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Abstract

Seed science is essential for modern agriculture,
directly influencing crop yields and global food
security. However, challenges such as interdis-
ciplinary complexity and high costs with lim-
ited returns hinder progress, leading to a short-
age of experts and insufficient technological
support. While large language models (LLMs)
have shown promise across various fields, their
application in seed science remains limited due
to the scarcity of digital resources, complex
gene-trait relationships, and the lack of stan-
dardized benchmarks. To address this gap,
we introduce SeedBench1—the first multi-task
benchmark specifically designed for seed sci-
ence. Developed in collaboration with domain
experts, SeedBench focuses on seed breeding
and simulates key aspects of modern breed-
ing processes. We conduct a comprehensive
evaluation of 26 leading LLMs, encompassing
proprietary, open-source, and domain-specific
fine-tuned models. Our findings not only high-
light the substantial gaps between the power
of LLMs and the real-world seed science prob-
lems, but also make a foundational step for
research on LLMs for seed design.

1 Introduction

Food security is a fundamental global concern,
with seeds serving as the foundation of agricul-
tural production. However, the seed industry faces
significant challenges, including its inherently in-
terdisciplinary nature and low economic returns.
These factors contribute to a persistent shortage of
skilled breeding scientists, a trend expected to con-
tinue over the next decade (Egan et al., 2024).The
critical shortage of agricultural scientists directly
constrains productivity improvements and the sus-
tainable growth of food production.

*Equal contribution.
†Corresponding author.
1https://github.com/open-sciencelab/SeedBench

With the rise of artificial intelligence (AI), ad-
vanced AI techniques are transforming seed sci-
ence. The integration of AI-driven solutions into
seed breeding aligns with projections that the next
agricultural revolution will be driven by smart, digi-
tal, and precision agricultural technologies (Iversen
et al., 2021). Large language models (LLMs), in
particular, offer the ability to process vast amounts
of genetic, environmental, and agronomic data, op-
timizing crop development. However, effectively
assessing and comparing LLM capabilities requires
high-quality evaluation benchmarks.

Despite the availability of LLM benchmarks for
general purpose, none have been specially devel-
oped for seed breeding, which is a field critical to
agricultural production and food security. Progress
in this domain has been slow due to a shortage of
breeding experts and limited availability of online
resources. While existing agricultural benchmarks,
such as AgEval (plant stress phenotyping) (Arshad
et al., 2024) and AgXQA (agricultural extension
Q&A) (Kpodo et al., 2024), contribute to LLM
evaluation in agriculture, they fail to address the
complex decision-making and multi-step processes
unique to seed breeding. The absence of a dedi-
cated benchmark limits the ability to systematically
measure LLM performance in this domain.

To bridge this gap, we introduce SeedBench,
a multi-task benchmark designed to simulate ex-
pert decision-making across three essential seed
breeding stages: (1) gene information retrieval;
(2) gene function and regulation analysis; and (3)
variety breeding with agronomic trait optimiza-
tion. Each task category is carefully designed
with information-rich, expert-validated question-
answer pairs, ensuring the benchmark aligns with
real-world seed breeding challenges. By providing
a structured evaluation framework, SeedBench en-
ables rigorous assessment of whether LLMs can
assist human experts, accelerate breeding work-
flows, optimize outcomes, and advance towards
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autonomous intelligent seed breeding.
As the first and most comprehensive benchmark

in this field, SeedBench systematically connects the
capabilities of LLMs with real-world breeding chal-
lenges. Developed by experts with interdisciplinary
backgrounds and Ph.D.-level expertise, SeedBench
ensures both domain relevance and scientific rigor.
Each question undergoes two-tier validation and
refinement through machine-based assessment and
human expert review, which guarantees accuracy
and reliability. To accommodate diverse evalua-
tion scenarios, SeedBench supports both one-shot
and zero-shot formats, enabling a comprehensive
assessment of LLMs in seed breeding.

We evaluate the performance of 26 leading
LLMs on SeedBench, including 7 proprietary
LLMs, 16 open-source LLMs, and 3 domain-
specific models. Recognizing that LLM perfor-
mance is highly sensitive to prompt structures, we
further analyze multiple prompt templates to en-
hance robustness. Our evaluation aims to address
the following research questions.
RQ1. What is the relationship between the reason-

ing ability of LLMs and the performance on
seed breeding tasks?

RQ2. Do domain-specific fine-tuned models out-
perform general models in seed breeding?

RQ3. What is the ideal model size for seed breed-
ing tasks?

Answering these research questions can not only
facilitate the research on LLMs on seed breeding,
an emerging topic, but also the understanding of
usage of LLMs in the field of AI for Science.

Our main contributions are as follows:
• SeedBench is the first benchmark designed to

evaluate LLMs in seed science.
• SeedBench covers key seed breeding processes,

ensuring reliability and accuracy through expert
validation.

• Extensive evaluations of LLMs are conducted to
identify their strengths and limitations, providing
insights for future AI advances in breeding.
In the following sections, Section 2 reviews re-

lated work on LLMs and agricultural benchmarks.
Section 3 describes the construction and method-
ology behind SeedBench, outlining its design, task
types, and validation process. Section 4 presents
the experimental setup, including evaluated models
and performance comparisons. Finally, we discuss
findings, limitations, and future research directions
for LLMs in seed breeding.

2 Related Work

2.1 Domain-Specific LLMs

Based on the Transformer architecture (Vaswani
et al., 2017), language models have rapidly ad-
vanced, achieving key milestones in their devel-
opment. Starting with foundational models such
as BERT (Devlin, 2018) and GPT (Radford, 2018),
subsequent breakthroughs like GPT-4 (Achiam
et al., 2023) and DeepSeek-R1 (Guo et al., 2025)
have demonstrated exceptional text generation. By
integrating specialized domain knowledge with
continual pre-training and supervised fine-tuning,
LLMs have shown potential in domains such as ed-
ucation (Gan et al., 2023), finance (Li et al., 2023b),
and healthcare (Mumtaz et al., 2024). In the agri-
cultural domain, LLMs are increasingly recognized
for their potential to enhance food production and
optimize agricultural management (De Clercq et al.,
2024; Kuska et al., 2024). However, in contrast to
the progress in these domains, leveraging LLMs for
seed breeding remains an under-explored challenge
in the field of AI for Science.

2.2 Domain-Specific Benchmarks

To effectively assess and compare LLM capabili-
ties, high-quality evaluation benchmarks are essen-
tial. While general benchmarks now cover a wide
range of areas, including causal inference (Wang,
2024), instruction following (Zhou et al., 2023),
and safety (Lin et al., 2022), domain-specific bench-
marks have also emerged. These specialized bench-
marks are found in fields such as finance (Xie et al.,
2024), geography (Li et al., 2023a), healthcare
(Chen et al., 2024a), and law (Fei et al., 2024).
These benchmarks help drive improvements by cre-
ating diverse datasets and tasks tailored to specific
applications. However, many of these benchmarks
rely heavily on website data and GPT-based re-
annotation, which may limit the data diversity and
depth of expertise, raising concerns about the relia-
bility and accuracy of the results.

In addition to data limitation, another challenge
is the difficulty of tasks, especially scientific tasks
that require additional domain knowledge. Exist-
ing agricultural benchmarks does not cover the
topic of seed breeding, a critical task in agricul-
ture. For example, AgEval (Arshad et al., 2024)
aims for plant stress phenotyping, AgXQA (Kpodo
et al., 2024) focuses on agricultural extension, and
CROP (Zhang et al., 2024) evaluates the crop
knowledge. The disparity underscores the necessity
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Figure 1: Breeding Expert Workflow Framework. We establish benchmark construction principles by consulting
domain experts to replicate real-world seed breeding decision-making processes. (1) Gene Information Retrieval,
utilizing established databases to obtain gene sequences and expression patterns; (2) Gene Function & Regulation,
employing experimental approaches (e.g., gene knockout, overexpression) to investigate gene roles in plant devel-
opment; and (3) Variety Breeding & Trait Optimization, implementing breeding techniques (e.g., hybridization,
backcrossing) combined with agronomic trait selection for stable variety development.

for specialized benchmarks to evaluate the perfor-
mance of LLMs in seed science.

3 SeedBench

This section outlines the design principles of Seed-
Bench and details its 11 evaluation task types.
SeedBench systematically evaluates LLMs in seed
breeding by aligning with the typical workflow of
breeding experts. It is structured into three pri-
mary categories: gene information retrieval, gene
function and regulation, and variety breeding and
agronomic traits. This taxonomy ensures compre-
hensive knowledge coverage and skill assessment.

3.1 Breeding Process Overview
Breeding experts typically follow three key steps
in seed selection (Figure 1; further details in Ap-
pendix A.1). These steps form the basis for Seed-
Bench’s task categorization.

3.2 Task Taxonomy
The tasks in SeedBench are categorized into three
main areas, corresponding to the seed breeding
workflow. These categories are further divided into
ten subcategories in total, ensuring a systematic
evaluation of LLM capabilities (Figure 2). The
categorization follows the practice in seed science
with the help from domain experts (Copeland and
McDonald, 2012).

3.2.1 Gene Information Retrieval
LLMs retrieve essential gene information linked
to specific traits, including key genes in biological
processes, gene sequences, functional descriptions,
and expression patterns across environments and
developmental stages. They also determine the
intracellular localization of gene products, mapping

their distribution within the nucleus, cytoplasm, or
membrane. These tasks corresponds to the initial
step of the breeding process. Specific tasks include:
• Gene Basic Information Query
• Gene Expression Pattern Query
• Gene Product Cellular Localization Query

3.2.2 Gene Function and Regulation

LLMs describe gene functions under specific ex-
perimental conditions using available data, analyze
gene product regulation of downstream genes and
pathways, and predict functions of uncharacterized
genes. These tasks align with the second step of
the breeding process. Specific tasks include:
• Gene Function Experimental Observation
• Gene Product Regulation of Downstream Genes

Analysis
• Gene Function Prediction

3.2.3 Variety Breeding and Agronomic Traits

LLMs gather information on breeding history,
methods, objectives, and agronomic traits, includ-
ing disease resistance, yield, and drought tolerance.
They also propose suitable planting regions based
on environmental factors. This aligns with the third
step of the breeding process. Specific tasks include:
• Variety Breeding Process Query
• Variety Agronomic Trait Query
• Variety Cultivation and Technical Key Points

Query
• Variety Suitable Planting Area Recommendation

3.3 Benchmark Construction

SeedBench was developed through a structured
three-step process: data collection, automatic ques-
tion generation, and two-tier quality validation.
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Figure 2: Benchmark Taxonomy Distribution. Three
core breeding steps are further divided into ten expert-
curated subcategories within SeedBench, which com-
prises a total of 2,264 questions. The percentages shown
in the diagram represent the proportion of questions in
each category relative to 2,264.

