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Abstract

In generative commonsense reasoning tasks
such as CommonGen, generative large lan-
guage models (LLMs) compose sentences that
include all given concepts. However, when
focusing on instruction-following capabilities,
if a prompt specifies a concept order, LLMs
must generate sentences that adhere to the spec-
ified order. To address this, we propose Or-
dered CommonGen, a benchmark designed to
evaluate the compositional generalization and
instruction-following abilities of LLMs. This
benchmark measures ordered coverage to as-
sess whether concepts are generated in the spec-
ified order, enabling a simultaneous evaluation
of both abilities. We conducted a comprehen-
sive analysis using 36 LLMs and found that,
while LLMs generally understand the intent of
instructions, biases toward specific concept or-
der patterns often lead to low-diversity outputs
or identical results even when the concept order
is altered. Moreover, even the most instruction-
compliant LLM achieved only about 75% or-
dered coverage, highlighting the need for im-
provements in both instruction-following and
compositional generalization capabilities.

1 Introduction

With the maturity of instruction-tuning techniques
such as supervised fine-tuning (Wei et al., 2022a;
Sanh et al., 2022; Ghosal et al., 2023; Wang et al.,
2023c) and human-preference tuning (Ziegler et al.,
2020; Ouyang et al., 2022; Winata et al., 2024), gen-
erative large language models (LLMs) are capable
of producing high-quality, fluent responses aligned
with user instructions. Leveraging their instruction-
following capabilities and advanced text genera-
tion abilities, LLMs are applied not only to general
downstream tasks such as dialogue systems (Wang
et al., 2023a; Yi et al., 2024; Li et al., 2024a; Zhao
et al., 2024a) but also to creative domains, includ-
ing dataset construction through complex prompts
tailored to specific purposes (Tan et al., 2024; Sakai

dog1 catch2 frisbee3 throw4

throw1 dog2 frisbee3 catch4

1)   : A dog1 leaps to catch2 a thrown4 frisbee3.

2)   : The dog1 catches2 a thrown4 frisbee3.

3)   : The dog1 catches2 the frisbee3 when the 
aa boy throws4 it.

1)   : The dog2 catches4 the frisbee3 when the 
aa boy throws1 it.

2)   : A dog2 catches4 a thrown1 frisbee3.

3)   : She would throw1 her dog2 a frisbee3 so 
aa he could catch4 it.

Concept Set: 1

Concept Set: 2

Figure 1: Overview of our proposed Ordered Com-
monGen. Unlike CommonGen (Lin et al., 2020), we
evaluate whether the composed sentences include the
concepts in the specified order. To create the Ordered
Concept Sets, we use CommonGen’s Concept Sets con-
taining four concepts and generate all permutations, re-
sulting in a total of 24 permutations per set.

et al., 2024b; Makinae et al., 2024), as well as
crafting catchy slogans (Kim et al., 2023; Brigham
et al., 2024), advertisements (Lei et al., 2022; Mita
et al., 2024), and poetry (Yu et al., 2024; Zhang and
Eger, 2024). However, the instruction-following
abilities of LLMs are still developing, and they
sometimes produce outputs that deviate from in-
tended instructions (Palmeira Ferraz et al., 2024;
Qian et al., 2024). This highlights the need to
benchmark their ability to consistently generate
text that strictly adheres to given instructions.

Generative commonsense reasoning (GCR) (Lin
et al., 2020; Nan et al., 2021; Seo et al., 2022; Liu
et al., 2023) is a type of constrained text generation
task that requires compositional generalization ca-
pabilities, where LLMs are tasked with creating nat-
ural, commonsense sentences that include all given
concepts in Figure 1. Traditional GCR tasks eval-
uate coverage, focusing on whether the given con-
cepts are included in the composed sentences with-
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Concepts: dog1 catch2 throw3 frisbee4 

Write a sentence that includes all these 
words.

Answer:

Concepts: dog1 catch2 throw3 frisbee4 

Write a sentence that includes all these 
words in the specified order.

Answer:

Composed Sentence

1) The dog1 catches2 a frisbee4.

2) The dog1 catches2 the frisbee4 when the boy thrown3 it.

3) A dog1 leaps to catch2 a thrown3 frisbee4.

CommonGen Ordered CommonGen (Ours)

Figure 2: Our evaluation methodology for Ordered CommonGen. The left side shows the instruction template for
the standard CommonGen task, while the right side shows the template used in our Ordered CommonGen. All
templates are provided in Appendix B. In Ordered CommonGen, the phrase “in the specified order” is inserted to
explicitly instruct the LLM to compose sentences following the given concept order. For example, Given a concept
set (dog, catch, throw, frisbee), the composed sentence (1) does not include all the concepts, making it incorrect for
both tasks; (2) includes all the concepts but involves reordering, making it correct only for CommonGen; and (3)
includes all the concepts in the specified order, making it correct for both tasks.

out considering their order. Consequently, LLMs
often rearrange the order of concepts to produce
more natural sentences (Ou et al., 2022; Zhang
et al., 2023). However, when instructed to follow a
specific order, LLMs must compose sentences that
adhere to the user-specified order of concepts.

Such potential needs are particularly important
in creative domains, such as describing events in
chronological order (Mostafazadeh et al., 2016;
Lu et al., 2023; Chen et al., 2023; Pawłowski and
Walkowiak, 2024), planning actions (Sakib and
Sun, 2023; Lin et al., 2024; Singh et al., 2024), or
composing lyrics (Fan et al., 2019; Hu and Sun,
2020; Qian et al., 2023), where a change in the or-
der of concepts can significantly alter the meaning
or nuance of the output. According to generative
grammar (Chomsky, 1965; Jackendoff, 2002), natu-
ral sentences can be composed following syntactic
rules without arbitrary rearrangements, as humans
are capable of processing and generating sentences
in grammatically permissible orders. Therefore,
by simultaneously addressing instruction-following
ability and compositional generalization ability,
LLMs can be applied to more creative text gen-
eration tasks.

To address this, we propose Ordered Common-
Gen, a framework designed to evaluate both com-
positional generalization and instruction-following
abilities by reorganizing CommonGen (Lin et al.,
2020), a representative GCR task. As shown in

Figure 1, Ordered CommonGen permutes the order
of concepts and, as illustrated in the prompts in Fig-
ure 2, inserts the phrase “in the specified order”
into the instruction. This setup enables the eval-
uation of whether LLMs can compose sentences
while adhering to the given instructions.

Through a comprehensive benchmarking across
36 LLMs, we found that while LLMs can compose
sentences containing the given concepts, their abil-
ity to compose sentences in the specified order, as
required by Ordered CommonGen, is limited to
about 75%, even for the best-performing model.
Interestingly, inserting the phrase “in the specified
order” into the instruction improves the ability to
follow the specified order, indicating that LLMs
understand the intent of the instructions. However,
biases toward specific concept order patterns and
identical outputs, even when the order of concepts
is altered, remain significant challenges. These
findings highlight challenges in the compositional
generalization and instruction-following capabili-
ties of LLMs within GCR tasks.

2 Ordered CommonGen

2.1 Task Definition
Generative Commonsense Reasoning (GCR) tasks
such as CommonGen (Lin et al., 2020) involve
generating a natural and grammatically correct sen-
tence that incorporates all given concepts in a con-
cept set. Formally, the input consists of a concept
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set X = {c1, c2, . . . , ck}, where each concept ci
is a lemmatized common object (noun) or action
(verb). The task requires LLMs to generate a sen-
tence Y such that all concepts in X are included, al-
lowing for morphological inflections or variations.
The inclusion of concepts is judged by verifying
if the lemmatized forms of all concepts in X are
present in Y . Formally, the output is represented as
Y = {y1, y2, . . . , yn}, where yi is the i-th sentence
generated given the input X . A generated sentence
Y is considered valid if it contains all concepts in
X in any order, satisfying X ⊆ Y .

In Ordered CommonGen, beyond the tradi-
tional requirements of GCR tasks, we introduce
an additional dimension to evaluate the instruction-
following ability of LLMs. Specifically, we assess
whether the generated sentence adheres to the spec-
ified order of the concepts in the input concept set
X , checking them sequentially from the beginning.

