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Abstract

It is challenging to update Large language
models (LLMs) since real-world knowledge
evolves. While existing Lifelong Knowledge
Editing (LKE) methods efficiently update se-
quentially incoming edits, they often strug-
gle to precisely overwrite the outdated knowl-
edge with the latest one, resulting in conflicts
that hinder LLMs from determining the cor-
rect answer. To address this Serial Lifelong
Knowledge Editing (sLKE) problem, we pro-
pose a novel Mixture-of-Knowledge-Experts
scheme with an Activation-guided Routing
Mechanism (ARM), which assigns specialized
experts to store domain-specific knowledge and
ensures that each update completely overwrites
old information with the latest data. Further-
more, we introduce a novel sLKE benchmark
where answers to the same concept are updated
repeatedly, to assess the ability of editing meth-
ods to refresh knowledge accurately. Experi-
mental results on both LKE and sLKE bench-
marks show that our ARM performs favorably
against SOTA knowledge editing methods.

1 Introduction

Large language models (OpenAI, 2023; Touvron
et al., 2023a,b) (LLMs) have demonstrated remark-
able capabilities by leveraging the vast amount
of knowledge acquired during large-scale pre-
training. However, real-world knowledge is ever-
changing (Yao et al., 2023), as a single fact often
undergoes multiple and sequential updates over-
time. This causes these models to become outdated
over time. For example, as shown in Fig. 1, the
answer to the question: “Which team is the NBA
champion this year?” changes for each season,
from Lakers in 2020 to Celtics in 2024. To bench-
mark this scenario, we introduce serial Knowledge
Lifelong Editing (sLKE), which focuses on sequen-
tially updating answers to the same question. In
contrast to the classic LKE setting explored by re-
cent knowledge editing works (Huang et al., 2023;

Figure 1: Compared to existing lifelong knowledge
editing (LKE) works, our ARM enables serial lifelong
knowledge editing (sLKE), allowing the edited model
to respond with the correct up-to-date answers.

Hartvigsen et al., 2023; Wang et al., 2024), sLKE
tackles the challenge of updating a single fact re-
peatedly over time, reflecting the more challenging
scenario faced in real-world applications.

Previously, works on Knowledge Editing (KE)
generally utilize batch-mode editing, where multi-
ple concepts inside LLMs are simultaneously up-
dated via a single edit. They either employ hyper-
networks with meta-learning techniques (Vilalta
and Drissi, 2002; Hospedales et al., 2022), or adopt
locate-edit paradigms (Fang et al., 2024; Meng
et al., 2023, 2022). However, such editing schemes
tend to overfit on the latest batch of edits and strug-
gle to generalize across a sequence of edits (Wang
and Li, 2024; Tirumala et al., 2022).

To handle the scenario where each edit arrives se-
quentially, research works on Lifelong Knowledge
Editing (LKE) have been proposed, which mainly
leverage external memories to store edited concepts
without modifying the original model parameters.
For example, WISE (Wang et al., 2024) employs
a Mixture-of-Experts (MoE) architecture by using
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several side memories as experts to handle sequen-
tially arriving edits and employs a routing mech-
anism to determine which expert to consult for a
given query. Although WISE is capable of storing
approximately thousands of edits, similar knowl-
edge edits might be assigned to different memo-
ries, resulting in possible inference ambiguity (as
illustrated in Fig. 2). Therefore, the above method
cannot be easily extended to sLKE.

To tackle the problem of serial Lifelong Knowl-
edge Editing, we propose a novel learning scheme
of Mixture-of-Knowledge-Experts (MoKE), where
each knowledge expert is dedicated to certain con-
cepts. Moreover, we present an Activation-guided
Routing Mechanism (ARM) to specialize experts
during sLKE training and inference. Specifically,
we design an expert selection function that dynam-
ically guides the router during training, ensuring
that each incoming edit is assigned to the appro-
priate domain-specific expert. This strategy effec-
tively mitigates expert ambiguity. Moreover, rec-
ognizing the absence of benchmarks for sLKE, we
build the first benchmark to systematically test the
effectiveness of editing methods to perform sLKE.
Additionally, to reduce the memory increased us-
age brought by using multiple experts to memorize
domain-specific knowledge, we integrate the model
compression techniques (Duan et al., 2021; Stoica
et al., 2024; Li et al., 2023a; Huang et al., 2024) that
consolidate multiple experts into a single model.
We summarize our contributions as follows:

• We introduce a practical setting for lifelong
LLM editing, Serial Lifelong Knowledge Edit-
ing (sLKE), with a benchmark presented to
assess the proposed learning scheme.

• We propose a learning scheme of Mixture-
of-Knowledge-Experts (MoKE) with an
Activation-guided Routing Mechanism
(ARM), which enables memory-based experts
to retain specialized knowledge and alleviates
possible inference ambiguity.

• With a novel benchmark collected, we verify
that our proposed framework performs favor-
ably for both LKE and sLKE.

2 Related Work

2.1 Knowledge Editing
The goal of KE is to edit multiple facts within the
model via a single edit. Their methods either em-
ploy hypernetworks (Yao et al., 2023; Zhang et al.,
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Figure 2: Ambiguity of Mixture-of-Experts in LKE.
Without identifying proper experts for KE, output con-
flicts might be observed in lifelong settings.

2024b) , or adopt the locate-and-edit paradigm to
perform model editing. As the pioneering work
for batch editing, MEND (Mitchell et al., 2022a)
introduces the idea of using a hypernetwork which
takes the gradients of LLM as input to gener-
ate the weight updates (Yao et al., 2023; Zhang
et al., 2024b). MALMEN (Tan et al., 2023) fur-
ther refined MEND by decomposing the gradient
descent process, and thus reducing memory con-
sumption. However, HyperNetwork-based meth-
ods suffer from overfitting (Tirumala et al., 2022) to
the current batch, due to the extensive weight modi-
fications. To address this issue, locate-edit methods
have been proposed. These methods first specify
the critical part of region parameters, and then they
focus on making precise, localized modifications to
model weights. For instance, ROME (Meng et al.,
2022) employs a two-phase causal tracing approach
to identify which feed-forward layer stores the tar-
get knowledge before applying edits at that specific
location. MEMIT (Meng et al., 2023) tracks vector
state values across layers to pinpoint the most rele-
vant layer for modification. While these methods
alleviate overfitting and reduce memory usage, they
compromise the non-edited or previously edited
knowledge in the sLKE setting.

