Subtle Errors in Reasoning: Preference Learning via Error-injected
Self-editing

Kaishuai Xu'* , Tiezheng Yu?, Wenjun Hou!, Yi Cheng', Chak Tou Leong!,
Liangyou Li?, Xin Jiang?, Lifeng Shang?, Qun Liu?, Wenjie Li'
'The Hong Kong Polytechnic University 2Huawei Noah’s Ark Lab
kaishuaii.xu@connect.polyu.hk

Abstract

Large Language Models (LLMs) have exhib-
ited strong mathematical reasoning prowess,
tackling tasks ranging from basic arithmetic to
advanced competition-level problems. How-
ever, frequently occurring subtle yet critical er-
rors, such as miscalculations or incorrect substi-
tutions, limit the LLMs’ full potential. Existing
studies to improve mathematical ability typi-
cally involve applying preference learning to
step-wise solution pairs. Although these meth-
ods leverage samples of varying granularity to
mitigate reasoning errors, they overlook crit-
ical subtle errors. In this work, we propose
a novel preference learning framework called
eRror-Injected Self-Editing (RISE), which in-
jects predefined subtle errors into pivotal tokens
in reasoning or computation steps to construct
hard pairs for error mitigation. In detail, RISE
uses the LLM itself to edit a small number of
tokens in the solution, injecting designed sub-
tle errors. Then, pairs composed of self-edited
solutions and their corresponding correct ones,
along with pairs of correct and incorrect so-
lutions obtained through sampling, are used
together for subtle error-aware DPO training.
Compared with other preference learning meth-
ods, RISE further refines the training objec-
tive without requiring fine-grained sampling or
preference annotation. Extensive experiments
validate the effectiveness of RISE, with prefer-
ence learning on Qwen2-7B-Instruct yielding
notable improvements of 3.0% on GSM8K and
7.9% on MATH with only 4.5K training sam-
ples. Moreover, the effect of error mitigation
extends from mathematical reasoning to logical
reasoning and code generation.

1 Introduction

Advanced mathematical reasoning is a critical capa-
bility for Large Language Models (LLMs) and has
attracted increasing research attention (Yue et al.,

“This work was done during an internship at Huawei
Noah’s Ark Lab.

Others

25.3%

05% Calculation Order

Lok Calculation Symbols
Omission of
Calculation Terms

Numerical
Calculation

58.2%

Numeric/Symbolic
Substitution

Figure 1: Error distribution for results of Qwen2-7B.

2024; Gou et al., 2024; Yu et al., 2024). Recently,
a growing body of research has been attempting
to enhance the mathematical reasoning capability
of LLMs via preference optimization (Lai et al.,
2024; Chen et al., 2024; Setlur et al., 2024a). By
constructing fine-grained preference pairs, they re-
duced the likelihood of generating an incorrect rea-
soning step by comparing it with the preferred one
(Rafailov et al., 2023). These studies predomi-
nantly centered on rectifying those inter-step errors.
In other words, they aim to reduce the likelihood
of generating a step that is not logically consistent
with the previous ones.

In our work, we argue that, in addition to the
inter-step errors, current LL.Ms also greatly suf-
fer from the inner-step subtle errors, which have
been largely disregarded in the literature. As our
analysis reveals, in numerous scenarios, LLMs can
generally generate a next reasoning step that seems
logically valid on the surface. However, they fre-
quently struggle to complete this step accurately,
revealing some subtle errors within the step. These
inner-step errors, such as miscalculations, incorrect
substitutions, and omission of calculation terms,
account for approximately 75% of the total errors
as shown in Figure 1.

To address this issue, we propose a novel pref-
erence learning framework called eRrror-Injected

31184

Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 31184-31203

July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

Self-Editing (RISE). This framework is founded on
two key insights. First, we aim to inject errors into
a small number of tokens within the correct output
while preserving the overall structure. Such error-
injected samples, with limited differences from the
correct solutions, can be regarded as hard negatives
for preference learning (Liu et al., 2024). Second,
we can leverage the LLM itself to inject predefined
errors using appropriate prompts. Compared to ran-
domly sampled pairs, pairs based on injected errors
are more controllable, allowing preference learning
to focus on designed, targeted subtle errors.

The key idea of RISE is to prompt the LLM to
inject errors into correct solutions and construct
hard pairs targeting predefined subtle errors for
preference learning. To be specific, we first ap-
ply an LLM to generate several multi-step solu-
tions and construct a full-solution pair composed
of one correct solution and one incorrect solution.
Then, we choose the correct one and edit each step
of the solution to inject subtle errors. The same
model is used for error-injected editing, as it can
better identify tokens that are both error-prone and
critical for accurate reasoning. We design several
types of subtle errors and modify a few tokens
to introduce these errors. The edited steps and
the corresponding correct steps are constructed as
self-edited pairs. Finally, we conduct subtle error-
aware DPO training on both self-edited pairs and
full-solution pairs. Inspired by Pal et al. (2024), a
negative log-likelihood loss is introduced to stabi-
lize the training, as the self-edited pairs are highly
similar, which can easily reduce the likelihood of
the correct solutions.

We evaluate our framework on two LLM se-
ries: Qwen2 and Llama-3.1. Our method RISE-
QWEN2-7B achieves a 3.0% accuracy gain on
GSMBS8K and 7.9% on MATH, and RISE-LLAMA-
3.1-8B achieves 3.9% and 2.7%, respectively. De-
tailed error analysis shows that RISE helps the
LLM further avoid predefined subtle errors. More-
over, our method successfully generalizes reason-
ing preferences derived from mathematical tasks to
other reasoning domains, such as logical reasoning
and code generation.

In summary, our contributions are as follows:

* We introduce RISE, a novel preference learn-
ing framework that injects subtle errors into
key tokens within reasoning or computation
steps to create hard pairs for error mitigation.

* We develop a subtle error-aware DPO training

method that improves the stability of prefer-
ence learning for near-identical sample pairs
using an adaptive log-likelihood loss.

* Extensive experiments demonstrate the effec-
tiveness and robustness of RISE in improving
mathematical reasoning. Additionally, RISE
extends reasoning capabilities to logical rea-
soning and code generation.

2 Method

In this section, we introduce the RISE framework,
which constructs hard negative preference pairs
through error-injected self-editing and enhances
mathematical reasoning with subtle error-aware
DPO training. As shown in Figure 2, our method
starts with sampling K multi-step solutions from
the original model. One correct solution and one
incorrect solution are chosen as a full-solution pair
based on the correctness of the final answer. Next,
we use the same model to edit each step of the
correct one, injecting subtle errors into a small
number of tokens (§2.1). The edited steps and
the correct steps are collected as self-edited pairs.
Finally, the combination of the self-edited pairs
and full-solution pairs is employed for subtle error-
aware DPO training (§2.2).

We adopt an instruction-tuned model in our ex-
periments, since it can be used to sample a solution
and self-edit it with appropriate prompts. Given a
mathematical problem = € Dy,y,, we first prompt
the model M to sample a multi-step solution set
{y} following (Lai et al., 2024). To ensure that
the sampled solution strictly follows an explicit
Chain-of-Thought (CoT) structure, we prepend the
model’s generated solution with the prefix “Let’s
think step by step. Step 1:”. This prefix ensures
that each step of the solution begins with a “Step’
marker. We select the solution with the output
answer that matches the reference answer as the
correct one for subsequent editing. The correct
and the other incorrect are used to construct a full-
solution pair set Dljfun. The correct solution can be
denoted as §* = @, §;", where §;" is the i-th
step and n represents the total number of steps.

]

2.1 Dataset Construction via Error-injected
Self-editing

To create hard preference pairs, we employ an edit-
ing approach to modify certain tokens in the cor-
rect solution to introduce predefined errors. We
focus on the error injection of each step in one

31185

E?' If Jenine can sharpen a pencil 5 times before it becomes unusable and
E she needs to sharpen a pencil every 1.5 hours of use, how many more

A pencils does she need to purchase in order to write for 105 hours,
Math QA considering she already has ten pencils and each new pencil costs $2?

A K solutions
Let's think step by step.
Step 1: Determine how long one pencil lasts for Jenine.

... then one pencil lasts her (5 \times 1.5 = | 7.5]) hours.
)
/0
-0
N ®

Solution
Sampling

Step 2: Calculate how many hours pencils can provide in total.
... ten pencils will last (10 \times 7.5 = 75) hours.

Step 3: Determine how many more hours Jenine needs to write.
...soshe needs (105] - |75 =) more hours of pencil use.

The answer is: 4

|
|
14y y
) |
! Full Solution Pairs _ o/ 3@ e
[‘e oleX |
i \o/ o
R 7 I Subtle Error-aware @ |
| Self-edited Pairs DPO training }
G Collect

Step 1: Determine how long one pencil lasts for Jenine.
... then one pencil lasts her (5 \times 1.5 =) hours.

)
>

[&
Ne@
Error-injected Step 3: Determine how many more hours Jenine needs to write.

Self-Editing .. so she needs (105 75= M) more hours of pencil use.

Step 2: Calculate how many hours pencil can provide in total.
... ten pencils will last (10 \times 7.5 = 75) hours.