Humans, capable of the “infinite use of finite
means” (Chomsky, 1965), can compose sentences
following any specified order of concepts, re-
gardless of the arrangement of the words them-
selves (Bever, 2013; Levelt, 1989; Ferreira and En-
gelhardt, 2006; Goldberg, 1995; Jackendoff, 2002).
This expanded evaluation enables us to explore
both compositional generalization, which refers
to the systematic combination of known elements
in novel ways (Lake et al., 2017; Lake and Baroni,
2018), and instruction-following abilities, which re-
flect the capacity to align generated outputs with ex-
plicit external directives (Lupyan and Clark, 2015).
This evaluation highlights the gap between human
linguistic understanding and the ability of LLMs.

2.2 Dataset Construction

As shown in Figure 2, two key components are re-
quired for dataset creation: concept sets, which are
collections of word lists used as seeds for text gen-
eration, and instruction templates, which incorpo-
rate the concept sets and serve as input prompts for
LLMs. First, we used CommonGen-lite1, a subset
of the CommonGen test data, as a seed dataset. We
extracted all 192 seed concept sets, each consisting
of four concepts. By generating all possible permu-
tations (4! = 24) of the concepts in each case, we
created a total of 192 × 4! = 4,608 concept sets.

Next, we curated the instruction templates from
FLAN (Wei et al., 2022a; Longpre et al., 2023), a
collection of manually created templates for vari-

1https://hf.co/datasets/allenai/commongen_lite

ous task datasets. Specifically, we utilized all six
instruction templates designated for CommonGen
in FLAN as base templates. By averaging scores
across the six multi-templates, our evaluation ac-
counts for variance in template performance (Sakai
et al., 2024c). We modified the base instruction
templates by appending the phrase “in the speci-
fied order”. This template requires LLMs to gener-
ate sentences that adhere to the order of the concept
set. All examples of instruction templates are pro-
vided in Appendix B. Finally, we obtained a total
of 6 × 4,608 = 27,648 instances.

3 Experimental Settings

3.1 Evaluation Metrics

Concepts Coverage: We report three types of
coverage rates. First, following Lin et al. (2020)2,
we report the average percentage of input concepts
included in the lemmatized outputs, disregarding
their order (Coverage w/o order). Next, aligned
with the aim of Ordered CommonGen, we evaluate
whether the generated sentences include all input
concepts in the specified order (Coverage w/ or-
der). Finally, we report the average percentage of
generated sentences that include all input concepts
and adhere to the specified order (Ordered Rate).

Sentence-level Similarity: When the given or-
der of concepts varies, it influences the structure
and coherence of composed sentences, as certain
syntactic and semantic constraints govern how con-
cepts can be naturally combined (Goldberg, 1995;
Jackendoff, 2002; Steedman, 2000). Therefore, it
is important to produce diverse outputs that adhere
to different orders of the concept set. Following the
idea of Pairwise-BLEU (Shen et al., 2019), we eval-
uate the diversity of generated sentences by com-
puting the average pairwise similarity across all 24
sentences obtained from permutations of the same
four concepts. A lower similarity score suggests
greater diversity, as it indicates less overlap among
generated sentences. To assess similarity at differ-
ent levels, we employ two metrics: Pairwise-BLEU
(pBLEU), which measures surface-level n-gram
overlap using BLEU (Papineni et al., 2002; Post,
2018), and Pairwise-BLEURT (pBLEURT), which
evaluates semantic similarity using BLEURT (Sel-

2We referred to the implementation at https://github.
com/allenai/CommonGen-Eval. For lemmatizing the gen-
erated sentences, we similarly used spaCy (Honnibal et al.,
2020) with the EN_CORE_WEB_LG model: https://spacy.
io/models/en#en_core_web_lg.
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lam et al., 2020). For BLEU, we set n = 4, and for
BLEURT, we used the BLEURT-20 model.

Corpus-level Diversity: We also evaluate the
overall diversity of the generated sentences using
distinct-n (Li et al., 2016)3 (Distinct), which is cal-
culated as the ratio of unique n-grams to the total
number of n-grams in all texts formulated as:

distinct-n =
#unique n-grams
#total n-grams

. (1)

We set n = 2. Furthermore, we observed in our
preliminary study that some outputs remain iden-
tical despite the different order of concepts. This
occurs because LLMs have the ability to rearrange
concepts to generate more natural sentences (Ou
et al., 2022; Zhang et al., 2023). However, from
the perspective of instruction-following ability, this
behavior is inappropriate. Therefore, we introduce
a new diversity metric, Diverse Rate, to quantify
variations in generated sentences. The Diverse Rate
is calculated as the ratio of unique sentences to the
total number of sentences formulated as:

Diverse Rate =
#unique sentences
#total sentences

. (2)

If all generated sentences are unique, the Diverse
Rate is 1.00. For instance, if 24 sentences are gen-
erated but only one is unique, the Diverse Rate
would be 1

24 ≒ 0.04. As these metrics represent
the ratio of unique n-grams or sentences, a higher
score indicates greater diversity.

Perplexity: In GCR tasks such as CommonGen,
the quality of generated sentences is typically evalu-
ated by comparing them to human references. How-
ever, our focus is on generating diverse sentences,
and the references do not account for all permuta-
tions of the concept sets. Therefore, these evalua-
tion methods are not aligned with our goal. Instead,
we employ GPT2-XL (Radford et al., 2019)4 as
an evaluation model and measure perplexity via
LMPPL5 to perform a relative assessment of the
quality of the generated sentences. Since perplexity
is equivalent to the information content of a sen-
tence, lower perplexity generally indicates higher-
quality sentences. Furthermore, LLMs capable of
generating sentences with lower perplexity while
adhering to the specified order are more likely to
produce commonsensical and coherent sentences.

3https://github.com/neural-dialogue-metrics/
Distinct-N

4https://hf.co/openai-community/gpt2-xl
5https://github.com/asahi417/lmppl

3.2 Evaluation Setup

Settings for LLMs. We primarily selected a total
of 36 well-known instruction-tuned LLMs for eval-
uation: Llama3-3.2-1B, 3.2-3B, 3.1-8B, 3.1-70B,
3.3-70B, 3.1-405B (Dubey et al., 2024), Qwen2-
0.5B, 1.5B, 7B, 72B (Yang et al., 2024), Qwen2.5-
0.5B, 1.5B, 3B, 7B, 14B, 32B, 72B (Qwen
et al., 2024), Gemma2-2B, 9B, 27B (Team et al.,
2024b), Phi3-mini, small, medium (Abdin et al.,
2024), Tülu3-8B, 70B (Lambert et al., 2024),
OLMo2-7B, 13B (OLMo et al., 2025), Mistral-
7B, Small, Large (Jiang et al., 2023), Mixtral-
8x7B, 8x22B (Jiang et al., 2024), Gemini-Flash,
Pro (Team et al., 2024a), GPT-3.5 (Ouyang et al.,
2022), and GPT-4o (OpenAI et al., 2024). Follow-
ing the evaluation settings by Sakai et al. (2024a),
for proprietary models (Gemini, GPT-3.5, and GPT-
4o), the temperature was set to 0 to achieve as
deterministic outputs as possible. For the other
open LLMs, outputs were generated using greedy
decoding with a fixed seed value and 4-bit quanti-
zation (Dettmers et al., 2023)6. Further details are
provided in Appendix A.

Settings for Datasets. We compared two instruc-
tion prompts: one using our Ordered CommonGen
template with the phrase “in the specified order”,
and the other using the original CommonGen tem-
plate without this phrase. If including the phrase
in the prompt improves order-considered coverage,
it indicates that the model successfully follows the
given instructions. We report average scores across
all six templates, with Ordered CommonGen values
shown alongside their differences from the original
CommonGen.We primarily conducted evaluations
in zero-shot settings to highlight differences in in-
ductive reasoning ability.

4 Results and Discussions

Table 1 shows the main evaluation results.

Finding 1: LLMs understand the intent of in-
struction prompts. Focusing on the increase in
the w/ order scores in Table 1, specifying the us-
age order of concepts in the prompt through Or-
dered CommonGen improves coverage rates for
most LLMs. This is further supported by the rise
in Ordered Rate scores. Notably, for certain LLMs

6The 4-bit quantization models yield optimal perfor-
mance (Dettmers et al., 2023; Liu et al., 2024a; Dettmers and
Zettlemoyer, 2023). Therefore, we apply 4-bit quantization to
save computational costs.