2.2 Lifelong Knowledge Editing
The research works for LKE focus on a special-
ized setup of KE, where each edit sequentially ar-
rives for fact updates. Compared to KE, LKE is
more practical since outdated knowledge requires
timely updates. The LKE methods leverage exter-
nal memories to store the edited facts without modi-
fying the original model weights. T-patcher (Huang
et al., 2023) pioneeringly proposes the LKE setup
and appends several neurons for learning edits.
GRACE (Hartvigsen et al., 2023) utilizes a key-
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Figure 3: Overview of our framework (a) Deployment of MoKE with ARM for sLKE, and (b) Initialization and
learning of knowledge experts for MoKE. Note that ARM in (a) trains a projection router to ensure that edits on
similar concepts are consistently routed to the same knowledge expert. In (b), we apply the memory compression
technique in (Huang et al., 2024) to reduce memory usage during inference.

value codebook with adapters (Hu et al., 2022) to
learn new edits. WISE (Wang et al., 2024) con-
structs side memories from the original weights
to learn new edits and introduce a simple routing
mechanism that directs inputs to either the experts
or the original weights. LKE methods have also
been extended to the visual domain. For instance,
prior work (Chen et al., 2025) constructs external
memories as expert repositories designed specifi-
cally to handle extensive visual representations, en-
abling lifelong updates of visual knowledge. Nev-
ertheless, such methods generally retain historical
answers to the same question in separate memory
components. This might lead to queries being di-
rected to outdated experts and, consequently, incor-
rect outputs.

3 Methodology

3.1 Overview

Problem formulation. We first define the set-
ting of our proposed Serial Lifelong Knowledge
Editing (sLKE). Given a model fθ : X 7→ Y pa-
rameterized by θ, mapping an input domain X
(e.g., questions) to an output domain Y (e.g., an-
swers). In sLKE, there are T distinct questions,
each updated P times (P > 1), resulting in a total
of N = T × P edits. This is different from the
standard LKE, where all N edits are unique (i.e.,
xi ̸= xj , ∀i ̸= j).

The goal of sLKE is to update an initial model
θ0 via these N sequential edits on the training set
Dtrain = {(xt,p, yt,p)|t = 1, . . . , T, p = 1, . . . , P},
resulting in a final model θN . The ideal final model

θ∗N should correctly reflect the most recent update
for each question in the in-sample domain Iedit (i.e.,
inputs semantically equivalent to those in Dtrain.
Formally, for any question x ∈ X:

fθ∗N (xt) =

{
yP , if x ∈ Iedit,

fθ0(x), otherwise,
(1)

where yP denotes the answer from the most recent
update for x.

Preliminary: Mixture-of-Experts for LKE.
Mixture-of-Experts (MoE) (Jiang et al., 2024a;
Zadouri et al., 2023; Lu et al., 2023; Wu et al.,
2024) is adopted in LKE settings (Wang et al.,
2024) to handle sequential edits. This strategy
enables the model to integrate new edits while
preserving its original performance. Specifically,
WISE (Wang et al., 2024) identifies a certain edit
layer through empirical analysis and initializes a
MoE architecture by duplicating the original model
weights to create K experts. Each expert is as-
signed a unique mask with a mask ratio ρ to ensure
specialization and diversity among all experts.

Since our proposed sLKE setting can be viewed
as a generalized version of LKE by handling re-
peated updates to the same concept, we follow
WISE (Wang et al., 2024) and choose to identify
the same edit layer (i.e., same MoE architectures
considered for fair comparisons).

3.2 Activation-Guided Routing for
Knowledge Expert Specialization

In LKE, edits concerning the same concept may oc-
cur repeatedly. To alleviate the potential expert am-
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biguity issue, we propose a novel learning scheme
of Mixture-of-Knowledge-Experts (MoKE), where
each knowledge expert is dedicated to certain con-
cepts. An Activation-guided Routing Mechanism
(ARM) is presented to specialize experts during
sLKE training and inference.

As shown in Fig. 3(a), MoKE leverages external
memories as domain-specific knowledge experts to
store and update certain concepts. To ensure that
each edit can be correctly routed to the appropriate
expert, we incorporate an ARM that first identifies
the correct knowledge expert, updates its memory,
then trains a projection router to memorize the cer-
tain routing rules. In the following subsection, we
detail how we utilize external memories as different
knowledge experts, and how our proposed ARM
ensures edits related to similar concepts are routed
to the same expert during sLKE.

Knowledge expert specialization. To resolve
the ambiguity arising from repeated edits to the
same concept, we use external memories as special-
ized knowledge experts, with each knowledge ex-
pert responsible for storing specific concepts. The
key challenge is to consistently determine which
knowledge expert should handle a given input, and
ensuring that the outdated knowledge is correctly
updated. To address this issue, we propose to lever-
age the activation function within each knowledge
expert as as an indicator of where a specific concept
has been stored.

Motivated by previous work (Wang et al., 2024),
if an input xe has been edited and stored in an ex-
pert, the activation score tends to be higher. On
the other hand, an unrelated input xo typically pro-
duces a lower activation score. Based on this obser-
vation, we define the activation selection score Si

for expert i as follows:

Si =
Acti(xe)− Acti(xo)

Acti(xe)
, (2)

where Acti(·) denotes the value after passing the
activation function inside the feed-forward network
of the i-th expert.

Using the computed activation selection scores
for each expert, we identify which expert is most
likely to store the edited knowledge for an edit
xe. However, if an edit is entirely new (i.e., a new
concept that has not been fine-tuned), all experts
might show low activation scores. In this case,
we randomly select one expert to process and store
this new information. Thus, the ground-truth expert

index gt for a given edit xe and an unrelated input
xo can be determined by the following formulation:

gt =

{
argmax

i
(Si), if max

i
(Si) > ε,

Uni(0,K), otherwise.
(3)

where ε is a threshold to determine whether a con-
cept is new to all experts.

