distinguish between arguments from
different legal actors (e.g., confusing a litigant’s
position with the position of the author of a judicial
opinion). Models also overlook subordinate clauses
in a case summary or argument context that can flip
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e.g. (+3.0)
0.67

0.64
0.23

accord (+2.5)
0.39

0.36
0.10

see (+2.0)
0.43

0.40
0.21

see also (+1.5)
0.38
0.38

0.05

cf (+1.0)
0.16

0.27
0.22

see generally (0.0)
0.37

0.27
0.24

but cf (-1.0)
0.37

0.30
0.11

but see (-2.0)
0.39

0.46
0.21

contra (-3.0)
0.40

0.32
0.39

Direct Strengthener
0.56

0.53
0.47

Indirect Strengthener
0.50

0.57
0.43

Indirect Weakener
0.65

0.55
0.44

Direct Weakener
0.40

0.32
0.39

Strengthener
0.79
0.80
0.81

Weakener
0.81

0.69
0.75

ZS-GPT4o FT-BERT-0.1B FT-Mistral-7B

Figure 3: F1 scores of different stance classifiers at different granularity. ZS-GPT4o can distinguish polarity.
Fine-tuning on 𝛿-Stance helps improve fine-grained classification. ZS: zero-shot; FT: fine-tuned.

stance polarity. Fine-tuning helps mitigate some of
these errors, as the model is explicitly trained on
these complex sentence structures.

The fine-tuned models also perform comparably
to the ZS-GPT4o on polarity classification, despite
being much smaller in size. Among the different
fine-grained classes, fine-tuning improves the per-
formance most on the e.g., class. In these tuples,
the argument context often mentions a collective
observation (‘often courts have required [..]’, ‘A
number of courts have concluded [..]’) and the
case summary provides an example supporting this
observation (examples in Appendix A.8: Table 8).
This pattern possibly results in linguistic cues that
help the model identify the e.g., signal. Finally,
distinguishing the background class (see generally)
remains challenging for both zero-shot and fine-
tuned models, with the models mainly confusing
the class with see and e.g., classes. A detailed
confusion matrix is provided in the Appendix A.6.

5.3 Can masked language models help predict
stances in the zero-shot setting?

Our previous experiments relied on instructing gen-
erative LMs in the zero-shot setting. An alternative
approach is to pre-train a masked language model
(MLM) on CAP text and use it to assign probability
to citation signal words given the surrounding con-
text. Since MLMs are trained to identify words from
the surrounding context, pre-training on legal text

Method Model Domain Base Weighted F1

MLM BERT-0.1B General - 0.13 ±0.04
Legal-BERT-0.1B Legal BERT-0.1B 0.19 ±0.04

LLM
Prompting

GPT4o General - 0.49 ±0.04
Mistral-7B-Instruct General - 0.34 ±0.05
Saul-7B-Instruct Legal Mistral-7B-Instruct 0.19 ±0.04

Supervised
fine-tuning

BERT-0.1B General - 0.55 ±0.04
Legal-BERT-0.1B Legal BERT-0.1B 0.54 ±0.04
Mistral-7B-Instruct General - 0.58 ±0.05
Saul-7B-Instruct Legal Mistral-7B-Instruct 0.59 ±0.04

Table 2: Stance classification performance comparing
MLM, LLM prompting, and supervised fine-tuning
approaches on a reduced 4-class (supported by MLM)
version of the full task. Results show that supervised
fine-tuning performs best, significantly outperforming
both MLM and LLM methods. Colors visualize the
proximity of that value to 1.0 (blue) and 0.0 (red).

can expose the model to citation signal use in legal
contexts, an approach used in prior work for devel-
oping context-sensitive language measures (Card
et al., 2022; Cheng et al., 2024).

We use LegalBERT, a BERT model pre-trained on
CAP with domain-specific vocabulary. We concate-
nate each argument context and case summary pair
with a [MASK] token and process this masked input
through the model to compute the probabilities of
the [MASK] token being filled by citation signals.
We normalize these probabilities using softmax
across all signals and select the signal with the
highest normalized score. As MLMs are trained
to predict one token at a time, we restrict this ex-
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periment to four single-token citation signals in the
model’s vocabulary: see, contra, accord, and cf.

