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Abstract

Empowering LLMs with the ability to pre-
cisely understand long contexts is crucial for
many downstream applications. However, han-
dling long contexts with conventional trans-
former architecture requires substantial train-
ing and inference resources. Existing context
condensing methods cannot accurately under-
stand the full context, as there is a considerable
amount of information loss in the condensing
process. To address these issues, we present
FocusLLM, a framework designed to extend
the fixed context length of any decoder-only
LLM, allowing the model to focus on relevant
information from very long sequences. Focus-
LLM first divides long text input into chunks
based on the model’s original context length.
It then employs the dynamic condensing pro-
cess to distill crucial information from each
chunk. Ultimately, through the novel parallel
decoding mechanism, FocusLLM can integrate
the extracted information into its local context.
FocusLLM stands out for great training effi-
ciency and versatility: trained with an 8K in-
put length and with much less training cost
than previous methods, FocusLLM exhibits su-
perior performance across downstream tasks
and maintains strong language modeling abil-
ity when handling extensive long texts, even
up to 400K tokens. Our code is available at
https://github.com/leezythu/FocusLLM.

1 Introduction

The importance of extending the context length
of large language models (LLMs) cannot be over-
stated. In numerous applications, ranging from
complex document analysis to generating coher-
ent long-form text, the ability to effectively uti-
lize extended context is critical. For instance, in
tasks such as document summarization and ques-
tion answering over lengthy articles, a more ex-
tensive context allows for a more comprehensive
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Figure 1: A comparison between FocusLLM and pre-
vious context scaling methods on the passkey retrieval
task, including CEPE, LongLLaMA and Activation Bea-
con. Our method extrapolates beyond the original con-
text length of LLaMA, achieving 99% accuracy at a
context length of 400K, with less training cost.

understanding and accurate responses. However,
leveraging long contexts in LLMs presents several
formidable challenges. (1) The computational com-
plexity of transformers (Vaswani et al., 2017) grows
quadratically with the sequence length, rendering
the training process prohibitively expensive. (2)
LLMs exhibit poor extrapolation performance for
longer sequences, even after additional fine-tuning
(Chen et al., 2023a; Peng et al., 2023). (3) Acquir-
ing high-quality long-text datasets, which are es-
sential for training and fine-tuning, is exceedingly
difficult (Xiong et al., 2023; Wang et al., 2022).

To circumvent the substantial costs of directly
scaling the window length by continual training on
longer inputs, recent work has proposed to drop
unimportant tokens and retain important tokens, ei-
ther by modifying the attention mechanism (Xiao
et al., 2023; Han et al., 2023) or by compressing the
context into some specialized tokens (Zhang et al.,
2024a; Chevalier et al., 2023; Ge et al., 2023), in
order to effectively condense long textual informa-
tion. However, these methods overlook the fact that
token importance changes dynamically during the
decoding process: tokens previously considered
unimportant may become crucial in later decoding
steps. As a result, they share a common drawback,
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which we refer to as information loss: some tokens
that will be needed in the future have already been
discarded. For example, in Passkey Retrieval task
(Mohtashami and Jaggi, 2024) illustrated in Figure
1, as the context length increases, the compression
method Activation Beacon fails to retrieve passkey
pairs that appeared in the earlier context.

Considering the above issues, the question arises:
can we extend the context length of an existing LLM
at a low cost without any information loss? In this
paper, we propose a training efficient and effec-
tive solution FocusLLM, which can maintain a
precise understanding of the whole long context.
Specifically, FocusLLM first divides a long text
into chunks based on the model’s original context
length. Then, the dynamic condensing process is
applied, which appends dynamic prompts to each
chunk to extract crucial information, ensuring no
information loss. Finally, we use parallel decoding
mechanism to aggregate information from different
chunks and generate the next token. The origi-
nal model parameters are kept frozen to maintain
generalization capabilities, with only a small num-
ber of trainable parameters introduced for dynamic
condensing.

We employ the FocusLLM framework to the
widely used LLaMA-2-7B model (Touvron et al.,
2023b), which has a default context length of 4K.
In terms of efficiency, FocusLLM is trained on
sequences shorter than 8K tokens and only re-
quires a training budget of 0.5B tokens. To val-
idate the effectiveness of FocusLLM, we evaluate
it across a variety of tasks. Initially, we assessed
FocusLLM’s language modeling capability. Focus-
LLM maintains low perplexity on documents com-
prising 128K tokens and even longer sequences.
Subsequently, to comprehensively evaluate the ap-
plicability of FocusLLM in real-world scenarios,
we utilized two widely used benchmarks: Long-
bench (Bai et al., 2023) and ∞-Bench (Zhang et al.,
2024b). Experimental results demonstrate that Fo-
cusLLM has achieved superior performance on
both benchmarks, surpassing all baselines includ-
ing length extrapolation models, continual training
models, and similar models designed for extreme
long sequences. The main contributions of this
paper can be summarized as follows:

• We propose the FocusLLM framework, which
leverages novel dynamic condensing and par-
allel decoding mechanisms to avoid informa-
tion loss and achieve precise understanding of

long contexts, as shown in Figure 1.

• Compared to previous context-scaling meth-
ods, FocusLLM achieves remarkable results
with high training efficiency by introducing
only a small set of trainable parameters and
utilizing a training budget of 0.5B tokens.