This methodology ensures a relevant, diverse, and
scientifically rigorous evaluation of LLMs.

3.3.1 Data Collection
SeedBench is built on a comprehensive breeding
knowledge base. We extracted 308,727 breeding-
related publications in English and Chinese from
publicly available sources to minimize language
bias2. These papers were converted to Markdown
using MinerU (Wang et al., 2024a) for consis-
tency, primarily consisting of open-access aca-
demic works for credibility and reusability.

Data cleaning involved three steps: (1) heuris-
tic filtering to remove noise, including corrupted

2See Appendix B.2 for detailed language composition. We
also discuss the potential impact of linguistic differences on
the model’s performance.

or irrelevant data; (2) deduplication using a local-
sensitive hashing method; and (3) scoring corpus
segments with the CCI3-HQ-Classifier (Wang et al.,
2024b) to eliminate low-quality fragments. And
we used the IndustryCorpus2 Classifier3 to exclude
content unrelated to seed breeding. These steps
filtered out 86% of low-quality or duplicate data,
yielding a corpus of 1.1 billion tokens.

From this corpus, domain experts selected 279
high-quality text segments, sourced from 113 docu-
ments, each averaging 300 words. These segments
cover 10 predefined subcategories, ensuring both
depth and breadth. Each segment is highly rele-
vant to a specific subcategory, containing multiple
knowledge points essential for model evaluation.
To aid in automatic question generation, domain
experts manually designed 293 reference questions.
For illustration purpose, we consistently use rice
to demonstrate the benchmark construction, empir-
ical evaluation, and case studies across the main
text and Appendix, given its global importance and
representativeness in seed science.4 The data col-
lection and curation for maize, soy bean, wheat,
and many other plants follow the same procedure.

3.3.2 Automatic Question Generation

Type ID Question Type Metric Count (n)
Q&A

QA-1 Multiple Choice Accuracy 199
QA-2 Multiple Answer Macro-F1 186
QA-3 Fill-in-the-Blank ROUGE-L 223
QA-4 Generation ROUGE-L 241

Summarization
SUM-1 Simple Summarization ROUGE-L 224
SUM-2 Key Information Extraction ROUGE-L 224
Reading Comprehension

RC-1 Multiple Choice Accuracy 112
RC-2 Multiple Answer Macro-F1 107
RC-3 Fill-in-the-Blank ROUGE-L 220
RC-4 Generation ROUGE-L 239
RC-5 Subcategory Classification Accuracy 278

Table 1: Benchmark Task Types. Each high-quality text
segment systematically incorporates these 11 distinct
task types to ensure diversity. ’Count (n)’ indicates the
number of questions for this particular task type after
quality validation, from the total of 2,264 questions
in SeedBench. The complete distribution statistics are
provided in Appendix C.2.

The question generation phase begins with

3https://huggingface.co/BAAI/IndustryCorpus2_
Classifier

4Rice is the most widely consumed crop in the world,
which feeds over 3.5 billion people in the world according to
Food and Agriculture Organization of the United Nations and
World Bank.
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Figure 3: Benchmark Construction Pipeline. We developed SeedBench by extracting 308,727 breeding-related
papers from English and Chinese sources and converting them into a unified Markdown format. The data underwent
rigorous cleaning, ultimately yielding a 1.1-billion-token corpus. From this, experts curated 279 high-quality text
segments, spanning 10 breeding subcategories, for generating LLM-based Q&A tasks. Validation included both
automated and expert reviews, removing low-quality entries and ensuring relevance. SeedBench offers 2,264 refined
questions across 11 task types, enabling fine-grained evaluation of LLMs in seed breeding.

expert-designed example questions across four
Q&A types: multiple choice (QA-1), multiple an-
swer (QA-2), fill-in-the-blank (QA-3), and gener-
ation (QA-4). This foundation extends to summa-
rization (SUM-1, SUM-2) and reading comprehen-
sion (RC-1 to RC-5) tasks, detailed in Table 1.

Utilizing GPT-4’s natural language processing
capabilities, unstructured text is converted into
structured knowledge dictionaries through key in-
formation extraction (Appendix F.6), capturing ge-
netic traits, phenotypic features, and practical ap-
plications. Based on these dictionaries, GPT-4 gen-
erates four Q&A task types:

• Multiple Choice Questions
• Multiple Answer Questions
• Fill-in-the-Blank Questions
• Generation Questions

Then, we generated 450 summarization ques-
tions (SUM-1, SUM-2), with two per text seg-
ment, to evaluate the model’s ability to summarize
breeding literature without requiring prior domain
knowledge. For reading comprehension tasks, the
original text segments were provided as reference
documents in the augmented context. Using GPT-
4, we rephrased the questions to require retrieval,
analysis, reasoning, and answering based on the
given document, assessing the model’s capability
in long-context breeding problems.

Additionally, we formulated 279 classification

questions, where the answer corresponds to the
category of each text segment, testing the model’s
ability to distinguish breeding areas. All questions
are available in both zero-shot and one-shot set-
tings. SeedBench thus serves as a multidimen-
sional benchmark, covering 10 thematic subcat-
egories and 11 task types for fine-grained breeding
assessment. All prompt templates that we used are
provided in Appendix F.

3.3.3 Quality Validation

Since SeedBench relies on GPT-4 for annotation,
we implemented a two-stage validation process to
ensure accuracy and reliability: automated machine
screening and manual expert review.
Automated Machine Screening. GPT-4 first as-
sessed coherence, logical consistency, and task ad-
herence for each question, filtering out those with
errors or contradictions. About 0.01% of the ques-
tions were excluded at this stage.
Manual Expert Review. Domain experts reviewed
the remaining questions for relevance and align-
ment with expert perspectives, removing irrelevant
or weakly contextualized ones (e.g., “Is rice planted
in Beijing or Shanghai?”) and eliminating about
20% of the initial set.

After validation, 2,264 high-quality questions
were retained. Detailed case studies and question
distribution are provided in Appendix C.2.
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3.4 Evaluation

The evaluation framework consists of two stages:
response standardization and task-specific scoring.
• Multiple Choice Tasks: Accuracy.
• Multiple Answer Tasks: Macro-F1.
• Fill-in-the-Blank: ROUGE-L F1 for segment-

level comparison between model predictions and
reference answers, averaged across segments.

• Generation Tasks: ROUGE-L F1 for sentence-
level comparison of full generated responses
against references. BERTScore included as an
additional evaluation metric (Appendix H.7).

Formal mathematical definitions and post-
processing methods are detailed in Appendix
D.2. To account for prompt sensitivity in LLMs,
Appendix G compares different prompt templates.

4 Experiment

4.1 Experimental Setup

Models. We compared the performance of 26
LLMs on the SeedBench, including 7 proprietary
models, such as the GPT series (Achiam et al.,
2023), Gemini series (Team et al., 2024), Claude-
3.5-Sonnet5, and GLM-4-Plus6, as well as 16
open-source models, including the Qwen series
(Yang et al., 2024a), DeepSeek-V3 (Liu et al.,
2024), Llama series (Dubey et al., 2024), InternLM
series (Cai et al., 2024), GLM-4 (GLM et al., 2024),
and Mistral (Jiang et al., 2023). Furthermore, we
evaluated 3 domain-specific models, represented
by the PLLaMa series (Yang et al., 2024b) and Ak-
sara7. This comprehensive comparison not only
highlights the relative strengths and limitations of
each model group but also provides key insights
for future research and application development.
Implementation Details. We evaluated the perfor-
mance of all models in both zero-shot and one-shot
settings. In zero-shot inference, the model input
includes only the task instructions and the query.
In one-shot inference, the model input consists of
the task instructions, an example query with its
answer, followed by the actual query. The exper-
iments were conducted using the OpenCompass8

framework. For proprietary LLMs, we performed
inference through their APIs. The evaluation of
each model took approximately 1 hour. For open-

5https://www.anthropic.com/
6https://open.bigmodel.cn/dev/api/

normal-model/glm-4
7https://huggingface.co/cropinailab/aksara_v1
8https://opencompass.org.cn/home

source LLMs, the evaluation was conducted on
8 NVIDIA A100 40GB GPUs, with an average
completion time of 0.5 hours. The inference hyper-
parameters are detailed in Appendix D.1.

4.2 Performance Evaluation

Here we assess overall performance across breed-
ing subcategories, as detailed in Table 29. Among
proprietary LLMs, GPT-4 achieves the highest av-
erage score on SeedBench (62.06), followed by
GLM-4-plus (59.61). In contrast, open-source
models show a different ranking: DeepSeek-V3
leads with an average score of 63.3, outperform-
ing Qwen2.5-14B, which scores 54.3. Notably,
DeepSeek-V3, despite being a recently released
model with 671B parameters, surpasses GPT-4 on
SeedBench. On the other hand, the three domain-
specific LLMs perform relatively poorly, likely due
to their limited conversational and instruction fol-
lowing capabilities. Interestingly, OpenAI o1, de-
spite demonstrating strong reasoning abilities in
mathematics and coding, scores lower than GPT-4
on SeedBench. This suggests that its reasoning
strategy does not transfer effectively to breeding-
related tasks. A similar trend is observed in Gemini-
2.0-Flash Thinking and QwQ-32B, both of which
exhibit explicit reasoning steps in their responses
yet achieve only 34.24 and 33.55, respectively. A
more detailed comparative analysis is provided in
Appendix H, where we examine performance varia-
tions within the same model series, evaluate models
of identical sizes, and assess the impact of task dif-
ficulty. And Appendix E provides a holistic error
taxonomy and analysis of models’ failures, sum-
marizing eight primary causes of errors, such as
Gene Name Confusion. These additional analyses
collectively offer deeper insights into the factors
influencing model performance on SeedBench.

