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Abstract

Clinical coding, assigning standardized codes
to medical notes, is critical for epidemiological
research, hospital planning, and reimbursement.
Neural coding models generally process entire
discharge summaries, which are often lengthy
and contain information that is not relevant to
coding. We propose an approach that combines
Named Entity Recognition (NER) and Asser-
tion Classification (AC) to filter for clinically
important content before supervised code pre-
diction. On MIMIC-1V, a standard evaluation
dataset, our approach achieves near-equivalent
performance to a state-of-the-art full-text base-
line while using only 22% of the content and re-
ducing training time by over half. Additionally,
mapping model attention to complete entity
spans yields coherent, clinically meaningful ex-
planations, capturing coding-relevant modifiers
such as acuity and laterality. We release a newly
annotated NER+AC dataset for MIMIC-1V, de-
signed specifically for ICD coding. Our entity-
centric approach lays the foundation for more
transparent and cost-effective assisted coding.

1 Introduction

Clinical coding is the process of translating free-
text patient notes into standardized diagnostic and
procedural codes, typically using the World Health
Organization’s International Classification of Dis-
eases (ICD) (Dong et al., 2022). ICD codes serve
important functions in billing, reimbursement, hos-
pital planning, and epidemiological research. How-
ever, the coding process is labor-intensive and
prone to delays, leading to global backlogs (Alonso
et al., 2020; Campbell and Giadresco, 2020).
Assisted coding approaches seek to enhance the
speed and reliability of code assignment. Recent
work frames the task as an extreme multi-label clas-
sification problem, using deep neural models with
label-wise token attention (Mullenbach et al., 2018;
Vu et al., 2021; Huang et al., 2022). However,
most approaches rely on full-length discharge sum-

maries, which are typically lengthy, unstructured,
and contain redundant or irrelevant information,
a situation sometimes referred to as “note bloat”
(Searle et al., 2021; Liu et al., 2022a). This redun-
dancy inflates memory requirements and increases
the risk of spurious correlations during training.

Discharge summaries also contain negation,
speculation, and institution-specific style varia-
tions, which further introduce noise and complicate
model training. Transformer-based models, which
achieve state-of-the-art performance in ICD coding
tasks (Huang et al., 2022; Edin et al., 2023), are
particularly hampered by this noise, as their perfor-
mance scales quadratically with sequence length.
Although various architectural refinements have
been explored, noise reduction strategies have not
been extensively investigated for ICD coding.

In this paper, we propose a text-processing
pipeline that leverages clinical Named Entity
Recognition (NER) and Assertion Classification
(AC) to retain only medical mentions that are rel-
evant to coding. By discarding negated, hypothet-
ical, or otherwise excluded concepts, we aim to
further improve the signal-to-noise ratio during su-
pervised classifier training. Our approach yields
(1) comparable coding performance to a full-text
baseline on MIMIC-IV (Goldberger et al., 2000;
Johnson et al., 2023a), (2) faster training by more
than 50%, (3) a large input length reduction of ap-
proximately 78%, and (4) improved interpretabil-
ity when using entity spans as code evidence.

To enable our approach, we annotate a subset
of MIMIC-IV notes using an ICD-aligned schema,
capturing disorders, findings (normal/abnormal),
procedures, medications and health context, includ-
ing relevant coding modifiers (e.g., laterality and
acuity) within the same span. Additionally, we
annotate the assertion statuses of a subset of enti-
ties. We release this new dataset to facilitate further
work on entity-driven clinical coding.
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2 Related Work

Computer-assisted coding tools aim to expedite
the coding and auditing process by providing rec-
ommendations and guidance (Campbell and Gi-
adresco, 2020). Initially, code prediction models
employed rule-based algorithms and traditional ma-
chine learning methods reliant on handcrafted fea-
tures (Kavuluru et al., 2015; Farkas and Szarvas,
2008). As larger Electronic Health Record (EHR)
datasets became available, such as MIMIC-III
(Goldberger et al., 2000; Johnson et al., 2016) and
MIMIC-IV (Goldberger et al., 2000; Johnson et al.,
2023b), deep neural networks have become the
dominant paradigm for ICD code prediction.

Discharge summaries, which document a pa-
tient’s hospital stay, constitute the primary source
for assigning ICD codes. These documents typi-
cally include extensive administrative, narrative, or
test-related details, with as little as 10% estimated
to be relevant to coding (Zhou et al., 2021). This
redundancy underscores the value of filtering out
extraneous information. Prior work has explored
removing duplicated text, observing negligible or
even positive impacts on model performance (Liu
et al., 2022a). Our approach extends this line of
research by preserving only clinically relevant men-
tions, further improving the signal-to-noise ratio.

More recently, transformer-based methods, in-
cluding those employing pre-trained language mod-
els (PLMs), have shown competitive results on
ICD coding benchmarks. PLM-ICD, which demon-
strates state-of-the-art performance over other lead-
ing coding models (Edin et al., 2023), couples a
medical PLM (RoBERTa-PM (Lewis et al., 2020))
with label-wise attention, which directs model at-
tention to relevant segments of the text for each
potential code (Huang et al., 2022). Beyond clini-
cal coding, PLM-ICD achieves strong performance
in other extreme multi-label classification tasks in
law, news, and general science (Li et al., 2024).

Our work uses PLM-CA, a variant of PLM-ICD
that modifies the label-wise attention layer to use
a transformer-style cross-attention layer between
token and label representations, improving training
stability and performance (Edin et al., 2024).