• Through comprehensive evaluation, Focus-
LLM outperforms all baselines on down-
stream tasks while maintaining low perplexity,
demonstrating that it can seamlessly serve as
a general-purpose language model.

2 Architecture

The overall framework of FocusLLM is presented
in Figure 2. Each decoder in the figure shares the
same model (e.g. LLaMA-2).

2.1 Notations

Given a long sequence with S tokens {x1, ..., xS},
we segment them into memory tokens
{x1, ..., xm} and local context {xm+1, ..., xS},
with the length of local context not exceeding
the model’s default context length, denoted as
L. Concurrently, we divide the memory tokens
into chunks, labeled as C1, C2, ..., Ck, with each
chunk’s size also not exceeding L. These chunks
can represent distinct documents or a single
long document. We define the original decoder
model as Fdec and its hidden dimension ddec. To
endow the model with the capability for dynamic
condensing, we introduce a small set of new
parameters, resulting in the modified model F ′

dec.

2.2 Dynamic Condensing

As highlighted in the introduction, the importance
of tokens in the context dynamically changes at
each decoding step. Previous work that condenses
context using a fixed pattern suffers from the draw-
back of information loss. To address this issue,
we propose the dynamic condensing mechanism,
which consists of two key steps: dynamic prompt
injection and candidate token generation.
Dynamic Prompt Injection. We append a small
fragment of local context (we refer to it as the dy-
namic prompt in Figure 2) behind each chunk. The
motivation is to aggregate the most critical informa-
tion from each chunk for the current decoding step.
We can formally define this process as follows:

Ĉi ← {Ci;xm+j , ..., xS} i = 1, ..., k; 1 ≤ j ≤ S−m (1)
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Figure 2: One decoding step of the FocusLLM framework. A small fragment of the local context (denoted as the
dynamic prompt) is appended to each chunk. The representations of the candidate tokens, obtained through dynamic
condensing and parallel decoding, are then concatenated and integrated back into the local context.

Here j is a hyperparameter that determines the num-
ber of local tokens appended to each chunk. We
adopt a default length of 512 tokens for inference,
which is sufficient to encapsulate the necessary lo-
cal contextual information.

The last token of the dynamic prompt is used to
generate candidate tokens, which we will explain
in detail later. After each decoding step, when
FocusLLM generates the next token, this token
will be appended to the dynamic prompt 1. This
updated dynamic prompt is then used to generate
new candidate tokens in the next decoding step.

The dynamic prompt evolves with each decoding
step, ensuring that the model always has access to
the most relevant information for the current step.
Candidate Token Generation. Building on the
dynamic prompt injection described above, we in-
troduce candidate tokens to condense the informa-
tion from each chunk that is crucial for the current
decoding step. The candidate token is denoted as
the trainable hidden states corresponding to the last
local token xS in each chunk Ĉi. To obtain the
representations of candidate tokens, motivated by
(Zhang et al., 2024a), we add a new set of train-
able parameters to the linear projection matrices
of each layer, while keeping the original model
parameters frozen to preserve its original decod-
ing ability. Formally, the trainable parameters for
dynamic condensing are:

{W c
Q,W

c
K ,W c

V ,W c
O}l (2)

where W c
Q, W c

K , W c
V , and W c

O represent the new
linear projections for the query, key, value, and

1The first token of the dynamic prompt can be dropped to
maintain its fixed length.

output matrices associated with the candidate token,
and l denotes the layer number. The output of the
candidate token in the self-attention module can be
calculated as:

Qc ← HcW
c
Q Kc ← HcW

c
K Vc ← HcW

c
V (3)

Ac ← softmax
(
Qc (K ⊕Kc)

T
)

(4)

Oc ← VcW
c
O

T Vc ← Ac (V ⊕ Vc)
T (5)

where Hc ∈ Rddec is the input hidden state of
the candidate token, ⊕ represents the concatenation
of matrices, and K,V correspond to the represen-
tations of the normal tokens in one chunk.

2.3 Parallel Decoding
Through the dynamic condensing process de-
scribed above, we obtain one candidate token for
each chunk. Notably, the process of obtaining the
candidate token from each chunk is independent,
enabling parallel forwarding for all chunks. Then
the key/value representations of the candidate to-
kens are concatenated with the tokens in the local
context layer by layer, as shown in Figure 2, and are
finally processed by a frozen decoder to generate
the next token.

We formally define the process of simultane-
ously generating candidate tokens from different
chunks and then aggregating these candidate to-
kens to produce the final token as parallel decod-
ing. This mechanism not only enables precise un-
derstanding of long contexts but also reduces the
Transformer’s original O(L2) computational com-
plexity to O((L/n)2). A detailed efficiency analy-
sis is provided in Appendix A.
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3 Training

Regarding training data, to ensure the generaliz-
ability of our method and maintain fairness in com-
parison with the baselines, we leverage RedPajama
(Together, 2023b) as the training corpus and sample
examples with sequence lengths varying between
3K and 8K tokens from it. RedPajama is an open-
source pre-training dataset for LLaMA-1 (Touvron
et al., 2023a), which is widely utilized in previ-
ous work (Zhang et al., 2024a; Yen et al., 2024).
Detailed statistics are reported in Appendix B.