Learning of knowledge experts. Similar to pre-
vious memory-based methods (Wang et al., 2024),
we adopt a margin-based loss function to fine-tune
the selected i-th knowledge expert. Specifically,
we first define the i-th expert’s specialized score
for an input x as:

∆i(x) = ||Wi(x)−Worg(x)||2, (4)

where Wi(·) denotes the output of the i− th expert,
and Worg(·) denotes the original model’s output.

Given an edited input xe and an unrelated input
xo, the margin-based loss function Lmar (Wang
et al., 2024) enforces that the specialized score
for xe exceeds that for xo by a certain margin, as
defined below:

Lmar = max
(
0, β −∆i(xe)

)

+ max
(
0,∆i(xo)− α

)

+ max
(
0, γ −

[
∆i(xe)−∆i(xo)

])
,

(5)

where α, β, γ are hyperparameters that control the
margins for the respective terms.

Inspired by classic replay-based continual learn-
ing methods (Rolnick et al., 2019), we further in-
troduce a memory loss Lmem to ensure that for any
previously edited input xm stored in a different
expert j, its specialized score should exceeds that
of expert i by a margin γ, as defined below:

Lmem = max
(
0, γ −

[
∆j(xm)−∆i(xm)

])
. (6)

The overall loss function used to fine-tune the
selected i-th expert is the sum of the margin and
the memory loss L = Lmar + Lmem.

Projection router training. After determining
the selected expert index gt through Eq. (3), we
train a projection router fθp : X 7→ [0, 1]K (param-
eterized by θp) to act as a classifier that consistently
assigns each input edit xe to its corresponding ex-
pert index gt. This mechanism ensures that ed-
its related to the same concept are always routed
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to the same expert, enhancing the robustness of
our method against repeated updated knowledge
in SLE. Specifically, we train the projection router
through the standard cross entropy loss (CE):

Lp = CE
(
fθp(xe), gt

)
. (7)

3.3 Inference Phase

Expert memory compression. As noted
in (Wang et al., 2024), MoE-based algorithms
suffer from high memory usage when the number
of experts increases. To mitigate this issue, we
employ EMR Merging (Huang et al., 2024), a
tuning-free model merging algorithm that reduces
memory consumption during inference, as depicted
in Fig. 3(b). This method consolidates K expert
weights into a single unified weight along with K
boolean masks, thereby decreasing memory usage
while also retaining performance. We leave the
implementation details of EMR Merging algorithm
into appendix, and further analyzes in Sec. 4.4.

Inference routing. After compressing the mem-
ory usage, we use the trained projection router to
identify which expert contains the updated knowl-
edge for a given input question x. Specifically, we
determine the routed expert index as:

ℓ = argmax
(
fθp(x)

)
. (8)

If a question is entirely new (i.e., the knowledge
has never been updated), the activation selection
scores across all experts will be below a certain
threshold. In this case, we route the question to the
original model weights Worg. The final memory
weight Wfinal is selected as follows:

Wfinal =

{
Worg, if max

i
(∆i) < β′,

Wℓ, otherwise,
(9)

where β′ is a hyper-parameter that determines
whether the knowledge has been updated.

4 Experiment

4.1 Model and Benchmark

Following existing LKE works (Wang et al., 2024;
Mitchell et al., 2022b; Hartvigsen et al., 2023), we
select Llama2-7B (Touvron et al., 2023b,a) as our
backbone model. During training, each edit sample
includes edits xe, rephrased edits xe’, unrelated
samples xo, and their corresponding labels ye. The

initial model is denoted as fθ0 , and the post-edited
final model, after n edits, is denoted as fθn .

To evaluate the LKE setting, we constructed a
new LKE dataset based on the existing QA datasets
ZsRE (Levy et al., 2017) and Wiki CF (Zhang
et al., 2024a). ZsRE is a closed-book factual QA
dataset, whereas Wiki CF contains counterfactual
QA pairs, making it more suitable for examining
the reliability of model editing methods. However,
the above datasets only include standard lifelong
edit samples, i.e., each question has a single cor-
responding answer. To address this limitation, we
leveraged GPT-4o (OpenAI, 2023; OpenAI and the
Co-authors, 2024) to generate 10 plausible alterna-
tive answers for each question. We then manually
removed any defective or irrelevant answers that
were unrelated to the original ones. As a result,
each question now has 8 corresponding answers for
continual lifelong editing.

For ZsRE, the final dataset contains 11,301 dif-
ferent questions sampled from the original training
and test sets, resulting in a total LKE edit size of
11,301×8 = 90,408. For Wiki CF, the final dataset
contains 2,340 different questions sampled from
its original training and test sets, leading to a total
LKE edit size of 2,340× 8 = 18,720.

4.2 Evaluation Metrics
Following previous works (Yao et al., 2023; Zhang
et al., 2024b), we evaluate fθn using three metrics:
Reliability, Generality, and Locality, defined as
follows:

Reliability (Rel.) calculates answer’s average
precision for each edit sample xte, i.e.,

Rel. =
1

T

T∑

t=1

1(fθn(x
t
e) = yt

e). (10)

Generality (Gen.) calculates answer’s average
precision for paraphrased edit sample xt

e′ by

Gen. =
1

T

T∑

t=1

1(fθn(x
t
e′) = yt

e). (11)

Locality (Loc.) calculates answer’s average pre-
cision for unrelated sample xt

e′ by:

Loc. =
1

T

T∑

t=1

1(fθn(x
t
o) = yt

o). (12)

For LKE, T = N , where N is the total number of
edit samples. For sLKE, with T different questions
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Method
sLKE-ZsRE sLKE-WiKi-CF

T = 125, N = 1000 T = 250, N = 2000 T = 125, N = 1000 T = 250, N = 2000

Rel.↑ Gen.↑ Loc.↑ Avg.↑ Rel.↑ Gen.↑ Loc.↑ Avg.↑ Rel.↑ Gen.↑ Loc.↑ Avg.↑ Rel.↑ Gen.↑ Loc.↑ Avg.↑
FT 0.08 0.04 0.00 0.04 0.07 0.04 0.00 0.04 0.09 0.02 0.01 0.04 0.04 0.02 0.00 0.02
MEND 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MALMEN 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ROME 0.01 0.01 0.00 0.01 0.01 0.01 0.00 0.01 0.02 0.01 0.00 0.01 0.01 0.00 0.00 0.01
MEMIT 0.02 0.02 0.03 0.02 0.01 0.01 0.01 0.01 0.03 0.02 0.04 0.03 0.01 0.01 0.00 0.01