Table 2 shows that the MLM-based approach
achieves very low F1 scores (F1: 0.13 − 0.19),
lower than a random/majority baseline (F1: 0.25),
despite being pre-trained on legal text. In con-
trast, GPT-4o demonstrates stronger zero-shot per-
formance, achieving higher F1 scores across all ci-
tation signals. The models fine-tuned on 𝛿-Stance
consistently outperform MLM and prompting ap-
proaches, suggesting that MLM-based pre-training
on legal text is insufficient for this task. The sub-
stantial performance gain from the supervised fine-
tuning also highlights the value of 𝛿-Stance in
developing reliable stance classifiers.

5.4 Can domain pre-training help?
Prior work has demonstrated benefits of domain pre-
training (e.g., to improve LMs’ factuality (El Ham-
dani et al., 2024)). To examine whether pre-training
improves stance classification, we compare domain-
specific models against general-domain counter-
parts in zero-shot and supervised settings. For
zero-shot setting, we use two strategies: a) instruct-
ing generative LMs (Saul-LM-7B and Mistral-7B)
with prompts from §5.2, and b) using masked lan-
guage models (BERT and LegalBERT) to predict
citation signals from surrounding context. We
also evaluate all four models after supervised fine-
tuning. We consider four single-token signals for a
fair comparison with the MLM approach.

As shown in Table 2, in a zero-shot setting,
the domain-pretrained LegalBERT model performs
comparably to the BERT model. Notably, domain
pre-trained Saul-LM-7B obtains worse performance
than the Mistral-7B, possibly owing to Saul-LM’s
pre-training on texts from multiple jurisdictions
with different legal traditions, affecting its perfor-
mance on U.S.-specific 𝛿-Stance. This observation
suggests the importance of jurisdiction-specific pre-
training, an interesting avenue for future work. Sim-
ilarly, in the supervised setting, both model families
show similar performance with and without domain
pre-training. Overall, these observations suggest
that the domain-pretraining remains insufficient and
supervision from 𝛿-Stance is more crucial.

5.5 Impact of temporal change in citation
signal definitions on model performance

All our previous experiments assume consistent sig-
nal definitions across tuples. However, Bluebook
definitions evolved significantly during early ver-
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Figure 4: Fine-tuned Mistral-7B performance over the
last 10 editions of the Bluebook. The model achieves
lower F1 scores on historical tuples (10-13th editions)
when the signal definitions changed frequently, followed
by an improved performance in recent years.

sions (Dickerson, 1996; Robbins, 1999), providing
an opportunity to study how these changes affect
model performance over time. Following prior
work (Bamman, 2020; Yang and Eisenstein, 2015),
we view this as a historical domain shift and evalu-
ate our best-performing classifier, FT-Mistral-7B,
on citation tuples from different time ranges.

Figure 4 shows the model performs poorly on
historical citation tuples (10-13th Ed.) but im-
proves in later years (14th-20th Ed.), suggesting
it captures contemporary signal definitions. This
effect is pronounced for signals with frequent defi-
nition changes (Figure 5), such as see also and see
generally—from being equivalent (v2:11th Ed.), to
indicating background material (v1:10th, v3:12th
Ed.), to their current form (v4:13th Ed.-present).
See Appendix A.3 for details. Furthermore, F1
scores remain stable after 1981 despite training tu-
ple variations across editions, suggesting that once
signal definitions stabilize, we can use tuples from
data-rich years to classify tuples from years with
fewer examples, as they share the same definitions.

Another notable change involves the see signal,
whose definition was changed in the Bluebook’s
16th edition (v5) to indicate direct support (equiv-
alent to no signal or e.g.), before reverting to its
original meaning (v4) in the 17th edition (Dicker-
son, 1996; Robbins, 1999). However, model per-
formance remained stable, suggesting the original
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Figure 5: Fine-tuned Mistral-7B performance for indi-
vidual signals over the last 10 editions of the Bluebook.

definition persisted in practice.
Overall, these observations highlight the chal-

lenges posed by evolving semantic conventions
and the need for careful data curation based on
downstream application requirements (Jo and Ge-
bru, 2020). For instance, the classifier’s reliance
on contemporary signal definitions makes it well-
suited for writing assistance tools but may limit its
reliability for conducting historical analyses.