Auto-Regressive Loss. Specifically, we train
the model to predict the next token, and the loss is
only applied to tokens in the local context, which
encourages the candidate token to aggregate useful
information from each chunk.

min
F ′

dec

−
S−m∑

i=2

log(p(xm+i | c1, . . . , ck, xm+1, . . . , xm+i−1))

(6)

Here, ci represents the candidate token generated
by the i-th chunk. Specifically, based on the rela-
tionship between the memory tokens {x1, ..., xm}
and the local context {xm+1, ..., xS}, we design
two loss functions for joint training. i) If the local
context is a continuation of the memory tokens, we
term this loss the Continuation Loss, as it trains the
model to naturally generate new tokens that follow
the given context. ii) Alternatively, if we randomly
select L consecutive memory tokens as local con-
text, we define this loss as the Reconstruction Loss,
as it trains the model to reconstruct tokens when
clear contextual information is available. Subse-
quent experiments demonstrate that both types of
loss are essential.

4 Experiments

In this section, we will conduct a comprehensive
evaluation of the effectiveness of FocusLLM, span-
ning both language modeling and a variety of down-
stream tasks. We refer readers to Appendix C for
detailed experimental settings including hyperpa-
rameters due to space constraints.

4.1 Long-context Language Modeling
In this section, we evaluate FocusLLM on long-
context language modeling benchmarks, with text
lengths ranging from 4K to 128K tokens.
Datasets. We perform the evaluation on three
datasets: PG19 (Rae et al., 2019), Proof-Pile (Azer-
bayev et al., 2023), and CodeParrot (Tunstall et al.,
2022). These three datasets encompass 100 long

test cases related to books, arXiv papers, and code
repositories, respectively. The results of baseline
models are taken from (Zhang et al., 2024a) for
comparison. Following the setting of (Yen et al.,
2024), as FocusLLM relies on the last decoder to
perform generation, we calculate the perplexity on
the last 256 tokens of each sequence, and for the
128K length, we filter out documents exceeding
128K tokens and evaluate 10 samples due to data
scarcity and computational cost.
Model. FocusLLM is based on LLaMA-2-7B
(chat), hence the models for comparison are all
on the same scale, 7B. The baseline models can
be categorized into the following types: i) Meth-
ods focusing on the modification of positional en-
coding, including Positional Interpolation (Chen
et al., 2023a), the NTK-Aware Scale ROPE2, and
the training-free method StreamingLLM (Xiao
et al., 2023), which is based on attention sinks.
ii) Fine-tuned methods trained on long inputs,
such as LongAlpaca-16K (Chen et al., 2023b),
LongChat-32K (Li et al., 2023), and YaRN-128K
(Peng et al., 2023). iii) Methods with designed
structures specifically for long contexts, includ-
ing AutoCompressor-6K (Chevalier et al., 2023),
LongLlama (Tworkowski et al., 2024) and Activa-
tion Beacon (Zhang et al., 2024a). For instance,
Activation Beacon achieves compression of long
texts by training the model to represent the informa-
tion of a regular text segment with a small number
of beacon tokens.
Analysis. The results are presented in Table 1.
Here are several observations we can make: (1)
Compared to the basic LLaMA-2-7B model and
some fine-tuning free methods, our model demon-
strates superior performance. When extending the
context length from 4K to longer, the perplexity
becomes lower, indicating that information from
a longer context can be effectively utilized. (2)
FocusLLM achieves comparable performance to
fine-tuned full-attention methods. This result is no-
table because our model operates with significantly
higher training efficiency. For instance, LongLlama
is fine-tuned using 7B tokens with all parameters
being trainable. In contrast, FocusLLM uses 1/10
of the training budget and 1/3 of the parameters.
(3) FocusLLM can maintain language modeling
capabilities at lengths much longer than other mod-
els while retaining precise comprehension of the

2https://www.reddit.com/r/LocalLLaMA/comments/14lz7
j5/ntkaware_scaled_rope_allows_llama_models_to_have/
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PG19 Proof-Pile CodeParrot

Method 4K 16K 32K 100K 4K 16K 32K 100K 4K 16K 32K 100K

Llama-2-7B 9.21 >103 >103 OOM 3.47 >103 >103 OOM 2.55 >103 >103 OOM
PI 9.21 19.5 >102 OOM 3.47 5.94 33.7 OOM 2.55 4.57 29.33 OOM
NTK 9.21 11.5 37.8 OOM 3.47 3.65 7.67 OOM 2.55 2.86 7.68 OOM
StreamingLLM 9.21 9.25 9.24 9.32 3.47 3.51 3.50 3.55 2.55 2.60 2.54 2.56

AutoCompre.-6K 11.8 >102 >103 OOM 4.55 >102 >103 OOM 5.43 >102 >103 OOM
YaRN-128K 6.68 6.44 6.38 OOM 2.70 2.47 2.41 OOM 2.17 2.04 2.00 OOM
LongChat-32K 9.47 8.85 8.81 OOM 3.07 2.70 2.65 OOM 2.36 2.16 2.13 OOM
LongAlpaca-16K 9.96 9.83 >102 OOM 3.82 3.37 >103 OOM 2.81 2.54 >103 OOM
LongLlama 9.06 8.83 OOM OOM 2.61 2.41 OOM OOM 1.95 1.90 OOM OOM
Activation Beacon 9.21 8.54 8.56 8.68 3.47 3.42 3.39 3.35 2.55 2.54 2.53 2.55

FocusLLM 9.21 9.19 9.17 10.59 3.47 3.17 3.43 2.57 2.55 2.01 2.27 3.02

Table 1: Language Modeling Assessment: perplexity analysis of various context scaling methods on the PG19,
Proof-Pile, and CodeParrot. FocusLLM successfully maintains low perplexity on extremely long sequences.

entire text. Although models like StreamingLLM
and Activation Beacon can still achieve lower per-
plexity by compressing tokens, they are unable to
recover the previous context information, which
severely affects their capabilities in downstream
tasks. In summary, FocusLLM achieves compara-
ble language modeling performance with a small
training cost.