4.3 Empirical Analysis

4.3.1 Analysis on Reasoning Ability
Table 2 shows that LLMs with explicit “reason-
ing mode” do not consistently outperform those
without specialized chain-of-thought mechanisms
(RQ1). For instance, models designed for multi-
step reasoning, such as Gemini-2.0-Flash (34.24)
and QwQ-32B (33.55), achieve lower average
scores than general-purpose LLMs such as GPT-4
(62.06) and the top-performing open-source model,
DeepSeek-V3-671B (63.30). This discrepancy is

9See Tables 10 11 12 in Appendix H.8 for complete results.
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Models Breeding Subcategories AverageC1 C2 C3 C4 C5 C6 C7 C8 C9 C10
Proprietary LLMs
Claude-3.5-Sonnet 48.77 57.72 66.02 57.54 47.82 49.36 57.47 60.11 58.06 58.89 55.45
Gemini-1.5-Pro 47.00 59.55 62.42 59.56 43.11 49.55 53.41 56.18 52.51 53.71 53.58
Gemini-2.0-Flash 33.67 27.37 53.04 32.07 25.87 44.41 33.57 36.77 31.78 31.70 34.24
GLM-4-Plus 52.72 59.62 70.62 60.11 50.60 56.75 65.02 64.17 61.70 62.90 59.61
GPT-4 59.59 60.55 76.32 61.16 56.34 59.35 63.67 64.74 60.65 67.66 62.06
GPT-4o mini 54.24 56.64 72.11 59.28 53.00 57.88 58.38 61.75 57.50 62.38 58.40
OpenAI o1-mini 49.16 55.58 59.37 54.77 44.43 50.73 54.57 55.36 54.91 54.19 53.25
Open-Source LLMs
DeepSeek-V3-671B 56.03 62.42 74.81 63.17 55.23 58.84 68.23 69.04 66.46 68.48 63.30
GLM-4-Chat-9B 23.28 21.31 39.97 26.13 16.20 34.15 26.63 29.60 25.60 26.68 26.55
InternLM2-7B 27.55 21.14 39.64 28.57 15.16 36.12 28.74 30.80 27.32 29.22 28.71
InternLM2.5-7B 51.71 55.75 67.88 50.48 44.14 56.73 51.28 54.91 52.46 56.24 53.51
Llama3.1-8B 43.89 31.21 42.53 40.68 38.47 43.80 42.87 51.62 41.88 40.91 42.23
Llama3.1-70B 48.72 55.41 64.77 53.67 46.73 54.08 56.94 57.72 55.31 57.56 54.30
Llama3.3-70B 45.32 47.15 60.62 49.76 40.90 54.30 52.79 54.61 49.98 55.05 50.53
Mistral-v0.3-7B 42.61 38.28 57.02 40.41 29.97 44.22 36.31 43.98 39.92 43.51 41.59
Qwen2-0.5B 32.84 25.15 40.19 28.20 27.62 37.22 33.81 33.63 28.25 31.67 31.44
Qwen2-7B 44.21 40.41 63.00 47.36 35.37 52.30 45.61 48.73 44.88 46.89 46.51
Qwen2-57B 53.67 49.81 74.30 58.38 39.34 54.71 63.89 59.57 59.22 60.08 57.20
Qwen2-72B 51.16 58.10 74.07 59.72 51.58 57.76 58.85 61.63 56.69 59.11 57.62
Qwen2.5-7B 45.16 39.50 66.01 44.61 35.72 50.00 53.60 53.31 53.06 51.05 48.45
Qwen2.5-14B 50.91 50.73 68.62 52.15 47.14 54.54 57.02 62.05 54.37 54.15 54.21
Qwen2.5-72B 46.86 47.41 70.99 51.89 46.17 57.60 55.35 56.31 53.05 54.75 52.63
QwQ-32B 32.24 21.06 47.11 29.14 28.56 39.68 38.17 39.56 34.70 34.52 33.55
Domain Specific LLMs
Aksara-v1-7B 36.72 36.69 48.32 35.41 24.26 36.83 31.17 34.64 31.15 34.14 35.04
PLLaMa-7B 17.85 13.69 17.99 16.81 11.66 21.67 14.34 17.36 12.39 16.11 16.46
PLLaMa-13B 15.10 14.18 28.41 18.83 13.96 23.28 18.53 17.37 14.15 18.51 17.57

Table 2: Evaluation of 26 LLMs on SeedBench. Performance (averaged across both zero-shot and one-shot
configurations) is stratified by breeding subcategories, with open-source/domain-specific models evaluated through
3 repeated trials (mean scores reported). The scores represent averages across three different metrics for 11 task
types. The columns delineate ten subcategories in breeding: (C1) Gene Basic Information Query, (C2) Gene
Expression Pattern Query, (C3) Gene Product Cellular Localization Query, (C4) Gene Function Experimental
Observation, (C5) Gene Product Regulation of Downstream Genes Analysis, (C6) Gene Function Prediction, (C7)
Variety Breeding Process Query, (C8) Variety Agronomic Trait Query, (C9) Variety Cultivation and Technical
Key Points Query, (C10) Variety Suitable Planting Area Recommendation. Top-3 performers per column are
highlighted in red. Extended results (including standard deviations, separate zero-shot/one-shot scores, and
task-type breakdowns) are provided in Appendix H.8.

evident in subcategories that primarily involve fact
retrieval or straightforward inference, such as Gene
Basic Information Query (C1) and Variety Cultiva-
tion and Technical Key Points Query (C9).

Furthermore, the results suggest potential draw-
backs of verbose chain-of-thought reasoning in
tasks that require single-step inferences. Lengthy
reasoning chains can introduce unnecessary con-
tent, potentially reducing performance on precision-
based metrics such as ROUGE. This effect is
particularly evident in tasks like Gene Product
Regulation of Downstream Genes Analysis (C5),
where the best-performing models (e.g., GPT-4 and
DeepSeek-V3-671B) maintain conciseness while
effectively capturing key information. Overall,
these findings indicate that while reasoning-centric
prompts may be advantageous in complex multi-
step tasks (e.g., coding or mathematical problem-

solving), seed breeding queries rely on direct
knowledge retrieval or limited inference. Future
research could focus on adjusting the reasoning
strategy to match task complexity, dynamically ad-
justing reasoning chains based on task difficulty,
rather than using complex reasoning for all tasks
(Chen et al., 2024b).

4.3.2 Impact of Domain-Specific Fine-Tuning

Contrary to expectations, domain-specific fine-
tuned models (e.g., Aksara-v1-7B, PLLaMa-
7B, PLLaMa-13B) perform worse than general-
purpose models on SeedBench. As shown in Ta-
ble 2, these specialized models exhibit significantly
lower overall scores (e.g., 35.04 for Aksara-v1-
7B and 17.57 for PLLaMa-13B). In comparison,
mid-tier open-source LLMs such as Llama3.1-
70B (54.30) and Qwen2.5-14B (54.21) outper-
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Figure 4: Performance vs. Model Size. We empirically
validate scaling laws in seed breeding tasks, showing
a logarithmic correlation between model size and aver-
age scores. The optimal model size for breeding tasks
lies between 7B and 14B, balancing performance and
computational efficiency.

form them, while top-performing general-purpose
models like DeepSeek-V3-671B (63.30) and GPT-
4 (62.06) achieve even higher scores. Notably,
Aksara-v1-7B’s best subcategory score (48.32 in
C3: Gene Product Cellular Localization Query)
remains below many open-source models’ perfor-
mance in similar tasks. We hypothesize that a key
factor behind this underperformance is the deterio-
ration of conversational and instruction-following
capabilities, after fine-tuning on domain-specific
data. In one-shot evaluations, PLLaMas frequently
misinterpret prompts, treating in-context examples
as direct queries. This shows that domain special-
ization may weaken general instruction adherence,
which is essential for tasks requiring customized
outputs and complex user interactions. Addition-
ally, post-training on narrowly defined tasks or us-
ing data not validated by experts may further di-
minish models’ performance. Thus, we suggest
that maintaining general-purpose abilities during
fine-tuning, expanding the breadth of training data,
and incorporating expert validation may effectively
improve the performance of domain-specific fine-
tuned models. Further investigations into the fine-
tuning strategy and the scope and quality of the
training corpus are required to fully answer RQ2.

4.3.3 Impact of Model Size
As shown in Figure 4, models with 7B–14B pa-
rameters achieve the best trade-off between per-
formance and computational efficiency (RQ3).
Models in this range, such as Qwen2.5-14B and
InternLM-2.5-7B, perform robustly with manage-
able resource requirements. In contrast, smaller

models (e.g., Qwen2-0.5B) underperform, and
much larger models (e.g., Qwen2.5-72B) show di-
minishing returns. Additionally, the lack of perfor-
mance improvement across scaled Qwen models
(14B to 72B) suggests a distribution mismatch be-
tween our benchmark data and Qwen’s enlarged
training corpus. We conjecture that the quality
of training corpus is more important than model
size for domain-specific tasks. In addition, we an-
alyze performance differences between models of
varying sizes, series, and subcategory difficulty in
Appendices H.1 to H.6.

5 Discussion

The discrepancy between the seed scientists’ expec-
tations and the reality of LLMs is evident. From the
perspective of breeding experts, the immediate ap-
plicability of domain-specific fine-tuned models to
seed science remains constrained. This may arise
from factors such as training on narrowly defined
tasks, reliance on data lacking expert validation, or
catastrophic forgetting of general capabilities dur-
ing fine-tuning. Conversely, while current general
LLMs have shown good potential in text under-
standing and basic reasoning, they still fall short of
meeting the deep and specialized requirements of
actual breeding work. Several key gaps between
seed scientists’ expectations and the capabilities of
general LLMs are highlighted below.
Domain Depth. While LLMs cover a broad range
of agricultural topics, their knowledge depth is in-
sufficient for specialized breeding tasks. Complex
issues like molecular breeding or trait introgres-
sion often require high-quality domain knowledge
repositories, an area where current models are lack-
ing. One potential solution is to integrate structured
knowledge graphs mapping relationships across
phenotypic, genomic, and environmental data.
Multimodal Integration. Breeding in practice
heavily relies on sensory evaluations (such as de-
tecting grain morphology, texture, and odor) and
environmental data (such as climate and soil con-
ditions). Current LLMs, primarily based on text
input, cannot effectively integrate images, sensor
readings, and field observations, limiting their per-
formance in multimodal decision-making.
Explainability and Risk Management. The
breeding decision cycle is costly and prolonged.
Without transparent reasoning and risk evaluation
mechanisms, misleading outputs could result in
substantial losses. Producers must be able to ver-

31402



ify and trace model conclusions to ensure safe and
controllable implementation, e.g., via safe RL.

6 Conclusion

In this study, we propose SeedBench, the first multi-
task LLM benchmark tailored for seed science.
The contributions of SeedBench to AI for Science
are twofold. First, it demonstrates the complete
benchmark construction process for seed science,
a knowledge-intensive field. The knowledge be-
hind can be transferred to other science domains,
such as life science or physical science, to build a
comprehensive and reliable scientific benchmark.
Second, it evaluates the capabilities of LLMs on ad-
dressing seed breeding tasks. The results not only
provide insightful empirical findings on the tasks
on interest, but also pose future research directions
on designing scientific LLM. By bridging the gap
between the power of LLMs and the real-world
scientific problem in seed science, we aim to make
a foundational effort for successful implementation
of LLMs for seed design in the future.

Limitations

Given the highly specialized nature of breeding
research, we primarily use the peer-reviewed scien-
tific literature to ensure the accuracy and credibility
of the data. Online sources often lack systematic re-
view and professional validation. In the future, we
will explore more reliable online databases and ex-
pert knowledge bases to further diversify our data
sources.