SERAC 0.07 0.05 0.26 0.13 0.02 0.02 0.11 0.05 0.06 0.05 0.30 0.14 0.02 0.01 0.13 0.05
GRACE 0.01 0.01 1.00 0.34 0.01 0.01 0.98 0.33 0.01 0.01 1.00 0.34 0.01 0.01 0.99 0.34
WISE-Merge 0.68 0.65 1.00 0.77 0.56 0.50 0.99 0.71 0.57 0.54 1.00 0.70 0.52 0.49 0.98 0.67
WISE-Retrieval 0.67 0.62 1.00 0.76 0.63 0.59 1.00 0.74 0.55 0.52 1.00 0.69 0.52 0.49 0.99 0.67

Ours 0.85 0.74 1.00 0.86 0.75 0.66 1.00 0.80 0.76 0.66 1.00 0.81 0.70 0.55 0.95 0.73

Table 1: Performance comparisons of sLKE on sLKE-ZsRE and sLKE-WiKi-CF datasets. Note that T indicates the
number of distinct questions (each question is updated P = 8 times, resulting in a total number of N edits.

Method
ZsRE WiKi-CF

T = 1000 T = 2000 T = 1000 T = 2000

Rel.↑ Gen.↑ Loc.↑ Avg.↑ Rel.↑ Gen.↑ Loc.↑ Avg.↑ Rel.↑ Gen.↑ Loc.↑ Avg.↑ Rel.↑ Gen.↑ Loc.↑ Avg.↑
FT 0.14 0.12 0.02 0.09 0.06 0.05 0.02 0.04 0.06 0.03 0.01 0.03 0.05 0.03 0.00 0.03
MEND 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MALMEN 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ROME 0.01 0.01 0.00 0.01 0.01 0.00 0.00 0.01 0.02 0.01 0.00 0.01 0.01 0.00 0.00 0.01
MEMIT 0.04 0.04 0.02 0.03 0.02 0.02 0.01 0.02 0.04 0.03 0.02 0.03 0.02 0.01 0.01 0.01

SERAC 0.02 0.02 0.74 0.26 0.02 0.01 0.32 0.11 0.01 0.01 0.44 0.15 0.01 0.01 0.16 0.06
GRACE 0.98 0.00 1.00 0.66 0.90 0.00 0.97 0.66 0.89 0.01 0.99 0.63 0.80 0.00 0.93 0.57
WISE-Merge 0.77 0.70 1.00 0.82 0.66 0.63 1.00 0.76 0.54 0.50 0.97 0.67 0.40 0.37 0.92 0.57
WISE-Retrieval 0.81 0.71 1.00 0.84 0.74 0.66 1.00 0.80 0.76 0.68 1.00 0.81 0.66 0.59 0.99 0.73

Ours 0.83 0.74 1.00 0.85 0.76 0.68 0.99 0.81 0.80 0.70 1.00 0.83 0.72 0.62 0.98 0.77

Table 2: Performance comparisons of standard LKE on ZsRE and WiKi-CF datasets. Note that T = N since each
edit is unique in LKE.

and P alternative answers for each question, the
total number of edits is N = T × P . We evaluate
the last T edits with the associated latest answers.

4.3 Performance Assessement

For LKE in Tab. 2, we follow previous works by
setting the maximum number of edits to 1000. For
sLKE in Tab. 1, we test 125 different questions,
each with 8 alternative answers. The total edit vol-
ume is 125×8 = 1000, which ensures consistency
across both settings.

In our experiments, we use instance-based LKE,
where the batch size is set to 1. We exam-
ine three styles of methods alongside direct fine-
tuning (FT) (Wang et al., 2023). Hypernetwork
methods (MEND (Mitchell et al., 2022a), MAL-
MEN (Tan et al., 2023)) and Locate-Edit methods
(ROME (Meng et al., 2022), MEMIT (Meng et al.,
2023)) demonstrate limited effectiveness for small
batch size edits. Among memory-based methods,
while not all of them achieve competitive perfor-
mance, they generally preserve locality better since
they reserve original weight.

SERAC (Mitchell et al., 2022b) exhibits slightly

better performance in locality preservation but is
not a feasible solution overall. Furthermore, while
GRACE (Hartvigsen et al., 2023) achieves out-
standing Rel. and Loc. scores in the standard life-
long edit setting, its performance deteriorates sig-
nificantly in the LKE setting. GRACE also shows
a noticeable deficiency in Gen.. On the other hand,
WISE (Wang et al., 2024) performs exceptionally
well across all metrics in the standard lifelong edit
setting; however, its performance also degrades
when applied to our new setting.

Our method demonstrates robust performance on
both LKE and sLKE tasks. Notably, the improve-
ment in the sLKE setting is particularly significant,
as ARM effectively manages repeated concepts
within the edit sequence. For the standard LKE
setting, our approach also achieves modest perfor-
mance gains, as the external experts are able to
learn and organize well-classified knowledge more
efficiently than approaches relying on randomly
assigned knowledge (Wang and Li, 2024).
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(a) (b) (c)

Figure 4: (a) Analysis of the number of experts K and mask ratios for each expert ρ on sLKE-ZsRE. (b) Comparisons
of LKE methods (i.e., SERAC (Mitchell et al., 2022b), GRACE (Hartvigsen et al., 2023), WISE (Wang et al., 2024))
with varying expert numbers (i.e., memory consumption) on sLKE-ZsRE. (c) Analysis of the memory compression
method (using EMR-Merge (Huang et al., 2024)) on ZsRE and sLKE-ZsRE. Note that Avg Performance is the
averaged accuracy of Rel., Gen., and Loc..

Rel.↑ Gen.↑ Loc.↑ Avg.↑
Ours 0.95 0.85 1.00 0.91
- ARM 0.83 0.72 1.00 0.85
- memory loss 0.90 0.75 1.00 0.88
- EMR-Merge (+ ties-merge) 0.87 0.74 1.00 0.87

Table 3: Ablation study of our method on sLKE-ZsRE
(T=125 and N=1000).