31222

https://github.com/neural-dialogue-metrics/Distinct-N
https://github.com/neural-dialogue-metrics/Distinct-N
https://hf.co/openai-community/gpt2-xl
https://github.com/asahi417/lmppl


Concepts Coverage (↑) Similarlity (↓) Diversity (↑) Perplexity (↓)
w/o order w/ order Ordered Rate pBLEU pBLEURT Distinct Diverse Rate

Llama3.2-1B 61.82(+2.56) 17.22( -1.02) 27.86( -2.92) 17.62(+2.37) 41.89(+1.95) 92.79( -1.17) 93.66( -2.35) 52.46(+7.95)
Llama3.2-3B 63.81(+2.64) 19.47(+1.33) 30.52(+0.86) 18.49(+2.02) 44.38(+3.08) 94.18( -0.84) 90.53( -2.88) 53.85(+8.47)
Llama3.1-8B 72.10(+3.32) 23.35(+3.80) 32.39(+3.96) 19.61(+0.66) 47.30(+2.83) 93.45( -1.14) 87.91( -2.24) 61.72(+13.47)
Llama3.1-70B 95.69(+4.12) 41.19(+25.66) 43.04(+26.08) 21.89( -7.30) 52.40( -1.92) 93.03( -0.61) 83.84(+8.73) 60.24(+11.39)
Llama3.3-70B 97.25(+2.17) 66.79(+47.34) 68.68(+48.22) 15.24( -11.17) 48.04( -4.45) 93.53( -0.50) 94.70(+14.13) 67.50(+21.19)

Llama3.1-405B 98.91(+2.84) 74.44(+55.41) 75.26(+55.46) 12.54( -11.12) 42.90( -5.72) 94.81( -0.20) 98.28(+13.43) 61.49(+17.73)

Qwen2-0.5B 53.78( -0.61) 30.84( -0.89) 57.34( -0.98) 10.48(+0.57) 39.61(+1.35) 93.31( -0.72) 96.60( -1.01) 171.27(+81.35)

Qwen2-1.5B 73.06(+0.91) 24.12( -0.65) 33.01( -1.32) 15.72(+1.27) 43.70(+1.17) 93.71( -0.32) 91.81( -2.86) 53.52(+2.06)
Qwen2-7B 88.52(+4.16) 27.49(+2.72) 31.06(+1.70) 13.72( -0.08) 43.93(+0.98) 94.26( -0.69) 95.49( -0.82) 70.46(+12.74)
Qwen2-72B 94.99(+3.51) 32.09(+7.13) 33.78(+6.50) 19.13( -1.53) 48.58(+0.25) 93.47( -0.72) 85.49(+0.35) 48.68(+3.45)

Gemma2-2B 80.07(+10.79) 23.66(+0.44) 29.55( -3.97) 21.28(+3.84) 51.04(+5.22) 91.09( -1.69) 82.45( -7.27) 159.99(+80.40)
Gemma2-9B 90.10(+6.76) 23.56(+3.82) 26.15(+2.47) 23.95(+1.06) 53.74(+2.53) 91.87( -0.63) 78.94( -1.86) 88.74(+11.56)
Gemma2-27B 88.49(+8.58) 28.24(+7.73) 31.91(+6.24) 22.14( -0.86) 51.35(+0.88) 92.16( -0.58) 80.84(+0.42) 94.27(+17.05)

Phi3-mini 79.85(+4.90) 49.54(+2.73) 62.04( -0.41) 10.72(+0.04) 41.70(+0.39) 94.36( -0.56) 97.53( -0.72) 100.71(+11.19)

Phi3-small 89.79(+3.38) 49.93(+14.13) 55.61(+14.17) 10.99( -1.22) 40.81( -0.28) 94.22( -0.63) 97.01( -0.38) 77.02(+15.27)
Phi3-medium 85.84(+1.77) 50.21(+6.85) 58.49(+6.92) 10.91( -0.77) 39.69( -0.46) 95.16( -0.07) 98.23(+0.48) 80.62(+4.38)

Mistral-7B 81.26(+3.82) 40.71( -2.42) 50.10( -5.60) 18.13(+2.14) 48.79(+2.66) 92.56( -1.36) 86.49( -5.64) 238.96(+157.60)
Mistral-small 95.36(+2.68) 37.12(+17.12) 38.92(+17.34) 22.93( -5.86) 55.55( -2.86) 91.64( -0.35) 78.39(+7.90) 97.88(+21.38)
Mistral-large 87.07(+5.05) 23.67( -0.73) 27.19( -2.56) 25.27(+2.80) 54.61(+3.13) 92.58( -0.66) 76.54( -4.98) 94.91(+9.18)

Mixtral-8x7B 77.36(+2.90) 19.67(+0.09) 25.43( -0.87) 11.29(+0.36) 38.50(+0.31) 95.06( -0.31) 98.82( -0.17) 52.35(+1.51)
Mixtral-8x22B 90.96(+4.52) 36.18(+9.11) 39.77(+8.46) 13.40( -0.03) 42.34(+0.68) 94.55( -0.43) 96.08( -0.58) 56.51(+2.19)

Qwen2.5-0.5B 64.50(+3.27) 28.12(+0.86) 43.60( -0.92) 10.86( -0.09) 40.38( -0.59) 93.27( -0.07) 97.12(+0.15) 94.22(+19.41)
Qwen2.5-1.5B 57.09(+5.97) 14.67(+0.02) 25.69( -2.96) 14.65(+0.80) 43.22(+2.39) 94.28( -0.63) 91.71( -1.64) 64.83(+7.50)
Qwen2.5-3B 86.01(+4.98) 22.60(+3.36) 26.28(+2.53) 14.85(+1.22) 47.51(+2.38) 91.94( -0.99) 92.75( -2.79) 115.35(+26.75)
Qwen2.5-7B 87.80(+4.46) 28.58(+6.26) 32.55(+5.76) 15.19(+0.59) 45.97(+1.76) 92.94( -0.73) 92.35( -1.56) 75.97(+6.24)
Qwen2.5-14B 94.49(+3.84) 40.65(+15.76) 43.02(+15.56) 13.96( -2.15) 44.38( -0.14) 93.10( -0.53) 93.21(+1.31) 68.24(+8.90)
Qwen2.5-32B 96.50(+3.18) 47.23(+22.82) 48.94(+22.78) 12.94( -4.11) 43.56( -2.85) 92.80( -0.51) 93.20(+3.18) 71.03(+7.20)
Qwen2.5-72B 97.17(+3.91) 50.26(+24.66) 51.73(+24.27) 17.24( -5.01) 47.98( -1.64) 93.19( -0.50) 88.51(+6.41) 72.02(+13.93)

OLMo2-7B 91.11(+2.09) 28.10( -3.97) 30.84( -5.18) 19.05(+2.21) 52.44(+2.82) 91.65( -0.69) 85.25( -3.67) 112.93(+15.01)
OLMo2-13B 95.22(+3.29) 27.20(+1.68) 28.56(+0.80) 24.33(+1.51) 58.05(+2.69) 90.01( -1.32) 77.20( -3.28) 433.50(+301.35)

Tülu3-8B 89.79(+4.04) 27.55( -1.63) 30.69( -3.35) 16.09(+1.99) 45.97(+3.48) 92.61( -1.16) 90.42( -3.39) 103.14(+34.83)
Tülu3-70B 93.46(+3.58) 33.46(+12.28) 35.80(+12.24) 21.55( -3.26) 52.25( -0.44) 92.23( -0.57) 80.04(+3.52) 79.78(+22.72)

GPT-3.5 92.74(+2.15) 34.14(+8.22) 36.82(+8.20) 23.56( -1.75) 56.83(+0.34) 90.88( -0.99) 76.16(+0.68) 236.08(+155.67)
GPT-4o 96.70(+3.12) 53.34(+30.25) 55.16(+30.49) 19.95( -9.37) 50.94( -4.80) 92.91( -0.25) 86.51(+14.47) 58.15(+7.27)