4.2 Downstream Tasks

Datasets. To assess the capabilities of FocusLLM
in real-world scenarios, we select two widely used
datasets: Longbench (Bai et al., 2023) and ∞-
Bench (Zhang et al., 2024b). Longbench offers
an evaluation on a variety of tasks including ques-
tion answering, summarization, few-shot learning,
mathematical counting, and code completion. ∞-
Bench is designed to test a model’s ability to under-
stand and reason over super long contexts, with an
average length of 145.1K tokens. Thus, the tasks in
∞-Bench are well-suited to test whether the model
has a precise understanding of long contexts with-
out information loss. For more detailed statistics,
please refer to Appendix D. We believe that these
two benchmarks can comprehensively reflect the
capabilities of the model on downstream tasks.
Models. We select representative models from the
three types of baselines mentioned in Section 4.1
for comparison. Additionally, we focus on com-
paring FocusLLM with recently proposed models
capable of processing extremely long streaming in-
puts. Specifically, StreamingLLM utilizes a sliding
window mechanism; InfLLM (Xiao et al., 2024)
stores processed context into memory units and
retrieves it using attention scores; Activation Bea-
con compresses the preceding text to maintain a

smaller context length. CEPE (Yen et al., 2024)
adopts a small encoder to process long inputs chunk
by chunk and feeds the memory to a decoder by
cross-attention.
Main Results. The experimental results are dis-
played in Table 2 and 3. We reference some base-
line results from (Xiao et al., 2024), which are
based on the Vicuna-7B-v1.5 model. Vicuna-7B-
v1.5 is based on LLaMA-2-7B but fine-tuned on
conversational data. For a fair comparison, we also
train a Vicuna version of FocusLLM. For YaRN-
128K, we select the version based on Mistral-7B-
inst-v0.2, which is stronger than Vicuna. For
LongLlama, as they do not have a version based
on the Llama2, we directly utilize the officially
released model. CEPE and LongLLaMA will expe-
rience OOM on ∞-Bench due to their substantial
memory usage, so we only report their results on
LongBench. Since not all models are inherently
capable of processing infinite text lengths, we also
elaborate the effective lengths for each method pre-
sented in Tables 2 and 3 in Appendix E.

From the experimental results, we can make the
following comparisons between FocusLLM and
previous methods: (1) FocusLLM outperforms all
baseline models, achieving the best results on both
the relatively shorter benchmark Longbench and
the extremely long benchmark ∞-Bench. This
demonstrates FocusLLM’s capability for effective
understanding and reasoning on long sequences
and its broad applicability. (2) Different types
of baseline models exhibit various shortcomings.
For training-free models like PI and NTK, extend-
ing the length to 128K comes with a significant
sacrifice in performance. Due to the lack of pre-
cise understanding of the full context, models that
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Vicuna-7B-v1.5 (4K)
Original LChat Vic-16K Yarn-128K PI NTK Stream InfLLM FocusLLM

∞-Bench

Math.Find 11.71 9.43 13.43 17.14 OOM OOM 6.00 11.14 11.71
En.MC 30.13 24.45 34.06 27.95 OOM OOM 32.31 31.44 32.31
Code.Debug 38.83 27.66 35.03 22.59 OOM OOM 46.19 34.26 28.43
Retrieve.KV 1.40 1.40 1.00 0.00 OOM OOM 0.00 0.60 12.40
Retrieve.Number 4.41 23.90 10.34 56.61 OOM OOM 4.41 81.69 83.56
Retrieve.PassKey 5.08 28.64 15.25 92.71 OOM OOM 4.92 99.15 95.76

Average 15.26 19.25 18.19 36.17 – – 15.64 43.05 44.03

LongBench

NarrativeQA 11.19 20.35 17.85 19.67 0.78 5.66 15.61 15.53 21.14
Qasper 13.79 29.35 25.85 11.10 2.71 21.17 23.84 23.57 31.07
MultiFieldQA 22.08 42.55 37.15 35.06 1.01 36.76 32.80 37.14 36.73
HotpotQA 12.71 33.19 24.72 11.94 1.35 19.54 22.17 22.53 40.65
2WikiMQA 13.99 24.33 21.41 12.02 1.17 14.51 18.38 18.82 20.30
Musique 4.81 14.71 8.44 7.52 0.71 4.30 6.30 5.24 14.20
GovReport 27.67 30.83 27.62 29.46 1.9 25.26 23.18 26.79 26.66
QMSum 19.72 22.93 22.63 21.53 1.29 19.48 20.09 20.91 20.50
MultiNews 26.61 26.63 27.88 16.04 1.16 25.88 26.19 26.43 27.45
TREC 69.00 66.50 69.00 68.50 4.50 59.00 61.00 67.50 68.00
TriviaQA 81.94 83.99 85.63 88.21 0.90 25.85 78.81 84.36 81.63
SAMSum 35.12 12.83 9.15 26.52 0.12 5.05 32.46 31.89 35.36
PassageRetrieval 9.00 30.50 4.00 16.25 0.62 5.00 6.00 9.00 15.67
LCC 64.53 54.79 50.64 66.39 21.54 53.65 63.70 61.41 62.79
RepoBench-P 50.17 58.99 44.94 55.82 19.36 44.58 48.26 47.52 53.72