5.6 Generalization beyond the legal domain
We explore our dataset’s utility beyond the law do-
main by testing if fine-tuning models on 𝛿-Stance
improves their performance on similar tasks in
other domains. We evaluate models on the polarity
classification task (whether a premise strengthens
or weakens an argument). We train Mistral-7B
as a binary classifier on 𝛿-Stance, mapping posi-
tive signal tuples to strengtheners and negative to
weakeners. Prompt details are in Appendix A.7.

We evaluate this classifier on two prior datasets:
a) ARCT (Habernal and Gurevych, 2017): ARCT’s
test set contains 445 claim-reason pairs from news
comments, each with two warrants - correct warrant
that logically connects the reason to the claim
and incorrect warrant that supports the claim’s
opposite. We treat claim-reason pairs as arguments,
correct warrants as strengtheners, and incorrect
warrants as weakeners, evaluating using weighted
F1 scores. b) ArguAna (Wachsmuth et al., 2018):
The ArguAna test set contains 1401 argument-
counterargument pairs from debates spanning 15

domains (e.g., politics, science, health). For each
argument, we treat counterarguments as weakeners
and evaluate using recall (fraction of examples
correctly identified as weakeners), as the dataset
only contains weakeners.

Model ARCT ArguAna
(Weighted F1) (Recall)

Mistral-7B (zero-shot) 0.69±0.03 0.76±0.02
Mistral-7B (FT on 𝛿-Stance) 0.76±0.03 0.93±0.01
Mistral-7B (FT on mislabeled 𝛿-Stance) 0.42±0.04 0.89±0.02
Mistral-7B (FT on target dataset) 0.86±0.02 0.98±0.02
GPT-4o (zero-shot) 0.82±0.03 0.95±0.01

Table 3: Model performance on arguments from different
domains. The target dataset is ARCT/ArguAna.

Results. As shown in Table 3, fine-tuning on 𝛿-
Stance improves performance on both ARCT and
ArguAna compared to the zero-shot setting. One
explanation for the improved performance could
be that fine-tuning simply enhances the model’s
instruction-following abilities (Hewitt et al., 2024).
To investigate this, we train the model on a mis-
labeled version of 𝛿-Stance, assigning a random
label to an example. This model performs sig-
nificantly worse on ARCT (0.42) and achieves
0.89 recall on ArguAna—better than the zero-shot
model (0.76) but worse than fine-tuning on origi-
nal 𝛿-Stance (0.93)—suggesting that the model is
learning meaningful relationships from 𝛿-Stance.
Finally, we also examine performance upper bounds
using zero-shot GPT4-o prompting and direct fine-
tuning on ARCT and ArguAna training data. While
both methods outperform the 𝛿-Stance fine-tuned
model, they require either paid API calls or task-
specific annotations. In contrast, our 𝛿-Stance
fine-tuned model offers reasonable performance
without these resource requirements.

6 Conclusion
We present a large-scale dataset of stance-annotated
legal argument pairs and evaluate several existing
NLP methods on the stance classification task sup-
ported by this dataset. We also demonstrate the
dataset’s utility beyond law through improved cross-
domain generalization, while also highlighting how
changes in citation signal definitions can affect
model performance. Several interesting analyses
are possible as part of future work, such as using
unsupervised factor analysis (Dodds et al., 2021)
to study citation signal use in practice-based doc-
uments, or examining LLMs’ influence on legal
citation practices.
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7 Limitations

We list some of the limitations of our study, which
we hope will be useful for researchers and practi-
tioners when interpreting our analysis.