O
/@ .
o<:;§. Original Model

[
(£)

: DPO-tuned Model

Figure 2: Preference learning framework augmented by error-injected self-editing. Each mathematical problem is
sent to the original model to sample K solutions, with correct and incorrect solutions in rectangles with blue and
red borders. For one correct solution, we inject errors into each step of the solution and collect self-edited pairs.
We also select an incorrect solution paired with the above correct one as full-solution pairs. Both sampling and

self-editing are performed by the same model.

[Error-injected Self-editing Prompt]

Question:

’ REPLACE a numerical value or a series of related values.

REPLACE a calculation symbol (e.g., +-*/, etc.). ‘

{question}

Initial Answer:
{answer}

14 times * 120 ounces/time = $688 ounces @

1660 |© [+]® 2040 | @

1680 ounces - 360 ounces = $326 ounces @

Current Step:

’ SWAP two calculation terms in substruction or division.

’ DELETE an intermediate calculation terms. ‘

{step}

Replace a numerical value or a series of related values
in the current step to make a wrong calculation. Do not
state that errors have been made.

(<]
Remaining miles ={(3 miles * 4 dogs) - o
miles =es

Annual earnings from teaching: 20 =35 50 = $35:660 o

focete]©

Figure 3: Error-injected self-editing prompt and some error injection examples. We display three error-injected
self-editing operations: “REPLACE”, “SWAP”, and “DELETE”.

solution. Compared with previous step-wise pref-
erence learning (Lai et al., 2024), our approach
further refines the objective of preference learning
by specifically targeting a few error tokens, enhanc-
ing the ability of LLMs to avoid subtle errors.

Error Types. As we aim to optimize the model
to avoid subtle errors, the main types of errors we
concentrate on are as follows: (1) Numerical cal-
culation errors; (2) Numerical or symbolic substi-
tution errors; (3) Omission of calculation terms.
These errors frequently occur in most solutions and
typically involve only a small amount of tokens.
We also include two relatively less frequent errors:
(4) Errors in the calculation order and (5) Errors in
the use of calculation symbols. We extract and sum-
marize these errors from the solutions generated by
the models in our experiments.

Self-editing. We design appropriate prompts and
utilize the model itself to edit the generated cor-
rect step gjj . As most of the steps in the correct
solutions are accurate (Lu et al., 2024b), we use all

the steps from the correct ones without applying
any additional filtering. Since solutions to math-
ematical problems are highly error-sensitive, any
modification of numerical values, symbols, or other
mathematical elements disrupts the original correct
procedure. Thus, even small language models can
be prompted to almost certainly inject errors. The
error-injected step ¢, is generated using an edit
prompt shown on the left of Figure 3. This edit
prompt contains the problem z, the concatenation
of previous steps 4j<;, the correct step ¢;, and the
edit type e. We mainly use three types of editing op-
erations: “REPLACE”, “SWAP”, and “DELETE”
(Mallinson et al., 2022). Some error injection ex-
amples are shown on the right of Figure 3. For each
step, only around ten tokens will be modified. We
collect the error-injected steps and the correct steps
to construct a paired edited set DF = {(7;", 9;)}.
These edited pairs are then filtered through Leven-
shtein distance-based similarity as follows:

D ={@F,97) | LD, 97) <o, €D}, (1)

31186

where LD represents the function to calculate Lev-
enshtein distance and « denotes the filter threshold.
The filtered pairs Dlétdit are used for subsequent
subtle error-aware DPO training.

2.2 Subtle Error-aware DPO Training

Given all self-edited pairs and full-solution pairs,
we apply DPO to optimize the model (Rafailov
etal., 2023). Specifically, we first randomly choose
N pairs from all self-edited pairs for each problem
and combine them with the full-solution pair, which
will be N +1 pairs in total as the training set. To
effectively learn subtle errors in each step, we adopt
the step-wise DPO loss (Lai et al., 2024) for the
self-edited pairs as it can focus on fine-grained
preference learning, and general DPO loss for the

full-solution pairs. Two losses are defined as:
»CDPO-Edil =

Wﬂ@ﬂxz@zz)

~Erarog,lloso(Blos Th0Er e

~ Blog Tra(yj_lw;yfi) .

T (G5 |5 9<i))

Lppo-Full =

o (5" |)

- E(@+,@*)~Dpiuu [log o log T (7| x)

 prog ToliIR)
P18 i)

where 7y is the policy model and 7, is the refer-
ence model. To mitigate the risk of optimization
failure caused by the high similarity between paired
samples (Pal et al., 2024), we additionally intro-
duce a negative log-likelihood loss for the correct
samples. This loss can help prevent the collapse
of the probability of generating correct samples
and is defined as L. We present our subtle
error-aware DPO loss that contains the above two
objectives as follows:

L = Lpro-rdit + Loro-rut + ALjpco)£NLL,
mo (43 |23 92,) mo(gtlz))
o (95 5 %) T (97])
where)\ is the weight to control the balance of
two objectives, r signals when to apply the NLL
loss. We design indicator r to represent whether
the generation probability of the policy model is
lower than that of the reference model. We outline
the full algorithm of RISE in Algorithm 1.

r = log or log

3 Experiments

3.1 Experimental Setup

Evaluation Datasets. We evaluate our frame-
work on three in-domain datasets, GSM8k (Cobbe

Algorithm 1 Preference Learning via Error-
injected Self-editing

Input: Dy,,: mathematical problems; M: original model;
E: edit prompt set; K: number of sampling attempts; N:
number of self-edited pairs;
Initialize the subtle error-aware DPO training dataset
Di; + {}
for x € Dy, do
Sample K solutions {g} ~ P (- | @).
Randomly select one correct solution ¢ and one incor-
rect solution g~ .
Define g = 97 © 95 © --- @ 9}, where n denotes
the number of steps in the solution.
Initialize self-edited pair set D, + {}.
for i = 1tondo
Randomly select an edit type e < £.
Edit the step using the same model g, ~
P (- | e,m,gji,gj), where Qil represents the
concatenation of steps before ;.
Di < Do V{8, 9,)}if LD(§],9;) < a,
where LD is the function to calculate edit distance.
end for
Randomly select NV pairs {(yj, Q;)}le «— DE,
Dy Dy U{@".97), (@1, 91), (8%, 9%))
end for
Optimize the subtle error-aware DPO loss in Equation 3 on
D]ﬁf{ with Py as the reference policy.

et al., 2021), MATH (Hendrycks et al., 2021) and
AQuA (Ling et al., 2017), along with three out-
of-domain datasets, SVAMP (Patel et al., 2021),
AIME24 (MAA, 2024), and Odyssey-MATH (Net-
mind.Al, 2024). These six datasets span a broad
spectrum of mathematical problems, ranging from
basic arithmetic to advanced competition-level
problems. The problems in these datasets, includ-
ing tabular, free-form, and multiple-choice formats,
ensure a robust evaluation of the model’s mathe-
matical reasoning ability. The detail of all datasets
is described in Table 6 in the Appendix A.

Baselines. Our framework is compared with sev-
eral LLMs performing well in mathematical rea-
soning. Two closed-source state-of-the-art LLMs:
GPT-40 and Claude-3.5-Sonnet. Three open-
sourced general instruction-tuned LLMs: Mistral-
7B-Instruct-v0.3 (Jiang et al., 2023), Qwen?2 series
(Yang et al., 2024a), and Llama-3.1 series (Meta
Al 2024). Five mathematically enhanced LLMs:
DeepSeekMath-RL (Shao et al., 2024), Llemma
(Azerbayev et al., 2024), ToRA (Gou et al., 2024),
MAmmoTH (Yue et al., 2024), and MathGenieLM
(Lu et al., 2024a). Four additional LLMs un-
der step-wise DPO optimization are also included:
Step-DPO series (Lai et al., 2024), SVPO (Chen
et al., 2024), MCTS-DPO (Xie et al., 2024), and
SCDPO (Lu et al., 2024b). We display results with

31187

Model Size GSM8K MATH AQuA SVAMP!

