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Abstract

Current vision-language models (VLMs) un-
derstand complex vision-text tasks by extract-
ing overall semantic information from large-
scale cross-modal associations. However, ex-
tracting from large-scale cross-modal associa-
tions often smooths out semantic details and
requires large computations, limiting multi-
modal fine-grained understanding performance
and efficiency. To address this issue, this pa-
per proposes a detail-oriented prompt learning
(DoPL) method for vision-language models to
implement fine-grained multi-modal semantic
alignment with merely 0.25M trainable parame-
ters. According to the low-entropy information
concentration theory, DoPL explores shared
interest tokens from text-vision correlations
and transforms them into alignment weights
to enhance text prompt and vision prompt via
detail-oriented prompt generation. It effec-
tively guides the current frozen layer to ex-
tract fine-grained text-vision alignment cues.
Furthermore, DoPL constructs detail-oriented
prompt generation for each frozen layer to
implement layer-by-layer localization of fine-
grained semantic alignment, achieving precise
understanding in complex vision-text tasks.
DoPL performs well in parameter-efficient fine-
grained semantic alignment with only 0.12%
tunable parameters for vision-language mod-
els. The state-of-the-art results over the pre-
vious parameter-efficient fine-tuning methods
and full fine-tuning approaches on six bench-
marks demonstrate the effectiveness and effi-
ciency of DoPL in complex multi-modal tasks.

1 Introduction

Vision-language models (VLMs) are large-scale
pre-trained models in the multimodal domain that
simultaneously process and understand both visual
and textual information(Radford et al., 2021; Li
et al., 2022b). These models excel in cross-modal
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tasks such as image captioning, visual question
answering, and image-text retrieval.

How to effectively capture cross-modal associa-
tions is a fundamental challenge in vision-language
models(Zhang et al., 2021; Li et al., 2022b).
Dual-stream and fused-stream VLMs typically
focus on global semantic relationships between
modalities. For example, Dual-stream VLMs like
CLIP(Radford et al., 2021) and ALIGN(Jia et al.,
2021) captured cross-modal association with global
feature similarity between modalities. Fused-
stream VLMs like BLIP(Li et al., 2022b) and
X-VLM(Zeng et al., 2021) improved alignment
through cross-modal attention. However, these
global perspective modeling approaches often over-
look subtle semantic details and struggle to accu-
rately capture image-text relationships(Yao et al.,
2021), as shown in Figure 1(b) and Figure 1(c).
Furthermore, these models with massive parame-
ters rely on full fine-tuning to capture cross-modal
relationships for downstream tasks, which leads
to high computational costs. Therefore, exploring
parameter-efficient transfer learning (PETL) meth-
ods is essential for more efficient model adaptation.

The main challenge in PETL for VLMs is ef-
fectively enabling cross-modal interactions while
maintaining parameter efficiency. PETL meth-
ods(Liu et al., 2023; Gao et al., 2024) for VLMs
typically address the resource-intensive nature of
full fine-tuning by freezing the backbone and intro-
ducing a small number of trainable parameters for
task-specific adaptation. They also optimize cross-
modal interactions within these constraints. For in-
stance, prompt-based methods like MaPLe(Khattak
et al., 2023) utilized multi-modal prompts learning
to enhance alignment and adapt to downstream
tasks. Adapter-based methods like MMA(Yang
et al., 2024) leveraged shared multi-modal projec-
tion layers and high-layer adapters to strengthen
vision-text connections. However, these methods
sacrifice the ability to capture fine-grained seman-
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Figure 1: Comparison of cross-modal attention map on FLICKR30K shows that our DoPL effectively captures
detailed cross-modal semantic relationships.

tic details in favor of achieving parameter-efficient
adaptation, as shown in Figure 1(d) and 1(e). This
sacrifice impacts their performance in tasks re-
quiring precise alignment, such as visual question
answering. Therefore, this work focuses on fine-
grained semantic alignment and parameter-efficient
adaptation in VLMs.

To this end, we propose a novel detail-oriented
prompt learning method for VLMs that simultane-
ously achieves fine-grained semantic alignment and
parameter efficiency. Guided by the low-entropy
information concentration theory, DoPL leverages
the detail-oriented prompt generation module to
identify shared interest tokens from text-vision
prompt correlations and transform them into align-
ment weights to enhance text-vision prompt pairs.
Then, DoPL utilizes the enhanced pairs to generate
detail-oriented prompts for each frozen layer. Sub-
sequently, It progressively guides each frozen layer
with prompts to extract fine-grained text-vision
alignment cues, enabling layer-by-layer localiza-
tion of fine-grained semantic alignment and achiev-
ing precise understanding in vision-text complex
tasks. As a result, DoPL achieves both parameter-
efficient adaptation and stronger fine-grained cross-
modal semantic alignment.

To conclude, our contributions are as follows:

• DoPL is an innovative parameter-efficient
and fine-grained prompt learning for vision-
language models. It simultaneously achieves
fine-grained multi-modal semantic alignment
and parameter efficiency with only 0.12% ad-
ditional parameters.

• This paper proposes a non-parametric detail-
oriented prompt generation (DPG) to improve
prompts’ ability in fine-grained multi-modal
semantic alignment, enabling the precise un-
derstanding performance of VLMs in complex
multi-modal tasks.

2 Related Work

2.1 Vision-Language Models
Vision-language models (VLMs) integrate visual
and textual information to learn cross-modal rela-
tionships(Radford et al., 2021; Li et al., 2022b).
VLMs can be broadly classified into single-stream,
dual-stream, and fused-stream models.

Single-stream models fuse visual and textual
data early and pass them through a unified encoder
to learn cross-modal relationships. Examples in-
clude VL-BERT(Su et al., 2019), OSCAR(Li et al.,
2020), and SimVLM(Wang et al., 2021). These
models simplify integration but may struggle to dis-
tinguish modality-specific features. Dual-stream
models process visual and textual information sep-
arately through independent encoders and preserve
modality-specific features before cross-modal in-
teraction. CLIP(Radford et al., 2021), ALIGN(Jia
et al., 2021), and Florence(Yuan et al., 2021) are
examples. Although they excel in large-scale pre-
training, they often overlook fine-grained details
and limit their performance in complex tasks.