1. First, while our dataset relies on citation sig-
nals for obtaining stance values, there may be
an inherent subjectivity in how legal practi-
tioners interpret and apply these signals. How-
ever, our stance labels originate from U.S.
judges—arguably the highest-expertise anno-
tators available for this task—who deeply re-
search multiple cases, the current case be-
ing judged, and apply extensive legal train-
ing when making signal choices. Moreover,
subjectivity in semantic annotation has also
been reported in prior work (e.g., persistent
low agreement among annotators for the NLI
task (Pavlick and Kwiatkowski, 2019)), yet
such datasets remain well-studied and useful
for NLP, and similar argument relations are
essential to legal discourse. Future work could
explore methods to measure and incorporate
this subjectivity in annotations (Plank, 2022).

2. Second, we interpret the normative definitions
of each signal as prescribed in the Bluebook.
However, the actual use of these signals by
legal practitioners in judicial opinions may
sometimes deviate from their normative defi-
nitions (e.g., owing to delay in adopting new
definitions). Our analysis in §5.5 provides
an example, where the change in see signal
definition is not immediately reflected in the
practice documents. Nevertheless, our dataset
can help support such analyses in more detail,
providing valuable insights into legal citation
practices.

3. Third, our experiments evaluate several state-
of-the-art language models, selecting repre-
sentative examples from both proprietary and
open-source model categories. While we pro-
vide these results, the landscape of available
LLMs continues to evolve rapidly. Future
work could explore newer models, including
other proprietary, open-weight, and open-data
models.

4. Fourth, our approach assumes the availability
of case summaries as extracted from paren-
theticals. For writing assistance applications,

such case summaries may not be always avail-
able. Legal case summarization is an active
area of research (Akter et al., 2025) and in-
teresting future work is possible to integrate
a stance classification model with automatic
summarization models.

5. Fifth, 𝛿-Stance is currently limited to the U.S.
legal citation system. However, many other
jurisdictions (e.g., Australia and Canada) also
employ similar citation signals in their legal
writing, suggesting potential for broader ap-
plication. Future work could explore using
our approach to create datasets for other juris-
dictions, further enabling cross-jurisdictional
analysis of legal citation practices.
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A Appendix

A.1 Example tuples from our dataset
The earliest stance tuple in our dataset is from a
judicial opinion published in 1933.

One may tear down a building and deliver
the lumber and other material, or sever
the building and sell it in its entirety and
thus sell personal property, or an owner
may permit a building to be placed on
his land, agree that it is not to be affixed,
and permit the owner to come upon the
premises and remove the building. See
Clements v. Morton, 200 Ala. 390, 76
So. 306; (where a house was erected on
land of another with the understanding it
was to be the property of the one building
it). Rogers v. Cox, 96 Ind. 157, 49 Am.
Rep. 152 (where it is said there was no
proof that the building was ever annexed
to the land). Brown v. Roland, 11 Tex.
Civ. App. 648, 33 S. W. 273.’—Baird v.
Elliott, 63 N.D. 738.

A.2 Sentence segmenter details
Following the approach of Gillick (2009), for a
given opinion text, we identify potential sentence
boundaries by extracting all text spans of the form
“L. R,” where L is the word on the left side of the
period in question, and R is the word on the right.
We then predict the probability of the binary sen-
tence boundary class s, conditional on its context:
𝑃(𝑠 |“𝐿. 𝑅′′), where we use a logistic regression
model to predict probability based on features ex-
tracted from “L. R” (e.g., whether L is capitalized
or both L and R are lowercase). We use all the
features from Gillick (2009), along with our custom
features specific to legal texts (e.g., whether R is a
year, L is v.), listed in Table X.

For training, we use the sentence boundary an-
notations provided in Sanchez (2019). First, we
extract all text spans of the form "L. R". Spans
that occur within a single sentence are labeled as
non-boundaries, while spans that crossed sentence
boundaries (i.e., where L was the last word of one
sentence and R was the first word of the next) are
labeled as boundaries. We train and test the logistic
regression model on all the annotated text spans.
Our model achieves a 90% weighted F1 on the sen-
tence boundary prediction task across all text spans
extracted from sentences in the test set. Finally, we
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Edition Publication year Changes to citation signals