Closed-source Models

GPT-40 - 96.0 78.1 822 94.3
Claude-3.5-Sonnet - 94.9 68.5 77.5 92.9

Open-source Models

Mistral-7B-Instruct-v0.3 7B 57.5 15.1 20.4 69.7

Qwen2-7B-Instruct 7B 85.4 52.2 66.5 89.3
Llama-3.1-8B-Instruct 8B 84.0 48.3 55.9 85.7
DeepSeekMath-RL 7B 87.7 52.7 59.0 88.4
Llemma 7B 36.4 18.0 - -
MAmmoTH 7B 53.6 31.5 44.5 67.7
ToRA 7B 68.8 40.1 23.6 68.2
MathGenieLM 7B 80.5 45.1 - 83.3
Qwen2-7B-Step-DPO 7B 88.5 55.8 63.0 88.7
SVPO 7B 81.7 59.5 - -
MCTS-DPO 7B 81.8 347 - -
SCDPO 7B 80.1 47.7 48.4 83.2
RISE-QWEN2-7B 7B 88.4 59.9 69.7 91.6
(+3.0) (+7.9) (+3.2) (+2.3)
RISE-LLAMA-3.1-8B 8B 87.9 51.0 61.4 87.5
(+3.9) (+2.7) (+5.5) (+1.8)
Qwen2-72B-Instruct 72B 93.1 68.8 78.3 93.1
Llama-3.1-70B-Instruct ~ 70B 94.9 65.0 77.1 93.0
MAmmoTH 70B 76.9 41.8 65.0 82.4
ToRA 70B 84.3 49.7 41.3 82.7
MathGenieLM 70B 88.4 51.2 - 87.7
Qwen2-72B-Step-DPO 72B 94.0 70.8 71.5 93.5
RISE-QWEN2-72B 72B 94.0 69.8 79.1 93.8
(+0.9) (+1.0) (4+0.8) (+0.7)
RISE-LLAMA-3.1-70B 70B 95.2 66.4 78.7 93.5
(+0.3) (+1.4) (+1.6) (+0.5)

Table 1: Comparison results on commonly used mathe-
matical datasets. T denotes out-of-domain datasets.

the same Chain-of-Thought (CoT) prompts. The
implementation of closed-source models is done
via their respective APIs.

Training Details. We adopt mathematical prob-
lems used by Lai et al. (2024) for preference learn-
ing. The training dataset contains around 9K prob-
lems with corresponding correct step-by-step solu-
tions. We discard these solutions and use only the
problems to construct our training set. The prob-
lems are mainly from MetaMath (Yu et al., 2024)
and AQuA (Ling et al., 2017). Details are presented
in Table 7. We select two LLM series, Qwen2
(Yang et al., 2024a) and Llama-3.1 (Meta Al, 2024)
as our base LLMs. We apply the instruction-tuned
version of these models to sample solutions and
meanwhile edit each step of the solution. The num-
ber of sampling attempts is set to 5, and the number
of self-edited pairs is set to 1 for the Qwen2 series
and 3 for the Llama-3.1 series. Implementation
details are presented in the Appendix B.

3.2 Main Results

We report the main results on different mathemati-
cal datasets shown in Table 1 and Table 2. The for-
mer is from commonly used mathematical datasets
published earlier, consisting of three in-domain and

Model Size AIME24 Odyssey-MATH!

Closed-source Models

GPT-40 - 3/30 529
Claude-3.5-Sonnet - 4/30 48.0

Open-source Models

ToRA 70B 0/30 26.8
MAmmoTH 70B 0/30 15.7
Qwen2-72B-Instruct 72B 4/30 45.7
Llama-3.1-70B-Instruct ~ 70B 7/30 60.4
Qwen2-72B-Step-DPO 72B 4/30 50.1
RISE-QWEN2-72B 72B 4/30 49.4

(+0/30) (+3.7)
RISE-LLAMA-3.1-70B 70B 7/30 60.0

(+0/30) (—0.4)

Table 2: Comparison results on recent competition-level
datasets. T denotes out-of-domain datasets.

one out-of-domain datasets. The latter is from the
recent competition-level datasets and both datasets
are out-of-domain. Overall, we can see that RISE
outperforms the SOTA model at different scales.
These results highlight the potential of our frame-
work to help the general LLM to be a mathematical
generalist. On several datasets, RISE-QWEN2-
72B and RISE-LLAMA-3.1-70B even outperform
some closed-source LLMs.

Table 1 presents the results on the GSMS8K,
MATH, AQuA, and SVAMP datasets. Our frame-
work enables the LLLM to achieve noticeable im-
provements in mathematical reasoning compared to
the corresponding backbone. Especially on MATH
and AQuA, RISE-QWEN2-7B obtains 7.9% and
2.7% accuracy gain, and RISE-LLAMA-3.1-8B
obtains 3.2% and 5.5%. RISE-QWEN2-7B out-
performs other popular mathematical LLMs on all
four datasets. Additionally, RISE performs better
than the SOTA step-wise preference learning frame-
works. Compared to Step-DPO, which shares the
same backbone LLM and requires GPT-4-based
annotations, RISE obtains better results without
annotations. In detail, it achieves 4.1% higher ac-
curacy on MATH, 6.7% higher on AQuA, and 2.9%
higher on SVAMP. We scale our experiments on
70B/72B models and also observe around 1.0%
accuracy gain on MATH and AQuA.

Table 2 displays the results for two com-
plex, competition-level mathematical problems,
AIME?24 and Odyssey-MATH. We observe that
both ToORA and MAmmoTH, even with 70B param-
eters, fail to solve any of the problems in AIME24,
highlighting the difficulty of these problems. Our
framework activates the mathematical potential of
Qwen2-72B-Instruct and delivers 3.7% accuracy

31188

Method GSM8K MATH
Qwen?2-7B-Instruct 85.4 52.2
RISE-QWEN2-7B 88.4 59.9
- w/o self-edited pairs 88.3 58.2
- w/o full-solution pairs 88.0 58.1
- w/o NLL loss 88.2 59.4

Llama-3.1-8B-Instruct 84.0 48.3

RISE-LLAMA-3.1-8B 87.9 51.0
- w/o self-edited pairs 86.8 49.9
- w/o full-solution pairs 86.6 50.3
- w/o NLL loss 87.4 50.7

Table 3: Ablation study on Qwen2 and Llama-3.1.

gains on the Odyssey-MATH dataset. Since the
problems in the AIME dataset are highly complex
and the model’s answering failure is not due to
subtle errors, RISE is unable to further improve ac-
curacy. The failure of RISE-LLAMA-3.1-70B on
Odyssey-MATH may be due to the fact that Llama-
3.1-70B-Instruct is already fine-tuned on diverse,
complex mathematical datasets, with its accuracy
increasing from 36.4% in Llama-3.0 to 60.4% in
Llama-3.1 (Netmind.Al, 2024). Preference learn-
ing on our relatively simple datasets may harm
its original reasoning performance. Overall, the re-
sults on both in-domain and out-of-domain datasets
demonstrate that our framework can help general
LLM:s consistently improve their mathematical rea-
soning abilities by avoiding subtle errors. We also
apply RISE on other open-source LLMs, and the
results are shown in Appendix C.

3.3 Ablation Study

We demonstrate the effectiveness of our framework
through different training settings as detailed be-
low: (1) w/o self-edited pairs, which removes
the supplemented edited pairs and trains the model
with full-solution pairs. (2) w/o full-solution pairs,
which trains the model with the edited pairs only.
(3) w/o NLL loss, which removes the loss used for
stabilizing training. Table 3 shows the results of
different settings.

From the table, we can observe that either self-
edited pairs or full-solution pairs are effective for
preference learning to improve mathematical rea-
soning. Both types of pairs achieve similar results
on the GSM8K and MATH datasets. Moreover,
the combination of these two types of pairs can
raise the accuracy to a new peak. Compared with
standard DPO training (w/o self-edited pairs), our
framework outperforms by 1.8% on the MATH

1000 Qwen2-7B-Instruct
= DPO-Qwen2-78
RISE-Qwen2-78

«.
o° <3 @ \of 2

e o e

N S0 SO O ey

o) S &

S ofe G %

NS e

W @
X

N o
3
PR
e
o

Figure 4: Error analysis across three Qwen2-7B-based
models. We display the number of different types of er-
rors when addressing the MATH dataset, where “Others”
represents those fall outside the scope of consideration.

dataset with Qwen2-7B-Instruct; and by 1.1% on
GSMS8K and 1.2% on MATH with Llama-3.1-8B-
Instruct. Besides, the NLL loss helps improve ac-
curacy by about 0.3%.

3.4 Subtle Error Analysis

To analyze the effect of our framework on spe-
cific error mitigation, we counted the number of
errors generated by different models on the MATH
dataset. In detail, given the problem, the generated
solution, and the reference answer, we prompt GPT-
4o to detect the first error in any solution and output
the error type in the final. To verify GPT-40’s ac-
curacy in detecting errors, we manually selected
50 random samples and checked for consistency in
the identified errors. 46 (92%) of the samples were
accurately detected with their error types, which
is acceptable for conducting the complete analysis.
We display the number of different errors made by
the Qwen2-7B series in Figure 4. We observe that
numerical calculation errors account for approx-
imately 60% of the total errors and subtle errors
we defined for 75%. Compared with the standard
DPO, our framework additionally reduces the num-
ber of predefined errors. Especially for numeric or
symbolic substitution errors and omission of cal-
culation terms, RISE reduces the number of errors,
whereas standard DPO does not achieve this. In
addition, other errors, mainly misunderstanding of
problems or concepts, increase due to preference
learning, but RISE still performs slightly better.

3.5 Impact on General Reasoning Capabilities

To thoroughly analyze changes in LLMs’ reason-
ing capabilities, we evaluate RISE-tuned models on
out-of-domain tasks such as logical reasoning and
code generation. We select one logical reasoning
benchmark, Zebral.ogic, and two code generation
benchmarks, MBPP and HumanEval for analysis.