Gemini-Flash 91.79(+7.68) 33.29(+14.51) 36.27(+13.94) 24.03( -1.78) 56.16(+2.08) 91.37( -0.89) 75.92(+1.40) 92.75(+29.04)
Gemini-Pro 89.16(+8.03) 32.68(+16.52) 36.66(+16.74) 18.67( -2.79) 50.88( -0.11) 91.51( -0.82) 84.48(+2.40) 117.09(+41.66)

Table 1: Evaluation results for the generated sentences of each LLM. The average scores for Ordered CommonGen,
where the order of concepts is specified, are reported across all six templates as the main results, with performance
differences from the original CommonGen, which does not consider concept order, shown in parentheses. The
bold scores highlight the LLM with the best performance for each metric, while the underlined scores indicate the
second-best. Higher scores indicate better performance for Concepts Coverage and Corpus-level Diversity, whereas
lower scores indicate better performance for Sentence-level Similarity and Perplexity.

such as Llama3.3-70B, Llama3.1-405B, and GPT-
4o, w/o order scores remain high while w/ order
scores increase significantly, indicating that these
models attempt to align with the specified order.
This suggests that LLMs strive to produce outputs
consistent with the intent of instruction prompts.
Interestingly, even in the w/o order scores, Ordered
CommonGen improves coverage rates for most
LLMs. This suggests that explicit instructions to
include concepts in the output encouraged LLMs

to use them effectively, even when they struggled
to arrange them in the specified order.

Finding 2: LLMs tend to generate natural sen-
tences while trying to follow the instructions.
When focusing on perplexity in Table 1, specifying
the order of concepts in the input prompt generally
worsens perplexity compared to when no order is
specified. However, the degradation is relatively
limited, except for certain LLMs such as OLMo2-
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13B and GPT-3.5. This indicates that LLMs are
capable of following instructions while still generat-
ing natural sentences. Furthermore, LLMs respond
to the phrase “in the specified order” included in
Ordered CommonGen, demonstrating their ability
to switch generation behavior accordingly while
maintaining compositional generalization abilities.
As the increase in perplexity is generally minimal,
yet the Ordered Rate improves, this suggests that
LLMs can generate sentences that adhere to the
specified order while maintaining a degree of natu-
ralness. It suggests behavior resembling semantic
compositionality (Jackendoff, 2002).

Finding 3: Yet LLMs often struggle to generate
sentences that follow instructions precisely. On
the other hand, even the LLM with the highest Or-
dered Rate, Llama3.1-405B, followed instructions
in only about 75% of cases, leaving over 20% of
outputs that did not adhere to the given instructions.
Furthermore, w/o order scores did not reach 100%,
indicating that LLMs fail to fully comply with in-
structions. For example, in the case of Llama3.1-
405B, given the concept set (number, wear, shirt,
run), the generated sentence “The large number
on the back of my shirt seemed to motivate me to
run even faster.” excludes the concept wear. In
contrast, humans would compose sentences such as

“A large number of people wear a yellow shirt to
run in the charity marathon.”, naturally including
all concepts in the specified order. Such omissions
of concepts highlight a critical challenge in GCR
tasks (Lin et al., 2020; Zhao et al., 2022; Zhang
et al., 2023). Moreover, the additional constraint
of maintaining the specified order in Ordered Com-
monGen makes this task even more challenging.We
provide a more detailed analysis of such cases in
Appendix C.3, where we show, based on statistical
evidence, that at least one of the 36 LLMs we tested
is capable of composing each sentence correctly.
This reflects the fact that many LLMs still have
some room in their compositional capabilities.

Finding 4: LLMs generate more diverse out-
puts when concept order is considered. Fo-
cusing on Sentence-level Similarity in Table 1,
LLMs such as Llama3.1-405B, Qwen2.5-72B, and
GPT-4o, which show significant improvements
in Ordered Rate through Ordered CommonGen,
also demonstrate substantial gains in both pBLEU
and pBLEURT. In contrast, some LLMs, such as
GPT-3.5 and Gemini-Flash, show improvements in
pBLEU but a decline in pBLEURT. Interestingly, in

some LLMs, such as Qwen, smaller models tend to
generate more diverse outputs than their larger ones
at the expense of Concepts Coverage. This suggests
that while adhering to instructions improves syn-
tactic diversity, it does not necessarily enhance se-
mantic diversity. These results indicate that LLMs
prioritize syntactic compositionality, as reflected in
consistent pBLEU improvements (Goldberg, 1995;
Steedman, 2000; Lake and Baroni, 2018), while se-
mantic compositionality remains more challenging
due to its reliance on deeper contextual understand-
ing (Jackendoff, 2002; Bresnan, 2001; Bender and
Koller, 2020). This suggests that LLMs with higher
instruction-following abilities, such as Llama3.1-
405B, better balance syntactic and semantic com-
positionality, whereas lower-performing LLMs rely
more heavily on syntactic patterns.

Finding 5: LLMs sometimes generate identical
sentences even when the concepts are shuffled.
According to the Diverse Rate in Table 1, even the
highest-performing LLM, Mixtral-8x7B, does not
reach 100%, indicating that identical sentences are
sometimes generated despite changes in the order
of concepts. Furthermore, LLMs such as Gemma,
Gemini, and OLMo2 achieve only around 80%,
suggesting a tendency to reorder concepts into se-
quences they consider most natural, overriding in-
structions to follow the specified order. For exam-
ple, in the case of Gemma2-2B with the concept
set (dock, dog, jump, water), the output remains
the same as “The dog jumped off the dock into the
water.” across all permutations of the input con-
cepts for a given prompt. This behavior reflects the
influence of frequent concept set orders in the train-
ing data (Zhang et al., 2023; Ou et al., 2022; Zhao
et al., 2022; Yang et al., 2023; Bender and Koller,
2020), which often take precedence over given in-
structions. Interestingly, models like GPT-4o and
Llama3.3-70B tend to produce duplicate outputs
when instructions do not enforce a specified or-
der. In such cases, LLMs default to generating
sentences in the most natural sequence, regardless
of input order. This tendency to default to natural
sequences aligns with usage-based theories (Bybee,
2006, 2010), which argue that frequent patterns
shape human language production, establishing the
‘default’ or ‘natural’ order. Similar tendencies are
observed in downstream tasks like neural machine
translation (Raunak and Menezes, 2022) and gram-
matical error correction (Cao et al., 2023), where
minor input variations are absorbed, and frequent
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POS Concepts Coverage Diverse

pattern w/o order w/ order Ordered Rate Rate

NNNN 91.13±11.86 40.92±15.70 44.88±16.39 91.97±6.78

NNNV 88.41±10.70 29.39±14.26 33.04±14.57 86.94±8.57

NNVN 88.06±10.46 37.34±13.69 42.09±13.40 86.94±8.57

NNVV 84.26±12.61 27.45±14.55 32.34±15.69 89.58±6.81

NVNN 87.38±10.67 39.80±12.83 45.23±12.14 86.94±8.57

NVNV 83.73±12.50 29.55±13.44 34.91±13.78 89.58±6.81

NVVN 83.16±13.11 29.44±14.89 34.70±14.96 89.58±6.81

NVVV 80.35±17.03 35.10±17.84 42.11±16.27 92.81±5.09

VNNN 88.01±11.46 39.79±13.33 44.92±12.58 86.94±8.57

VNNV 84.77±13.40 34.81±12.86 40.69±11.85 89.58±6.81

VNVN 84.83±13.02 46.88±14.38 54.50±11.61 89.58±6.81

VNVV 80.36±17.12 42.59±18.82 51.35±15.51 92.81±5.09

VVNN 83.54±13.84 29.50±14.50 34.75±14.20 89.58±6.81

VVNV 79.63±17.33 34.03±17.22 41.31±15.98 92.81±5.09

VVVN 80.38±18.05 33.08±19.02 39.61±17.69 92.81±5.09

VVVV 37.38±28.54 24.31±20.38 63.84±27.89 98.17±2.48

Table 2: Results of Concepts Coverage and Diverse Rate
for each part-of-speech (POS) order of the given four
concepts. Higher scores indicate better performance.
N denotes nouns, and V denotes verbs. We report the
score of mean and standard deviation across 36 LLMs.

patterns influence outputs in the training data. Ad-
dressing these limitations may require improved
training methods or increased model parameters.
Additionally, well-instruction-following LLMs like
GPT-4o and Llama3.1-405B demonstrate the abil-
ity to switch behaviors based on the instructions.