1st 1926 First release; mentions see, contra, cf, and but
see signals

2nd 1928 Introduced but cf
3rd 1931 No changes
4th 1934 No changes
5th 1936 Introduced accord
6th 1939 No changes
7th 1947 Introduced e.g., signal; clarified definition of

other signals
8th 1949 Reorganized and clarified definitions of all

signals
9th 1955 Clarified definitions of all signals
10th 1958 Introduced see also and see generally as sepa-

rate supplementary signals
11th 1967 Unified see generally and see also as equivalent
12th 1976 Introduced see also and see generally as sepa-

rate supplementary
13th 1981 Redefined see also as support signal
14th 1986 No changes
15th 1991 No changes
16th 1996 Revised definition of see signal; removed con-

tra signal
17th 2000 Reverted to 15th edition’s definitions
18th 2005 No changes
19th 2010 No changes
20th 2015 No changes
21st 2020 No changes; current version

Table 4: Historical evolution of The Bluebook citation
signals (1926-2020). The table tracks major changes to
the definitions of citation signals.

use the predictions for each text span to segment
a given opinion text into sentences, splitting the
opinion at each text span predicted as a sentence
boundary.

A.3 Different editions of the Bluebook

Table 4 provides an overview of how signal defini-
tions changed over time.

Figure 6 further demonstrates the performance
of our stance classifier over tuples from different
time periods. Additionally, it shows the semantic
similarity of a signal definition w.r.t the modern
definition (21st edition). For all three signals, we
find a strong positive correlation between the F1
score and the semantic similarity12 between a sig-
nal’s definition and its modern definition (21st Ed.)
(Spearman’s 𝜌: 0.80 (see), 0.72 (see also), 0.78
(see generally)) more details in Appendix A.3), sug-
gesting that model performance increases as signal
definitions evolve closer to their modern forms.

A.4 Temporal stance distribution

Figure 7 shows the temporal distribution of tuples
for each signal.

12using all-mpnet-base-v2 (Reimers and Gurevych, 2019).

Figure 6: Stance classifier performance along with
variation in signal definitions over time.

Figure 7: Number of stance tuples extracted per decade.

A.5 Most frequently cited cases in 𝛿-Stance
dataset.

Figure 8 shows the most frequently cited cases in
our dataset, along with how often these cases were
cited using different citation signals.

Figure 8: Most frequently cited cases in our dataset and
their stance distribution using the gold standard labels.

The eight most frequently cited cases in our
dataset (cited>1000 times) establish key procedu-
ral standards–rules that govern how courts manage
and decide cases. For instance, the U.S. Supreme
Court case Anderson v. Liberty Lobby, which artic-
ulates the standard regarding motions for summary
judgment, is the most cited and often cited with
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supporting signals (e.g., see, see also)–unsurprising
given summary judgment is the most common pro-
cedural mechanisms frequently used in determining
whether a case will proceed to trial. Other oft-cited
cases are likewise procedural: Ashcroft v. Iqbal
and Bell Atlantic v. Twombly deal with standards
for civil cases to survive a motion to dismiss; Celo-
tex Corp. v. Catrett specify burden of proof in
summary judgment motions and interpretation of
a key part of Federal Rules of Civil Procedure,
and Matsushita Electrical v. Zenith Radio specify
standards for summary judgment in antitrust cases.

On the other hand, cases frequently receiving
negative signals (though at lower magnitudes) in-
clude Floral Trade Council v. U.S. due to its
complexity and the regulatory ambiguity, Wellness
International Network v. Sharif due to the defen-
dant’s behavior and the limits of non-Article III
courts’ authority, and Solem v. Helm (463 U.S. 277).
Solem v. Helm is particularly interesting - while
not overruled, its three-part test for determining
disproportionate criminal punishments potentially
violating the 8th Amendment was later narrowed
by Harmelin v. Michigan and now exists in legal
limbo. leading judges to acknowledge but not fol-
low it. Therefore, the treatment with more negative
signals operates as a mechanism for judges to ac-
knowledge a case’s existence, but to hold that it
does not control their instant decision.