31189

Method Puzzle Cell MBPP Humaneval

Qwen2-7B-Instruct 8.1 215 422 439
-DPO 8.1 208 42,0 45.1
- RISE 84 232 424 475
Llama-3.1-8B-Instruct ~ 12.1 13.5 52.0 60.3
-DPO 12.5 8.8 52.4 65.2
- RISE 128 120 532 67.6

Table 4: Evaluation results on different out-of-domain
tasks. “Puzzle” and “Cell” are abbreviations of Puzzle
Accuracy and Cell Accuracy.

GSM8K MATH
89 61.

88.5 59.5

88.0 58.0
Le15 65
> >
©87.0 8 55.0
S 865 ——A 2535
< 2

86.0 52.0

85.5 505 ‘_‘/‘\‘/A

85. 49.
4 All 1 2

4 All

3 3
Self-edited Pairs # Self-edited Pairs

RISE-Qwen2-78 —A— RISE-Llama-3.1-88

Figure 5: Effect of different numbers of self-edited pairs.
“All” indicates the use of all self-edited pairs.

For Zebral.ogic, we display Puzzle Accucary and
Cell Accucary, and for MBPP and HumanEval, we
display pass@1 accuracy. The models optimized
with mathematical datasets (i.e., RISE-QWEN?2-
7B and RISE-LLAMA-3.1-8B) are used for evalu-
ation. Table 4 presents the performance of mathe-
matically RISE-tuned models on these two tasks.

We can observe that, for the Qwen2-7B-Instruct
and Llama-3.1-8B-Instruct models, RISE helps
achieve accuracy increases in logical reasoning and
code generation even without training on in-domain
datasets. Moreover, RISE demonstrates superior
performance compared to DPO, as DPO strug-
gles to generalize reasoning capabilities to chal-
lenging out-of-domain tasks. Specifically, RISE-
QWEN2-7B outperforms Qwen2-7B-Instruct in
terms of Cell Accuracy and pass@1 accuracy on
HumanEval, with improvements of 2.8% and 3.6%,
respectively. RISE-LLAMA-3.1-8B achieves bet-
ter pass@1 accuracy than Llama-3.1-8B-Instruct
on MBPP and HumanEval, with improvements of
1.2% and 7.3%, respectively. We also apply RISE
on preference learning specifically for code genera-
tion, and the results demonstrate the effectiveness
of RISE as shown in Appendix G.

3.6 Effect of Self-edited Pairs

Self-edited pairs are essential for fine-grained pref-
erence learning, particularly in mitigating subtle er-
rors. To comprehensively explore the effect of self-
edited pairs, we conduct experiments optimizing
the model using different numbers of self-edited

Combinations GSM8K MATH
Random 88.4 59.9
Cal. Errors Dominate 88.2 59.0
Subst. Errors Dominate 88.1 58.6
Omission Dominates 87.8 58.7

Table 5: Effect of different error injection combinations
for RISE-QWEN2-7B. “Cal. Errors” denotes numerical
calculation errors, and “Subst. Errors” denote numeric
or symbolic substitution errors.

pairs (i.e., IV in Sec. 2.2). Figure 5 shows the re-
sults for N = 1,2, 3,4, and “All” self-edited pairs.
For RISE-QWEN2-7B, the accuracies on GSM8K
and MATH both decrease with more self-edited
pairs. For RISE-LLAMA-3.1-8B, the accuracies
reach a relative peak when using three self-edited
pairs for each problem. This figure indicates that
using more self-edited pairs is not always the better
option, considering both the accuracy and the train-
ing cost of using additional samples. Additionally,
RISE-LLAMA-3.1-8B prefers more self-edited
pairs, which is consistent with the characteristics
of Llama-3.1-8B-Instruct, as its full solutions con-
tain around three more steps than those of Qwen?2-
7B-Instruct. More step-wise self-edited pairs help
RISE-LLAMA-3.1-8B further avoid subtle errors.

3.7 Effect of Sampling Attempts

We further explore the effect of sampling attempts,
which directly determine the number of problems
involved in preference learning. Figure 6 shows
a positive correlation between sampling attempts
and the number of problems with paired correct-
incorrect solutions. Although more problems are
involved in preference learning, the final results
show that pairs corresponding to a larger number
of problems actually reduce learning performance.
It may be because more sampling attempts yield
more samples of “extreme” problems. For these
problems, the LLM tends to consistently answer
either correctly or incorrectly. Training the LLM
with these samples may not only be futile but could
also lead to performance degradation. We observe
this phenomenon on both RISE-QWEN2-7B and
RISE-LLAMA-3.1-8B.

3.8 Effect of Different Error-Injection
Combinations

We investigate the impact of different combinations
of injected errors on the model’s mathematical per-
formance. Three types of errors that occur most
frequently in solutions generated by our method

31190

GSM8K MATH

89.0
88.5
88.0

3 1900 86.0
950 85.5

2 4750 2875 £ 56,5
&) o)
53800 gero L 550
g 3865 —— 8535
£ 2850 2 <

61.0
59.5
58.0

52.0

s05{ 00— —

° 5 10 25 50 85.0 5

Sampling Attempts

Sampling Attempts

25 50 490 5 25 50

1
Sampling Attempts

RISE-Qwen2-7B BN RISE-Llama-3.1-8B

Figure 6: Effect of different numbers of sampling attempts. We sample multi-step solutions for a total of around 9K
problems. The left figure shows the number of problems involved in training under different sampling attempts.

are selected for analysis. Since not all samples
are applicable to these three types of errors, we
focus on one primary error type (i.e., “Dominate”),
supplemented by a small number of other errors.
For example, some samples do not contain numeri-
cal values or calculation symbols, and thus cannot
be injected with calculation errors. The compari-
son results are shown in Table 5. We can observe
that all these combinations contribute to prefer-
ence learning and a random combination yields the
best performance. It indicates that samples with
diverse predefined errors are more likely to help
the LLM learn to avoid subtle errors. Addition-
ally, we explore the prompt generalization with
different prompts, including arbitrary prompts and
self-instruct prompts in Appendix F. The results
show that RISE adapts to different prompt tem-
plates without relying on prompt engineering.

4 Related Work
4.1 LLM for Mathematical Reasoning

LLMs have shown remarkable proficiency in math-
ematical reasoning, excelling in tasks ranging from
basic arithmetic questions to complex mathemati-
cal Olympiad problems (Team et al., 2023; Jiang
et al., 2024; Dubey et al., 2024; OpenAl, 2024;
Huang et al., 2024). Various approaches have
been investigated to enhance the mathematical
reasoning capabilities of LLMs. Methods such
as Llemma (Azerbayev et al., 2024), Deepseek-
Math (Shao et al., 2024), and Qwen2.5-Math (Yang
et al.,, 2024b) have focused on collecting vast
amounts of math-related data for continued pre-
training. Recent efforts have also focused on de-
signing more efficient fine-tuning datasets to stim-
ulate the mathematical capabilities, such as MAm-
moTH (Yue et al., 2024), MetaMath (Yu et al.,
2024) and DART-Math (Tong et al., 2024). Ad-
ditionally, some works attempted to enhance rea-
soning by incorporating external tools (Gou et al.,

2024; Wang et al., 2024a; Liao et al., 2024).

4.2 Step-wise Preference Learning

In addition to pre-training and instruction fine-
tuning, step-wise preference learning—particularly
methods related to Proximal Policy Optimiza-
tion (PPO)—has been widely explored to enhance
the mathematical capabilities of LLMs (Lightman
et al., 2024; Luo et al., 2023; Shao et al., 2024).
However, the final performance is highly depen-
dent on the quality of the process-supervised re-
ward model (PRM) (Uesato et al., 2022; Wang
et al., 2024b), and the training process of PPO or
its variants is notably complex. Recently, Direct
Preference Optimization (DPO) (Rafailov et al.,
2023) simplified this process by directly leverag-
ing pair-wise data for preference learning. Many
works extend DPO, enabling it to perform step-
wise preference learning to improve the model’s
multi-step mathematical reasoning ability (Lu et al.,
2024b; Xie et al., 2024; Setlur et al., 2024b; Lai
et al., 2024). To the best of our knowledge, we
are the first to tackle subtle errors in mathematical
reasoning via error-aware preference learning.

5 Conclusion

In this work, we propose a novel preference learn-
ing framework called eRror-Injected Self-Editing
(RISE), which constructs hard pairs through self-
editing to mitigate predefined critical subtle errors.
Compared to other fine-grained preference learning
methods, RISE further refines the training objec-
tive to target error tokens, without requiring LLM-
based or estimation-based annotations. To avoid
optimization failure caused by near-identical sam-
ples in pairs, we introduce an adaptive negative
log-likelihood loss to stabilize training. The ef-
fectiveness of RISE is demonstrated in two LLM
series, Qwen2 and Llama-3.1. Results across var-
ious mathematical datasets, as well as in logical

31191

reasoning and code generation, indicate that RISE
unlocks the LLM’s potential for general reasoning.

Limitations

While our framework outperforms various base-
line approaches in multiple reasoning tasks, there
is still room for improvement. Our method has
not yet been validated on knowledge-based rea-
soning tasks, such as those in law, medicine, and
finance. These types of reasoning tasks require ex-
ternal knowledge for reasoning enhancement, and
issues like hallucinations and dishonesty, which
commonly arise when utilizing knowledge, are sim-
ilar to the subtle but critical errors found in math-
ematical reasoning. Additionally, more types of
subtle errors need to be further considered.