4.4 Further Analysis and Ablation Studies

Memory loss analysis. Memory loss prevents ex-
perts from hallucinating that they are the experts for
this input. During training, we apply the regulation
loss in Eq. (5) to prevent the model from assign-
ing large activation values to unrelated samples.
The same idea can be applied to edited samples for
other experts. For a certain expert, knowledge from
other experts should be regarded as unrelated sam-
ples. Hence, we can use the same logic to design
memory loss based on regulation loss. In Tab. 3,
we observe that memory loss is beneficial for LKE.

Training phase routing efficiency test. Train-
ing phase routing is the main mechanism how we
specialize external memories to experts. As illus-
trated in Tab. 4, We conduct ablation study for dif-
ferent cases through training, random selection for
memories for each question, fixed arrangement that
choose experts cyclically and our activation selec-
tion. Our routing mechanism gives obvious better
result than other cases, meaning training phase rout-
ing is beneficial to MoE router (Jiang et al., 2024a;
Lu et al., 2023; Liu et al., 2024).

Router selection. The activation selection helps
the model manage repeated concepts during train-
ing and inference, making our method more aligned

Rel.↑ Gen.↑ Loc.↑ Route ACC.↑
Random Selection 0.88 0.72 1.00 0.89
Fix Selection 0.84 0.70 1.00 0.85
ARM 0.90 0.81 1.00 0.94
+ Mem Loss 0.95 0.85 1.00 0.98

Table 4: Comparisons of random selection, fixed selec-
tion, and ARM for expert specialization on sLKE-ZsRE.

with sLKE. In practice, activation selection also
enhances the performance for LKE since activa-
tion score is effective indicator for expert’s knowl-
edge. However, as the number of edited concepts
increases, the activation selection score becomes
neutralized due to the model’s decreasing confi-
dence, leading to incorrect routing decisions.

In conventional MoE (Zadouri et al., 2023; Lu
et al., 2023; Wu et al., 2024), the projection router
is the component enabling correct routing for LKE.
With assistance of ARM, single projection router
for inference can successfully handle sLKE since
knowledge is classified throughout training, solv-
ing ambiguity of projection router.

As indicated in Tab. 5, while single projection
router for inference has outperformed current base-
lines for sLKE, using both projection router and
ARM to get ensembled score for experts leads to
even better result for LKE and sLKE. The result
can be interpreted as a combination of solutions
for LKE and sLKE. While projection router is ef-
fective for MoE to solve LKE, as manifested in
previous works (Jiang et al., 2024a; Zadouri et al.,
2023), ARM is inheritedly useful for sLKE since it
is designed to classify knowledge for experts.

Memory Compression. Fig. 4(b) compares the
memory requirements of different LKE methods.
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Method
T = 1000, N = 1000 T = 125, N = 1000

Rel. Gen. Loc. Rel. Gen. Loc.

WISE-Merge 0.77 0.70 1.00 0.68 0.65 1.00

Act. 0.81 0.70 1.00 0.88 0.75 1.00
Proj. Router 0.83 0.74 1.00 0.85 0.74 1.00
Act. + Router 0.85 0.77 1.00 0.95 0.85 1.00

Table 5: Analysis of our routing strategies for ZsRE
(left) and sLKE-ZsRE (right). “Act.” indicates that
directly route to the expert with the highest activation
values, while “Act. + Router” is the weighted sum of
the activation values and the projection router’s predic-
tion. Although “Act. + Router" performs best, we use
“Proj. Router” as our inference routing strategy for fair
comparisons. Note that all strategies surpass SOTAs.

Note that SERAC (Mitchell et al., 2022b) employs
a large counterfactual model and router for all edits,
leading to substantial but constant memory usage,
as the counterfactual model dominates resource
consumption. GRACE (Hartvigsen et al., 2023) in-
troduces adapters and a codebook to skip redundant
edits, but in sLKE, where answers to the same ques-
tion may change, frequent codebook updates cause
memory usage to grow linearly with the number of
edits. WISE (Wang et al., 2024) uses side memo-
ries and provides two inference strategies: merge,
which uses tie-merge (Yadav et al., 2023) and saves
memory at the cost of significant performance loss,
and retrieval, which preserves performance in LKE
but results in linearly increasing memory usage.
Our method leverages EMR-Merging (Huang et al.,
2024), masking unified experts to reduce interfer-
ence and closely approximate the original experts.
Storing only boolean masks, our approach achieves
high memory efficiency.

As shown in Fig. 4(b), SERAC maintains high
but constant memory usage, GRACE and WISE-
Retrieval both increase linearly—with WISE-
Retrieval growing faster—while WISE-Merge has
low constant memory at the cost of significant per-
formance drop (Tab. 1). Overall, our method pro-
vides a strong balance between model performance
and resource efficiency.

Expert number and mask ratio. In WISE
(Wang et al., 2024), the concept of a knowledge an-
chor (Zheng et al., 2021) is proposed, highlighting
that overlap in side memories benefits model per-
formance. However, our philosophy is to specialize
each memory. Overlap serves as shared knowledge
among memories but is prone to ambiguity, as also
mentioned in WISE. Therefore, reducing overlap
is preferable in our approach. We evaluate per-

formance based on different numbers of experts
and mask ratios for each expert in Fig. 4. It can
be observed that when K × ρ > 1, the model’s
performance tends to decline. On the other hand,
an extremely low mask ratio prevents the model
from learning edit samples effectively. Hence, the
optimal parameter setting is K × ρ ≈ 1.

Routing Accuracy on sLKE and LKE. In
Fig. 5, we evaluate routing accuracy and score for
sLKE and LKE using memory-based approaches,
including GRACE, WISE, and Ours. The key
difference between routing accuracy and the re-
liability score is that routing accuracy better re-
flects the routing algorithm behind knowledge edit-
ing, whereas the reliability score also assesses
the efficiency of edits on model weights. It can
be observed that WISE (Wang et al., 2024) and
GRACE (Hartvigsen et al., 2023) severely corrupt
in sLKE. In contrast, our method outperforms oth-
ers on both LKE and sLKE since ARM specializes
experts, increasing the confidence of both projec-
tion router and experts.