5 Analysis

We will focus on important aspects in the following
sections and defer more discussions to Appendix C.

5.1 Which Part-of-Speech (POS) Patterns do
LLMs Struggle with?

In GCR tasks, the concepts are categorized into
two types: common objects (nouns) and actions
(verbs). To investigate the impact of part-of-speech
(POS) order on LLM performance, we report the
mean and standard deviation for each POS pattern
across all 36 LLMs in Table 2. Table 2 shows that
the NNNN pattern (noun-only) achieves the high-
est Concepts Coverage. In contrast, the VVVV
pattern (verb-only) results in outputs where all con-
cepts are included in only approximately 37% of
cases. Additionally, the VVVV pattern exhibits
the highest variance in Concepts Coverage, indicat-
ing significant compositional generalization chal-
lenges for verb-heavy concept sets in GCR tasks.
These challenges also contribute to performance
differences among LLMs. Interestingly, the VVVV
pattern achieves the highest scores in both the Or-
dered Rate and the Diverse Rate. This suggests

Concepts Coverage Diverse

ID w/o order w/ order Ordered Rate Rate

0 w/o 81.39±12.99 26.76±9.30 33.35±11.97 90.77±7.16

w/ 85.05±12.57 39.66±16.64 45.81±15.94 92.13±5.98

1 w/o 83.60±12.75 27.67±9.27 33.50±11.40 88.86±7.79

w/ 86.34±13.06 39.10±15.10 44.69±14.17 90.90±6.04

2 w/o 77.62±12.19 25.52±10.51 33.85±15.31 86.97±9.18

w/ 83.04±12.66 36.91±13.67 44.21±14.47 88.62±7.37

3 w/o 82.00±12.25 22.77±8.83 28.45±11.88 89.18±8.80

w/ 85.43±12.54 31.78±15.84 36.62±15.63 89.75±8.06

4 w/o 77.09±12.36 27.85±7.82 37.17±12.48 89.79±7.76

w/ 83.89±11.79 30.58±9.97 36.62±10.78 86.77±8.97

5 w/o 85.84±12.65 17.77±5.68 21.09±7.24 82.02±13.21

w/ 87.85±12.79 28.88±15.98 32.09±15.06 84.25±11.04

Table 3: The mean and standard deviation of Concepts
Coverage and Diverse Rate across 36 LLMs for each
prompt. Details of the prompt templates are provided in
Appendix B. The terms w/o and w/ indicate the absence
or presence of the phrase “in the specified order” in
the prompt template, respectively.

that, despite difficulties in composing sentences
with actions, LLMs actively attempt to do so. Fur-
thermore, when all concepts are included in the
output for the VVVV pattern, LLMs demonstrate
relatively strong instruction-following capabilities
in these scenarios.

5.2 Impact of Prompt Template Variations on
Instruction-Following Performance

LLM performance is affected by slight differences
in prompt phrasing (Sakai et al., 2024c). To mea-
sure the impact of such variations on instruction-
following ability, we report the mean and standard
deviation of all metrics across 36 LLMs for each
of the six prompt templates in Table 3. The results
in Table 3 indicate that while LLM performance
varies depending on prompt phrasing, specifying
“in the specified order” generally improves w/
order scores across all templates. However, per-
formance differences persist across templates, and
some metrics, such as Ordered Rate, do not always
improve with this phrasing. Furthermore, perfor-
mance varies significantly among LLMs for each
prompt template, making it difficult to identify a
universally effective prompt. These findings high-
light the importance of evaluating and reporting
averaged results across multiple templates. While
prompt-tuning is necessary to achieve optimal per-
formance, the results confirm that LLMs can follow
specific instructions when explicitly stated.
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Concepts Coverage (↑) Similarlity (↓) Diversity (↑) Perplexity (↓)
w/o order w/ order Ordered Rate pBLEU pBLEURT Distinct Diverse Rate

Llama3.2-1B 67.05(+5.23) 13.82( -3.40) 20.61( -7.25) 23.60(+5.98) 47.63(+5.73) 92.75( -0.04) 85.52( -8.14) 43.97( -8.49)
Llama3.2-3B 69.67(+5.86) 13.57( -5.90) 19.48( -11.03) 28.22(+9.73) 52.50(+8.12) 93.84( -0.34) 78.46( -12.07) 48.03( -5.82)
Llama3.1-8B 85.26(+13.16) 18.31( -5.05) 21.47( -10.92) 28.36(+8.76) 54.16(+6.86) 93.29( -0.15) 76.43( -11.48) 48.22( -13.50)
Llama3.1-70B 98.57(+2.88) 41.62(+0.43) 42.22( -0.82) 27.06(+5.17) 56.12(+3.72) 93.00( -0.03) 78.43( -5.41) 49.63( -10.61)
Llama3.3-70B 99.01(+1.76) 75.81(+9.03) 76.58(+7.90) 18.01(+2.77) 49.72(+1.68) 93.71(+0.19) 95.72(+1.01) 55.80( -11.70)

Llama3.1-405B 99.56(+0.65) 87.79(+13.35) 88.18(+12.92) 14.65(+2.12) 46.01(+3.11) 94.10( -0.71) 99.37(+1.09) 65.66(+4.18)

Qwen2-0.5B 35.39( -18.40) 16.32( -14.52) 46.12( -11.23) 15.16(+4.68) 43.73(+4.12) 93.10( -0.20) 91.31( -5.30) 57.46( -113.81)
Qwen2-1.5B 63.50( -9.57) 13.06( -11.05) 20.57( -12.43) 21.87(+6.16) 50.41(+6.71) 92.99( -0.72) 84.31( -7.50) 49.56( -3.96)
Qwen2-7B 89.82(+1.30) 17.44( -10.05) 19.41( -11.64) 19.75(+6.04) 48.71(+4.79) 94.00( -0.25) 89.68( -5.82) 52.69( -17.76)
Qwen2-72B 96.77(+1.79) 27.97( -4.12) 28.90( -4.88) 24.28(+5.16) 53.95(+5.37) 92.80( -0.67) 77.41( -8.07) 47.27( -1.40)

Gemma2-2B 85.94(+5.87) 9.23( -14.43) 10.74( -18.81) 38.36(+17.07) 62.05(+11.01) 91.25(+0.16) 58.32( -24.13) 76.64( -83.35)
Gemma2-9B 93.34(+3.24) 13.77( -9.80) 14.75( -11.40) 34.82(+10.87) 61.50(+7.77) 91.73( -0.13) 61.24( -17.70) 61.94( -26.80)
Gemma2-27B 93.72(+5.24) 16.78( -11.45) 17.91( -14.00) 31.81(+9.67) 57.35(+6.00) 92.35(+0.20) 65.62( -15.22) 55.07( -39.20)

Phi3-mini 78.87( -0.98) 41.68( -7.86) 52.85( -9.19) 13.59(+2.87) 43.34(+1.64) 93.44( -0.92) 94.31( -3.22) 90.59( -10.11)

Phi3-small 90.64(+0.85) 42.05( -7.87) 46.40( -9.21) 14.27(+3.28) 42.06(+1.25) 94.22(+0.00) 94.75( -2.26) 58.47( -18.55)

Phi3-medium 92.24(+6.40) 47.83( -2.38) 51.85( -6.64) 16.21(+5.31) 45.43(+5.74) 93.71( -1.45) 92.63( -5.60) 85.77(+5.15)

Mistral-7B 86.75(+5.49) 22.12( -18.59) 25.50( -24.60) 31.88(+13.75) 61.74(+12.94) 91.69( -0.87) 66.29( -20.20) 93.86( -145.09)
Mistral-small 97.24(+1.89) 29.85( -7.27) 30.70( -8.23) 30.94(+8.01) 62.80(+7.25) 90.70( -0.93) 64.38( -14.01) 109.91(+12.03)
Mistral-large 91.58(+4.52) 14.48( -9.19) 15.81( -11.37) 41.04(+15.77) 67.42(+12.81) 90.81( -1.77) 48.60( -27.94) 74.12( -20.79)