Acknowledgment

This work was supported by the Research Grants
Council of Hong Kong (15207920, 15213323).

References

Zhangir Azerbayev, Hailey Schoelkopf, Keiran Paster,
Marco Dos Santos, Stephen Marcus McAleer, Al-
bert Q. Jiang, Jia Deng, Stella Biderman, and Sean
Welleck. 2024. Llemma: An open language model
for mathematics. In The Twelfth International Con-
ference on Learning Representations, ICLR 2024,
Vienna, Austria, May 7-11, 2024. OpenReview.net.

Guoxin Chen, Minpeng Liao, Chengxi Li, and Kai Fan.
2024. Step-level value preference optimization for
mathematical reasoning. CoRR, abs/2406.10858.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. CoRR, abs/2110.14168.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong Shen,
Yujiu Yang, Minlie Huang, Nan Duan, and Weizhu
Chen. 2024. Tora: A tool-integrated reasoning agent
for mathematical problem solving. In The Twelfth
International Conference on Learning Representa-
tions, ICLR 2024, Vienna, Austria, May 7-11, 2024.
OpenReview.net.

Dan Hendrycks, Collin Burns, Steven Basart, Andy
Zou, Mantas Mazeika, Dawn Song, and Jacob Stein-
hardt. 2021. Measuring massive multitask language

understanding. In 9th International Conference on
Learning Representations, ICLR 2021, Virtual Event,
Austria, May 3-7, 2021. OpenReview.net.

Zhen Huang, Zengzhi Wang, Shijie Xia, Xuefeng Li,
Haoyang Zou, Ruijie Xu, Run-Ze Fan, Lyumanshan
Ye, Ethan Chern, Yixin Ye, et al. 2024. Olympi-
carena: Benchmarking multi-discipline cognitive
reasoning for superintelligent ai. arXiv preprint
arXiv:2406.12753.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de Las Casas, Florian Bressand, Gianna Lengyel,
Guillaume Lample, Lucile Saulnier, Lélio Re-
nard Lavaud, Marie-Anne Lachaux, Pierre Stock,
Teven Le Scao, Thibaut Lavril, Thomas Wang, Timo-
thée Lacroix, and William El Sayed. 2023. Mistral
7b. CoRR, abs/2310.06825.

Albert Q Jiang, Alexandre Sablayrolles, Antoine
Roux, Arthur Mensch, Blanche Savary, Chris Bam-
ford, Devendra Singh Chaplot, Diego de las Casas,
Emma Bou Hanna, Florian Bressand, et al. 2024.
Mixtral of experts. arXiv preprint arXiv:2401.04088.

Xin Lai, Zhuotao Tian, Yukang Chen, Senqiao Yang, Xi-
angru Peng, and Jiaya Jia. 2024. Step-dpo: Step-wise
preference optimization for long-chain reasoning of
Ilms. CoRR, abs/2406.18629.

Minpeng Liao, Chengxi Li, Wei Luo, Jing Wu, and
Kai Fan. 2024. MARIO: math reasoning with code
interpreter output - A reproducible pipeline. In Find-
ings of the Association for Computational Linguistics,
ACL 2024, Bangkok, Thailand and virtual meeting,
August 11-16, 2024, pages 905-924. Association for
Computational Linguistics.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harri-
son Edwards, Bowen Baker, Teddy Lee, Jan Leike,
John Schulman, Ilya Sutskever, and Karl Cobbe.
2024. Let’s verify step by step. In The Twelfth Inter-
national Conference on Learning Representations.

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blun-
som. 2017. Program induction by rationale genera-
tion: Learning to solve and explain algebraic word
problems. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics,
ACL 2017, Vancouver, Canada, July 30 - August 4,
Volume 1: Long Papers, pages 158—167. Association
for Computational Linguistics.

Xiao Liu, Xixuan Song, Yuxiao Dong, and Jie Tang.
2024. Extensive self-contrast enables feedback-free
language model alignment. CoRR, abs/2404.00604.

Zimu Lu, Aojun Zhou, Houxing Ren, Ke Wang,
Weikang Shi, Junting Pan, Mingjie Zhan, and Hong-
sheng Li. 2024a. Mathgenie: Generating synthetic
data with question back-translation for enhancing
mathematical reasoning of llms. In Proceedings of
the 62nd Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), ACL
2024, Bangkok, Thailand, August 11-16, 2024, pages

31192

https://openreview.net/forum?id=4WnqRR915j
https://openreview.net/forum?id=4WnqRR915j
https://doi.org/10.48550/ARXIV.2406.10858
https://doi.org/10.48550/ARXIV.2406.10858
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://openreview.net/forum?id=Ep0TtjVoap
https://openreview.net/forum?id=Ep0TtjVoap
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=d7KBjmI3GmQ
https://doi.org/10.48550/ARXIV.2310.06825
https://doi.org/10.48550/ARXIV.2310.06825
https://doi.org/10.48550/ARXIV.2406.18629
https://doi.org/10.48550/ARXIV.2406.18629
https://doi.org/10.48550/ARXIV.2406.18629
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.53
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.53
https://doi.org/10.18653/V1/P17-1015
https://doi.org/10.18653/V1/P17-1015
https://doi.org/10.18653/V1/P17-1015
https://doi.org/10.48550/ARXIV.2404.00604
https://doi.org/10.48550/ARXIV.2404.00604
https://doi.org/10.18653/V1/2024.ACL-LONG.151
https://doi.org/10.18653/V1/2024.ACL-LONG.151
https://doi.org/10.18653/V1/2024.ACL-LONG.151

2732-2747. Association for Computational Linguis-
tics.

Zimu Lu, Aojun Zhou, Ke Wang, Houxing Ren,
Weikang Shi, Junting Pan, Mingjie Zhan, and Hong-
sheng Li. 2024b. Step-controlled DPO: leveraging
stepwise error for enhanced mathematical reasoning.
CoRR, abs/2407.00782.

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jian-
guang Lou, Chongyang Tao, Xiubo Geng, Qingwei
Lin, Shifeng Chen, and Dongmei Zhang. 2023. Wiz-
ardmath: Empowering mathematical reasoning for
large language models via reinforced evol-instruct.
arXiv preprint arXiv:2308.09583.

MAA. 2024. American invitational mathematics exami-
nation.

Jonathan Mallinson, Jakub Adamek, Eric Malmi, and
Aliaksei Severyn. 2022. Edit5: Semi-autoregressive
text editing with T5 warm-start. In Findings of the
Association for Computational Linguistics: EMNLP
2022, Abu Dhabi, United Arab Emirates, December
7-11, 2022, pages 2126-2138. Association for Com-
putational Linguistics.

Meta Al. 2024. Meta Llama 3-1. https://ai.meta.
com/blog/meta-1lama-3-1/.

Netmind.Al. 2024. Odyssey-math. https://github.
com/protagolabs/odyssey-math/tree/main.

OpenAl. 2024. Hello GPT-40. https://openai.com/
index/hello-gpt-4o/.

Arka Pal, Deep Karkhanis, Samuel Dooley, Manley
Roberts, Siddartha Naidu, and Colin White. 2024.
Smaug: Fixing failure modes of preference optimisa-
tion with dpo-positive. CoRR, abs/2402.13228.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.
2021. Are NLP models really able to solve simple
math word problems? In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, NAACL-HLT 2021, Online,
June 6-11, 2021, pages 2080-2094. Association for
Computational Linguistics.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D. Manning, Stefano Ermon, and Chelsea Finn.
2023. Direct preference optimization: Your language
model is secretly a reward model. In Advances in
Neural Information Processing Systems 36: Annual
Conference on Neural Information Processing Sys-
tems 2023, NeurlPS 2023, New Orleans, LA, USA,
December 10 - 16, 2023.

Amrith Setlur, Saurabh Garg, Xinyang Geng, Naman
Garg, Virginia Smith, and Aviral Kumar. 2024a.
RL on incorrect synthetic data scales the efficiency
of LLM math reasoning by eight-fold. CoRR,
abs/2406.14532.

Amrith Setlur, Saurabh Garg, Xinyang Geng, Naman
Garg, Virginia Smith, and Aviral Kumar. 2024b. R1
on incorrect synthetic data scales the efficiency of
Ilm math reasoning by eight-fold. arXiv preprint
arXiv:2406.14532.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,
Junxiao Song, Mingchuan Zhang, Y. K. Li, Y. Wu,
and Daya Guo. 2024. Deepseekmath: Pushing the
limits of mathematical reasoning in open language
models. CoRR, abs/2402.03300.

Gemini Team, Rohan Anil, Sebastian Borgeaud,
Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
Radu Soricut, Johan Schalkwyk, Andrew M Dai,
Anja Hauth, et al. 2023. Gemini: a family of
highly capable multimodal models. arXiv preprint
arXiv:2312.11805.

Yuxuan Tong, Xiwen Zhang, Rui Wang, Ruidong Wu,
and Junxian He. 2024. Dart-math: Difficulty-aware
rejection tuning for mathematical problem-solving.
arXiv preprint arXiv:2407.13690.