Training and Inference Efficiency The compu-
tational cost of MoE is primarily determined by
the number of additional parameters introduced.
In Table 6, we list the total number of parameters
for each method. Compared to other baseline ap-
proaches—such as fine-tuned LLaMA (Touvron
et al., 2023a) and WISE (Wang et al., 2024)—our
method adds only three expert layers and a pro-
jection router during both training and inference.
The parameter size of each expert and the projec-
tion router is approximately equivalent to a single
layer in LLaMA2-7B. Overall, our approach results
in less than a 10% increase in computation time
relative to baseline methods, while yielding perfor-
mance improvements exceeding 17%, as listed in
Tab. 1.

Method Training Inference

LLaMA2 finetuned 32 layers 32 layers
WISE 32 layers + 1 expert 32 layers + 3 experts
Ours 32 layers + 3 experts 32 layers + 3 experts + proj. router

Table 6: Comparison of model size and architecture
in training and inference.

5 Conclusion

We identify a key limitation of lifelong editing for
LLM: its limited capability to handle multiple edits
of the same concept across time. We refer to this as
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Figure 5: Comparisons of routing acc. and average
performances (Rel., Gen., Loc.) for different LKE
methods. Note that while WISE and GRACE are not
specifically designed for sLKE, our method is preferable
for both LKE and sLKE settings.

"Serial Lifelong Knowledge Editing" (sLKE) and
propose a framework utilizing multiple memory-
based knowledge experts. With the proposed rout-
ing scheme, we enforce edits of similar concepts to
be handled by the same expert. In addition, mem-
ory compression for such experts can be further per-
formed, ensuring no extra memory cost is needed
when comparing to existing LKE methods. With a
novel benchmark corrected for sLKE, our experi-
ments confirm that our proposed method performs
favorably against SOTA methods for standard LKE
and our challenging sLKE tasks.

6 Limitation

While our method is shown to effectively tackle
both LKE and sLKE problems, a number of lim-
itations still exist. One key limitation, illustrated
in Fig. 4(a), emerges when the number of edits be-
comes significantly large. In practice, maintaining
scalable memory usage through single-layer edit-
ing requires reducing the mask ratio, which can
lead to substantial performance degradation due to
catastrophic forgetting (Luo et al., 2023).

Another limitation involves inefficiency in rea-
soning tasks. Although ARM effectively captures
similarities between questions and maintains over-
all performance, it struggles to identify complex re-
lationships between concepts, particularly in tasks
such as multi-hop knowledge editing (Zhong et al.,
2024).

Finally, our method does not guarantee straight-
forward transferability from the language do-

main to the visual domain. In practice, the
visual domain presents greater complexity than
textual knowledge, and most current LKE ap-
proaches—including ours—are limited to handling
purely textual inputs. This highlights an open area
for future research on extending knowledge editing
techniques to diverse and complex domains.
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A Dateset Details

ZsRE. The ZsRE dataset is a context-free factual
Question Answering (QA) dataset extensively stud-
ied in model editing research. Each record in this
dataset includes an editing statement xe with target
answer ye, a paraphrase prompt xe’, and a locality
prompt xo. ZsRE consists of 163,196 training ex-
amples and 19,086 test examples. We divide the
test examples into our train/test set. For standard
lifelong editing, we randomly select 1000 samples
for our experiments. For continual lifelong editing,
we use the same 1000 samples to generate alterna-
tive answers for the sLKE benchmark. To generate
alternative answers, we use GPT-4o (Radford et al.,
2018, 2019; Brown et al., 2020; OpenAI and the
Co-authors, 2024) and manually remove unreason-
able cases. The generation process is the same for
both datasets, ZsRE and Wiki CF.

Wiki CF. Since models often fail to capture tail
entities, rendering them unsuitable for testing mod-
ification edits, Wiki CF (Zhang et al., 2024a) col-
lects triplets involving popular entities, where the
topic corresponds to one of the most-viewed pages
on Wikipedia. In addition, the Counterfact dataset
can evaluate model performance, as it is possible
for a model to correctly answer an edit sample be-
fore the edit, enabling the dataset to maintain its
effectiveness over time.

Similar to ZsRE, Wiki CF includes an editing
statement xe with a target answer ye, a paraphrase
prompt xe’, and a locality prompt xo’. The original
dataset contains 1,455 edit samples in the training
set and 855 edits in the test set. Each edit has
multiple versions of paraphrased answers, such as
"Subject Aliasing," which rephrases the subject of
an edit sample, and "Relation Specificity," which
rephrases the relationship between the subject and
object. In our experiments, we use Subject Aliasing
for generality testing.

Continual Dataset Generation. We use GPT-4o
API to generate Continual lifelong dataset. Each
PROMPT and GROUND TRUTH are directly from
original dataset. It is possible that the outputs in-
clude repeated answer even the prompt has the
requirement of non-repeating. Hence, we manually
remove repeated answer. At last, each question
have 8 alternative answers.

System Prompt

Given the sentence: 'PROMPT' and the 
correct answer: 'GROUND TRUTH', generate 
ten plausible alternative answers that fit the
same format as the correct answer. The
alternatives should be distinct, non-repetitive,
and contextually relevant while maintaining the
same style and structure as the correct answer.

Generation Prompt

You are an AI assistant specializing in
generating high-quality question-answer 
datasets. Your task is to create structured 
QA data by generating a correct answer
and multiple plausible alternative answers
for a given question. 

Figure 6: Prompt to use GPT-4o to generate dataset of
sLKE from those of LE

B Training Details

B.1 Hyperparameter

For all baselines, we use the code from
EasyEdit (Wang et al., 2023) and follow the pa-
rameter settings from original works. For all exper-
iments, we follow the principle of instance sequen-
tial editing, setting batch size to 1. Experiments
are conducted on an NVIDIA V100 GPU, and all
results are reproducible on a single GPU within
four hours.

To ensure a fair comparison, we edit the model
by modifying the appropriate layer from the origi-
nal works for each baseline. All hyperparameters,
including the learning rate, optimizer (Kingma and
Ba, 2015; Shamir and Zhang, 2013), scheduler, and
others, follow the settings from the original works.