Mixtral-8x7B 83.64(+6.28) 14.44( -5.23) 17.26( -8.17) 16.15(+4.87) 43.52(+5.02) 93.97( -1.09) 93.61( -5.21) 48.99( -3.36)
Mixtral-8x22B 91.59(+0.63) 21.43( -14.74) 23.40( -16.37) 20.96(+7.56) 49.03(+6.69) 90.55( -4.00) 81.77( -14.31) 45.93( -10.58)

Qwen2.5-0.5B 64.51(+0.01) 29.23(+1.11) 45.31(+1.71) 15.75(+4.89) 47.91(+7.53) 90.89( -2.38) 89.56( -7.56) 175.63(+81.41)
Qwen2.5-1.5B 62.76(+5.67) 10.52( -4.14) 16.76( -8.93) 25.50(+10.86) 55.05(+11.83) 92.16( -2.12) 76.82( -14.89) 72.33(+7.51)
Qwen2.5-3B 84.05( -1.96) 12.41( -10.19) 14.77( -11.51) 24.93(+10.08) 55.18(+7.68) 91.61( -0.33) 80.78( -11.97) 82.97( -32.38)
Qwen2.5-7B 90.08(+2.27) 17.61( -10.97) 19.55( -13.00) 22.23(+7.04) 52.50(+6.53) 92.64( -0.30) 83.96( -8.39) 63.78( -12.19)
Qwen2.5-14B 95.31(+0.82) 24.92( -15.73) 26.14( -16.88) 20.56(+6.60) 51.17(+6.79) 92.71( -0.39) 86.16( -7.05) 56.11( -12.14)
Qwen2.5-32B 97.12(+0.63) 40.02( -7.20) 41.21( -7.73) 14.61(+1.67) 44.89(+1.33) 92.15( -0.65) 92.47( -0.73) 72.87(+1.84)
Qwen2.5-72B 97.63(+0.46) 39.70( -10.57) 40.66( -11.07) 22.44(+5.20) 51.62(+3.64) 93.32(+0.13) 82.47( -6.03) 57.46( -14.56)

OLMo2-7B 93.32(+2.22) 16.61( -11.49) 17.80( -13.04) 25.95(+6.89) 56.29(+3.85) 91.84(+0.19) 76.18( -9.07) 75.27( -37.66)
OLMo2-13B 95.74(+0.52) 18.11( -9.08) 18.92( -9.64) 31.63(+7.30) 61.68(+3.63) 90.48(+0.47) 66.07( -11.13) 117.15( -316.35)

Tülu3-8B 94.20(+4.41) 16.68( -10.88) 17.70( -12.98) 26.23(+10.13) 54.80(+8.82) 92.41( -0.20) 76.87( -13.55) 55.90( -47.23)
Tülu3-70B 96.43(+2.96) 30.09( -3.38) 31.20( -4.60) 27.98(+6.43) 55.32(+3.07) 92.59(+0.36) 71.97( -8.07) 51.83( -27.95)

GPT-3.5 96.03(+3.28) 24.31( -9.83) 25.32( -11.50) 35.70(+12.14) 65.28(+8.45) 91.41(+0.53) 59.46( -16.70) 71.05( -165.03)
GPT-4o 98.55(+1.85) 55.95(+2.61) 56.78(+1.62) 23.09(+3.14) 53.50(+2.56) 92.76( -0.15) 83.03( -3.48) 52.32( -5.83)

Gemini-Flash 94.40(+2.61) 20.61( -12.68) 21.84( -14.44) 35.37(+11.34) 62.74(+6.58) 91.80(+0.42) 57.77( -18.16) 55.39( -37.37)
Gemini-Pro 93.23(+4.08) 35.52(+2.84) 38.10(+1.44) 20.20(+1.53) 52.79(+1.91) 92.14(+0.64) 84.23( -0.25) 62.57( -54.52)

Table 4: Evaluation results for the generated sentences of each LLM with the ideal example one-shot setting.
The average scores for Ordered CommonGen, where the order of concepts is specified, are reported across all six
templates as the main results, with performance differences from the zero-shot Ordered CommonGen, as reported
in Table 1, shown in parentheses. Bold scores indicate the LLM with the best performance for each metric, while
underlined scores represent the second-best. Higher scores signify better performance for Concepts Coverage
and Corpus-level Diversity, whereas lower scores indicate better performance for Sentence-level Similarity and
Perplexity. Note that all metrics except perplexity are expressed as percentages. The values in parentheses indicate
relative relationships between scores, showing increases or decreases as well as improvements or deteriorations
based on the score differences. In other words, they are calculated using simple subtraction.

5.3 One-shot Example as Priming

Motivation. Humans are known to produce re-
sponses influenced by recently encountered infor-
mation, a phenomenon referred to as priming (Mc-
Namara, 2005; Bargh and Chartrand, 2000; Zorzi
et al., 2004; Lee et al., 2023; Sharma et al., 2024).
For instance, if the preceding input includes the

concept set (apple place tree pick) and the response
begins with “My favorite words are apple, place,
tree, and pick”, subsequent responses are likely
to follow a similar pattern. This tendency is influ-
enced by meta-information, such as word order or
response format, rather than the semantic mean-
ings of the words, leading to sentences that start
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with “My favorite words are . . . ”. To simulate this,
we evaluated the model’s performance using a one-
shot example where the input was a concept set
(apple place tree pick), and the generated sentence
was “My favorite words are apple, place, tree, and
pick.”. The evaluation aimed to prime LLMs to pro-
duce monotonic outputs by following the template:

“My favorite words are A, B, C, and D”, where A, B,
C, and D represent concepts in the order they ap-
pear in the set. This priming approach enhances the
model’s ability to follow instructions more effec-
tively by leveraging a universal template applicable
to any arbitrary set of four concepts. Since this
template can generate sentences for any concept
set, it serves as a universal “ideal example” shot
to improve instruction adherence.

Results. Table 4 compares the one-shot setting
using the ideal example with the zero-shot results
of Ordered CommonGen, which assesses the pure
inductive ability of LLMs. In Concepts Coverage
(w/ order), Table 4 highlights a significant prim-
ing effect for Llama3.3-70B and Llama3.1-405B,
while other models show a considerable drop in
scores. In contrast, Concepts Coverage (w/o order)
improves for most LLMs, likely due to the influ-
ence of the ideal example’s output pattern, which
induces reordering. Focusing on the Diverse Rate,
we observe a substantial decrease in scores, while
similarity metrics worsen across all models. Addi-
tionally, the drop in Distinct scores for most models
indicates increased monotonicity in the generated
sentences. These findings demonstrate that one-
shot examples induce monotonic outputs but reduce
the diversity of the generated sentences. Further-
more, we frequently observed generated sentences
deviating from the ideal example patterns and in-
stead producing natural sentences. This suggests
that LLMs are not solely primed by the one-shot
example but are also influenced by patterns learned
from their training data, prioritizing natural text
generation.

Summary. In conclusion, well-instructed LLMs
such as Llama3.3-70B and Llama3.1-405B can sim-
ulate priming effects for reasoning. However, most
LLMs demonstrate stronger capabilities in gener-
ating natural sentences based on patterns learned
from their training data. Even for Llama3.1-405B,
adherence to all concept sets is not guaranteed,
highlighting a persistent challenge. Addressing this
issue could enable LLMs to achieve more human-
like cognitive text composition, unlocking potential

applications such as simulations and beyond.

6 Conclusion

In this study, we proposed Ordered CommonGen,
a benchmark framework designed to evaluate the
instruction-following and compositional general-
ization capabilities of LLMs. Ordered Common-
Gen generates permutations of unique concept sets
consisting of four concepts and appends the phrase
“in the specified order” to the instruction templates
to test whether LLMs can compose sentences that
include the concepts in the specified order across
all permutations. The results revealed several key
findings: LLMs understand the intent of instruction
prompts; they tend to generate natural sentences
while attempting to follow instructions; yet, they
often struggle to precisely follow the instructions.