Jonathan Uesato, Nate Kushman, Ramana Kumar, Fran-
cis Song, Noah Siegel, Lisa Wang, Antonia Creswell,
Geoffrey Irving, and Irina Higgins. 2022. Solv-
ing math word problems with process-and outcome-
based feedback. arXiv preprint arXiv:2211.14275.

Ke Wang, Houxing Ren, Aojun Zhou, Zimu Lu, Sichun
Luo, Weikang Shi, Renrui Zhang, Lingi Song,
Mingjie Zhan, and Hongsheng Li. 2024a. Mathcoder:
Seamless code integration in llms for enhanced math-
ematical reasoning. In The Twelfth International
Conference on Learning Representations.

Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai
Dai, Yifei Li, Deli Chen, Yu Wu, and Zhifang Sui.
2024b. Math-shepherd: Verify and reinforce 1lms
step-by-step without human annotations. In Proceed-
ings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), ACL 2024, Bangkok, Thailand, August 11-16,
2024, pages 9426-9439. Association for Computa-
tional Linguistics.

Yuxi Xie, Anirudh Goyal, Wenyue Zheng, Min-Yen
Kan, Timothy P. Lillicrap, Kenji Kawaguchi, and
Michael Shieh. 2024. Monte carlo tree search boosts
reasoning via iterative preference learning. CoRR,
abs/2405.00451.

Bin Xu, Yiguan Lin, Yinghao Li, and Yang Gao. 2024.
Sra-mcts: Self-driven reasoning augmentation with
monte carlo tree search for code generation. Preprint,
arXiv:2411.11053.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan
Li, Dayiheng Liu, Fei Huang, Guanting Dong, Hao-
ran Wei, Huan Lin, Jialong Tang, Jialin Wang,
Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Ma, Jianxin Yang, Jin Xu, Jingren Zhou, Jinze Bai,
Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Ke-
gin Chen, Kexin Yang, Mei Li, Mingfeng Xue, Na Ni,

31193

https://doi.org/10.48550/ARXIV.2407.00782
https://doi.org/10.48550/ARXIV.2407.00782
https://artofproblemsolving.com/wiki/index.php/American_Invitational_Mathematics_Examination
https://artofproblemsolving.com/wiki/index.php/American_Invitational_Mathematics_Examination
https://doi.org/10.18653/V1/2022.FINDINGS-EMNLP.156
https://doi.org/10.18653/V1/2022.FINDINGS-EMNLP.156
https://ai.meta.com/blog/meta-llama-3-1/
https://ai.meta.com/blog/meta-llama-3-1/
https://ai.meta.com/blog/meta-llama-3-1/
https://github.com/protagolabs/odyssey-math/tree/main
https://github.com/protagolabs/odyssey-math/tree/main
https://github.com/protagolabs/odyssey-math/tree/main
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/hello-gpt-4o/
https://doi.org/10.48550/ARXIV.2402.13228
https://doi.org/10.48550/ARXIV.2402.13228
https://doi.org/10.18653/V1/2021.NAACL-MAIN.168
https://doi.org/10.18653/V1/2021.NAACL-MAIN.168
http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html
https://doi.org/10.48550/ARXIV.2406.14532
https://doi.org/10.48550/ARXIV.2406.14532
https://doi.org/10.48550/ARXIV.2402.03300
https://doi.org/10.48550/ARXIV.2402.03300
https://doi.org/10.48550/ARXIV.2402.03300
https://doi.org/10.18653/V1/2024.ACL-LONG.510
https://doi.org/10.18653/V1/2024.ACL-LONG.510
https://doi.org/10.48550/ARXIV.2405.00451
https://doi.org/10.48550/ARXIV.2405.00451
https://arxiv.org/abs/2411.11053
https://arxiv.org/abs/2411.11053

Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize
Gao, Runji Lin, Shijie Wang, Shuai Bai, Sinan Tan,
Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge,
Xiaodong Deng, Xiaohuan Zhou, Xingzhang Ren,
Xinyu Zhang, Xipin Wei, Xuancheng Ren, Xuejing
Liu, Yang Fan, Yang Yao, Yichang Zhang, Yu Wan,
Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru Zhang,
Zhifang Guo, and Zhihao Fan. 2024a. Qwen?2 techni-
cal report. CoRR, abs/2407.10671.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao,
Bowen Yu, Chengpeng Li, Dayiheng Liu, Jian-
hong Tu, Jingren Zhou, Junyang Lin, et al. 2024b.
Qwen2.5-math technical report: Toward mathemat-
ical expert model via self-improvement. arXiv
preprint arXiv:2409.12122.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu,
Zhengying Liu, Yu Zhang, James T. Kwok, Zhenguo
Li, Adrian Weller, and Weiyang Liu. 2024. Meta-
math: Bootstrap your own mathematical questions
for large language models. In The Twelfth Inter-
national Conference on Learning Representations,
ICLR 2024, Vienna, Austria, May 7-11, 2024. Open-
Review.net.

Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wen-
hao Huang, Huan Sun, Yu Su, and Wenhu Chen.
2024. Mammoth: Building math generalist models
through hybrid instruction tuning. In The Twelfth
International Conference on Learning Representa-
tions, ICLR 2024, Vienna, Austria, May 7-11, 2024.
OpenReview.net.

A Evaluation Settings

We apply all the baseline models and our RISE
series model to generate solutions by greedy de-
coding (i.e., the temperature is set to 0). The
vLLM framework with the 0.5.4 version is used
to speed up decoding. For the GSM8K and
MATH datasets, we use the evaluation script pro-
vided by the DeepSeek-Math project !. For other
datasets, we use the evaluation agent provided by
the odyssey-math 2.

Detailed evaluation dataset information is shown
in Table 6.

B Implementation Details

We train 7B/8B models for 4 epochs with a global
batch size of 96. The parameter (is set to 0.4.
For 70B/72B models, we train for 2 epochs with
a global batch size of 64. The parameter [is set
to 0.5, and we use DeepSpeed ZeRO3 with CPU
offload to reduce computational memory usage.
The learning rate for all model training is set to
Se-7, and the parameter A is set to 0.05. We use

"https://github.com/deepseek-ai/DeepSeek-Math
Zhttps://github.com/protagolabs/odyssey-math

Pytorch with the 2.4.0 version, Transformers with
the 4.44.2 version, and deepspeed with the 0.14.4
version.

Detailed training dataset information is shown
in Table 7.

C Validation on More Open-Source
Models

To further validate the effectiveness of the RISE
framework, we implement additional experiments
on Ministral-8B-Instruct and Qwen2.5-7B-Instruct,
as these models are the most recent and well-
regarded for their performance in various reason-
ing tasks. For Ministral-8B-Instruct, we sample
5 times and collect 7743 pairs of chosen and re-
jected samples, including a total of 3872 problems.
For Qwen?2.5-7B-Instruct, we sample 10 times and
collect 5496 pairs of chosen and rejected samples,
including a total of 2748 problems. The results are
shown in the Table 8 and Table 9.

D Validation on Another Training
Dataset

To evaluate our framework on a broader set of
datasets, we have implemented additional experi-
ments using other mathematical datasets, includ-
ing problems from the original training sets of the
GSMSK Cobbe et al. (2021) and MATH Hendrycks
et al. (2021) datasets. We collect 15K problems
like DART-math Tong et al. (2024) to conduct RISE
training. The results on Qwen2-7B-Instruct indi-
cate that our RISE framework achieves better per-
formance than the general DPO method.

E Effect of Hyperparameter

We compare different values of the hyperparameter
«. The results of RISE-QWEN2-7B are shown in
Table 11.

We can observe that an excessively large o may
reduce the model’s generalization ability, which
in turn results in lower accuracy on GSM8K and
MATH.

F Effect of Prompt Design

To reduce reliance on manual prompt engineering
and demonstrate the flexibility of prompts used in
RISE, we use the self-instruct method to generate
a variety of prompt templates (10 templates for
each type of error) and conduct self-editing with
a random choice of the generated prompts. Some

31194

https://doi.org/10.48550/ARXIV.2407.10671
https://doi.org/10.48550/ARXIV.2407.10671
https://openreview.net/forum?id=N8N0hgNDRt
https://openreview.net/forum?id=N8N0hgNDRt
https://openreview.net/forum?id=N8N0hgNDRt
https://openreview.net/forum?id=yLClGs770I
https://openreview.net/forum?id=yLClGs770I
https://github.com/deepseek-ai/DeepSeek-Math
https://github.com/protagolabs/odyssey-math

Eval Datasets # Samples In-Domain? Answer Form
GSMSK (Cobbe et al., 2021) 1319 YES Open-formed
MATH (Hendrycks et al., 2021) 5000 YES Open-formed
AQuA (Ling et al., 2017) 254 YES Multi-choice
SVAMP (Patel et al., 2021) 1000 NO Open-formed
AIME24 (MAA, 2024) 30 NO Open-formed
odyssey-math (Netmind.Al, 2024) 387 NO Open-formed
Table 6: Evaluation Datasets.
Training Datasets # Samples Method GSMSK MATH
GSMBS8K (Cobbe et al., 2021) 1568 Qwen2.5-7B-Instruct ~ 91.81 74.36
MATH (Hendrycks et al., 2021) 129 DPO-Qwen2.5-7B 92.49 75.00
MetaMath (Yu et al., 2024) RISE-QWEN2.5-7B 92.95 75.06

- rewriting from GSM8SK 1387

- rewriting from MATH 953
AQuA (Ling et al., 2017) 4851
Total 8888

Table 7: Training Datasets.