There remains a gap between the expectations
of the researchers and the actual capabilities of
LLMs. Closing this gap calls for more domain-
focused and in-depth professional datasets, as well
as additional breeding-specific knowledge during
model training. Another key direction is to in-
corporate sequential decision making and iterative
learning into the models, so that they can adapt to
planting cycles and experimental feedback. Ad-
ditionally, developing LLMs that support multi-
modal inputs—such as phenotypic, genomic, and
environmental data—would be crucial for complex
breeding scenarios. Finally, improving model inter-
pretability and safety mechanisms will be essential
for building trust when the model provides breed-
ing recommendations.

Ethical Considerations

This research adheres to the ethical principles out-
lined in the ACL Code of Ethics. We have taken
steps to ensure that our work does not cause harm,
particularly in the context of seed science, where
the implications of our research could impact agri-
cultural practices and food security.

We have carefully considered the potential risks
of our approach, especially with respect to the use
of LLMs in agricultural research. One of the main
ethical concerns we addressed is the potential for
bias in LLMs, which could affect seed breeding de-
cisions or lead to misinterpretations in agricultural
data. To mitigate this, we evaluated multiple LLMs,
to better understand their limitations and potential
biases, and have explicitly highlighted areas where
further improvement is needed.

In addition, we ensured that all data used in our
experiments were sourced responsibly, with due
regard for privacy and intellectual property. The ar-
tifacts we used are governed under the CC-BY 4.0,
Apache 2.0 and MIT licenses, which support open
and ethical use of such resources. The creation of
the SeedBench benchmark involved collaboration
with domain experts to ensure that it accurately
represents the complexities of seed breeding, while
minimizing any unintended consequences More-
over, we have taken care to ensure that the use of
these artifacts aligns with the intended purpose of
advancing research in seed breeding and AI appli-
cations.

Finally, we have considered the broader social
impact of our work, recognizing that our research
could influence farming practices, genetic resource
management, and food security. We have outlined
the necessary steps to avoid harm and ensure re-
sponsible application of our findings.
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A Background Definitions

A.1 Definition of Breeding Competencies

We define in Table 3 the core breeding competencies required to address complex, knowledge-intensive
breeding tasks. The breeding process is divided into three steps: the acquisition and analysis of genetic
information, the exploration of gene function and regulatory mechanisms, and variety selection alongside
agronomic trait optimization. Each stage corresponds to specific knowledge and skill requirements.

Stage Corresponding Task Competency Description
Acquisition and
Analysis of
Genetic Information

Basic Gene Information
Retrieval

Ability to Retrieve Basic
Gene Information

Is able to retrieve and integrate a gene’s
basic information (e.g., sequence, func-
tional annotation, chromosomal loca-
tion) based on user inputs such as gene
names or identifiers.

Gene Expression Pattern
Retrieval

Ability to Analyze Gene
Expression Patterns

Possesses the capacity to explore and
interpret gene expression data under dif-
ferent tissues, developmental stages, or
environmental conditions.

Subcellular Localization
of Gene Products

Ability to Determine
Gene Product Localiza-
tion and Characteristics

Uses existing protein or molecular data
to infer the specific location of a gene
product within the cell (e.g., nucleus, cy-
toplasm, cell membrane) and, by apply-
ing biological knowledge, deduces its
potential functions (e.g., transcriptional
regulation, signal transduction, material
transport).

Exploration of
Gene Function and
Regulatory Mechanisms

Observations from Gene
Function Experiments

Ability to Interpret Ex-
perimental Results on
Gene Function

Accurately describes how a gene influ-
ences plant traits under specific condi-
tions.

Analysis of Gene Prod-
uct Regulation on Down-
stream Genes

Ability to Analyze Gene
Regulatory Networks
and Downstream Genes

Relies on existing research or deductive
reasoning to evaluate the regulatory ef-
fects of a target gene product on down-
stream genes or related pathways.

Gene Function Predic-
tion

Ability to Predict and
Validate Unknown Gene
Functions

Draws on known gene sequences, ex-
pression characteristics, and analogies
with characterized genes to predict func-
tions of genes that have not yet been ex-
tensively studied.

Variety Selection
and Agronomic
Trait Optimization

Retrieval of Variety
Breeding Processes

Ability to Oversee Vari-
ety Breeding Processes

Collects and summarizes the breed-
ing history, methods, and improvement
goals for a specific variety.

Querying Agronomic
Traits of Varieties

Ability to Screen and
Evaluate Agronomic
Traits

Compares the agronomic traits (e.g.,
disease resistance, yield, drought tol-
erance) of a target variety or multiple
varieties to assess their value in practi-
cal production, selecting the most suit-
able breeding materials or gene combi-
nations.

Querying Key Points of
Variety Cultivation and
Techniques

Ability to Plan Vari-
ety Cultivation Manage-
ment and Key Technical
Points

Gathers and analyzes crucial informa-
tion on cultivation management (e.g.,
fertilization strategies, irrigation sched-
ules, pest control) to optimize field trials
or practical planting outcomes.

Recommending Suitable
Planting Regions for Va-
rieties

Ability to Evaluate and
Recommend Planting
Regions

Takes into account environmental fac-
tors and agronomic traits to propose
suitable planting regions for a given va-
riety, while evaluating its potential for
wider application.

Table 3: Core Breeding Competencies
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A.2 Example Definitions of Breeding Terminology
We define in Table 4 the specialized breeding terms mentioned in this paper, along with explanations to
provide a unified reference for subsequent experimental design, task classification, and result interpretation.

Terminology Definition
Gene Information Refers to the fundamental data of a given gene, including its sequence, structure,

functional descriptions, and expression patterns. This information is typically
obtained from genomic databases or sequencing results, serving as the starting
point for subsequent gene function research and variety improvement.

Gene Expression Pattern Describes a gene’s expression levels and dynamic changes across various tissues,
developmental stages, or environmental conditions. By analyzing this pattern,
one can determine the gene’s potential impact on target traits (e.g., drought
tolerance).

Gene Regulatory Net-
work

A molecular regulatory system formed by interactions among gene products
(e.g., transcription factors, enzymes). It determines how crops respond to
environmental stimuli or developmental requirements and serves as an essential
foundation for precision breeding analyses.

Hybridization & Back-
crossing

Involves breeding new offspring by crossing or pollinating different parental
lines. Backcrossing is carried out with a desirable parent line over multiple
generations to stabilize or strengthen specific traits. This approach is traditional
yet effective, often combined with modern molecular marker techniques.

Agronomic Trait Refers to key field performance characteristics of crops, such as plant height,
number of tillers, yield, disease resistance, and maturity. These traits are crucial
indicators for evaluating the economic value and potential for broader adoption
of new varieties.

Marker-Assisted Breed-
ing

Uses molecular markers (e.g., SNP, SSR) for genotypic screening to accelerate
the breeding process and improve selection accuracy. This method is frequently
employed during hybridization and backcrossing to rapidly pinpoint genes
associated with targeted traits.

LLM-Aided Breeding Leverages large language models (e.g., GPT) to analyze and reason over litera-
ture, databases, and experimental data, supporting gene information analysis,
gene function prediction, and variety selection decisions. It is expected to
shorten breeding cycles and enhance breeding efficiency.

Table 4: Breeding Terminology Definitions
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B Source Data Collection

B.1 Construction and Annotation of High-Quality Text Segments

In Figure 5 below, Content is a snippet extracted by agricultural experts from selected scientific pub-
lications. Example Question is an illustrative question provided by the experts, demonstrating from
which perspective or angle one may inquire about the snippet. Classification indicates the subfield of
agriculture to which the snippet belongs, and Reference identifies the scientific publication from which
the snippet originates.

Figure 5: An illustration of the Content, Example Question, Classification, and Reference fields.
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B.2 Language Composition and Impact
(1) The initial corpus of 308,727 articles comprises 63% English and 37% Chinese, with this imbalance
reflecting the greater availability of English publications; (2) After cleaning, the 1.1 billion-token corpus
consists of 75% English and 25% Chinese, with this shift due to the higher accuracy of the MinerU in
processing English texts; (3) The final 279 segments used in SeedBench include 49% English and 51%
Chinese, achieving balance through manual selection by breeding experts; (4) The 2,264 questions in
SeedBench include 45% English and 55% Chinese.

Although LLMs exhibit strong cross-lingual capabilities and the linguistic differences in breeding
questions do not alter the underlying scientific logic, we observed response drift when posing the same
question in English and Chinese (with cleared histories). This phenomenon suggests potential issues in
cross-lingual consistency, which deserves further research—especially when applying LLMs in specific
domains where alignment across languages is critical:

• Question1-EN: What effect did the overexpression of OsDREB1C have on the levels of photosynthetic
pigments in the leaves of the plants?
A. Increased pigment levels
B. Decreased pigment levels
C. Pigment levels fluctuated unpredictably
D. No significant change in pigment levels

• Question1-CN: OsDREB1C的过表达对植物叶片中光合色素水平有何影响？
A.增加色素水平
B.减少色素水平
C.色素水平不可预测地波动
D.色素水平没有显著变化

• Question2-EN: The expression profile of OsDT11 in different rice tissues was analyzed by
.

• Question2-CN: OsDT11在不同水稻组织中的表达谱通过 分析。

Table 5: Model responses to parallel English and Chinese domain-specific questions.

Model Ans1-EN Ans1-CN Ans2-EN Ans2-CN
DeepSeek-V3-671B A A qRT-PCR 实时荧光定量PCR
GPT-4 A A qRT-PCR 转录组学
OpenAI o1-mini A A qRT-PCR Northern blot分析
Gemini-1.5-Pro A A qRT-PCR qRT-PCR

C Quality Verification

The manual QA verification process involves a comprehensive assessment by experts to ensure the clarity,
relevance, and rationality of questions. This includes evaluating whether the questions are designed to
elicit accurate and valuable answers. Experts also check the correctness of the answers by consulting
authoritative sources and applying professional knowledge to ensure they are error-free. Additionally, for
questions that include multiple-answer options, it is essential to assess the rationality of these options.
This assessment guarantees a clear distinction between them and ensures their close relevance to the
correct answer. To enhance transparency regarding the expert correction process and the resolution of
disagreements, we outline the following three points: (1) The composition of the expert panel, consisting
of six Ph.D.-level experts in seed breeding; (2) An iterative review process, wherein each question is
independently evaluated by at least two experts; (3) A disagreement resolution mechanism that addresses
subjectivity in expert assessments, resolved by adopting the intersection of differing expert corrections.
Additionally, we have open-sourced samples discarded during the expert correction process as “bad cases”
on GitHub, offering readers further insight and reference.
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C.1 Manual Quality Verification
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C.2 Descriptive Statistics

Table 6: Descriptive Statistics of Generated Questions and Answers

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 total
QA-1 37 9 0 23 2 33 15 32 38 11 200

(1.63%) (0.4%) (0.0%) (1.02%) (0.09%) (1.46%) (0.66%) (1.41%) (1.68%) (0.49%) (8.83%)
QA-2 37 10 5 44 2 26 17 11 9 26 187