Average 30.82 34.70 31.79 32.40 3.94 24.38 31.92 33.24 36.17

Table 2: The results on ∞-Bench and LongBench. The models on the right part can process extremely long inputs.
On both benchmarks, FocusLLM achieves significant improvements compared to strong baselines.

employ sliding window or condensing techniques,
such as StreamingLLM and Activation Beacon per-
form poorly on ∞-Bench (see also Appendix F),
with performance nearly approaching zero on some
tasks. This indicates that they suffer from severe
information loss. As for fine-tuned models like
LongChat and CEPE, their limitation is the re-
stricted supported length. For example, CEPE
struggles to handle lengths beyond 128K effec-
tively (Yen et al., 2024). (3) The approaches of
length extrapolation and continual training on long
inputs, while capable of scaling context, introduce
substantial computational and memory costs. In
contrast, FocusLLM processes the text in chunks
and utilizes parallel decoding, which significantly
conserves both the memory and time for inference.

5 Further Exploration

5.1 Visualization of Candidate Tokens

To further illustrate how candidate tokens func-
tion, we provide a more intuitive explanation by
visualizing the information carried by these tokens
through attention weight heatmaps when decoding
the next token. Due to space limitations, we place
the visualization results in Appendix H. We have
the following observations: i) In Passkey Retrieval
task, the model assigns a high attention weight to
one certain candidate token, indicating that this to-

ken effectively carry the passkey information from
its respective chunk. In contrast, candidate tokens
from chunks containing noisy text carry no use-
ful information, resulting in near-zero attention
weights. ii) In LongBench NarrativeQA task, the
model shows a slightly different pattern, where
many candidate tokens receive attention, as mul-
tiple chunks’ information may be aggregated for
the QA task. The visualization results demonstrate
that FocusLLM effectively uses candidate tokens
to transmit information from the context while ig-
noring irrelevant noise.

5.2 Scaling to 400K Context

We contend that FocusLLM is capable of process-
ing extremely long sequences. To validate this, we
first conduct experiments on the passkey retrieval
task (Mohtashami and Jaggi, 2024). The results, as
illustrated in Figure 1, demonstrate that FocusLLM
maintains nearly 100% effectiveness at lengths of
up to 400K3, outperforming all other models. We
also extended the language modeling experiments
introduced in Section 4.1 to 400K, a length at which
most models fail to manage effectively. The result
is presented in the Appendix G.

3Constrained by hardware, the maximum length we are
able to test is 400k tokens.
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Llama-7B-chat (4K)
Original CEPE L_L A_B FocusLLM

NarrativeQA 18.70 22.14 - - 20.38
Qasper 19.20 26.34 - - 21.73
MultiFieldQA 36.80 31.56 - - 36.91

-Average 24.90 26.68 30.12 27.14 26.34

HotpotQA 25.40 34.95 - - 38.95
2WikiMQA 32.80 32.39 - - 32.95
Musique 9.40 9.76 - - 15.39

-Average 22.60 25.70 16.37 28.28 29.10

GovReport 27.30 13.90 - - 25.54
QMSum 20.80 20.30 - - 21.86
MultiNews 25.80 3.10 - - 26.35

-Average 24.70 12.43 24.19 25.15 24.55

TREC 61.50 68.50 - - 68.00
TriviaQA 77.80 87.90 - - 85.08
SAMSum 40.70 32.38 - - 41.63

-Average 60.00 62.92 60.31 60.72 64.81

LCC 52.40 66.21 - - 58.42
RepoBench-P 43.80 58.94 - - 54.27

-Average 48.10 62.57 66.05 57.83 56.35

Average 35.20 36.31 37.50 38.54 39.01

Table 3: The results of LLaMA2-based models on tasks
of LongBench. L_L represents Long Llama and A_B
represents Activation Beacon. FocusLLM outperforms
memory-based and compression-based methods, and
maintains attention to all tokens of context.

5.3 Memory Footprint and Inference Time

For models that focus on long texts, aside from
training costs, another critical aspect is the memory
footprint and inference time. In this section, we
compare FocusLLM with several previous long-
context methods capable of retaining global in-
formation by preserving the cache of all context:
Standard (PI/NTK), LongLlama, and CEPE. As for
models like Activation Beacon and StreamingLLM,
although they maintain a constant memory foot-
print by only retaining cache for a fixed window,
they suffer significant information loss and strug-
gle with the precise understanding of long texts as
demonstrated in Section 4.2. Therefore, they are
not the primary subjects of comparison.

The results are shown in Figure 3 and Figure
4. FocusLLM with or without parallel indicates
whether we process each chunk either concurrently
or sequentially. The findings indicate that: (1)
When ample memory resources are available, par-
allel processing is more efficient for FocusLLM.
(2) Although FocusLLM splits long texts into nu-
merous chunks, resulting in a slightly longer infer-
ence time compared to the standard approach, it
still holds a significant advantage over other long-
context methods.

5.4 Chunk Size

We conduct an investigation into the impact of
different chunk sizes on performance. In theory,
larger chunk sizes, as long as they do not exceed
the model’s default context length (e.g., 4K for
LLaMA-2), are preferable because they allow for
processing the memory with a smaller number of
forward passes. However, smaller chunk sizes may
enable more precise processing.