As for fine-tuning (FT), since there is no
original work focused on fine-tuning the
model for lifelong editing, we modify only
model.layers[21].mlp.down_proj.weight,
which is commonly used in previous works (Meng
et al., 2023, 2022; Li et al., 2023b).

All hyperparameter settings used in our method
are summarized in Table 6. We perform edits
on LLaMA2-7B by specifically modifying
model.layers[27].mlp.down_proj.weight,
following previous works (Wang et al., 2024,
2023) that have identified the optimal layer for
modification through comprehensive ablation
studies. Regarding the hyperparameters α, β,
and γ in the loss function, we adopt the values

30899



Dataset Type Text

ZsRE
xe,ye Which continent is Berkner Island in? South America
xo,yo who gets the golden boot if its a tie? shared
xe’,y

′
e On which continent is Berkner Island located? South America

WiKi CF
xe,ye The name of the country which Goursez Vreizh is associated with is? Italy
xo,yo what is the most current season of the walking dead? The eighth season
xe’,y

′
e The name of the country which Gorsedd of Brittany is associated with is? Italy

Table 7: An editing dataset example from ZsRE and Wiki CF.

Hyper-Parameters Values

Optimizer SGD
Experts LR 1.0
Project LR 10−4

Mask Ratio ρ 0.3
α 5.0
β 20.0
γ 10.0

Knowledge Shards k 3

Table 8: Ours hyper-parameters during editing and merg-
ing.

ε=0.25 ε=0.45 ε=0.35 (Ours)

Avg. Accuracy 0.91 0.90 0.91

Table 9: Ablation of ε on Avg. Accuracy. of sLKE with
125 * 8 edits

established in prior literature (Wang et al., 2024,
2023). For the hyperparameter ϵ, we select a
fixed value of 0.35 without further tuning, as its
purpose is primarily to distinguish expert-related
knowledge from unrelated concepts—a task that
generally exhibits low sensitivity to exact threshold
values. To further verify the insensitivity to this
parameter, we conduct additional experiments with
alternative settings (e.g., ϵ = 0.25 and ϵ = 0.45).
As demonstrated in Tab. 9, MoKE consistently
achieves stable and state-of-the-art performance
across this range, confirming that our method is
robust to variations in the exact choice of ϵ.

To equip model with ability to identify ques-
tions relevant to edits, we use random prefix for
edit samples, which works as a noise to strengthen
models ability to detect relevant concepts. The pre-
fix is generated by giving an beginning to model
and generating a sequence of meaningless words.
Random prefixes massively increase generality ac-

curacy for both SLE and LE settings. In addition
to random prefix, we add noise to subject of each
edits. We randomly choose a process from adding
middle words for subject, removing middle words
for subjects and adding title for subject. Both ran-
dom prefix and subject noise are randomly applied,
which prevent in-sample overfitting.

B.2 Memory Loss

We design memory loss to prevent ambiguity be-
tween experts. During the editing process, we first
store each edit along with its corresponding ex-
pert’s index. Then, for each edit, we randomly
select one edit from the database that does not be-
long to the current expert. To maintain low mem-
ory usage and preserve the intrinsic meaning of
instance-sequential edit, we store at most 50 edits.
Once memory reaches this limit, the randomly se-
lected sample for each round is deleted and will not
be used again. In this way, we regulate the maxi-
mum resource usage and prevent accessing a large
number of edits at once, which would diminish the
value of instance edits.

C Case Study

We investigate which types of questions are most
troublesome in SLE. It can be observed that mod-
els often produce incorrect outputs for multi-word
edit targets, resulting in partial errors in the an-
swers. Typically, the first word is incorrect, while
the remaining part of the answer remains correct.

D Detail of Memory Based Methods

D.1 Method Insight

SERAC. SERAC is one of the earliest works to
propose utilizing external memory to inject knowl-
edge into large models and a router to identify
knowledge related to edited samples. The pipeline
consists of three main components: edit mem-
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Modification Text

Random Prefix 1 I’m a 4 {Question}
Random Prefix 2 Yes, I know it’ {Question}
Random Prefix 3 Q: 1. What is the {Question}

Title adding The name of the country which Dr. Goursez Vreizh is associated with is?
Middle word insertion The mother tongue of Danielle Parthenia Darrieux is
Middle word deletion Nancy Astor, Viscountess Astor was employed in

Table 10: Random prefix and subject noise for QA pair.

Method
T = 1000 T = 125, N = 1000

Rel. Gen. Loc. Avg. Rel. Gen. Loc. Avg.

w/o augmentation 0.96 0.03 1.00 0.66 0.96 0.03 1.00 0.66
with augmentation 0.64 0.58 0.55 0.59 0.58 0.53 0.47 0.53

Table 11: Ablation for the effectiveness of input aug-
mentation

ory, a scope classifier, and a counterfactual model.
The edit memory stores user-supplied data, which
serves as input for the scope classifier. The scope
classifier determines whether the current input is
related to the edit database. If the input is relevant,
it is routed to the counterfactual model to generate
the post-edit answer. Otherwise, if it is not relevant
to the edit database, the original LLM handles the
input.

This pipeline effectively preserves the original
model weights, ensuring locality when the num-
ber of edits is low. However, as the number of
edits increases, the system degrades rapidly. The
edit memory requires significant storage to main-
tain, the scope classifier’s accuracy decreases as the
classification task becomes more challenging with
additional edit samples, and a single counterfactual
model can handle only hundreds of edits—far from
sufficient for the thousands of edits required for
lifelong learning.

GRACE. GRACE introduces a key-value code-
book with a deferral radius to store the correct rout-
ing for edits. Each concept is stored as a key-value
pair, where the key is the logits from pre-edit lay-
ers and the value is the logits from post-edit layers.
Inputs with logits values within the deferral radius
of a certain key are considered to share the same
concept as the key, meaning the adapter does not
need to learn this new edit since it is a repetition
with the same ground truth answer. In contrast, if
the edit target does not align with the key’s concept,
a new key-value pair is generated, and the adapter
must be trained on this new sample.

The deferral radius is the most important com-

ponent for GRACE to maintain editing efficiency.
For similar edits with the same ground truth target,
the deferral radius for the corresponding key-value
pair expands, enhancing the region of this concept.
Conversely, the deferral radius decreases to prevent
key conflicts.