Fused-stream models combine the strengths of
both architectures by using independent encoders
for each modality and cross-modal attention for
integration. Models like BLIP(Li et al., 2022b),
X-VLM(Zeng et al., 2021), and ALBEF(Li et al.,
2021) provide better alignment but at higher com-
putational costs due to the complexity of cross-
modal integration, particularly during full fine-
tuning.

Our work focuses on dual-stream and fused-
stream models and significantly advances the
enhancement of fine-grained alignment between
modalities while maintaining a low computational
overhead.
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Figure 2: Overview of our detail-oriented prompt learning method: Only the prompts are trained while the backbone
remains frozen. The non-parametric DPG enhances prompts based on the low-entropy information concentration
theory, fostering fine-grained semantic alignment.

2.2 Parameter-Efficient Transfer Learning for
VLMs

Parameter-Efficient Transfer Learning (PETL)
methods address the challenges of full fine-tuning
in pre-trained models by reducing trainable param-
eters while maintaining performance(Zhou et al.,
2022b; Khattak et al., 2023). For VLMs, PETL
requires balancing parameter efficiency and cross-
modal interactions. Current PETL in VLMs can be
categorized into prompt-based, adapter-based, and
reparameterization methods.

Prompt-based methods insert task-specific
prompts into vision/language branches while freez-
ing the original model parameters. CoOp(Zhou
et al., 2022b) optimized continuous text prompts
for few-shot learning. CoCoOp(Zhou et al., 2022a)
refined text prompts based on image instances.
VPT(Yu et al., 2024) employed visual prompts for
vision-language tasks. MaPLe(Khattak et al., 2023)
and Bloom(Wang et al., 2024) employed multi-
modal prompts with cross-modal interactions.

Adapter-based methods introduce lightweight
adapter layers and fine-tune only adapter parame-
ters. Clip-Adapter(Gao et al., 2024) added adapter
layers in text and image encoders. UniAdapter(Lu
et al., 2023) used shared down-projection lay-
ers and residual learning for cross-modal knowl-
edge sharing. MMA(Yang et al., 2024) employed
shared projection layers and high-layer adapters to
strengthen visual-textual connections.

Reparameterization methods improve transfer
learning efficiency by modifying model compo-
nents. Aurora(Wang et al., 2023a) reduced train-
able parameters through mode approximation.

Although existing PETL methods reduce train

costs, they typically focus on coarse alignment and
overlook fine-grained semantic details. Our method
achieves parameter efficiency and fine-grained se-
mantic alignment to address both challenges simul-
taneously.

3 Method

This section introduces the detail-oriented prompt
learning method for VLMs. DoPL guides each
freeze layer to extract text-vision alignment cues
via the non-parametric detail-oriented prompt gen-
eration and implements layer-by-layer localization
of fine-grained semantic alignment. DoPL primar-
ily includes detail-oriented prompt generation, pro-
gressive hierarchical multimodal alignment percep-
tion, and multimodal task adaption. The architec-
ture of our framework is illustrated in Figure 2, and
a detailed description is provided below.

3.1 Detail-oriented Prompt Generation
This section focuses on acquiring detail-oriented
prompts to improve the model’s ability to cap-
ture subtle semantic relationships and achieve fine-
grained cross-modal alignment. We first construct
modality-specific prompts to capture modality-
specific information. Then, the non-parametric
detail-oriented prompt generation module is used
to refine these prompts and enhance their semantic
sensitivity according to the low-entropy informa-
tion concentration theory.

Modality-specific Prompts Construction: To
ensure consistent multimodal understanding and
retain both shared and modality-specific informa-
tion, we utilize a multi-modal prompt method for
constructing a shared knowledge foundation. It
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involves two stages: first, a shared source prompt
P s is constructed as a foundation for all modalities,
and second, modality-specific prompts are gener-
ated from P s by using tailored mapping layers for
each modality. This approach retains core informa-
tion while integrating modality-specific features,
achieving consistency and diversity.

Formally, the modality-specific prompts are gen-
erated as follows:

Pα = ϕα(P
sWα + βα),

α = {t, v,m}, (1)

where ϕα(·) is the corresponding linear function,
{Wα, βα} is the weight and bias of the correspond-
ing modality-specific mapping layers. P t, P v and
Pm are text, vision and multimodal prompts, re-
spectively.

Detail-oriented Prompts Construction: Exist-
ing multi-modal prompt methods(Khattak et al.,
2023; Wang et al., 2024) often use unidirectional
or bidirectional prompt transformation structures
to enable cross-modal interaction. However, they
introduce significant parameter overhead and pri-
marily capture coarse-grained alignment due to
their reliance on high-level interactions.

To address these limitations, we propose the low-
entropy information concentration theory, which es-
tablishes a principled connection between entropy
minimization and semantic alignment strength. In
the context of soft prompts, consider a similarity
matrix Ri,j quantifying the relationship between
text prompt tokens xi and visual prompt tokens
yj . High entropy in Ri,j indicates that a text
prompt token associates with multiple visually un-
related prompt tokens yj , reflecting ambiguous or
weak semantic alignment (e.g., "dog" activating re-
gions containing both a cat and a car). Conversely,
low entropy implies that xi predominantly aligns
with a specific subset of yj , demonstrating concen-
trated semantic correspondence. This principle is
grounded in mutual information theory: minimiz-
ing conditional entropy H(Y |X) maximizes the
shared information I(X;Y ), thereby enhancing se-
mantic coherence between modalities. The detailed
mathematical derivation and proof of this theory
are provided in Appendix [A].