Furthermore, LLMs produce more diverse out-
puts when considering concept order but some-
times generate identical sentences even when the
concepts are shuffled. Through an analysis of POS
patterns and concept sets, we identified specific
conditions under which LLMs face challenges in
sentence composition. Finally, inspired by human
perception, we conducted an experiment in Sec-
tion 5.3 using an “ideal example” that demon-
strates how a sentence can be composed regardless
of the given concepts. The results suggest that
well-instructed models have the potential for more
human-like, cognitively grounded text generation.

In conclusion, while LLMs demonstrate some
degree of compositional generalization capability
across arbitrary concept orders, they do not fully
exhibit compositionality. In contrast, humans can
compose sentences that adhere strictly to specified
orders, indicating the potential to create counterex-
amples for LLMs. Addressing this gap between
human and LLM performance remains an impor-
tant direction for future work and its applications.

Future extensions to other tasks. The core idea
of our evaluation framework can also be applied
to other tasks. For example, it may be extended
to poem or story composition based on the order
of sentences or scene fragments. Moreover, in the
vision domain, e.g., manga or anime, one possible
application is composing intermediate images that
follow a specified sequence of cells or frames, en-
suring the intended development of the story, as
well as video tasks. We believe that our evalua-
tion framework is highly versatile and holds great
potential for a wide range of creative applications.
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7 Limitations

Language and Dataset. In this study, we focused
on CommonGen (Lin et al., 2020) and conducted
evaluations in English, which limits the general-
izability of our findings to other languages, such
as Korean (Seo et al., 2022). To ensure simplic-
ity and consistency in our analysis, we targeted
concept sets consisting of four concepts within the
CommonGen-lite subset of the CommonGen test
data. While increasing the number of concepts
could provide more insights (Madaan et al., 2023),
the associated exponential growth in permutations
makes such evaluations highly challenging. Ad-
dressing these limitations and exploring tasks with
larger concept sets is left for future work.

LLMs. Since it is infeasible to evaluate all LLMs,
this study focuses on 36 well-known LLMs, a
number comparable to other benchmarking stud-
ies (Koto et al., 2023, 2024; Li et al., 2024b; Poh
et al., 2024; Liu et al., 2024b). As our research
emphasizes instruction-following ability, we con-
ducted evaluations using instruction-tuned LLMs.
However, it may be necessary to compare pre-
trained base LLMs without instruction-tuning in
future studies. Nevertheless, a pilot study with base
LLMs showed that these models entirely failed to
follow instructions, frequently producing nonsen-
sical sentences, making meaningful evaluation im-
possible. Therefore, we chose to report results only
for models that have undergone at least supervised
fine-tuning or further instruction-tuning, ensuring a
baseline level of instruction adherence. Moreover,
although variations in tuning (Ismayilzada et al.,
2025) and architecture (Aljaafari et al., 2024, 2025)
would ideally be explored, this paper focuses on
the evaluation framework and therefore does not
include such analyses. Nevertheless, we hope that
our framework will contribute to future discussions
and improvements in these directions.

Decoding and Prompting. Techniques such as
prompting (Zhang et al., 2024; Cui et al., 2024),
using external resources (Liu et al., 2023; Yu et al.,
2022; Hwang et al., 2023), minimum Bayes risk
decoding (Deguchi et al., 2024a,b; Suzgun et al.,
2023; Jinnai et al., 2024), or other constrained de-
coding methods (Sha, 2020; Stowe et al., 2022;
Willard and Louf, 2023) might enable the genera-
tion of diverse outputs or compositions that adhere
to constraints, potentially allowing sentences to be
composed from the given concept sets. However,

such approaches rely on generation techniques
rather than the inductive abilities of the model itself,
which is beyond the scope of this study. Moreover,
we used only the 1-shot setting in Section 5.3 to
capture the model’s intent, leaving multi-shot set-
tings unexplored. We focus on the inductive gen-
erative commonsense reasoning ability of LLMs,
considering their instruction-following capability.
This focus aligns with how general-purpose LLMs
are typically used by everyday users, ensuring that
our evaluation reflects practical usage scenarios.

Evaluation. In this study, we did not use tradi-
tional reference-based metrics such as BLEU (Pa-
pineni et al., 2002), ROUGE (Lin, 2004), ME-
TEOR (Banerjee and Lavie, 2005), CIDEr (Vedan-
tam et al., 2015), and SPICE (Anderson et al.,
2016), which rely on comparisons with human-
annotated gold labels, as employed in original Com-
monGen paper (Lin et al., 2020). Instead, we fo-
cused on evaluation methods that do not require
labeled data, such as coverage and self-correlation
metrics. We made this choice for several reasons.
First, at the time of submission, the test data for
CommonGen was no longer publicly available, and
we chose to respect the owner’s policy7. Second,
comparisons with human-annotated labels in gener-
ation tasks have inherent limitations (Reiter, 2018;
Schmidtova et al., 2024). Third, human labels for
CommonGen are unavailable for all permutations
of concept sets, making alignment with our task
difficult. Furthermore, the high cost of annotation
and scalability challenges led us to avoid reference-
based metrics. Additionally, we did not adopt hu-
man evaluation, nor did we use LLM-as-a-judge ap-
proaches. These methods are known to have certain
issues, are not suited for evaluating large volumes
of text, have no established standard method (Wang
et al., 2023b; Gu et al., 2024), and often lead to
ambiguous assessment (Clark et al., 2021). Con-
sidering future research potential, we chose not to
employ them. As the primary focus of our study
is on instruction-following capability, such evalu-
ations fall outside the scope of this work and are
left for future investigation. Regarding the philoso-
phy behind our framework design, we believe that
adopting a low-cost evaluation method is prefer-
able to encourage broader use. Overall, we believe
that our current evaluation framework is sufficient
for examining the effectiveness of our approach.

7https://github.com/INK-USC/CommonGen and
https://hf.co/datasets/allenai/commongen_lite
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Ethical Considerations

We used FLAN templates, released under the
Apache License 2.0, and concept sets from Com-
monGen, provided under the MIT License. Both
the templates and the concept sets were modified
and extended to suit our research needs. Since these
licenses permit such adaptations, our work com-
plies with all licensing requirements. Additionally,
our study does not involve potentially harmful con-
tent, and all outputs successfully passed the safety
moderation filters of the LLMs. Consequently, this
research is free from harmful content.
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A Detailed LLMs Information

Table 5 shows the source information of each LLM.
We used the Transformers (Wolf et al., 2020) and
bitsandbytes (Dettmers et al., 2022) libraries for
the inference of open LLMs. We used a single
A6000 48GB GPU for most open LLMs, while
Mistral-large was run on two A6000 48GB GPUs,
and Llama3.1-405B was run on eight A6000 48GB
GPUs. Note that we used only instruction-tuned
LLMs because base models do not follow instruc-
tions precisely, and this aligns with our research

LLMs HuggingFace ID / API Name

Llama3.2-1B meta-llama/Llama-3.2-1B-Instruct
Llama3.2-3B meta-llama/Llama-3.2-3B-Instruct
Llama3.1-8B meta-llama/Meta-Llama-3.1-8B-Instruct
Llama3.1-70B meta-llama/Meta-Llama-3.1-70B-Instruct
Llama3.3-70B meta-llama/Llama-3.3-70B-Instruct
Llama3.1-405B meta-llama/Meta-Llama-3.1-405B-Instruct

Qwen2-0.5B Qwen/Qwen2-0.5B-Instruct
Qwen2-1.5B Qwen/Qwen2-1.5B-Instruct
Qwen2-7B Qwen/Qwen2-7B-Instruct
Qwen2-72B Qwen/Qwen2-72B-Instruct

Gemma-2-2B google/gemma-2-2b-it
Gemma-2-9B google/gemma-2-9b-it
Gemma-2-27B google/gemma-2-27b-it

Phi-3-mini microsoft/Phi-3-mini-4k-instruct
Phi-3-small microsoft/Phi-3-small-8k-instruct
Phi-3-medium microsoft/Phi-3-medium-4k-instruct

Mistral-7B mistralai/Mistral-7B-Instruct-v0.1
Mistral-small mistralai/Mistral-Small-Instruct-2409
Mistral-large mistralai/Mistral-Large-Instruct-2407

Mixtral-8x7B mistralai/Mixtral-8x7B-Instruct-v0.1
Mixtral-8x22B mistralai/Mixtral-8x22B-Instruct-v0.1