In experiments, we maintain a total sequence
length of 8K, testing the perplexity using different
chunk sizes on the same samples of PG19. We
select {256, 512, 1024, 2048} as our test sizes. The
results are shown in Figure 5. We observe that there
is no consistent trend in perplexity as the chunk
size increases; it remains relatively stable. This
confirms our hypothesis that we can employ larger
chunk sizes on models with longer default context
lengths (e.g. LLaMA-2-32K). We will explore this
direction in our future work.

5.5 Ablation Studies

We employ both Continuation Loss and Reconstruc-
tion Loss for the training of FocusLLM. The mo-
tivation behind this is to equip the model with the
natural language modeling capability while also en-
hancing its ability to recover information. Ablation
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LongBench ∞-Bench

Hyper Params. NarrativeQA TREC Math.Find En.MC Retrieve.PassKey

FocusLLM (2K, 2K) 18.53 65.5 13.43 31.00 99.32

Continuation Loss only (2K, 2K) 17.36 60.5 13.71 27.95 1.69
Reconstruction Loss only (2K, 2K) 17.05 62.0 12.86 26.64 91.19

Local Context Size ↓ (1K, 2K) 17.87 63.0 8.86 29.69 99.32

Table 4: Investigations into the training loss and local context size of FocusLLM. We present the results for
representative tasks from LongBench and ∞-Bench. For instance, NarrativeQA belongs to Single-Doc QA, while
TREC relates to Few-shot learning. The Hyper Params is denoted as (local context size, chunk size).

studies as detailed in Table 4, reveal that relying
solely on the Continuation Loss enables the model
to manage some tasks effectively. Nonetheless, for
tasks with substantial dependencies on the preced-
ing context, like HotpotQA and Retrieve.PassKey,
the model’s efficacy deteriorates. Similarly, while
employing the Reconstruction Loss ensures accu-
rate restatement of the preceding context, the lack
of generalizability of generating new tokens leads
to a considerable decrease in performance. There-
fore, the combined use of both loss functions is
crucial for enhancing the performance and general-
izability of FocusLLM.

We also investigate how the local context size in-
fluences performance in the last row of Table 4. As
we reduce the local context size from 3.5K to 1K,
the performance of most tasks experiences a slight
decline. This suggests that candidate tokens cannot
fully replace the information within the context.

6 Related Work

6.1 Long-context language models
One research direction involves length extrapola-
tion in transformers (Peng et al., 2023; Jin et al.,
2024), where methods like positional interpolation
help models adapt to longer sequences (Chen et al.,
2023a). However, these techniques often fail to ad-
dress the distraction issue caused by noisy content
within extended texts (Tworkowski et al., 2024).
Another research branch focus on modifying the
attention mechanism or employing compression
techniques to maintain long texts within manage-
able lengths (Chevalier et al., 2023; Zhang et al.,
2024a). For instance, (Xiao et al., 2023) discovered
that retaining ‘sink tokens’ in conjunction with a
sliding window can achieve smooth streaming out-
put. (Zhang et al., 2024a) expanded the context
dramatically through compression. However, these
methods share a common limitation: they cannot
utilize information from all tokens.

Some methods also address long context by seg-
menting long texts into chunks. The NBCE (Su
et al., 2024) model employs heuristic methods to
adjust the probability of the next decoding token
based on different chunks. Compared to NBCE, Fo-
cusLLM enables cross-chunk information aggrega-
tion. Moreover, after training, our model achieves
robust information propagation and noise reducing.
LongAgent (Zhao et al., 2024) tackles the long con-
text problem from a multi-agent perspective. How-
ever, multi-agent methods are not general-purpose
long-context models. They require users to spec-
ify explicit goals (e.g., a question) and coordinate
agents across chunks for retrieval or QA tasks. In
contrast, FocusLLM operates at the token level,
imposes no requirements on local context (an in-
complete sentence is permissible), and generalizes
seamlessly to all downstream tasks.

6.2 Retrieval-Augmented Methods

RAG methods (Lewis et al., 2020; Izacard and
Grave, 2020) use a retriever to retrieve relevant
information from historical contexts to handle long
text. Compared to RAG methods, FocusLLM has
several fundamental differences: i) RAG models
are bottlenecked by the performance of the retrieval
component. Even with extensive training, existing
retrieval models struggle with out-of-distribution
issues (Lin et al., 2023). Conversely, FocusLLM
leverages the inherent capabilities of base models,
imposes no task-specific constraints, and extends
naturally to long contexts. ii) Moreover, RAG meth-
ods often involve complex pipelines and numer-
ous hyperparameters (e.g., the number of chunks
to retrieve and chunk size), resulting in inconsis-
tent performance across tasks. In contrast, Focus-
LLM seamlessly functions as a stable long-context
model with robust generalization. Please refer to
Appendix I for our experiments comparing RAG
and FocusLLM.
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6.3 Memory-enhanced Model
The integration of memory layers within trans-
former architectures has become a pivotal strat-
egy for enhancing long-context comprehension
(Bertsch et al., 2024; Tworkowski et al., 2024).
Common methodologies in memory-enhanced
models often employ recurrent strategies that itera-
tively integrate information from the current win-
dow into a persistent memory (Munkhdalai et al.,
2024). Another approach is to initially encode the
complete long text into memory tokens, which is
then queried in to retrieve pertinent information as
needed (Xiao et al., 2024; Wu et al., 2024). For ex-
ample, (Yen et al., 2024) employ a small encoder to
sequentially encode long text segments, followed
by the integration of these encoded chunks into a
decoder. However, the drawback of such methods
is that the memory length does not extrapolate well,
and expanding the memory still incurs substantial
computational costs. In contrast, FocusLLM offers
superior training efficiency and remains effective
on exceedingly long texts.