Guided by this theoretical foundation, we pro-
pose the non-parametric DPG module to lever-
age low entropy values from text-vision correla-
tions, enhancing the prompts’ ability to capture
fine-grained semantic relationships while maintain-
ing parameter efficiency.

In order to effectively capture the shared interest
tokens between text and vision prompts, it is essen-
tial to explore their cross-modal interrelationships.
Therefore, DPG constructs a cross-modal correla-
tion matrix Ri,j using (P t)l and (P v)l in the l-th
layer (l = 1, 2, ..., k). The matrix Ri,j is acquired
as follows:

Ri,j = softmax(((P t)l)T ) · softmax((P v)l),
(2)

where · represents the matrix multiplication. Ri,j

quantifies cross-modal relationships by calculating
the similarity between the corresponding represen-
tations, providing a comprehensive measure.

To extract shared interest tokens from the con-
structed Ri,j , DPG uses information entropy. En-
tropy can quantify the alignment strength between
the information from different modalities. There-
fore, DPG first normalizes Ri,j , ensuring the values
are on a comparable scale and ready for entropy
calculation. The matrix Ri,j encodes the relation-
ships between a single vision prompt token and all
text prompt tokens in the columns, and DPG ap-
plies column-wise normalization for text-to-vision
relationships:

N t→v
i,j =

exp(Ri,j)∑
k=1 exp(Rk,j)

, (3)

The matrix Ri,j encodes the relationships between
a single text prompt token and all vision prompt
tokens in the rows, and DPG applies row-wise nor-
malization for vision-to-text relationships:

Nv→t
i,j =

exp(Ri,j)∑
k=1 exp(Ri,k)

, (4)

where i represents text prompt token, j represents
vision prompt token and k iterates over rows and
columns for normalization.

To quantify the cross-modal informational con-
tent between tokens, DPG then computes entropy
matrices through element-wise multiplication of
the normalized matrices and their logarithmic coun-
terparts. The entropy matrices are acquired as fol-
lows:

ht→v
i,j = N t→v

i,j ⊙ log(N t→v
i,j + ϵ), (5)

hv→t
i,j = Nv→t

i,j ⊙ log(Nv→t
i,j + ϵ), (6)

these matrices quantify the alignment strength be-
tween text and vision prompt tokens at a granular
level, reflecting the degree of correspondence be-
tween the modalities.
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According to the low-entropy information con-
centration theory, low entropy values indicate con-
centrated relationships and reflect strong alignment,
while high entropy values suggest weaker and dis-
persed alignments. DPG computes the summed
entropy matrices by performing row and column
summation operations on the entropy matrices to
capture the relationship between a token and all
tokens in the other modality. Specially, Row-wise
summation of ht→v

i,j generates the text-to-vision
entropy matrix while column-wise summation of
hv→t
i,j generates the vision-to-text entropy matrix.

The formulas are given as follows:

Ht→v
i = −

∑

j

ht→v
i,j , (7)

Hv→t
j = −

∑

i

hv→t
i,j , (8)

where i iterates overs rows for Ht→v
i and j iterates

over columns for Hv→t
j . Ht→v

i measures the rela-
tionships of each text prompt token with all vision
tokens. Hv→t

j measures the relationships of each
vision prompt token with all text prompt tokens.

To assess the token’s capacity to capture se-
mantic alignment details, DPG converts Ht→v

i

and Hv→t
j into weights, emphasizing low-entropy

regions with stronger alignment to enhance fine-
grained alignment extraction. The weights are:

W t→v
i =

exp(−Ht→v
i )∑

k=1 exp(−Ht→v
k )

, (9)

W v→t
j =

exp(−Hv→t
j )∑

k=1 exp(−Hv→t
k )

, (10)

the matrices dynamically adjust the focus and ac-
centuate regions with stronger alignment to refine
cross-modal information flow. Therefore, DPG
combines the weight matrices with their respective
prompts. This combination enables precise extrac-
tion of text-to-vision and vision-to-text alignment
information by highlighting tokens with a stronger
ability to capture fine-grained alignment details.
The formulas are as follows:

At→v = (W t→v
i )T · (P t)l, (11)

Av→t = W v→t
j · (P v)l, (12)

Subsequently, DPG employs residual learning to in-
tegrate the alignment information with the prompts,
enhancing their sensitivity to semantic details. The

text, vision, and multimodal prompts at l-th layer
are enhanced as follows:

(P t)l = (P t)l +At→v, (13)

(P v)l = (P v)l +Av→t, (14)

(Pm)l = (Pm)l +At→v +Av→t, (15)

these enhanced prompts possess stronger fine-
grained semantic alignment extraction capabilities,
guiding the inserted frozen layer to perform de-
tailed alignment and capture subtle cross-modal
relationships.

3.2 Progressive Hierarchical Multimodal
Alignment Perception

This section introduces a layer-wise progressive
perception process that enhances cross-modal align-
ment precision using detail-oriented prompts at
each frozen layer. Our model is based on BLIP(Li
et al., 2022b). The text encoder processes textual
input through a 12-layer structure and extracts se-
mantic features from the text. Similarly, the vision
encoder processes visual input through a 12-layer
structure and learns vision features. The multi-
modal encoder processes text input and visual fea-
tures to learn joint representations with 12 layers.

In the l-th layer(l = 1, 2, ..., k), the detail-
oriented prompts P t, P v and Pm are inserted into
the text, vision, and multimodal encoders, respec-
tively. These prompts are concatenated with the
key and value matrices in the attention mechanism:

K = concat(Pα,K), (16)

V = concat(Pα, V ), (17)

where α = {t, v,m}. These prompts guide the cur-
rent frozen layer to extract text-vision alignment
cues, improving cross-modal interactions while
preserving modality-specific features. It also sets
the stage for the layer-wise progressive perception
process. In the first k layers, the inserted detail-
oriented prompts guide the frozen layers to pro-
gressively localize fine-grained semantic alignment,
with each layer refining and propagating alignment
information through interactions with the corre-
sponding encoder layers.