Qwen2.5-0.5B Qwen/Qwen2.5-0.5B-Instruct
Qwen2.5-1.5B Qwen/Qwen2.5-1.5B-Instruct
Qwen2.5-3B Qwen/Qwen2.5-3B-Instruct
Qwen2.5-7B Qwen/Qwen2.5-7B-Instruct
Qwen2.5-14B Qwen/Qwen2.5-14B-Instruct
Qwen2.5-32B Qwen/Qwen2.5-32B-Instruct
Qwen2.5-72B Qwen/Qwen2.5-72B-Instruct

Tülu3-8B allenai/Llama-3.1-Tulu-3-8B
Tülu3-70B allenai/Llama-3.1-Tulu-3-70B

OMLo2-7B allenai/OLMo-2-1124-7B
OMLo2-13B allenai/OLMo-2-1124-13B

GPT-3.5 OpenAI/gpt-3.5-turbo-0125
GPT-4o OpenAI/gpt-4o-2024-05-13

Gemini-Flash Gemini/gemini-1.5-flash-001
Gemini-Pro Gemini/gemini-1.5-pro-001

Table 5: Details of the LLMs for the experiments.

purpose, which is to evaluate instruction-following
capabilities. For instruction-tuned LLMs, we con-
ducted inference by applying their specific chat
templates. As a system prompt, we included the
phrase: ”You are a helpful assistant. Please gener-
ate only an answer.”. Upon randomly sampling 50
outputs per model and manually inspecting them,
we observed no notable generation of supplemen-
tary information or flavor text. Therefore, the gen-
erated text was directly used for evaluation. The
same procedure was applied to proprietary models.

B Examples of Instruction Template

Table 6 shows the instruction template used in
the Ordered CommonGen experiment framework.
Each concept from the concepts set is assigned to
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ID Instruction Template

0 Concepts: {concepts}

Write a sentence that includes all these words in the
specified order.

Answer:

1 Keywords: {concepts}

What is a sentence that includes all these keywords in
the specified order?

Answer:

2 Here are some concepts: {concepts}

What is a sentence about these concepts in the specified
order?

Answer:

3 Produce a sentence which mentions all of these concepts
in the specified order: {concepts}

Answer:

4 Write a sentence about the following things in the speci-
fied order:

{concepts}

Answer:

5 Generate a sentence that includes all the following words
in the specified order: {concepts}

Answer:

Table 6: The instruction templates for our experiments.
We created it based on the FLAN template and inserted
it “in the specified order” in the bold one. Each con-
cept from the concepts set is assigned to the curly brack-
ets as space-separated values.

the curly brackets {concepts} as space-separated
values. Following the findings of Zhang et al.
(2023), which demonstrated slightly better perfor-
mance with space-separated values and were cor-
roborated by our pilot study, we opted for space sep-
aration. This separation method is also reasonable
from a mechanistic perspective: when considering
the ID token sequence converted by tokenization of
LLMs, separating concepts with commas or other
delimiters introduces additional tokens between
concepts, which could affect performance.

C Additional Discussions

C.1 Performance of Reasoning Models

Reasoning using Chain of Thought (CoT) (Wei
et al., 2022b; Chu et al., 2024) prompts enhances
the reasoning capabilities of LLMs. Recently, rea-
soning models (DeepSeek-AI et al., 2025; OpenAI,

w/o order w/ order Ordered Rate

Qwen2-7B 89.28(+5.16) 34.22(+7.96) 38.33(+7.11)
Macro-o1 79.88(+6.88) 33.27(+6.90) 41.65(+5.53)

GPT-4o-mini 87.72(+4.99) 43.27(+16.58) 49.33(+17.07)
o1-mini 99.09(+2.80) 84.70(+70.38) 85.48(+70.60)

Table 7: Comparison of evaluation results for the gener-
ated sentences between each base model and reasoning
model. We use the single template with ID 0 from
Table 6 in Appendix B. We report the Concepts Cover-
age metrics, where higher scores indicate better perfor-
mance, with performance differences from the original
CommonGen, which does not consider concept order,
shown in parentheses. The upper row of each section
represents the base model, while the lower row repre-
sents its corresponding reasoning model.

2024) have emerged that achieve comparable capa-
bilities through training rather than prompt-based
control. Due to variations in CoT reasoning, unified
evaluation is challenging; therefore, we evaluated
using reasoning models. Table 7 compares the eval-
uation results for Qwen2-7B (Yang et al., 2024)8

and its reasoning model Marco-o1 (Zhao et al.,
2024b)9, as well as GPT-4o-mini (OpenAI et al.,
2024)10 and its reasoning model o1-mini (OpenAI,
2024)1112. As shown in Table 7, reasoning mod-
els, particularly o1-mini, demonstrate significant
improvements in Ordered Rate compared to their
base models. While Marco-o1 shows a decrease
in scores like w/ order, its Ordered Rate improves,
reflecting enhanced inference capabilities through
effective reasoning. These results indicate that rea-
soning is effective; however, even these models
do not guarantee 100% adherence. Thus, while
reasoning enhances inductive generative common-
sense reasoning in LLMs, a noticeable gap remains
between these models and human capabilities in
composing sentences with arbitrary orders.

C.2 Future Evaluation Direction

In this evaluation framework, as the primary focus
of our study is on instruction-following capability,
we prioritized self-evaluation-based methods. This

8https://hf.co/Qwen/Qwen2-7B-Instruct
9https://hf.co/AIDC-AI/Marco-o1

10gpt-4o-mini-2024-07-18
11o1-mini-2024-09-12
12We attempted experiments with o1 (o1-2024-09-12) but

could not complete them due to financial cost constraints.
However, we observed instances where the model generated
outputs that did not follow the specified order. This suggests
that the same limitations apply to o1, indicating that it does
not yet guarantee 100% adherence to instructions.
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Figure 3: The distribution of all 4,608 concept sets successfully composed by all 36 LLMs using any of the six
templates. The x-axis represents the number of LLMs that successfully composed given concept sets, while the
y-axis shows the accumulative percentage. The line graph indicates the number of concept sets in each bin.
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Figure 4: The distribution of successfully composed permutations of concept sets by all 36 LLMs using any of the
six templates. The x-axis represents the number of LLMs that successfully composed each permuted concept set,
while the y-axis shows the counts of concept sets. A total of 192 unique concept sets is evaluated, with a maximum
of 24 permutations per set (4! = 24). Black numbers represent the majority of concept sets, while white numbers
indicate the minority.

allowed us to effectively assess model performance
even in open-ended generation tasks. However, if
the goal shifts toward generating more semantically
and syntactically natural sentences, additional eval-
uation methods may be needed. For example, it
will be important to estimate grammatical quality
by detecting grammatical errors (Sakai et al., 2025;
Goto et al., 2025a,b; Maeda et al., 2022; Yoshimura
et al., 2020), or to assess linguistic acceptabili-
ties (Warstadt et al., 2019; Tjuatja et al., 2025; Ide
et al., 2025). We share these as future directions
and challenges toward advancing reference-free
evaluation of text generation, as well as potential
extensions of our Ordered CommonGen task.

C.3 Which Concept Sets Are Difficult for
LLMs to Compose?

Figure 3 shows the distribution of the number and
proportion of LLMs that successfully composed
sentences from each of the 4,608 concept sets in
Ordered CommonGen. As shown in Figure 3, ev-

ery concept set was composed by at least one LLM.
These results reveal that while at least one LLM
can compose sentences using the given concepts in
the specified order, compositional generalization
abilities vary significantly across models, indicat-
ing instability in this capability. Figure 4 shows
which permutations of concept sets are the most
difficult for LLMs. The results indicate that at
least one LLM was able to compose sentences for
all permutations of 159 concept sets. However,
for 33 concept sets, no LLM could successfully
compose sentences for any of their permutations.
Notably, if a success rate of 75% (18 out of 24 per-
mutations) is acceptable, at least one LLM could
successfully compose sentences for all concept sets.
These findings suggest that while LLMs can com-
pose sentences for a wide range of concept order
permutations, they do not consistently adhere to
instructions across all permutations, further high-
lighting the overall instability and limitations in
compositional generalization.
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