Overall, our dataset demonstrates strong face
validity, with the most frequently cited cases estab-
lishing key procedural standards, reflecting their
critical role in shaping how courts manage and
decide cases. As such, the dataset demonstrates
the enduring influence of these cases on procedural
decisions in the U.S. courts, and the key role of
procedure towards judicial decision-making. Con-
versely, cases that did less well in establishing new
standards provide evidence that our approach can
also uncover the flip side of the coin, with prece-
dents that are difficult to apply leading to more
negative interactions in future decisions.

A.6 Detailed performance of models
Confusion matrix for nine-class classifiers. Fig-
ure 9 shows the confusion matrix for three models:
GPT4o in a zero-shot setting, fine-tuned BERT, and
fine-tuned Mistral-7B model.

Alternative prompting approaches for GPT4-
based nine-class classifier. Table 5 shows per-
class F1 scores across different prompting ap-

Signals ZS-GPT4o CoT-GPT4o 9Shot-GPT4o FT-BERT-0.1B FT-Mistral-7B

e.g., (+3.0) 0.23±0.05 0.24±0.04 0.2±0.06 0.64±0.07 0.67±0.06
accord (+2.5) 0.10±0.06 0.04±0.04 0.12±0.07 0.36±0.07 0.39±0.08
see (+2.0) 0.21±0.06 0.13±0.06 0.22±0.06 0.40±0.07 0.43±0.07
see also (+1.5) 0.05±0.05 0.08±0.06 0.15±0.05 0.38±0.07 0.38±0.07
cf (+1.0) 0.22±0.07 0.24±0.07 0.30±0.08 0.27±0.07 0.16±0.07
see generally (0.0) 0.24±0.08 0.19±0.07 0.3±0.09 0.27±0.08 0.37±0.07
but cf (-1.0) 0.11±0.06 0.22±0.08 0.25±0.08 0.3±0.08 0.37±0.07
but see (-2.0) 0.21±0.06 0.18±0.07 0.27±0.07 0.46±0.07 0.39±0.07
contra (-3.0) 0.39±0.07 0.41±0.07 0.35±0.08 0.32±0.08 0.4±0.08

weighted average 0.20±0.02 0.19±0.02 0.24±0.02 0.38±0.03 0.40±0.03

Table 5: F1 scores across different models and prompting
strategies. ZS: zero-shot; CoT: chain-of-thought; 9Shot:
in-context learning with one demonstration per class;
FT: fine-tuned.

Signals ZS-GPT4o OpenAI o1 DeepSeek-R1

e.g., (+3.0) 0.23±0.05 0.27±0.04 0.26±0.04
accord (+2.5) 0.10±0.06 0.26±0.07 0.33±0.07
see (+2.0) 0.21±0.06 0.17±0.06 0.06±0.05
see also (+1.5) 0.05±0.05 0.01±0.02 0.04±0.04
cf (+1.0) 0.22±0.07 0.23±0.07 0.23±0.07
see generally (0.0) 0.24±0.08 0.08±0.06 0.13±0.07
but cf (-1.0) 0.11±0.06 0.08±0.06 0.18±0.08
but see (-2.0) 0.21±0.06 0.18±0.07 0.21±0.07
contra (-3.0) 0.39±0.07 0.50±0.07 0.43±0.07

weighted average 0.20±0.02 0.20±0.02 0.21±0.02

Table 6: Performance comparison measured using F1
scores across different models.

proaches.

Detailed performance of four-class classifiers.
Table 7 shows per-class F1 scores across different
classification approaches.

A.7 Model training and prompt details
We fine-tune BERT-0.1B for 10 epochs, with a learn-
ing rate of 5𝑒−6 and a batch size of 32, selecting
the checkpoint with the lowest validation loss. For
Mistral-7B, we fine-tune low-rank adapter matri-
ces in attention and feed-forward layers for 1 epoch
with a learning rate of 2𝑒−4 and batch size of 8. Fig-

Method Model F1

contra (-3.0) cf (+1.0) see (+2.0) accord (+2.5) weighted

MLM BERT 0.06±0.05 0.01±0.03 0.41±0.05 0.06±0.05 0.13 ±0.04
Legal-BERT 0.04±0.05 0.07±0.05 0.42±0.05 0.23±0.08 0.19 ±0.04