As DoPL guides the frozen layers through this
step-by-step localization of fine-grained seman-
tic alignment, it achieves alignment precision and
computational efficiency, ultimately enhancing the
model’s ability to achieve precise understanding in
complex vision-text tasks.
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Method # Tunable
MSCOCO TR MSCOCO IR FLICKR30K TR FLICKR30K IR

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

Methods with full fine-tuning:
UNITER(Chen et al., 2020) 330M 65.7 88.6 93.8 52.9 79.9 88.0 87.3 98 99.2 75.6 94.1 96.8

VILLA(Gan et al., 2020) 330M - - - - - - 87.9 97.5 98.8 76.3 94.2 96.8

OSCAR(Li et al., 2020) 330M 73.5 92.2 96 57.5 82.8 89.8 - - - - - -

ALIGN(Jia et al., 2021) 820M 77.0 93.5 96.9 59.9 83.3 89.8 95.3 99.8 100 84.9 97.4 98.6

ALBEF(Li et al., 2021) 210M 77.6 94.3 97.2 60.7 84.3 90.5 95.9 99.8 100 85.6 97.5 98.9

BLIP(Li et al., 2022b) 223M 81.9 95.4 97.8 64.3 85.7 91.5 97.3 99.9 100 87.3 97.6 98.9

Methods with forzen backbone:
LoRA(r=32)(Hu et al., 2022) 10.6M 76.7 91.2 96.0 60.08 82.21 89.5 96.3 99.7 99.8 84.8 96.6 98.4

Maple(len=8)(Khattak et al., 2023) 5.4M 76.87 91.32 96.1 60.1 82.32 89.7 96.6 99.8 99.9 85.1 97.1 98.62

Bloom(len=8)(Wang et al., 2024) 3.54M 77.28 93.7 96.96 60.85 83.87 90.07 96.8 99.8 100 85.3 97.12 98.62

DoRA(r=32)(Liu et al., 2024) 10.8M 77.8 93.5 96.6 61.1 83.9 90.1 96.7 99.8 100 85.1 97.2 98.5

UniAdapter*(r=512)(Lu et al., 2023) 19.5M 79.6 94.5 97.26 62.53 84.95 90.97 96.7 99.7 100 86.16 97.34 98.82

Aurora*(r=64)(Wang et al., 2023a) 0.6M 78 93.4 96.66 61.45 83.95 90.39 96.7 99.8 100 85.76 97.24 98.72

DoPL(ours, len=8) 0.25M 79.9 94.94 97.8 62.6 85.12 90.97 97.3 100 100 86.2 97.6 98.86

Table 1: Results on image-text retrieval datasets MSCOCO and FLICKR30K, # Tunable: the number of tunable
parameters, the second best result is marked by underline. ‘*’ donate the performance obtained by (Ji et al., 2024).

3.3 Multimodal Task Adaptation
To adapt the model for various multimodal tasks,
DoPL follows BLIP(Li et al., 2022b) and employs
task-specific loss functions. For image-text and
video-text retrieval tasks, DoPL uses Image-Text
Matching Loss(Li et al., 2021) to assess image-
text pair matching and Image-Text Contrastive
Loss(Radford et al., 2021; Jia et al., 2021) to en-
hance semantic consistency through contrastive
learning. For generative tasks like VQA and video
question answering, DoPL uses Language Mod-
eling Loss(Li et al., 2022b) to aid in generating
accurate answers.

4 Experiment

4.1 Experimental Settings
Datasets and Baselines. We evaluate our method
on six public multimodal downstream tasks: image-
text retrieval datasets (MSCOCO(Lin et al., 2014)
and FLICKR30K(Plummer et al., 2015)), video-
text retrieval datasets (MSR-VTT(Xu et al., 2016)
and DiDeMo(Anne Hendricks et al., 2017)), vi-
sual question answering dataset (VQA(Goyal et al.,
2017)) and video question answering dataset
(MSRVTT-QA(Xu et al., 2017)). And we compare
our method with two types of approaches: full fine-
tuning methods for each task and frozen backbone
methods, including Maple(Khattak et al., 2023),
Bloom(Wang et al., 2024), UniAdapter(Lu et al.,
2023) and Aurora(Wang et al., 2023a). Maple and
Bloom are re-implemented on the BLIP backbone
in our experiments.

Implementation Details Our method’s vision-
language backbone is based on BLIP for the six
downstream tasks. During the fine-tuning process,
the backbone model’s parameters are kept frozen.
We use the AdamW optimizer with a weight decay
of 0.05, set the prompt length uniformly to 8 for
all modalities, and set the inserted layers k to 9.
All experiments are implemented in PyTorch on
NVIDIA A100 GPUs(80GB).

4.2 Comparisons with State-Of-The-Art
Image-text Retrieval. Table 1 presents the per-
formance of our framework on image-text re-
trieval tasks with MSCOCO and FLICKR30K.
DoPL outperforms frozen backbone models like
UniAdapter(19.5M) and Aurora(0.6M) and com-
petes with larger full fine-tuning methods such as
BLIP(223M) and ALBEF(221M) with only 0.25M
parameters. This demonstrates DoPL’s sensitiv-
ity to semantic details and remarkable ability to
achieve fine-grained semantic alignment with mini-
mal computational cost.