7 Conclusion

In this work, we introduced FocusLLM, a novel
framework that significantly extends the context
length of LLMs. The core innovation lies in the
parallel decoding strategy, which distribute the bur-
den of understanding long texts across each chunk
and effectively aggregating global information. Fo-
cusLLM stands out due to its remarkable train-
ing efficiency, allowing us to achieve substantial
gains in context comprehension with minimal com-
putational and memory cost. Compared to exist-
ing methods, FocusLLM not only exhibits supe-
rior performance across downstream tasks but also
maintains low perplexities when handling extensive
texts, up to 400K tokens. We hope FocusLLM can
be an inspiring work for the community, driving
further exploration of long-context models.

8 Limitations

Our research has certain limitations: (1) Due to
hardware constraints, our tests were limited to
400K tokens, which does not represent the upper
bound of FocusLLM’s capabilities. Future work
will explore the full performance potential of Fo-
cusLLM and investigate the use of quantization
methods to reduce operational costs. (2) While
FocusLLM demonstrates exceptional training ef-
ficiency, we have observed that training on larger

datasets can significantly enhance its generalizabil-
ity and performance. Therefore, increasing the
training data size will be a focus of future research.
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A Efficiency of FocusLLM

The parallel decoding mechanism of FocusLLM
effectively reduces the computational complexity
of the standard architecture. Specifically, when
dealing with very long sequences, the primary com-
putational burden in the transformer architecture
lies in the attention mechanism, which has a com-
plexity of O(L2), where L represents the total se-
quence length. By dividing the sequence into n
chunks, the complexity within each chunk becomes
O((L/n)2). Therefore, when we process chunks
in parallel, the time complexity can be reduced
to O((L/n)2). And the space complexity of n
chunks becomes approximately O((L/n)2 ∗ n) =
O(L2/n). This means that compared to a standard
transformer, FocusLLM can reduce the computa-
tional complexity to a fraction, 1/n or even more
of the original theoretically, where n is the number
of chunks into which the sequence is divided. In
experiments, the longer the sequence length, the
more apparent the improvement in efficiency.

B Details of Training Data

We randomly sampled 80K sequences from Red-
Pajama as our training corpus. Table 5 shows the
detailed distribution.

Length 3K∼4K 4K∼6K 6K∼8K Total

Count 30K 16K 34K 80K
Portion 38% 20% 42% 100%

Table 5: Length distribution of training corpus.

C Experimental Details

We primarily conduct experiments on the LLaMA2-
7B-Chat model. The additional trainable param-
eters mentioned in Section 2 amount to only 2B
approximately.

Specifically, we conducted training on a Linux
server equipped with 8×A100 GPUs, each with
40GB of memory. The training was carried out
for 10,000 steps, equivalent to one epoch of the
entire training dataset, using a batch size of 8 and
a learning rate of 5e-5 with a linear scheduler. To

conserve GPU memory, we employed deepspeed’s
zero2_offload optimizing stage. The training pro-
cess was completed in approximately 20 hours.

For hyper-parameters, during training, the chunk
size was randomly selected from the set {64, 128,
256, 1024, 2048}. For the length of tokens in-
jected into each chunk, we set a default of 512
tokens for inference. And we ensured this length
did not exceed the chunk size in the training pro-
cedure. As a result, the length of injected tokens
was min{512, chunk size}. For evaluations on
the Longbench, we adopt a larger local context size
of 3,500 tokens for FocusLLM, consistent with the
official setting.

D Details of Benchmarks

D.1 LongBench

LongBench(Bai et al., 2023) includes 14 English
tasks, 5 Chinese tasks, and 2 code tasks, with the
average length of most tasks ranging from 5K to
15K. In experiments, we only utilize the English
tasks. Detailed statistics of the tasks used in our
paper are shown in Table 6.

D.2 ∞-Bench

The benchmark (Zhang et al., 2024b) comprises
12 unique tasks, each crafted to assess different
aspects of language processing and comprehension
in extended contexts. Detailed statistics of the tasks
used in our paper are shown in Table 7.

E Details of the effective lengths of
models in Table 2 and 3

Not all models are capable of processing infinite
text lengths. Therefore, we provide a clear explana-
tion of the effective input length for each method
in Table 2 and Table 3. Specifically: (i) For models
with a finite context length, we truncate the inputs
by only preserving the system prompts and the tail
of inputs to simulate real-world applications with
streaming inputs like (Xiao et al., 2024). For in-
stance, in Table 2, these models include Original
(4K), LChat (32K), Vic-16K (16K), Yarn (128K),
PI (128K), and NTK (128K). (ii) For other models,
including StreamingLLM, InfLLM, LongLlama,
CEPE, Activation Beacon, and our FocusLLM, the
input can theoretically be of any length. So we
input the entire sequence on the two benchmarks.
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Task Task Type Eval metric Avg len Language Sample
HotpotQA Multi-doc QA F1 9,151 EN 200