Method GSMS8K MATH
Ministral-8B-Instruct 86.35 53.62
DPO-Ministral-8B 86.95 54.18
RISE-MINISTRAL-8B 88.62 54.86

Table 8: Results on Ministral-8 B-Instruct.

examples of prompt templates are shown in Table
15 and Table 16.

With a random selection of prompt templates,
our RISE can still help improve mathematical rea-
soning capability and outperform the general DPO
method, as shown in Table 12. Compared with the
results of the manual prompts used in our paper,
the results of self-instruct prompts show a better
accuracy on GSMSK but a slightly worse accuracy
on MATH.

Besides, to further illustrate that our approach
has the potential to be generalized to more diverse
errors, we implement another experiment with a
more universal prompt template. The prompt tem-
plate is “Edit the current step to introduce an error.
Do not state that errors have been made.” This
prompt doesn’t indicate any error types and lever-
ages the LLM itself to randomly introduce an error,
which can capture broader spectrum error types.
More importantly, this prompt can introduce arbi-
trary errors and even unexposed errors. The results

Table 9: Results on Qwen2.5-8B-Instruct.

Method GSMSK MATH
Qwen2-7B-Instruct 85.4 52.2
- DPO 87.7 57.5
- RISE 88.6 58.5

Table 10: Results on another mathematical training
dataset.

on Qwen2-7B-Instruct with these self-edited sam-
ples are shown in Table 13.

G Application to Code Generation

To validate the effectiveness of our RISE frame-
work on other reasoning tasks, we apply RISE to
code generation. Following Xu et al. (2024), we
adopt the LeetCode dataset’ to conduct training.
The dataset includes around 2K leetcode tasks in
the medium and hard levels. For the Qwen2-7B-
Instruct model, we sample 50 times and obtain 873
pairs of chosen and rejected full-solution samples
for training. Then, we edit each chosen sample with
the prompt “Edit the current step to introduce an er-
ror. Do not state that errors have been made.” This
prompt can introduce arbitrary errors and can be
easily adapted to other domains, such as code gen-
eration. Finally, we collect 1473 samples for RISE
training. The results are shown in Table 14. We can
observe that our RISE performs better than the gen-
eral DPO method, achieving a 0.8% improvement
on the MBPP test set and a 1.3% improvement on
the Humaneval test set.

3https://huggingface.co/datasets/greengerong/leetcode

31195

o 0.01 0.05 0.1 02

GSMS8K 88.5 884 879 87.7
MATH 593 599 59.6 593

Table 11: Results of RISE-Qwen2-7B with different
hyperparameter c.

Method GSM8K MATH
RISE-prompt-manual 88.4 59.9
RISE-prompt-self-instruct 88.6 59.3

Table 12: Results with the self-instruct prompts.

H Case Study
H.1 Case Study on Qwen2-7B series models

Table 17 and Table 18 shows a generated solution
by RISE-QWEN2-7B and Qwen2-7B-Instruct. We
can observe that the solution by Qwen2-7B-Instruct
makes a mistake with calculation symbols, where
the symbols in the red box should all be converted.
RISE-QWEN2-7B successfully avoid this subtle
error.

H.2 Case Study on Llama-3.1-8B series
models

Table 19 and Table 20 shows a generated solu-
tion by RISE-LLAMA-3.1-8B and Llama-3.1-8B-
Instruct. We can observe that the solution by Llama-
3.1-8B-Instruct makes a mistake with numeraical
substitution, where the numerator should be /2
rather than 2v/2. RISE-LLAMA-3.1-8B success-
fully avoid this subtle error.

I Edit Prompt Set

We show prompts for the aforementioned five types
of subtle errors in Table 21, Table 22, Table 23,
Table 24, and Table 25.

J Additional Error Analysis

We add more error analyses on other models and
datasets as shown in Table 26, Table 27, Table 28,
Table 29, and Table 30.

From the table, we observe that similar cate-
gories of errors consistently emerge across different
models (Qwen2, LLaMA-3.1, and Ministral) and
datasets (MATH and SVAMP, which contain more
samples). While the relative proportions of specific
error types vary, key patterns—such as numeri-
cal miscalculations and symbolic substitution er-

Method GSM8K MATH
RISE-prompt-manual 88.4 59.9
RISE-prompt-arbitrary 88.3 59.7

Table 13: Results with the arbitrary prompts.

Method MBPP Humaneval
Qwen2-7B-Instruct 42.2 43.9
-DPO 43.4 46.3
- RISE 44.2 47.6

Table 14: Results on code generation.

rors—remain dominant across settings. This cross-
model consistency reinforces our claim that the
error taxonomy used in RISE is not overly specific
to Qwen2-7B or the MATH dataset, but instead cap-
tures generalizable reasoning failure modes com-
mon to modern instruction-tuned models.

K On Comparisons with SFT Methods

We include a new SFT baseline trained on the same
chosen solutions used in RISE training, but treated
as supervised targets (i.e., without preference learn-
ing). This will provide a clearer comparison be-
tween SFT and RISE using identical training data,
isolating the effect of the preference learning ob-
jective. Table 31 shows the results.

The table demonstrates that RISE-Qwen2-7B
consistently outperforms both the base Qwen2-
7B-Instruct and the SFT-only variant across most
benchmarks. Notably, while SFT improves perfor-
mance on math-focused datasets such as GSM8K
and MATH, it shows limited generalization to other
reasoning tasks outside of mathematics (e.g., Ze-
bralLogic(Puzzle, Cell) and HumanEval). In con-
trast, RISE not only enhances mathematical rea-
soning but also successfully generalizes reasoning
ability to non-mathematical domains, a capability
that standard SFT fails to achieve.

31196

REPLACE a numerical value

(1) Change a number in this step so that the
calculation becomes incorrect, without indi-
cating that a mistake has been introduced. (2)
Alter the numerical value in this stage to pro-
duce an incorrect result, but avoid mentioning
the error.

(3) Modify a number in the current calculation
to lead to a wrong outcome, without revealing
the inaccuracy.

(4) Adjust one of the values in this step to
ensure the calculation is wrong, without point-
ing out the error.

(5) Replace a number in the calculation with
an incorrect one, but do not mention that any-
thing is wrong.

(6) Change a figure at this point to cause an er-
roneous result, without disclosing that you’ve
made a mistake.

(7) Introduce a wrong number in this calcula-
tion step, but refrain from stating that an error
has occurred.

(8) Modify a numerical value here so that the
result is incorrect, without drawing attention
to the mistake.

(9) Adjust the number in this step to generate
an inaccurate result, without acknowledging
the error.

(10) Introduce an incorrect value in this calcu-
lation, but avoid mentioning that the outcome
is wrong.

Table 15:
method.

Prompts generated by the self-instruct

SWAP two calculation terms

(1) Switch the positions of two terms in the
current calculation step to lead to an incorrect
result, without explicitly acknowledging the
mistake.

(2) Rearrange two terms in the present step in
a way that causes an error, but avoid mention-
ing that a mistake has occurred.

(3) Alter the order of two terms in the current
calculation to produce an incorrect outcome,
without pointing out the error.

(4) Exchange the positions of two terms in this
step to intentionally create a miscalculation,
and don’t indicate that anything is wrong.

(5) Adjust the placement of two terms in
the ongoing calculation to introduce an error,
without drawing attention to the fact.

(6) Swap the order of two terms in the current
process to result in a wrong answer, but refrain
from noting the mistake.

(7) Change the arrangement of two terms in
the current step in a way that leads to an incor-
rect result, without signaling any error.

(8) Interchange two terms in the current calcu-
lation step to produce a mistake, while keep-
ing the error implicit.

(9) Shift the positions of two terms in the cal-
culation to create a wrong result, without stat-
ing that something is incorrect.

(10) Modify the sequence of two terms in
this step, causing an incorrect calculation, but
don’t mention the flaw.

Table 16: Prompts generated by the self-instruct

method.

31197

Problem 1:

What is the maximum value of 4(x + 7)(2 —), over all real numbers x?
Reference Answer:

81

RISE-QWEN2-7B:
To find the maximum value of the function f(x) = 4(x + 7)(2 — x), we can start by expanding the function and
then completing the square or using calculus to find the critical points.
Step 1: Expand the function
f@) =4z +7)(2—-x)

= 4(2z — 2° + 14 — Tx)
= 4(—z® — bz + 14)
= —4a® — 20z + 56

Step 2: Find the critical points To find the maximum value, we can use calculus. We’ll find the derivative of
f(x) and set it to zero to find critical points.