Visual Question Answering. Table 2 presents
the performance of our multi-modal fine-grained
alignment framework on VQA and VideoQA tasks
using VQAv2 and MSRVTT-QA. Our DoPL out-
performs frozen backbone methods and achieves
strong performance in generative tasks with fewer
parameters(0.25M) while also competing with full
fine-tuning methods like BLIP(337M) and All-in-
one(110M). This demonstrates our DoPL’s ability
to capture fine-grained cross-modal relationships,
enhancing alignment precision and efficiency.
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Method # Tunable
VQAv2

Method # Tunable
MSRVTT-QA

test-dev test-std test acc

Methods with full fine-tuning:
VL-T5/BART(Cho et al., 2021) 165M - 71.30 ClipBERT(Lei et al., 2021) 135M 37.4

SOHO(Huang et al., 2021) 155M 73.25 73.47 ALPRO(Li et al., 2022a) 245M 42.1

OSCAR(Li et al., 2020) 330M 73.61 73.82 Just-Ask(Yang et al., 2021) 200M 41.5

UNITER(Chen et al., 2020) 330M 73.82 74.03 VIOLET(Fu et al., 2021) 306M 43.9

ALBEF(Li et al., 2021) 266M 75.84 76.04 MERLOT(Zellers et al., 2021) 233M 43.1

BLIP(Li et al., 2022b) 337M 77.44 77.48 All-in-one(Wang et al., 2023b) 110M 44.3

Methods with frozen backbone:
LoRA(r=32)(Hu et al., 2022) 10.6M 75.1 75.2 LoRA(r=32)(Hu et al., 2022) 10.6M 44.0

Maple(len=8)(Khattak et al., 2023) 5.4M 75.28 75.67 Maple(len=8)(Khattak et al., 2023) 5.4M 44.3

Bloom(len=8)(Wang et al., 2024) 3.54M 75.92 76.12 Bloom(len=8)(Wang et al., 2024) 3.54M 44.4

DoRA(r=32)(Liu et al., 2024) 10.8M 75.89 76.17 DoRA(r=32)(Liu et al., 2024) 10.8M 44.4

UniAdapter(r=512)(Lu et al., 2023) 19.5M 75.44 75.56 UniAdapter(r=512)(Lu et al., 2023) 19.5M 44.7

Aurora(r=64)(Wang et al., 2023a) 0.6M 77.69 77.87 Aurora(r=64)(Wang et al., 2023a) 0.6M 44.8
DoPL(ours, len=8) 0.25M 77.71 77.9 DoPL(ours, len=8) 0.25M 44.8

Table 2: Results on visual question answering datasets VQAv2 and MSRVTT-QA.

Method Input # Tunable
MSR-VTT Didemo

R@1 R@5 R@10 MdR R@1 R@5 R@10 MdR

Methods with full fine-tuning:
ClipBERT(Lei et al., 2021) 16x448 135M 22.0 46.8 59.9 6.0 20.4 48.0 60.8 6.0

Frozen in Time(Bain et al., 2021) 32x224 180M 31.0 59.5 70.5 3.0 34.6 65.0 74.7 3.0

ALPRO(Li et al., 2022a) 8x224 245M 33.9 60.7 73.2 3.0 35.9 67.5 78.8 3.0

VIOLET(Fu et al., 2021) 5x224 306M 34.5 63.0 73.4 - 32.6 62.8 74.7 -

All-in-one(Wang et al., 2023b) 9x224 110M 37.9 68.1 77.1 - 32.7 61.4 73.5 3.0

CLIP-Hhiker(Bain et al., 2022) 120x224 124M 47.7 74.1 82.9 - - - - -

Methods with frozen backbone:
CLIP-Prompt(Ju et al., 2022) 16x224 6.4M 36.7 64.6 - - - - - -

LoRA(r=32)(Hu et al., 2022) 16x224 10.6M 39.9 66.9 76.9 3.0 33.8 61.2 71.32 2.0

Maple(len=8)(Khattak et al., 2023) 16x224 5.4M 40.2 67.2 77.2 3.0 32.6 60.2 71.32 2.0

Bloom(len=8)(Wang et al., 2024) 16x224 3.54M 44.5 69.8 79.7 2.0 35.49 61.7 72.38 2.0

DoRA(r=32)(Liu et al., 2024) 16x224 10.8M 45.3 70.4 80.1 2.9 35.8 63.4 73.21 2.0

UniAdapter*(r=512)(Lu et al., 2023) 16x224 19.5M 42.4 68.4 77.4 2.0 32.8 60.02 71.19 2.0

Aurora*(r=64)(Wang et al., 2023a) 16x224 0.6M 45.1 69.7 79.4 2.0 35.59 63.61 73.08 2.0

DoPL(ours, len=8) 16x224 0.25M 47.8 74.4 84.0 2.0 39.98 65.5 74.87 2.0

Table 3: Results on video-text retrieval datasets MSR-VTT and Didemo (Text->Video), ‘*’ donate the performance
obtained by (Ji et al., 2024).

Video-text Retrieval. Table 3 presents the per-
formance of our framework on video-text retrieval
using the MSRVTT and DiDemo datasets. Our
DoPL outperforms all frozen backbone methods
using significantly fewer parameters(0.25M). It
also demonstrates strong performance compared to
full fine-tuning methods like VIOLET(306M) and
CLIP-Hhiker(124M). The DPG module enhances
the semantic sensitivity of the prompts, enabling
our model to capture fine-grained cross-modal re-
lationships in video-text tasks. This highlights the
model’s superior ability in fine-grained semantic
alignment and its efficiency in handling complex
multimodal data.

4.3 Analysis Experiment
Variants of Inserting Multi-modal Prompts.
We conducted ablation experiments to identify
which modality’s prompt most contributes to cross-
modal learning, as shown in Table 4. The results
demonstrate that inserting prompts into the multi-
modal encoder improves performance over individ-
ual text or image prompts, highlighting the impor-
tance of multimodal alignment. Furthermore, the
best performance is achieved by inserting prompts
into all modality encoders, which we adopt as the
default configuration.

Impact of Prompts Depth. We evaluate the im-
pact of adding prompts to different encoder layers.
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Figure 3: Experiment on prompt depth (a), prompt length (b) and DPG layers depth (c). The results are di-
vided on two y-axes for clear demonstration, where T2I Recall@mean/Recall@1 is on the left axis and I2T
Recall@mean/Recall@5/10 is on the right one.