LLM
Prompting

GPT4o 0.68±0.06 0.39±0.07 0.49±0.06 0.38±0.08 0.49 ±0.04
Mistral-7B-Instruct 0.48±0.09 0.40±0.08 0.43±0.07 0.06±0.06 0.34 ±0.05
Saul-7B-Instruct 0.01±0.03 0.39±0.05 0.19±0.07 0.15±0.07 0.19 ±0.04

Supervised
fine-tuning

BERT 0.54±0.08 0.38±0.08 0.63±0.06 0.64±0.06 0.55 ±0.04
Legal-BERT 0.50±0.07 0.41±0.06 0.61±0.09 0.62±0.06 0.54 ±0.04
Mistral-7B-Instruct 0.75±0.05 0.17±0.08 0.70±0.06 0.71±0.06 0.58 ±0.05
Saul-7B-Instruct 0.74±0.05 0.25±0.05 0.69±0.08 0.69±0.07 0.59 ±0.04

Baselines Random (uniform) 0.25±0.06 0.25±0.06 0.25±0.06 0.25±0.06 0.25 ±0.03
Majority class 0.00 0.00 0.40 0.00 0.25

Table 7: Stance classification performance comparing
zero-shot methods (using MLM and LLM prompting),
supervised fine-tuning, and baseline models on four
single-token citation signals, supported by the MLM
framework. Colors visualize the proximity of that value
to 1.0 (blue) and 0.0 (red).
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Figure 9: Confusion matrix for GPT4o and the fine-tuned models.

Below is an instruction that describes a task, paired with an input that provides
further context. Write a response that appropriately completes the request.

### Instruction: You will be provided with an argument and a premise.
Your task is to determine the most appropriate citation signal to connect the
premise with the argument.
Answer choices:
(1) Contra
(2) Cf
(3) See
(4) Accord

### Input:
Argument: <argument>{}</argument>
Premise: <premise>{}</premise>

### Response: {}

Figure 10: Prompt used for fine-tuning Mistral-7B model
for four-class stance classification.

ure 10, Figure 12 and Figure 11 show the prompts
used.

A.8 Qualitative Analysis
Table 8 provides example tuples with ‘e.g.’ as the
gold label.

Suppose you are a legal practitioner. You will be shown a legal argument and a
premise. A premise can be connected to the argument using one of the following
citation signals.

Contra: Indicates that the premise directly states the opposite of what-
ever is said in the legal argument.
But see: Indicates that the premise clearly supports the opposite of whatever is
said in the argument, although an inference is required to see the contradiction.
But cf.: Indicates that the premise supports something similar to the opposite of
whatever is said in the legal argument.
E.g.,: Indicates that the premise directly supports the legal argument.
See: Indicates that the premise clearly, though indirectly, supports the legal
argument.
Accord: It indicates that two or more sources state or support the legal argument,
but the argument either quotes or refers to only one of them. It is most often
used to indicate that the law of one jurisdiction is in line with that of another.
When using accord, your first introduce the source and its premise that the legal
argument quotes or refers to, generally using [no signal], and then use accord to
introduce the source and its premise that was not directly referred to.
See also: Indicates that the premise supports the legal argument, albeit a bit less
directly or a bit less forcefully than a premise cited using the "see" signal.
Cf.: This signal is used to introduce a premise that supports a legal argument that
is different from the one it follows, but that is analogous enough to the argument
that it still indirectly supports the legal argument.
See generally: This signal is used to provide readers with information that they
may refer to in order to better understand the background of the legal argument.

Your task is to identify the appropriate citation signal to connect the
given premise with the given argument.
Argument: {}
Premise: {}

Question: What is the appropriate citation signal to connect the given
premise with the given argument? If you can’t tell what it is, say "Could not
classify." Provide your reasoning first and then the final answer in the next line.
The final answer should be only the citation signal name and nothing else."