(1.63%) (0.44%) (0.22%) (1.94%) (0.09%) (1.15%) (0.75%) (0.49%) (0.4%) (1.15%) (8.26%)
QA-3 38 32 0 34 5 13 20 23 34 25 224

(1.68%) (1.41%) (0.0%) (1.5%) (0.22%) (0.57%) (0.88%) (1.02%) (1.5%) (1.1%) (9.89%)
QA-4 66 12 14 47 5 34 14 16 14 20 242

(2.92%) (0.53%) (0.62%) (2.08%) (0.22%) (1.5%) (0.62%) (0.71%) (0.62%) (0.88%) (10.69%)
SUM-1 39 17 6 36 4 25 20 26 28 24 225

(1.72%) (0.75%) (0.27%) (1.59%) (0.18%) (1.1%) (0.88%) (1.15%) (1.24%) (1.06%) (9.94%)
SUM-2 39 17 6 36 4 25 20 26 28 24 225

(1.72%) (0.75%) (0.27%) (1.59%) (0.18%) (1.1%) (0.88%) (1.15%) (1.24%) (1.06%) (9.94%)
RC-1 25 7 0 15 1 17 9 16 17 6 113

(1.1%) (0.31%) (0.0%) (0.66%) (0.04%) (0.75%) (0.4%) (0.71%) (0.75%) (0.27%) (4.99%)
RC-2 18 4 4 32 1 15 7 6 7 14 108

(0.8%) (0.18%) (0.18%) (1.41%) (0.04%) (0.66%) (0.31%) (0.27%) (0.31%) (0.62%) (4.77%)
RC-3 38 32 0 33 5 13 20 23 34 23 221

(1.68%) (1.41%) (0.0%) (1.46%) (0.22%) (0.57%) (0.88%) (1.02%) (1.5%) (1.02%) (9.76%)
RC-4 65 12 14 47 5 33 14 16 14 20 240

(2.87%) (0.53%) (0.62%) (2.08%) (0.22%) (1.46%) (0.62%) (0.71%) (0.62%) (0.88%) (10.6%)
RC-5 58 26 24 43 4 26 20 26 28 24 279

(2.56%) (1.15%) (1.06%) (1.9%) (0.18%) (1.15%) (0.88%) (1.15%) (1.24%) (1.06%) (12.32%)
total 460 178 73 390 38 260 176 221 251 217 2264

(20.32%) (7.86%) (3.22%) (17.23%) (1.68%) (11.48%) (7.77%) (9.76%) (11.09%) (9.58%) (100.0%)
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D Additional Experimental Setup

D.1 Model Hyperparameters
We conduct evaluations on different large language models using opencompass as the primary tool. In
order to ensure reproducibility and provide a reference for future research, the main hyperparameters used
in our experiments, along with their meanings, are listed in Table 7:

Table 7: Main Hyperparameters for LLM Evaluation

Parameter Meaning Value
max_seq_len The maximum context length (upper limit of input tokens) 7168
max_out_len The maximum output length (upper limit of generated to-

kens)
2048

batch_size The batch size (number of requests processed per genera-
tion)

80

For proprietary LLMs, the maximum generation tokens for each model were set to 2048, with a batch
size of 80. The temperature was set to 0.7, and top-p and top-k were set to 0.8 and 10, respectively. For
open-source LLMs, the maximum generation tokens were also set to 2048, with a batch size of 80. The
temperature was set to 0.7, and top-p and top-k were set to 0.8 and 10, respectively.

D.2 Evaluation Metrics
The evaluation process consists of two steps: the first step is answer extraction. After collecting the
model’s responses, we first perform post-processing to extract the model’s replies. The second step
is metric calculation. During evaluation, we have designed different evaluation methods for different
question types:

Single-choice Questions. We use Accuracy as the evaluation metric to calculate the correctness of the
model’s answers. The formula for Accuracy is:

Accuracy =
1

Ntotal

Ntotal∑

i=1

δ(y
pred
i , ytrue

i )

where Ntotal is the total number of questions, ypred
i is the predicted answer for the i-th question by the

model, and ytrue
i is the true answer for the i-th question. δ(a, b) is the Kronecker delta function, where

δ(a, b) = 1 if a = b, and δ(a, b) = 0 otherwise.
Multiple-choice Questions. We use the F1 score, which balances the correct and incorrect answers

from the model to provide a more comprehensive reflection of model performance. The formula for the
F1 score is:

F1 = 2 · P ·R
P +R

where precision (P ) is:

P =
1

N

N∑

i=1

|Y pred
i ∩ Y true

i |
|Y pred

i |
and recall (R) is:

R =
1

N

N∑

i=1

|Y pred
i ∩ Y true

i |
|Y true

i |

where N is the total number of samples, Y pred
i is the set of predicted answers for the i-th sample, and

Y true
i is the set of true answers for the i-th sample.
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Fill-in-the-Blank and Generation Questions. We use ROUGE for evaluation and calculate the average
F1 score of ROUGE-L. For fill-in-the-blank questions, since answers typically contain multiple blanks or
paragraphs, we adopt a segmented evaluation method, comparing the similarity of each segment between
the model’s predicted answer and the reference answer, and averaging the scores of multiple segments
to more accurately reflect the model’s performance for each answer item. For generation questions, we
use a sentence-level evaluation method, directly calculating the similarity between the model’s generated
full answer and the reference answer. This method allows for a comprehensive evaluation of the overall
fluency and semantic accuracy of the generated content.

The formula for ROUGE-L F1 is:

ROUGE-L =
(1 + β2) · P · R
β2 · P + R

where precision (P ) is:

P =
1

N

N∑

i=1

LCS(Xi, Yi)

|Xi|

and recall (R) is:

R =
1

N

N∑

i=1

LCS(Xi, Yi)

|Yi|

where N is the total number of samples, Xi and Yi represent the predicted and reference answers for
the i-th sample, and LCS(Xi, Yi) is the length of the longest common subsequence between Xi and Yi.
|Xi| and |Yi| are the lengths of Xi and Yi, respectively. β is the balance factor between precision and
recall, typically set to 1.
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E Error Analysis of Large Language Model Outputs

In this chapter, we thoroughly analyze the errors produced by large language models in different scenarios,
according to the three task types defined above. By presenting typical cases and discussing both the
causes and potential improvements, we provide a reference for optimizing the quality of LLM outputs in
subsequent work.

E.1 Errors in the First Task Type
The first task type primarily involves gene information retrieval capabilities. The model needs to demon-
strate fundamental biological knowledge as well as accurate information retrieval. We observe several
representative error cases, outlined below:

Gene Name Confusion When dealing with similar or homonymous gene names or gene identifiers, the
model incorrectly provides the wrong gene sequences and functional descriptions. This mistake can lead
to misalignment in subsequent gene function validation.
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Figure 6: Example illustrating gene name confusion.
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Errors in Gene Sequence and Positional Information The model provides incorrect answers regarding
the physical location information of genes (chromosome number, start and end coordinates, sequence
length, etc.), such as incorrect gene coordinates or sequence length discrepancies with actual databases.
This may impact genome annotation and structural variation analysis, leading to experimental design
biases.
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Figure 7: Example illustrating cross-species gene information errors.
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Errors in Gene Function and Regulation The model exhibits errors in describing gene functions,
protein products, or regulatory mechanisms, such as misclassifying gene functions, misunderstanding
their roles in signaling pathways, or incorrectly predicting protein products. These issues may mislead
researchers’ understanding of gene biological functions, potentially leading to incorrect downstream
experiments and data analysis.
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Figure 8: Examples of gene function and regulatory errors.
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E.2 Errors in the Second Task Type
The second task type concerns gene function and regulatory mechanisms, requiring more advanced logical
reasoning and deeper domain knowledge. The model is expected to demonstrate “causal understanding” or
“upstream/downstream interactions” thinking in gene function validation and regulatory network analysis.
Similarly, we observe several representative error types, listed below:

Knowledge Errors Because the model lacks thorough understanding of the background or domain-
specific knowledge, its answers can be incorrect. In Table X (not shown), we list erroneous examples
where the model misinterprets domain-specific terminology or experimental data, resulting in inaccurate
responses.
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Figure 9: Example illustrating knowledge errors in gene function and regulation.
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Insufficient Answer Precision When the question requires detailed specifics, such as particular experi-
mental methods, tools, or procedures, the model fails to provide precise information and instead offers
overly generic descriptions. As a result, the answer does not meet the exact requirements of the question,
indicating over-generalization.

Figure 10: Example illustrating lack of precision in model answers.
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Limited Reasoning Ability The model does not incorporate the given information to perform logical
analysis and contextual interpretation, thereby producing responses that do not meet practical needs. It
either fails to link the contextual clues correctly or ignores implicit details in the question.

Figure 11: Example illustrating limited reasoning ability.
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E.3 Errors in the Third Task Type
The third task type encompasses a wide range of needs related to variety selection and agronomic traits,
requiring the model to integrate gene-level knowledge with real-world agricultural management experience.
We observe several representative error cases, listed below:

Insufficient Semantic Understanding The model does not fully grasp the core descriptions or context
in the question, leading to incorrect interpretations of critical information. Consequently, the final output
deviates from the reference solution.

Figure 12: Example illustrating insufficient semantic understanding in variety selection tasks.
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Knowledge Errors Similar to the other task types, this category also shows frequent knowledge-related
mistakes. Lacking the necessary domain background or relevant information leads the model to give
incorrect answers.
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Figure 13: Example illustrating knowledge errors in variety selection and agronomic traits.
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F Prompt Templates

F.1 Multiple-Choice Question Generation (Task QA-1)

Figure 14: Illustration for multiple-choice question generation.

31428



F.2 Multiple-Answer Question Generation (Task QA-2)

Figure 15: Illustration for multiple-answer question generation.
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F.3 Fill-in-the-Blank Question Generation (Task QA-3)

Figure 16: Illustration for fill-in-the-blank question generation.
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F.4 Text-based Q&A Generation (Task QA-4)

Figure 17: Illustration for text-based Q&A generation.
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F.5 Naive Summarization (Task SUM-1)

Figure 18: Illustration for naive summarization.
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F.6 Key Information Extraction (Task SUM-2)

Figure 19: Illustration for key information extraction.
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F.7 Question Rewriting (Tasks RC-1, RC-2, RC-3, RC-4)

Figure 20: Illustration for question rewriting across multiple subtasks.
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G Robustness Evaluation of Prompts

This section analyzes the sensitivity of model outputs to different prompt templates and evaluates how
various prompt styles impact model performance. Specifically, we modify the wording and style of
prompts and compare how different styles affect the consistency and stability of model-generated results.
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Figure 21: Illustration of robustness evaluation for different prompt styles.
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H Detailed Performance Comparison and Analysis

To analyze the experiment results from the provided table, we can examine several aspects, including the
performance of different models, the comparison between different sizes of the same series, the variation
in performance across tasks, and the relationship between model size and performance.