MedRR@10R@5R@1MTV

✓ 2.071.5862.336.49

✓ 2.071.5463.236.69

✓ ✓ 2.073.7863.5138.49

✓ 2.073.6863.4238.19

✓✓ ✓

#  Tunable

0.08M 

0.08M 

0.16M 

0.08M 

0.25M 74.8765.539.98 2.0

Table 4: Insering modality-specific prompt (Visual V,
Textual T and Multimodal M) on Didemo(Text->Video)

As shown in Figure 3 (a), performance improves
with the number of layers but plateaus after nine
layers. These results demonstrate the effective-
ness of detail-oriented prompt insertion for cross-
modal alignment, and we adopt nine layers as the
default configuration to balance performance and
efficiency.

Impact of Prompts Length. We also evaluate
the impact of prompt length on performance. As
shown in Figure 3 (b), performance improves with
increasing prompt length up to 8, but further in-
creases in length result in diminished returns and
even a performance drop. We select a prompt
length of 8 to balance performance and efficiency
as the default setting.

DPG Module Visualization Validation. To ver-
ify the role of the DPG module’s low-entropy re-
gions in enhancing cross-modal alignment, we
compared the attention distribution with and with-
out the DPG module using Grad-CAM in Figure
4. The results show that the DPG module enables
the model to capture finer image details, improving
text-vision alignment accuracy.

Layer-wise Progressive Alignment Validation.
We analyze the impact of progressively inserting
the DPG module across layers and find consistent
performance improvement with more layers inte-
grated, as shown in Figure 3 (c). The experimental
results demonstrate that the DPG module enhances
the prompts and facilitates the model in progres-

A security guard in a suit stands in an empty room.

A man wearing a hat is juggling three balls.

w/o DPG w. DPG

Figure 4: Cross-attention map visualizations on
Flickr30K highlight the DPG’s ability to pinpoint vi-
sually relevant regions for specific text words.

sively locating cross-modal alignment information
across layers, thereby improving overall perfor-
mance.

Generalization Capability Validation. To as-
sess the generalization capability of our method,
we applied it to various vision-language models
(VLMs), including CLIP and ALBEF, as well as
larger backbones like BLIP-Large and BEiT 3-
Large. We conducted cross-model experiments on
the FLICKR30K dataset. The results in Table 5 in-
dicate that our approach attains performance levels
comparable to, or surpassing, those of several full
fine-tuning VLMs. This indicates that our method
exhibits strong transferability and can enhance per-
formance in other VLMs with fewer parameters.

Training Efficiency and Storage Cost. The pro-
posed DoPL method achieves remarkable effi-
ciency through its parameter-efficient design and
non-parametric cross-modal alignment strategy. As
shown in Table 6, we compare training time effi-
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model #Tunable
FLICKR30K TR FLICKR30K IR
R@1 R@5 R@10 R@1 R@5 R@10

CLIP(Radford et al., 2021) (Full finetuning) 151.3M 69.6 90.6 95 67 89.1 93.6
DoPL(len=8) 0.16M 69.8 90.7 95 66.9 89 93.6

ALBEF(Li et al., 2021) (Full finetuning) 419.3M 95.9 99.8 100 85.6 97.5 98.9
DoPL(len=8) 0.18M 95.7 99.9 100 85 97.4 98.9

BLIP-Large(Li et al., 2022b) (Full finetuning) 591M 97.4 99.8 99.9 87.6 97.7 99
DoPL(len=8) 0.5M 97.4 100 100 87.1 97.7 99.1

BEIT 3-Large(Wang et al., 2022) (Full finetuning) 746M 97.1 100 100 87.5 97.9 99.1
DoPL(len=8) 0.5M 96.8 99.9 100 87.2 97.8 99

Table 5: Transferring our method to various backbones and evaluating on Flickr30K.

Method # Param MSCOCO FLICKR30k MSRVTT Didemo VQA VideoQA
Time Memory Time Memory Time Memory Time Memory Time Memory Time Memory

Full fine-tuning 223M/337M 1.28 1.4 1.25 1.39 - - - - 2.1 1.92 - -
UniAdapter 19.5M 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Adapter 28.9M 1.05 1.06 1.02 1.04 1.08 1.03 1.04 1.02 1.02 1.03 1.05 1.06
DoRA 10.8M 0.90 0.92 0.92 0.93 0.95 0.94 0.93 0.93 0.91 0.90 0.92 0.91
LoRA 10.6M 0.87 0.90 0.90 0.91 0.94 0.91 0.92 0.91 0.90 0.89 0.89 0.89
Maple 5.4M 0.84 0.87 0.87 0.89 0.90 0.89 0.88 0.89 0.87 0.87 0.86 0.87
Aurora 0.6M 0.95 0.97 0.97 0.96 0.97 0.96 0.96 0.95 0.97 0.98 0.95 0.92
DoPL 0.25M 0.81 0.85 0.84 0.86 0.85 0.88 0.85 0.87 0.84 0.86 0.85 0.86

Table 6: Comparison on the training time and GPU memory (Relative GPU hours and memory cost are normalized
by UniAdapter (set as 1.00) and the backbone is BLIP).

ciency and DoPL achieves 0.25M tunable parame-
ters (0.12% of full fine-tuning) while maintaining
optimal training speed and memory consumption
across diverse tasks. For example, on computation-
intensive VQA tasks, it reduces training time to
0.84× and memory usage to 0.86× relative to Uni-
Adapter (set as baseline 1.00), outperforming state-
of-the-art methods like Aurora (0.6M) and Maple
(5.4M). This efficiency is enabled by a dual mech-
anism: first, through an ultra-low parameter foot-
print achieved by freezing the backbone network
and appending lightweight prompt vectors to atten-
tion layers; second, via non-parametric dynamic
alignment that concatenates prompts to Key/Value
matrices, preserving hardware-friendly parallelism
in multi-head attention while enabling layer-wise
fine-grained alignment under the low-entropy in-
formation concentration theory.