Figure 11: Prompt for zero-shot nine class stance clas-
sification used for prompting GPT4o, OpenAI o1 and
DeepSeek-R1 models.
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Argument Context Case Summary

“[R]elief under Section 11(a) [of the FAA) is limited to ‘simple formal, descriptive, or mathematical mistake,’
Stroh Container Co. v. Delphi Industries, Inc., 783 F.2d 743, 749 (8th Cir. 1986), not disagreement over factual
or legal decisions deliberately made. Most cases discussing Section 11(a) address the alleged miscalculation
of figures. These cases make clear that the provision reaches only computational errors, not legal or factual
mistakes concerning the amount of damages that should be awarded.

error in determining start and stop dates for interest is not correctable
under Section 11(a).

The district court’s order did not give similar attention to Mr. Ellibee’s remaining claims. In particular, we
note the lack of discussion related to allegations that the parole board retaliated against him because of his
litigation activities on behalf of himself and other prisoners. “Prison officials may not retaliate against ... an
inmate because of the inmate’s exercise of his right of access to the courts” and “[i]t is well established that
prison officials may not unreasonably hamper inmates in gaining access to the courts.” Smith v. Maschner, 899
F.2d 940, 947 (10th Cir.1990). This court and other federal courts have recognized actionable constitutional
claims in inmates’ allegations of denial of parole in retaliation for filing lawsuits.

reversing a district court’s dismissal of a parole-retaliation claim as
frivolous.

Regarding the first factor, to determine if a natural father of a newborn child has taken diligent, affirmative action,
courts measure the putative father’s efforts to make a financial commitment to the upbringing of the child, to
legally substantiate his relationship with the child, and to provide emotional, financial, and other support to the
mother during the pregnancy. Following the holdings in Quilloin and Lehr, often courts have required the
father to use those legal mechanisms within his control that would entitle him to notice under the state’s statutes,
i.e., acknowledge or prove paternity, agree to a support order, or file with a putative father registry, and have
done so even if a statute does not specify that adherence is required.

no constitutional infirmity in state court proceedings in which biological
father was excluded because he had failed to establish parentage according
to state law.

We stress that there are many different types of situations in which multiplicity issues arise, and we do not
purport to set forth a general waiver rule covering all situations. At the same time, we note that this is not the
first time we have found a double jeopardy claim waived.

failure to raise multiplicity claim resulted in treating the claim in the
ineffective assistance context after trial.

The availability of interest in an action arising under a federal statute is governed by federal law, not the law of
the forum state. See Norfolk & Western Railway Co. v. Liepelt, 444 U.S. 490, 493, 100 S.Ct. 755, 757, 62
L.Ed.2d 689 (1980) (“questions concerning the measure of damages in an FELA action are federal in character”);
Faulkenberry v. Louisiana & Arkansas Railway Co., 551 F.2d 650 (5th Cir.1977). Title 28 U.S.C. § 1961
provides for postjudgment interest on money damages recovered in federal court. Neither this section nor the
FELA itself, however, contains any provision concerning the availability of prejudgment interest as part of a
plaintiffs compensation. A number of courts have concluded on the basis of Congress’ silence that state laws
authorizing prejudgment interest cannot be invoked in an FELA action.

Congress’ silence concerning prejudgment interest is “indicative of a
considered purpose that no interest should be allowed in [FELA] actions
prior to verdict;” state statutes are therefore superseded

Table 8: Examples demonstrating a pattern in tuples with the e.g., gold label, where the argument context presents a
broad observation about multiple cases or instances, and the case summary provides a specific supporting example.

Below is an instruction that describes a task, paired with an input that provides
further context. Write a response that appropriately completes the request.

### Instruction: You will be provided with an argument and a premise.
Your task is to determine the most appropriate citation signal to connect the
premise with the argument.
Answer choices:
(1) Contra
(2) But see
(3) But cf
(4) See generally
(5) Cf
(6) See also
(7) See
(8) Accord
(9) E.g.,

### Input:
Argument: <argument>{}</argument>
Premise: <premise>{}</premise>

### Response: {}

Figure 12: Prompt used for fine-tuning Mistral-7B model
for nine-class stance classification.
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