/ _ d 2
fi(z)= %(4x” — 20z + 56)
= -8z —20

Setting the derivative equal to zero to find critical points:

—8xr—20=0
8r = —20
g=_20__5
T8 2

#i## Step 3: Determine the nature of the critical point To determine if this point is a maximum, we can use the
second derivative test or simply recognize that since the coefficient of =2 in the original function is negative, the
parabola opens downwards, indicating that the critical point is indeed a maximum.

Step 4: Find the maximum value Substitute = —g back into the original function to find the maximum value:

5 5\° 5
1(-3)=-1(-3) - (-3)+ss
=4 (24—5) 450 4 56
= —25+4+50+4 56
=81

Therefore, the maximum value of 4(z + 7)(2 — z) over all real numbers z is .

Table 17: An example of the generated solution by RISE-QWEN2-7B.

31198

Problem 1:

What is the maximum value of 4(x + 7)(2 —), over all real numbers x?
Reference Answer:

81

Qwen2-7B-Instruct:

To find the maximum value of the function f(z) = 4(x + 7)(2 —), we can start by expanding the function and
then completing the square or using calculus to find the critical points.

First, let’s expand the function:

f@) =4z +7)(2—2) = 4(2” + 7o — 20— 14)) = 4(2® + 52 — 14)

f(z) = 42” + 20z — 56

Now, to find the maximum value, we can use calculus. We’ll find the derivative of f(x) with respect to x and set it
equal to zero to find the critical points.

f(x) = %(4332 + 20z — 56) = 8z + 20

Setting the derivative equal to zero to find the critical point:

8z +20=0
8z = —20

po_20__5
T8 2

Now, we need to determine if this critical point corresponds to a maximum. We can do this by checking the second
derivative or by considering the nature of the parabola (since the coefficient of 2 is positive, the parabola opens
upwards, indicating that the critical point is a minimum, but we are looking for the maximum value of the function).
However, since we are looking for the maximum value of the function, and we’ve found that the function is a
parabola opening upwards, the maximum value will occur at the endpoints of the domain or at the vertex of the
parabola. Since the function is defined for all real numbers, we need to consider the behavior of the function as x
approaches positive and negative infinity.

Given the function is a parabola opening upwards, the maximum value will occur at the vertex. We’ve already found
the x-coordinate of the vertex to be x = —%. To find the maximum value, we substitute this x-value back into the

original function:
5 5\° 5
_2) =4 (-2 20(-2) =
1(a) =1 (2) v (3) -

=25—50— 56

— 81

Therefore, the maximum value of 4(z + 7)(2 —) over all real numbers x is —81.

The answer is .

Table 18: An example of the generated solution by the general LLM Qwen2-7B-Instruct. The subtle error is put in a
red box.

31199

Problem 2:
av/2 +bV/3

If we write v/2 + % +V3+ % in the form ————— such that a, b, and c are positive integers and c is as
c

small as possible, then what is @ + b + ¢?

Reference Answer:

23

RISE-LLAMA-3.1-8B:
To solve this problem, we need to rationalize the given expression and then simplify it.
Step 1: Rationalize the expression V2 + % +V3+ %

To rationalize \/5 and we multiply each fraction by its conjugate over itself to eliminate the square root in the

f’
denominator.
11 V2 V2
V2 T V2 T V2 2
11 V3 _ 3
V3T V3T V3T 3
Step 2: Substitute the ranonahzed fractions back into the original expression.
V2 + i +V3+ 43

Step 3: Comblne hke terms.
V2 _ 2V24V2 _ 3V2

V2 + 22_2 22+ 2_322

\[+ V3 _ 3\/§+\/§ — f

So the expression becomes 3\{ + %.
Step 4: To combine these two fractions into one fraction with a common denominator, we need to find the least
common multiple (LCM) of 2 and 3, which is 6.
3v2 _ 3v2x3 _ 9v2
2 6

2x3
4v3 _ 4v3x2 _ 8v3
3 3X2 . 6 .
Step 5: Combine the two fractions.
9v2 + 8vV3 _ 9v248V3
6 6 6

Now we have the expression in the desired form

av2+bV3
Step 6: Identify the values of a, b, and c. ¢
a=9,b=28,and c = 6.

Step 7: Calculate the sum of a, b, and c.
a+b+c=94+8+6=23

The final answer is:

Table 19: An example of the generated solution by RISE-LLAMA-3.1-8B.

31200

Problem 2:

such that a, b, and c are positive integers and c is as

If we write v/2 + == + /3 + = in the form M
V2 V3 .

small as possible, then what is a + b + ¢?
Reference Answer:
23

Llama-3.1-8B-Instruct:
To simplify the given expression, we can start by rationalizing the denominators of the fractions.
V2+ 25+ V3 +
First, we rationalize the denominators of the fractions by multiplying each fraction by the conjugate of its denomina-
tor over itself. s v
1 1o 2 3
V2+ 5+ VB4 o= V2 VB
Now, we can combine like terms.

2 2V2
Vﬂﬁ§+ﬁ+§:%@+%:+¥+§
Combine the like terms.
4\/§+2\2/§+3\?)/§+\é§:6\2/§+4\?)/§

2

Simplify the fractions.

S + 52 =3va 4 42

To get a common denominator, we multiply the first term by %
4v3 _ 9v2 | 43

B2 4 4 = 22 4 B2

Now we can combine the fractions.
9v2 + 4V3 _ 9v2+4V3
3 3 3

Now we have the expression in the desired form ,wherea = 9,b=4,and c = 3.
Therefore,a +b+c=9+ 4+ 3 = 16.

The final answer is: m

av2+bV3
C

Table 20: An example of the generated solution by the general LLM Llama-3.1-8B-Instruct. The subtle error is put
in a red box.

31201

Prompt for Errors in the Calculation Order:

Prompt for Numerical Calculation Errors: Question:
Question: {question}
{question} N

Initial Answer:

Initial Answer: {answer}

{answer} Current Step:

Current Step: {text}

text .)
ttext} Swap two calculation terms in the current step to make

a wrong calculation. Do not state that errors have been

Edit a numerical value or a series of related values in i
made.

the current step to make a wrong calculation. Do not
state that errors have been made.

Table 24: The prompt for injecting Errors in the Calcu-

Table 21: The prompt for injecting Numerical Calcula- lation Order.

tion Errors.

Prompt for Numeric or Symbolic Substitution Er-
rors:

Question:
{question}

Initial Answer:
{answer}

Current Step:
{text}

Edit a value or symbol in the current step to make a
wrong substitution. Do not state that errors have been
made.

Table 22: The prompt for injecting Numeric or Sym-
bolic Substitution Errors

Prompt for Omission of Calculation Terms:

Question:
{question}

Initial Answer:
{answer}

Current Step:
{text}

Delete a calculation term in the current step to make a
wrong calculation. Do not state that errors have been
made.

Table 23: The prompt for injecting Omission of Calcu-
lation Terms.

Prompt for Errors in the Use of Calculation Symbols:

Question:
{question}

Initial Answer:
{answer}

Current Step:
{text}

Edit a calculation symbol (e.g., +-*/, etc.) in the current
step to make a wrong calculation.

Table 25: The prompt for injecting Errors in the Use of
Calculation Symbols.

Error Type Distribution
Numerical calculation errors 33.53%
Numeric or symbolic substitution errors 28.00%
Omission of calculation items 6.54%
Error in the calculation order 1.44%
Errors in the use of calculation symbols 1.48%
Others 29.01%

Table 26: Error Distribution for Llama-3.1-8B-Instruct
on MATH.

Error Type Distribution
Numerical calculation errors 26.97%
Numeric or symbolic substitution errors 27.49%
Onmission of calculation items 9.41%
Error in the calculation order 1.60%
Errors in the use of calculation symbols 0.95%
Others 33.56%

Table 27: Error Distribution for Ministral-8B-Instruct
on MATH.

31202

Error Type Distribution
Numerical calculation errors 22.64%
Numeric or symbolic substitution errors 25.47%
Omission of calculation items 5.66%
Error in the calculation order 5.66%
Errors in the use of calculation symbols 0.0%
Others 40.57%

Table 28: Error Distribution for Qwen2-7B-Instruct on

SVAMP.

Error Type Distribution
Numerical calculation errors 15.49%
Numeric or symbolic substitution errors 45.07%
Omission of calculation items 4.93%
Error in the calculation order 5.63%
Errors in the use of calculation symbols 0.0%
Others 28.87%

Table 29: Error Distribution for LLlama-3.1-8B-Instruct

on SVAMP.
Error Type Distribution
Numerical calculation errors 23.43%
Numeric or symbolic substitution errors 27.39%
Omission of calculation items 7.26%
Error in the calculation order 11.22%
Errors in the use of calculation symbols 1.65%
Others 29.04%

Table 30: Error Distribution for Ministral-8B-Instruct

on SVAMP.
Methods GSMS8K MATH Cell Humaneval
Qwen2-7B-Instruct 85.4 52.2 21.5 43.9
Qwen2-7B-SFT 87.8 59.1 12.48 31.1
RISE-Qwen2-7B 88.4 59.9 23.2 47.5

Table 31: Performance Comparison with SFT across

Tasks.

31203