WISE. WISE is the newest memory based
method, which enable constant memory usage and
maintain great performance on standard lifelong
edit. It generates multiple experts from original
weight to learn new edit. To reduce memory usage,
it leverage ties-merge to compress experts to one.
To ensure compression quality, they propose the
idea of knowledge anchoring, stating that overlap in
side memories is beneficial to model compression
since it serves as a intermediate point to transfer
knowledge between different memories’ subspaces.
They also mention the trade-off of knowledge an-
chor and conflict. Anchoring leads to conflict in
some cases, which is unfavorable for expertising
model. Hence, we do not adopt anchoring for our
experts.

For routing, they design rule-base routing mech-
anism. Correct inference routing can be determined
without training additional router.

Retrieval Methods. Retrieval methods (Jiang
et al., 2024b; Chen et al., 2024; Jiang et al., 2024c)
are regarded as a part of memory based meth-
ods. Yet, we do not take these methods into con-
sideration since the objective and philosophy are
entirely different between memory-based and re-
trieval methods (Ovadia et al., 2023). Retrieval
methods focus on how to retrieve correct data from
a large database and how to utilize the data to up-
date models knowledge with in-context learning.
Resource usage is not quite important in this case
since database can be accessed externally in real-
world application
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Prompt Edit Target Post-Edit Output

ia) What was the designer of Évry Cathedral’s name? Gae Aulenti illes Aulenti ✔✗

ib) What designer was in charge of Évry Cathedral? - illes Aulenti ✔✗

ic) Which place does Fukrey exist in? Kuala Lumpur unala Lumpur ✔✗

id) What is Fukrey’s place? - unala Lumpur ✔✗

iia) Which family does Synsphaeria belong to? Lycaenidae copenidae ✗

iib) What family belongs to Synsphaeria? - copenidae ✗

iic) What is the final year of Atlanta Flames? 1976 1989 ✗

iid) What year ended with Atlanta Flames? - 1989 ✗

iiia) Of what did Earl Hooker die? tuberculosis Pneumonia ✓

iiib) What was Earl Hooker the cause of death? - tuberculosis ✗

Table 12: Failure cases of our method to edit LLaMA-2-7B. ✔✗ represents errors in part of the answer, ✗represents
complete output errors, and ✓indicates the expected exact match.

D.2 Pitfalls of Serial Lifelong Editing

While memory-based methods are well-suited for
lifelong editing, we have shown that their per-
formance degrades significantly in the context of
sLKE. This issue is particularly evident in methods
such as WISE and GRACE, both of which perform
exceptionally well for standard lifelong editing.

In the case of GRACE, the deficiency arises from
the flawed cooperation between the codebook and
the adaptor. The codebook mechanism dictates
that edit concepts falling within the same region
of the deferral radius undergo one of two opera-
tions: expansion or contraction. However, in sLKE,
the same concept may correspond to different an-
swers over time, causing the radius to continuously
shrink. This leads to the generation of multiple
key-value pairs for the same concept, resulting in
knowledge becoming inconsistent and ambiguous.
Consequently, we observe a significant decline in
performance for sLKE.

In the case of WISE, the deficiency arises from
conflict between experts. It adds side memories
incrementally. Hence, it is inevitable that side
memories have conflicts with each other since edits
with similar concept are not conduct at the same
time. Consequently, routing accuracy drop down
for sLKE.

D.3 Model Compression

To reduce memory usage in the inference phase, we
apply EMR merging (Huang et al., 2024), which is
a tuning-free model merging algorithm. It merges
K weights into one unified weight and K boolean
masks, which are 1/32 the size of the original
weights. This method enables high merging ef-
ficiency and retains performance for experts.

The process can be divided into three steps: elect,

Rel.↑ Gen.↑ Loc.↑ Route ACC.↑
Linear 0.78 0.74 1.00 0.80
Slerp 0.78 0.74 1.00 0.80
Ties-Merge 0.87 0.74 1.00 0.87
Dare-Merge 0.90 0.81 1.00 0.94
EMR-Merge 0.94 0.85 1.00 0.93

Table 13: Performance of different merging methods on
125 * 8 SLE

mask, and rescale. To unify experts, we elect en-
tries by following the sign of the summation of each
entry, then fill the entry with the maximum value
that has the same sign as the summation. The algo-
rithm can be represented as γuni = sgn(

∑K
t=1 τt),

τuni = γuni⊙ ϵuni, where τt = Wv’ −Wv for each
expert, and ϵuni is a weight with the maximum ab-
solute value of each entry, consistent in sign with
γuni from all the task vectors.

After generating the unified vector, we can gen-
erate the mask by Mi = (τi ⊙ τuni > 0). These
masks can mimic the original task vector τi by
applying the map on the unified vector, τmi =
Mi ⊙ τuni.

However, masking entries in the weight affects
the FFN output magnitude. Hence, a rescaler is
applied to adjust the values. The rescaler, λi =

sum(abs(τi))
sum(abs(Mi⊙τuni))

, can be interpreted as rescaling
the masked vector to the same magnitude as the
original task vector. Hence, the final masked vector
will be:

τmi = λi ·Mi ⊙ τuni (13)

We conduct ablation study using different merg-
ing strategy to give unify our experts. It can be
observed that EMR-Merging is more suitable for
our methods.

• Linear. It combines weight with in linear
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weight average of multiple model.

• Slerp. It combines weight with spherical in-
terpolation.

• Ties-Merge. It combine weight by three pro-
cess, TRIM, ELECT and Sign. TRIM remove
redundant weight. ELECT selects important
weight across different weights. SIGN deter-
mine the sign of each entry.

• Dare-Ties. It use bernoulli distribution to
remove redundant weight and use ties-merge
to merge model weight. The main difference
lies in the ELECT process.

• EMR-Mergning It combine weight by three
process, ELECT, MASK, RESCALE. ELECT
select important weight in each weight by
comparing entry’s magnitude. MASK gen-
erate masks from unified model to mimic ac-
tions of original weight. RESCALE adjust the
value of feed forward process since some en-
tries are masked. This is the method we apply
in our work.

E Liscence

The Llama models are licensed under the appli-
cable Llama Community License Agreement and
accompanying Acceptable Use Policy.
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