In summary, DoPL optimally balances parameter
efficiency and training resource consumption, of-
fering a scalable solution for complex multimodal
tasks without compromising accuracy. These ad-
vantages are further validated across MSCOCO,
FLICKR30k, MSRVTT, Didemo, VQA, and
VideoQA benchmarks in Table 6, where DoPL
consistently achieves the lowest GPU hours and
memory cost among all parameter-efficient meth-
ods.

5 Conclusion

This paper proposes a novel detail-oriented prompt
learning method for VLMs, achieving both pa-
rameter efficiency and fine-grained semantic align-
ment. DoPL implements layer-by-layer local-
ization of fine-grained semantic alignment with
merely 0.25M trainable parameters by incorporat-
ing the detail-oriented prompt generation module.
This method enhances fine-grained alignment be-
tween vision and text information while maintain-
ing computational efficiency. Extensive evalua-
tions on six cross-modal benchmarks demonstrate
that DoPL consistently outperforms previous PETL
methods and surpasses full fine-tuning methods.

Limitations

While our method effectively enhances the model’s
ability to capture fine-grained semantic align-
ment, it experiences slower convergence on larger
datasets than full fine-tuning like other PETL meth-
ods. Future work could focus on optimizing con-
vergence speed through more efficient optimization
strategies while maintaining strong alignment per-
formance.
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A Theoretical Proof of Low-entropy
Information Concentration Theory

To rigorously justify the proposed DoPL method,
we provide the necessary theoretical proof estab-
lishing the relationship between low-entropy re-
gions and optimal cross-modal alignment. Specif-
ically, we prove that minimizing the conditional
entropy of token-level associations between vision
and text modalities is mathematically equivalent to
maximizing their mutual information, thereby en-
forcing fine-grained semantic alignment. This theo-
rem not only supports the low-entropy information
concentration theory introduced in our method but
also guarantees that the derived alignment weights
(e.g., W t→v

i ∝ exp(−Ht→v
i )) can effectively en-

hance discriminative cross-modal interactions.
In the following, we formally present and prove

the theorem, demonstrating that strong alignment
corresponds to low entropy and high mutual infor-
mation, which serves as the foundation for DPG’s
ability to localize and amplify fine-grained seman-
tic correspondences.

A.1 Preliminaries
Given the text prompt M t ∈ Rl×d and the vision
prompt Mv ∈ Rl×d, perform matrix multiplica-
tion to obtain the cross-modal association matrix
Ri,j = (M t)T · Mv ∈ Rl×l (where Ri,j repre-
sents the association strength between text token

xi and visual token yj), and define the normalized
association matrices N t→v

i,j =
exp(Ri,j)∑n

k=1 exp(Rk,j)
and

Nv→t
i,j =

exp(Ri,j)∑m
k=1 exp(Ri,k)

(where the former corre-
sponds to the conditional probability P (xi|yj) ,
and the latter corresponds to the conditional prob-
ability P (yj |xi) ), as well as the joint probability
distribution P (xi, yj) =

exp(Ri,j)∑n
i=1

∑m
j=1 exp(Ri,j)

.
Based on the aforementioned joint probabil-

ity distribution, define the marginal distribu-
tions P (xi) =

∑m
j=1 P (xi, yj) and P (yj) =∑n

i=1 P (xi, yj) (where the former is the marginal
distribution of the text token xi, and the latter is the
marginal distribution of the image token yj).

For the text token xi and the image token yj ,
define their respective conditional entropies as:

Ht→v
xi

= −
m∑

j=1

N t→v
i,j logN t→v

i,j = H(Y |xi),

(1)

Hv→t
yj = −

n∑

i=1

Nv→t
i,j logNv→t

i,j = H(X|yj),

(2)
To ensure the equivalence between the minimiza-

tion of the cross-modal conditional entropy and the
maximization of mutual information, the following
theorem is proposed.

A.2 Theorem
Theorem: When the conditional entropy from text-
to-image or image-to-text reaches its minimum
value, the mutual information I(X;Y ) between
the random variable of the text modality X and the
random variable of the visual modality Y reaches
its maximum value. Moreover, the joint probability
distribution P (xi, yj) of the text and visual modali-
ties exhibits a strictly diagonal trend (i.e., semantic
alignment), and the following properties hold:

• Global Minimization of Conditional En-
tropy: When both the text-to-visual con-
ditional entropy H(Y |X) and visual-to-text
conditional entropy H(X|Y ) reach their
global minima, the reduction of any xi’s
conditional entropy H(Y |xi) directly corre-
sponds to the increase of its local mutual
information I(xi;Y ) with the visual modal-
ity. Similarly, the decrease of any yj’s condi-
tional entropy H(X|yj) is equivalent to the
enhancement of its local mutual information
I(X; yj)with the textual modality.
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• Synergistic Optimization of Joint and
Marginal Distributions: The optimal cross-
modal association strength Ri,j satisfies
Ri,j = logP (xi)+ logP (yj)+C, where the
constant (C) controls the deviation between
the joint distribution and the independent dis-
tributions. When (C > 1), the joint distri-
bution P (xi, yj) tends to become diagonal
(i.e., strict alignment between xi and yj), and
the extremum point of the mutual information
I(X;Y ) corresponds to the global minimiza-
tion of the conditional entropy.

A.3 Proof
Obtain the conditional entropy based on the
marginal distributions:

H(Y |X) =

n∑

i=1

P (xi)H(Y |xi)

=

n∑

i=1

P (xi)H
t→v
xi

,

(3)

H(X|Y ) =
m∑

j=1

P (yj)H(X|yj)

=

m∑

j=1

P (yj)H
v→t
yj ,

(4)

The expression for mutual information can be
obtained based on both the marginal distributions
and the joint probability distribution, which is used
to measure cross-modal dependency relationships:

I(X;Y ) =
n∑

i=1

m∑

j=1

P (xi, yj) log
P (xi, yj)

P (xi)P (yj)
,

(5)
Meanwhile, the relationship between conditional

entropy and mutual information can be derived
from the fundamental equation of information the-
ory:

I(X;Y ) = H(Y )−H(Y |X)

= H(X)−H(X|Y ),
(6)

To further investigate the relationship between
the maximum mutual information and the mini-
mum conditional entropy, we solve for the maxi-
mum mutual information using Lagrange functions.
The detailed derivation is given below.