H.1 Model Comparison on Different LLMs
Proprietary Models: Among the proprietary models, GPT-4 consistently performs well across most of
the tasks, often achieving top or second place in many breeding subcategories (C1, C3, C5, C6). The
model’s average score is notably high at 62.06, which is the highest among proprietary models.
Open-Source Models: Models such as DeepSeek-V3-671B and Qwen2-57B exhibit strong performance
in certain categories (e.g., Qwen2-57B performs exceptionally well in C3 and C7).

H.2 Comparison Between Different Model Sizes of the Same Model Series
Qwen Models: The different model sizes of the Qwen models show varying performance trends. While
Qwen2-7B, a mid-tier model, significantly outperforms Qwen2-0.5B, it falls short of Qwen2-72B, the
largest model in the series. However, contrary to expectations, increasing model size does not guarantee
progressive performance gains. For instance, Qwen2.5-72B fails to demonstrate clear improvements over
Qwen2.5-14B in many subcategories, suggesting that parameter count alone may not dictate performance
in this domain. Notably, Qwen2.5-14B excels in several subcategories (e.g., C6, C8), achieving top-tier
rankings, whereas Qwen2.5-72B shows inconsistent superiority—exhibiting only marginal gains in C3
and C6. This pattern implies diminishing returns for larger models in specific subcategories, highlighting
the importance of training data and strategies beyond mere scale.

H.3 Top Performers in Each Subcategory
C1: (Gene Basic Information Query: GPT-4, 59.59)
C2: (Gene Expression Pattern Query: DeepSeek-V3, 62.42)
C3: (Gene Product Cellular Localization Query: GPT-4, 76.32)
C4: (Gene Function Experimental Observation: DeepSeek-V3, 63.17)
C5: (Gene Product Regulation of Downstream Genes Analysis: GPT-4, 56.34)
C6: (Gene Function Prediction: GPT-4, 59.35)
C7: (Variety Breeding Process Query: DeepSeek-V3, 68.23)
C8: (Variety Agronomic Trait Query: DeepSeek-V3, 69.04)
C9: (Variety Cultivation and Technical Key Points Query: DeepSeek-V3, 66.46)
C10: (Variety Suitable Planting Area Recommendation: DeepSeek-V3, 68.48)

Consistent Top Performers: DeepSeek-V3-671B is a standout performer, securing top-3 positions in all
ten subcategories and ranking first in C2 (62.42), C4 (63.17), C7 (68.23), C8 (69.04), C9 (66.46), and C10
(68.48). Its dominance in moderately hard to medium tasks (e.g., C7, C8, C10) underscores its strength in
breeding-related applications.
Other Consistent Top Performers: GPT-4 also demonstrates exceptional consistency, appearing in the
top-3 for nine out of ten subcategories (C1, C2, C3, C4, C5, C6, C8, C9, C10) and ranking first in C1
(59.59), C3 (76.32), C5 (56.34), and C6 (59.35). Its strong performance across both simpler tasks (e.g.,
C3) and more complex ones (e.g., C5) highlights its versatility and robustness. GLM-4-Plus frequently
appears in the top-3 for six subcategories (C2, C4, C7, C8, C9, C10), with notable scores such as 65.02 in
C7 and 64.17 in C8, making it a reliable performer, particularly in medium-difficulty tasks. Additionally,
Qwen2-57B and Qwen2-72B occasionally appear in the top-3 (e.g., C3, C7 for Qwen2-57B; C5 for
Qwen2-72B), but their consistency is less pronounced compared to GPT-4 and DeepSeek-V3-671B.

H.4 Comparison of Models with Same Parameter Scale
Parameter Level Best Model (Avg.) Second Best (Avg.) Advantaged Domains
7B InternLM2.5-7B (53.51) Qwen2.5-7B (48.45) C3, C9
70B Qwen2-72B (57.62) Llama3.1-70B (54.30) C2, C5
large-scale DeepSeek-V3-671B (63.30) GPT-4 (62.06) C5, C10
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H.5 Task-Specific Performance

Task Difficulty Spectrum (Based on average scores across all models):

Difficulty Level Subcategory Avg. Score
Most Difficult C5 37
Moderately Hard C1, C2, C4, C9 42-45
Medium C6, C7, C8,C10 46-49
Easiest C3 58

Model Performance on Specific Subcategories (C1–C10)
The performance of large language models (LLMs) across the ten breeding subcategories (C1–C10)

reveals distinct patterns in task difficulty and model capability. By classifying tasks based on average
model performance, we observe that larger models excel in complex tasks, while smaller models can
achieve competitive results in simpler ones. The following analysis aligns with the provided difficulty
classification, adjusted to reflect observed performance trends.
Most Difficult Task (C5, Avg. Score 37): Gene Product Regulation of Downstream Genes Analysis (C5)
is the most complex, with a wide performance gap. Larger models like GPT-4 (56.34) and DeepSeek-
V3-671B (55.23) lead, but smaller models, such as Qwen2-0.5B (27.62), GLM-4-Chat-9B (16.20), and
PLLaMa-7B (11.66), score significantly lower, aligning with the 37 average for mid-to-low-tier models.
This task demands advanced reasoning and knowledge integration, favoring larger models.
Easiest Task (C3, Avg. Score 58): Gene Product Cellular Localization Query (C3) is the least challenging,
with top models like GPT-4 (76.32) and DeepSeek-V3-671B (74.81) achieving high scores. Even smaller
models, such as InternLM2.5-7B (67.88) and Qwen2.5-7B (66.01), perform well, indicating that C3
requires less computational capacity and is accessible to models with fewer parameters. The average score
of 58 reflects mid-tier model performance, though top performers significantly exceed this.
Additional Insights: Proprietary models (e.g., GPT-4) and large open-source models (e.g., DeepSeek-
V3-671B) dominate across all categories, particularly in difficult tasks like C5. Domain-specific models,
such as Aksara-v1-7B (24.26 in C5) and PLLaMa-13B (13.96 in C5), underperform, suggesting limited
generalization. The consistent presence of GPT-4 and DeepSeek-V3-671B in top-3 rankings underscores
the advantage of model scale in complex tasks, while smaller models remain viable for easier tasks.

In summary, the difficulty classification highlights that smaller models can perform competitively in
easier tasks (e.g., C3), but larger models are essential for moderately hard to difficult tasks (e.g., C5, C1,
C2). This emphasizes the importance of selecting appropriately scaled models to match task complexity
in breeding-related applications.

H.6 Conclusion

Model Choice: DeepSeek-V3-671B emerges as the top performer overall and should be considered
the best model for most tasks. However, models like GPT-4 and GLM-4-Plus demonstrate competitive
performance and could be preferable for certain tasks.
Task-Level Analysis: For more difficult tasks such as C1 and C5, larger models like GPT-4 tend to excel,
while Qwen2-57B performs strongly in easier categories such as C3.
Insights from Scaling Law: Conventional scaling laws suggest that larger models, such as Qwen2.5-72B,
should consistently outperform smaller models like Qwen2.5-7B and Qwen2.5-14B due to their greater
model sizes and capacity. However, the experimental results challenge this expectation, as Qwen2.5-7B
often performs comparably to or even surpasses its larger counterparts in several subcategories (e.g., 53.06
in C9 vs. 53.05 for Qwen2.5-72B). This discrepancy indicates that model size alone does not guarantee
superior performance. Instead, factors such as training data distribution, task-specific optimization, and
the nature of the tasks play critical roles in determining model effectiveness.

The findings suggest that larger models may not be fully optimized for the specific task set evaluated
here, potentially due to mismatches between their training data and the demands of breeding-related
subcategories. For certain tasks, smaller models like Qwen2.5-7B may be better suited, particularly when
tasks align closely with their training or require less complex reasoning. These results challenge the
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universal applicability of scaling laws across all task types, highlighting the need for careful consideration
of training data characteristics and task design when selecting model size for optimal performance.

H.7 Assessment of the Generative Tasks using BERTScore
We have conducted an assessment of the generative tasks (QA-4, SUM-1, SUM-2, RC-3, RC-4) using
BERTScore, and calculated the Pearson correlation coefficient between BERTScore and ROUGE-L. The
results are as follows:

Table 8: Pearson correlation between BERTScore and ROUGE-L on generative tasks.

Task Pearson Correlation (BERTScore vs. ROUGE-L)
QA-4 0.7937
SUM-1 0.6770
SUM-2 0.5811
RC-3 0.7515
RC-4 0.7338

The following table reports the BERTScore (%) for five generative task subsets in SeedBench.

Table 9: BERTScore (%) across models on five generative tasks.

Model QA-4 SUM-1 SUM-2 RC-3 RC-4
Claude-3.5-Sonnet 48.43 50.74 51.83 43.28 48.47
Gemini-1.5-Pro 72.39 74.89 73.89 95.59 79.48
Gemini-2.0-Flash 64.60 74.84 70.85 61.71 72.00
GLM-4-Plus 79.70 83.42 80.19 95.03 84.34
GPT-4o mini 81.10 83.50 82.79 93.98 86.01
GPT-4 79.66 87.45 85.95 96.02 88.27
OpenAI o1-mini 77.36 75.18 69.91 94.61 81.97
DeepSeek-V3 81.22 83.04 81.55 94.25 85.89
GLM-4-Chat-9B 56.10 69.45 74.72 51.17 60.93
InternLM2-7B 57.49 72.76 74.04 53.83 61.34
InternLM2.5-7B 76.97 84.07 81.63 91.01 85.72
Llama3.1-8B 74.91 82.11 77.87 83.28 81.18
Llama3.1-70B 77.97 83.84 82.62 91.12 82.98
Llama3.3-70B 76.35 81.89 79.08 87.91 82.52
Mistral-v0.3-7B 75.13 81.98 84.54 75.94 83.66
Qwen2-0.5B 75.27 78.37 76.46 64.88 79.64
Qwen2-7B 77.21 78.71 78.85 84.85 82.60
Qwen2-57B 80.31 82.82 83.93 92.00 85.83
Qwen2-72B 78.75 80.23 85.11 94.51 84.53
Qwen2.5-7B 77.66 81.19 82.19 82.82 83.35
Qwen2.5-14B 75.30 75.38 62.66 83.46 82.80
Qwen2.5-72B 79.50 84.38 83.50 93.16 83.14
QwQ-32B 70.16 70.43 69.57 65.62 73.06
Aksara-v1-7B 71.48 77.60 80.33 70.86 79.36
PLLaMa-7B 69.53 64.44 63.62 62.41 69.60
PLLaMa-13B 61.73 62.46 59.66 56.95 66.64