2WikiMultihopQA Multi-doc QA F1 4,887 EN 200
MuSiQue Multi-doc QA F1 11,214 EN 200

MultiFieldQA-en Single-doc QA F1 4,559 EN 150
NarrativeQA Single-doc QA F1 18,409 EN 200

Qasper Single-doc QA F1 3,619 EN 200
GovReport Summarization Rouge-L 8,734 EN 200
QMSum Summarization Rouge-L 10,614 EN 200

MultiNews Summarization Rouge-L 2,113 EN 200
TriviaQA Few shot F1 8,209 EN 200
SAMSum Few shot Rouge-L 6,258 EN 200

TREC Few shot Accuracy 5,177 EN 200
PassageRetrieval-en Synthetic Accuracy 9,289 EN 200

LCC Code Edit Sim 1,235 Python/C#/Java 500
RepoBench-P Code Edit Sim 4,206 Python/Java 500

Table 6: Detailed statistics of the tasks used in our paper of LongBench.

Task Name Context Examples Avg Input Tokens Avg Output Tokens
En.MC Fake Book 229 184.4k 5.3

Code.Debug Code Document 394 114.7k 4.8
Code.Run Synthetic 400 75.2k 1.3
Math.Find Synthetic 350 87.9k 1.3

Retrieve.PassKey Synthetic 590 122.4k 2.0
Retrieve.Number Synthetic 590 122.4k 4.0
Retrieve.KV[2̂] Synthetic 500 89.9k 22.7

Table 7: Detailed statistics of the tasks used in our paper of ∞-Bench.

Activation Beacon
Code Debug 21.32
Math Find 11.71
Math Calc 0.00

Passkey 1.69
Number String 1.69
KV Retrieval 0.00

Table 8: The accuracy of Activation Beacon on ∞-
Bench.

F Supplementary Results on ∞-Bench of
Activation Beacon

Due to the compression of the context cache, Acti-
vation Beacon cannot retain full global information,
which hinders its ability to handle tasks that require
precise comprehension of the entire text in real-life
scenarios, as demonstrated in the results presented
in the Table 8.

G Scaling language modeling to 400K
context

As shown in Figure 6, FocusLLM maintains a low
perplexity even with a context length of 400K. Note
that the number of candidate tokens corresponding
to 400K is 200, which is far greater than the num-
ber of candidate tokens seen during training. This
demonstrates that FocusLLM has strong extrap-
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Figure 6: Perplexity on PG19 dataset of FocusLLM
compared to methods PI and NTK. FocusLLM can
maintain low perplexity even at token counts up to 400K
tokens.

olation capabilities. We can effectively scale to
lengths greater than 400K by either using longer
sequences during training or by employing a base
model with a default context length, which we plan
to explore in future work.

H Visualization of Attention Heatmap

We visualized the information carried by candi-
date tokens when their Key/Value representations
are concatenated with the tokens in the local con-
text, and select a few representative heads in Figure
7 and Figure 8. We found that different patterns
emerge in Passkey Retrieval and NarrativeQA tasks.
The y-axis corresponds to the query representa-
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Single-Doc QA Multi-Doc QA Summarization Few-shot Learning Code Completion Avg.

Original 24.90 22.60 24.70 60.00 48.10 35.20
RAG-E5 25.01 27.01 25.09 62.89 54.94 37.85
FocusLLM 26.34 29.10 24.55 64.81 56.35 39.01

Table 9: Comparison of FocusLLM and RAG Methods on LongBench.

tions of tokens in the local context, and the x-axis
corresponds to the key representations of candi-
date tokens combined with the local context tokens.
Therefore, the first few columns of the heatmap rep-
resent the contribution of candidate tokens to the
local context. We made the following interesting
observations: i) Not all heads in all layers attend to
candidate tokens, and higher layers attend to candi-
date tokens more frequently than lower layers. This
is likely because higher layers are more critical for
the final representation. ii) In Passkey Retrieval
task, only one chunk contains passkey information,
while the others are noises. As a result, we observe
that a single candidate token receives high atten-
tion (a single column is highlighted), while other
candidate tokens are ignored. iii) In NarrativeQA
task, the final answer may rely on information from
multiple chunks, so we see that many candidate
tokens are assigned higher attention weights. In
summary, the result indicates that FocusLLM ef-
fectively ignores noise and aggregates information
from multiple chunks.

I Comparison to RAG Methods

To ensure a fair evaluation of the RAG method, we
employed a strong retriever E5-mistral-7B-instruct
(Wang et al., 2023). For consistency with Focus-
LLM, we utilized LLama2-7B as the decoder, set
the local context size to 3500 tokens, and retrieved
a chunk of size 500 based on the text embedding
similarity. The results for LongBench in Table
9 demonstrate that FocusLLM outperforms RAG,
which aligns with the limitations of RAG discussed
earlier.
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Figure 7: Attention Heamap of Passkey Retrieval task. The first 8 columns, marked by red rectangule lines, represent
the attention weights corresponding to 8 candidate tokens. Since only one chunk contains the important passkey
information while the others are merely noises, only a single candidate token receives high attention score.
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Figure 8: Attention heamap of NarrativeQA in LongBench. The first 15 columns, marked by red rectangle lines,
represent the attention weights corresponding to 15 candidate tokens. Since the final answer may rely on information
from multiple chunks, we observe that many candidate tokens are assigned high attention weights.
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