First, given the joint probability distribution:

P (xi, yj) =
exp(Ri,j)∑n

k=1

∑m
l=1 exp(Rk,l)

, (7)

where Ri,j are the free parameters to be opti-
mized.

Substitute the simplified joint probability distri-
bution into the definition of mutual information and
expand it:

I(X;Y )

=
∑

i,j

P (xi, yj) log
P (xi, yj)

P (xi)P (yj)

=
∑

i,j

exp(Ri,j)∑n
k=1

∑m
l=1 exp(Rk,l)

[
Ri,j − log

(
n∑

k=1

m∑

l=1

exp(Rk,l)

)

− log

(
m∑

l=1

exp(Ri,l)∑n
k=1

∑m
l=1 exp(Rk,l)

)

− log

(
n∑

k=1

exp(Rk,j)∑n
k=1

∑m
l=1 exp(Rk,l)

)]
,

(8)

Further simplify it to:

I(X;Y )

=
1∑n

k=1

∑m
l=1 exp(Rk,l)

∑

i,j

exp(Ri,j)

[
Ri,j − log(

n∑

k=1

m∑

l=1

exp(Rk,l))

− logP (xi)− logP (yj)

]
,

(9)

To solve for the maximum mutual infor-
mation, introduce the constraint condition∑

i,j exp(Ri,j) = Z and construct the Lagrange
function:

L = I(X;Y )− λ


∑

i,j

exp(Ri,j)− Z




(Z =
∑

i,j

exp(Ri,j)),

(10)

Take the derivative of the free parameter Ri,j to
be optimized, decomposing it into the derivative
of the mutual information term and the derivative
of the constraint term, where the derivative of the
mutual information term is:

∂I

∂Ri,j
=

exp(Ri,j)

Z

[
1 +Ri,j − logZ

− logP (xi)− logP (yj)

]
,

(11)
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The derivative of the constraint term is:

∂

∂Ri,j


−λ


∑

k,l

exp(Rk,l)− Z






= −λ exp(Ri,j),

(12)

Combining Equations 11 and 12, we obtain the
partial derivative of Equation 10 with respect to
Ri,j and set it to zero:

∂I

∂Ri,j
=

exp(Ri,j)

Z

[
1 +Ri,j − logZ

− logP (xi)− logP (yj)

]
− λ exp(Ri,j) = 0,

(13)
Further simplifying the extremum condition, multi-
ply both sides of Equation 13 by Z/ exp(Ri,j) to
obtain:

1 +Ri,j − logZ − logP (xi)

− logP (yj)− λZ = 0,
(14)

By setting λZ = C (constant), we obtain:

Ri,j = logP (xi) + logP (yj) + (C − 1), (15)

This indicates that the optimal association
strength Ri,j is related to the logarithm of marginal
probabilities. Substituting Equation 15 into Equa-
tion 7 yields:

P (xi, yj) ∝ exp(Ri,j) = P (xi)P (yj)e
C−1,

(16)
When C = 1, we obtain the independent distri-

bution P (xi, yj) = P (xi)P (yj), where the mutual
information I(X;Y ) = 0(minimum).

When C > 1, the joint distribution deviates
from independence, and the mutual information in-
creases. The maximum mutual information occurs
whenP (xi, yj) exhibits a diagonal distribution (i.e.,
strict alignment between xi and yj), at which point
the conditional entropy H(Y |xi) (or H(X|yj)) is
minimized, verifying that low-entropy regions cor-
respond to strong alignment.

For Property 1, according to Equation (6) (the
relationship between conditional entropy and mu-
tual information), when H(X) and H(Y ) are
fixed, a decrease in conditional entropy H(X|Y )
or H(Y |X) corresponds to an increase in mutual
information I(X;Y ). Furthermore, Property 1
(Global Minimization of Conditional Entropy) can
be derived from Equations 7-8. Specifically:

• When Ht→v
xi

decreases, H(Y |X) decreases
and I(X;Y ) increases, indicating that the text
token xi carries more information about Y
(the image).

• When Hv→t
yj decreases, H(X|Y ) decreases

and I(X;Y ) increases, indicating that the im-
age token yj carries more information about
X (the text).

For Property 2, Equation 15 shows that the opti-
mal association strength Ri,j is related to the sum
of log marginal probabilities. Equation 16 further
reveals the relationship between joint and marginal
probabilities, leading to Property 2 (Synergistic
Optimization of Joint and Marginal Distributions).
Specifically:

• The optimal cross-modal association strength
Ri,j satisfies Ri,j = logP (xi) + logP (yj) +
C, where the constant C controls the deviation
between joint and independent distributions.

• When C > 1, the joint distribution P (xi, yj)
tends toward diagonality (strict alignment
between xi and yj), and the extremum of
I(X;Y ) corresponds to global minimization
of conditional entropy.

□
Therefore, according to the aforementioned the-

orem and properties, low entropy values Ht→v
xi

directly correspond to high mutual information
I(xi;Y ) (similarly, low entropy values Hv→t

yj
directly correspond to high mutual information
I(X; yj)), proving that low-entropy regions in
cross-modal associations indicate stronger seman-
tic alignment. This theory provides the mathe-
matical foundation for the weight allocation in
the DPG module: the weight allocation W t→v

i ∝
exp(−Ht→v

i ) or W v→t
j ∝ exp(−Hv→t

j ) is math-
ematically equivalent to reinforcing high mutual
information regions. By minimizing Ht→v

i and
Hv→t

j , the model can focus on fine-grained align-
ment signals, thereby improving multimodal task
performance.

31359