31445



H.8 Additional Quantitative Results

Models Breeding Subcategories AverageC1 C2 C3 C4 C5 C6 C7 C8 C9 C10
Proprietary LLMs
Claude-3.5-Sonnet 48.77 57.72 66.02 57.54 47.82 49.36 57.47 60.11 58.06 58.89 55.45
Gemini-1.5-Pro 47.00 59.55 62.42 59.56 43.11 49.55 53.41 56.18 52.51 53.71 53.58
Gemini-2.0-Flash 33.67 27.37 53.04 32.07 25.87 44.41 33.57 36.77 31.78 31.70 34.24
GLM-4-Plus 52.72 59.62 70.62 60.11 50.60 56.75 65.02 64.17 61.70 62.90 59.61
GPT-4 59.59 60.55 76.32 61.16 56.34 59.35 63.67 64.74 60.65 67.66 62.06
GPT-4o mini 54.24 56.64 72.11 59.28 53.00 57.88 58.38 61.75 57.50 62.38 58.40
OpenAI o1-mini 49.16 55.58 59.37 54.77 44.43 50.73 54.57 55.36 54.91 54.19 53.25
Open-Source LLMs
DeepSeek-V3-671B 56.03 62.42 74.81 63.17 55.23 58.84 68.23 69.04 66.46 68.48 63.30
GLM-4-Chat-9B 23.28 21.31 39.97 26.13 16.20 34.15 26.63 29.60 25.60 26.68 26.55

(±0.11) (±0.12) (±0.43) (±0.12) (±0.01) (±0.12) (±0.08) (±0.01) (±0.02) (±0.05) (±0.03)
InternLM2-7B 27.55 21.14 39.64 28.57 15.16 36.12 28.74 30.80 27.32 29.22 28.71

(±0.01) (±0.01) (±0.00) (±0.00) (±0.00) (±0.03) (±0.02) (±0.04) (±0.01) (±0.02) (±0.01)
InternLM2.5-7B 51.71 55.75 67.88 50.48 44.14 56.73 51.28 54.91 52.46 56.24 53.51

(±0.01) (±0.03) (±0.02) (±0.14) (±0.01) (±0.01) (±0.02) (±0.03) (±0.01) (±0.01) (±0.03)
Llama3.1-8B 43.89 31.21 42.53 40.68 38.47 43.80 42.87 51.62 41.88 40.91 42.23

(±0.35) (±1.07) (±0.30) (±0.16) (±0.38) (±0.03) (±0.05) (±0.05) (±0.51) (±0.14) (±0.23)
Llama3.1-70B 48.72 55.41 64.77 53.67 46.73 54.08 56.94 57.72 55.31 57.56 54.30

(±0.07) (±0.01) (±0.00) (±0.29) (±0.00) (±0.01) (±0.12) (±0.09) (±0.11) (±0.56) (±0.13)
Llama3.3-70B 45.32 47.15 60.62 49.76 40.90 54.30 52.79 54.61 49.98 55.05 50.53

(±0.00) (±0.06) (±0.00) (±0.00) (±0.00) (±0.09) (±0.06) (±0.00) (±0.02) (±0.00) (±0.01)
Mistral-v0.3-7B 42.61 38.28 57.02 40.41 29.97 44.22 36.31 43.98 39.92 43.51 41.59

(±0.32) (±0.19) (±0.14) (±0.15) (±0.21) (±0.06) (±0.39) (±0.23) (±0.10) (±0.05) (±0.06)
Qwen2-0.5B 32.84 25.15 40.19 28.20 27.62 37.22 33.81 33.63 28.25 31.67 31.44

(±0.26) (±0.64) (±0.64) (±0.24) (±0.49) (±0.19) (±0.58) (±0.21) (±0.33) (±0.22) (±0.13)
Qwen2-7B 44.21 40.41 63.00 47.36 35.37 52.30 45.61 48.73 44.88 46.89 46.51

(±0.03) (±0.10) (±0.11) (±0.10) (±0.12) (±0.27) (±0.06) (±0.14) (±0.13) (±0.17) (±0.02)
Qwen2-57B 53.67 49.81 74.30 58.38 39.34 54.71 63.89 59.57 59.22 60.08 57.20

(±0.21) (±0.05) (±0.37) (±0.04) (±0.40) (±0.16) (±0.37) (±0.04) (±0.01) (±0.07) (±0.01)
Qwen2-72B 51.16 58.10 74.07 59.72 51.58 57.76 58.85 61.63 56.69 59.11 57.62

(±1.70) (±4.07) (±0.04) (±3.44) (±0.42) (±0.75) (±2.35) (±4.89) (±2.16) (±3.33) (±2.60)
Qwen2.5-7B 45.16 39.50 66.01 44.61 35.72 50.00 53.60 53.31 53.06 51.05 48.45

(±0.43) (±0.19) (±0.36) (±0.19) (±0.51) (±0.24) (±0.29) (±0.21) (±0.20) (±0.31) (±0.10)
Qwen2.5-14B 50.91 50.73 68.62 52.15 47.14 54.54 57.02 62.05 54.37 54.15 54.21

(±0.00) (±0.00) (±0.00) (±0.06) (±0.00) (±0.00) (±0.03) (±0.00) (±0.12) (±0.00) (±0.02)
Qwen2.5-72B 46.86 47.41 70.99 51.89 46.17 57.60 55.35 56.31 53.05 54.75 52.63

(±0.01) (±0.01) (±0.00) (±0.00) (±0.00) (±0.13) (±0.00) (±0.01) (±0.01) (±0.01) (±0.02)
QwQ-32B 32.24 21.06 47.11 29.14 28.56 39.68 38.17 39.56 34.70 34.52 33.55

(±0.00) (±0.00) (±0.00) (±0.00) (±0.00) (±0.00) (±0.00) (±0.00) (±0.00) (±0.00) (±0.00)
Domain Specific LLMs
Aksara-v1-7B 36.72 36.69 48.32 35.41 24.26 36.83 31.17 34.64 31.15 34.14 35.04

(±0.18) (±0.10) (±0.27) (±0.06) (±0.02) (±0.22) (±0.03) (±0.02) (±0.01) (±0.05) (±0.05)
PLLaMa-7B 17.85 13.69 17.99 16.81 11.66 21.67 14.34 17.36 12.39 16.11 16.46

(±0.03) (±0.07) (±0.44) (±0.14) (±0.20) (±0.34) (±0.21) (±0.03) (±0.17) (±0.22) (±0.01)
PLLaMa-13B 15.10 14.18 28.41 18.83 13.96 23.28 18.53 17.37 14.15 18.51 17.57

(±0.04) (±0.03) (±0.36) (±0.03) (±0.01) (±0.07) (±0.12) (±0.21) (±0.08) (±0.03) (±0.03)

Table 10: Evaluation of 26 LLMs on SeedBench. Performance is stratified by breeding subcategories, with open-
source/domain-specific models evaluated through 3 repeated trials (mean scores reported). The scores represent
averages across three different metrics for 11 task types. The columns delineate ten subcategories in breeding: (C1)
Gene Basic Information Query, (C2) Gene Expression Pattern Query, (C3) Gene Product Cellular Localization Query,
(C4) Gene Function Experimental Observation, (C5) Gene Product Regulation of Downstream Genes Analysis,
(C6) Gene Function Prediction, (C7) Variety Breeding Process Query, (C8) Variety Agronomic Trait Query, (C9)
Variety Cultivation and Technical Key Points Query, (C10) Variety Suitable Planting Area Recommendation. Top-3
performers per column are highlighted in red.
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Models Question Type AverageQA-1 QA-2 QA-3 QA-4 SUM-1 SUM-2 RC-1 RC-2 RC-3 RC-4 RC-5
Proprietary LLMs
Claude-3.5-Sonnet 57.50 74.68 25.84 21.82 33.97 44.94 98.23 97.67 85.97 44.58 88.17 61.22
Gemini-1.5-Pro 56.50 73.26 27.37 16.96 22.99 28.88 99.12 97.01 86.75 43.18 84.95 57.91
Gemini-2.0-Flash 62.00 58.59 1.83 11.04 31.01 27.76 97.35 65.25 7.37 25.74 95.34 43.93
GLM-4-Plus 64.50 75.40 25.82 32.51 48.53 51.53 99.12 97.02 84.39 49.31 85.30 64.85
GPT-4o mini 57.50 72.33 17.88 44.47 49.51 60.66 97.35 95.38 85.30 57.73 84.23 65.67
GPT-4 60.50 73.87 21.35 36.07 58.73 62.89 100.00 96.44 87.86 62.29 86.74 67.88
OpenAI o1-mini 57.50 73.81 22.25 27.93 38.40 37.80 100.00 96.17 83.46 36.40 82.80 59.68
DeepSeek-V3 72.50 79.84 29.29 40.63 48.06 54.67 100.00 97.22 87.89 55.19 86.74 68.37
Open-Source LLMs
GLM-4-Chat-9B 53.00 62.41 0.95 1.57 5.69 13.38 98.53 68.51 6.26 2.29 93.55 36.92

(±0.00) (±0.10) (±0.00) (±0.01) (±0.03) (±0.02) (±0.51) (±0.29) (±0.01) (±0.01) (±0.36)
InternLM2-7B 56.50 66.93 1.85 2.14 8.66 13.88 98.23 85.88 14.31 6.51 96.77 41.06

(±0.00) (±0.17) (±0.00) (±0.00) (±0.07) (±0.03) (±0.00) (±0.00) (±0.02) (±0.02) (±0.00)
InternLM2.5-7B 58.50 65.86 12.99 32.69 50.98 53.64 99.12 94.48 73.39 55.41 70.37 60.67

(±0.00) (±0.00) (±0.05) (±0.07) (±0.10) (±0.02) (±0.00) (±0.00) (±0.00) (±0.01) (±0.21)
Llama3.1-8B 48.00 64.33 10.60 24.57 48.11 42.62 94.69 81.05 54.31 45.63 74.67 53.51

(±0.00) (±0.30) (±0.24) (±0.12) (±0.14) (±0.09) (±0.00) (±0.09) (±0.76) (±0.47) (±0.21)
Llama3.1-70B 56.00 73.73 19.53 34.65 52.09 54.83 99.12 96.62 74.76 51.28 83.15 63.25

(±0.71) (±0.07) (±0.09) (±0.00) (±0.00) (±0.02) (±0.00) (±0.00) (±0.98) (±0.01) (±0.01)
Llama3.3-70B 58.50 71.50 18.65 26.55 47.79 53.03 99.12 93.88 64.92 49.96 80.29 60.38

(±0.00) (±0.00) (±0.00) (±0.01) (±0.13) (±0.01) (±0.00) (±0.00) (±0.09) (±0.02) (±0.00)
Mistral-v0.3-7B 39.50 58.14 5.91 30.01 45.02 62.03 83.19 76.43 38.51 50.31 73.12 51.11

(±0.00) (±0.19) (±0.18) (±0.42) (±0.05) (±0.03) (±0.00) (±0.00) (±0.22) (±0.53) (±0.00)
Qwen2-0.5B 40.50 62.20 2.82 31.21 44.72 53.73 55.46 65.89 15.98 42.04 50.18 42.25

(±0.00) (±0.29) (±0.07) (±0.47) (±0.20) (±0.34) (±1.35) (±0.61) (±0.08) (±0.76) (±0.72)
Qwen2-7B 57.00 69.44 12.72 32.42 31.18 40.30 97.35 82.36 57.83 46.96 84.59 55.65

(±0.00) (±0.09) (±0.17) (±0.08) (±0.00) (±0.08) (±0.00) (±0.17) (±0.20) (±0.28) (±0.00)
Qwen2-57B 56.00 74.79 21.24 39.56 46.04 60.27 99.12 95.95 76.55 56.66 80.83 64.27

(±0.00) (±0.03) (±0.11) (±0.23) (±0.03) (±0.64) (±0.00) (±0.00) (±0.09) (±0.25) (±0.25)
Qwen2-72B 59.50 75.98 19.55 31.62 31.08 63.09 99.12 94.24 72.20 51.58 89.96 62.54

(±0.00) (±0.00) (±0.00) (±0.00) (±0.00) (±0.03) (±0.00) (±0.00) (±0.00) (±0.00) (±0.00)
Qwen2.5-7B 57.00 71.19 17.46 32.47 43.96 54.70 96.46 88.33 54.47 47.97 79.21 58.47

(±1.00) (±0.24) (±0.10) (±0.09) (±0.01) (±0.07) (±0.00) (±0.07) (±0.00) (±0.02) (±0.00)
Qwen2.5-14B 57.00 72.49 17.43 22.66 54.88 56.20 99.12 93.36 67.72 51.57 83.51 61.45

(±0.00) (±0.00) (±0.00) (±0.00) (±0.08) (±0.00) (±0.00) (±0.00) (±0.25) (±0.00) (±0.00)
Qwen2.5-72B 70.50 73.71 17.86 29.84 51.33 59.52 100.00 87.79 57.07 48.41 83.51 61.77

(±0.00) (±0.00) (±0.00) (±0.01) (±0.00) (±0.03) (±0.00) (±0.00) (±0.00) (±0.00) (±0.00)
QwQ-32B 61.50 58.81 3.00 14.54 15.60 26.93 91.15 64.17 19.23 19.09 91.04 42.28

(±0.00) (±0.00) (±0.00) (±0.00) (±0.00) (±0.00) (±0.00) (±0.00) (±0.00) (±0.00) (±0.00)
Domain Specific LLMs
Aksara-v1-7B 34.167 53.4 4.28 17.263 26.503 38.32 87.61 72.89 30.037 35.397 66.67 42.41

(±0.289) (±0.139) (±0.061) (±0.025) (±0.006) (±0.00) (±0.00) (±0.00) (±0.075) (±0.396) (±0.00)
PLLaMa-7B 6.5 35.47 2.613 20.223 13.753 20.577 6.19 35.03 12.76 24.583 4.78 16.59

(±0.5) (±0.485) (±0.032) (±0.326) (±0.126) (±0.046) (±0.00) (±0.00) (±0.00) (±0.167) (±0.208)
PLLaMa-13B 24.167 50.433 1.013 18.17 13.37 14.84 38.94 57.37 6.95 18.007 40.98 25.84

(±0.289) (±0.133) (±0.04) (±0.171) (±0.00) (±0.00) (±0.00) (±0.00) (±0.00) (±0.243) (±0.416)

Table 11: Evaluation results (zero-shot) on different question type. Top-3 per column are highlighted.
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Models Question Type AverageQA-1 QA-2 QA-3 QA-4 SUM-1 SUM-2 RC-1 RC-2 RC-3 RC-4 RC-5
Proprietary LLMs
Claude-3.5-Sonnet 53.50 75.54 27.92 23.99 32.36 42.88 98.23 97.67 85.68 45.40 86.02 60.84
Gemini-1.5-Pro 55.50 73.49 27.13 27.03 28.98 35.65 99.12 97.45 86.98 46.08 86.74 60.38
Gemini-2.0-Flash 64.50 59.30 1.73 12.99 31.99 36.43 97.35 65.91 6.25 26.63 93.19 45.12
GLM-4-Plus 67.00 76.46 26.47 46.13 51.35 52.73 99.12 96.62 85.99 59.14 80.29 67.39
GPT-4o mini 55.00 71.89 19.10 41.59 50.21 57.59 97.35 95.00 86.00 53.76 82.08 64.51
GPT-4 57.50 73.24 23.43 46.19 63.93 68.07 100.00 96.86 88.97 64.53 83.15 69.63
OpenAI o1-mini 61.50 74.78 19.82 35.75 32.89 25.91 99.12 96.84 83.31 47.12 80.65 59.79
DeepSeek-V3 71.50 79.16 32.28 46.59 50.16 58.52 100.00 97.00 86.85 60.59 85.30 69.81
Open-Source LLMs
GLM-4-Chat-9B 55.50 59.31 0.51 1.24 4.46 11.12 97.35 64.35 7.67 1.92 91.16 35.87

(±0.00) (±0.00) (±0.00) (±0.01) (±0.01) (±0.00) (±0.00) (±0.00) (±0.00) (±0.00) (±0.41)
InternLM2-7B 50.50 59.30 0.16 1.55 7.82 12.76 94.69 75.12 6.35 2.98 88.17 36.31

(±0.00) (±0.03) (±0.00) (±0.01) (±0.00) (±0.00) (±0.00) (±0.00) (±0.00) (±0.01) (±0.97)
InternLM2.5-7B 58.50 69.42 14.74 35.05 53.63 56.07 99.12 95.18 75.04 57.03 68.22 62.00

(±0.00) (±0.00) (±0.00) (±0.12) (±0.00) (±0.00) (±0.00) (±0.00) (±0.00) (±0.11) (±0.06)
Llama3.1-8B 35.50 49.10 7.97 32.90 49.22 46.62 86.43 75.39 54.04 41.27 68.10 49.68

(±0.00) (±0.00) (±0.01) (±0.63) (±0.07) (±0.01) (±0.51) (±0.38) (±0.00) (±0.01) (±0.62)
Llama3.1-70B 55.00 70.01 19.60 33.17 52.24 59.04 99.12 96.02 74.49 51.42 80.65 62.80

(±0.00) (±0.06) (±0.00) (±0.07) (±0.00) (±0.06) (±0.00) (±0.00) (±0.33) (±0.00) (±0.33)
Llama3.3-70B 54.75 73.55 17.35 30.61 50.09 45.12 99.12 93.52 63.22 45.62 79.21 59.29

(±0.35) (±0.13) (±0.00) (±0.06) (±0.00) (±0.01) (±0.00) (±0.00) (±0.00) (±0.06) (±0.22)
Mistral-v0.3-7B 39.50 60.85 3.82 31.09 45.74 62.27 79.06 75.79 35.65 48.81 74.55 50.65

(±0.50) (±0.13) (±0.01) (±0.12) (±0.00) (±0.00) (±0.51) (±0.00) (±0.30) (±0.10) (±0.75)
Qwen2-0.5B 44.50 62.94 2.28 33.36 36.05 38.12 67.26 68.93 12.10 40.83 25.09 39.22

(±0.00) (±0.31) (±0.25) (±0.65) (±0.38) (±0.44) (±0.00) (±0.42) (±0.98) (±0.83) (±0.46)
Qwen2-7B 52.17 65.62 14.13 34.50 43.35 52.33 88.50 78.53 52.03 48.77 85.42 55.94

(±0.58) (±0.79) (±0.02) (±0.18) (±0.00) (±0.00) (±0.00) (±0.08) (±0.24) (±0.01) (±0.31)
Qwen2-57B 58.00 76.42 21.17 43.49 49.60 60.53 97.35 95.28 76.86 56.87 77.42 64.82

(±0.00) (±0.00) (±0.09) (±0.36) (±0.01) (±0.12) (±0.00) (±0.00) (±0.16) (±0.16) (±0.63)
Qwen2-72B 65.00 77.73 24.51 41.70 54.36 66.48 99.12 96.13 78.54 57.85 84.41 67.80

(±0.00) (±0.13) (±2.57) (±0.96) (±0.07) (±0.01) (±0.00) (±1.57) (±7.40) (±0.69) (±0.57)
Qwen2.5-7B 57.667 70.32 16.867 38.27 43.897 59.597 92.92 80.093 52.003 52.46 75.987 58.19

(±0.00) (±1.11) (±0.62) (±0.29) (±0.18) (±0.40) (±0.00) (±0.00) (±0.30) (±0.33) (±0.39)
Qwen2.5-14B 63.5 72.57 18.79 38.4 56.24 62.14 99.12 94.39 69.877 56.83 82.08 64.90

(±0.00) (±0.00) (±0.00) (±0.00) (±0.00) (±0.00) (±0.00) (±0.00) (±0.335) (±0.00) (±0.00)
Qwen2.5-72B 67.50 74.79 21.39 40.425 55.86 62.01 99.12 89.11 55.995 51.38 82.8 63.67

(±0.00) (±0.00) (±0.00) (±0.078) (±0.00) (±0.00) (±0.00) (±0.00) (±0.007) (±0.028) (±0.00)
QwQ-32B 63.50 60.26 6.81 25.35 13.12 20.35 93.81 65.07 22.72 27.84 75.99 43.17

(±0.00) (±0.00) (±0.00) (±0.00) (±0.00) (±0.00) (±0.00) (±0.00) (±0.00) (±0.00) (±0.00)
Domain Specific LLMs
Aksara-v1-7B 41.667 55.627 2.653 23.35 38.7 57.14 84.07 70.88 27.037 40.087 71.33 50.65

(±0.289) (±0.182) (±0.072) (±0.157) (±0.00) (±0.00) (±0.00) (±0.00) (±0.167) (±0.389) (±0.00)
PLLaMa-7B 11.167 37.22 6.437 25.203 30.42 27.71 5.31 28.38 20.27 24.723 29.75 22.42

(±0.577) (±0.859) (±0.202) (±0.117) (±0.00) (±0.00) (±0.00) (±0.00) (±0.208) (±0.067) (±0.00)
PLLaMa-13B 24.0 52.697 0.507 7.167 12.34 13.73 30.09 50.51 3.81 15.55 32.26 22.06

(±0.00) (±0.029) (±0.006) (±0.086) (±0.00) (±0.00) (±0.00) (±0.00) (±0.035) (±0.00) (±0.00)

Table 12: Evaluation results (one-shot) on different question type. Top-3 per column are highlighted.
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Figure 22: Evaluation of Proprietary LLMs on SeedBench. Performance is stratified by task-type.

Figure 23: Evaluation of Open-Source LLMs on SeedBench. Performance is stratified by task-type.
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