In contrast, NER and AC have been relatively
less studied tools for clinical coding. Clinical NER
is the process of identifying key medical concepts
in text, such as diseases, procedures, and medi-
cations, while AC determines the status of these
entities (e.g., present, absent, or possible). Clinical

entities have proven beneficial in several applica-
tions, including epidemiology, predictive model-
ing, note search, and patient cohort identification
(Spasié et al., 2015; Bardak and Tan, 2021; Doer-
stling et al., 2022; Macri et al., 2022, 2023; Bean
et al., 2023; Jani et al., 2024; Kraljevic et al., 2024).

Several approaches to incorporate NER and AC
for clinical coding have been attempted, with mixed
results. Nath et al. (2023) used NER and AC on the
MIMICH-III top 50 split (Mullenbach et al., 2018),
assigning codes based on the cosine similarity be-
tween static entity embeddings and ICD code de-
scriptions. The approach underperformed PLM-
ICD by around 20 percentage points in both micro
and macro F1. While the entities in that work were
considered in isolation from one another, our work
processes entities in groups, preserving their order
of appearance in a note. Certain ICD codes depend
on interactions across co-morbid conditions, hence
preserving surrounding context is crucial.

Meanwhile, DeYoung et al. (2022) extracted dis-
ease entities along with neighboring tokens, cap-
turing modifiers such as acuity and severity. These
concepts were linked to ICD codes using the Ama-
zon Comprehend Medical API, then re-ranked us-
ing a proprietary model. This entity-centered ap-
proach outperformed a full-text baseline (CAML)
(Mullenbach et al., 2018), highlighting the utility
of entities with local context. Similarly, our NER
model is trained to extract modifiers (e.g., anatomy,
laterality, acuity), implicitly preserving the detail
needed for accurate code assignment.

Interpretability remains a major concern in cod-
ing applications, where “black box” models such as
PLM-CA output code probabilities without support-
ing evidence. MDACE addresses this by annotating
code evidence spans in a subset of MIMIC-III dis-
charge summaries (Cheng et al., 2023). Attention
weights have previously been used to highlight the
tokens that most influenced a given code predic-
tion (Mullenbach et al., 2018; Liu et al., 2022b).
More recently, combining attention weights with a
gradient-based method (InputXGrad), termed At-
tnInGrad, has been shown to produce more plausi-
ble evidence than either method alone (Sundarara-
jan et al., 2017; Edin et al., 2024). We use At-
tnInGrad to identify code-relevant tokens and map
them to entities for more coherent explanations.
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Abnormal finding

B Disorder

History of Present Illness:

1) | A 45-year-old woman presents with
likely unstable angina, in the setting of known coronary artery disease.

2

| NER + AC Filtering

History of Present Illness

2)

<disorder> Possible: unstable angina
<disorder> known coronary artery disease

!
p

3) PLM-CA

125.110: Atherosclerotic heart disease of native
coronary artery with unstable angina pectoris

4) [AttnInGrad

History of Present Illness:

+ mapping | A 45-year-old woman presents with chest pain at
"| rest and with exertion, likely unstable angina, in
the setting of known coronary artery disease.

Figure 1: Overview of our entity-based approach to ICD coding. Discharge summaries are processed using NER+AC
to yield shorter, clinically relevant representations for model training and inference.

3 Proposed Approach

3.1 Overview

Figure 1 illustrates our overall approach for ex-
tracting relevant clinical entities and generating
ICD code predictions. In panel (1), we take a dis-
charge summary and apply clinical NER to identify
medical concepts and label them according to type
(e.g., “abnormal finding” or “disorder”). We also
run AC on each entity, filtering out those that are,
for example, negated or hypothetical. In panel
(2), the remaining entities are concatenated (along
with headings) in their original order, forming a
concise “entity-only” version of the note. In (3),
this consolidated representation is used for train-
ing and inference with a PLM-CA model. Finally,
AttnInGrad is applied to identify important tokens
for each code’s prediction (4). These tokens are
then mapped to their full entity spans to enhance
interpretability.

3.2 Document Processing

Prior to NER, each discharge summary is cleaned
and segmented using the MedspaCy extension
(v1.2.0) for spaCy (v3.7.6). Document-level pre-
processing steps include hard-wrap and whitespace
removal, sentence splitting and section heading de-
tection. For faster NER inference, batches of con-

secutive sentences are processed together, provided
the total token count remained under RoBERTa-
PM’s maximum input length of 512 tokens.

3.3 Named Entity Recognition and Assertion
Classification

3.3.1 Named Entity Recognition

We train a ROBERTa-PM model (RoBERTa pre-
trained on PubMed, PMC and MIMIC-III (Lewis
et al., 2020)) with a standard BIO scheme to detect
and label six categories:

* Normal Finding: normal or physiologic ob-
servations.

* Abnormal Finding: pathological observa-
tions, test results, or symptoms.

* Disorder: underlying pathologies or etiolo-

gies.

* Procedure: diagnostic or therapeutic inter-
ventions.

* Health Context: broader contextual factors
relevant to Chapters V-Z of ICD-10-CM (e.g.,
socioeconomic status, allergies, injury back-
ground).

* Medication: brand or chemical drug names.
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The annotations are trained to be granular, in-
cluding modifiers such as acuity (e.g., “acute”), lat-
erality (e.g., “left”), or anatomical site (e.g., “lower
lobe”) within each entity’s span.

3.3.2 Assertion Classification

Each recognized entity is assigned one of five sta-
tuses: present, absent, possible, hypothetical, or
not associated with the patient. We adopt an ap-
proach from van Aken et al. (2021), in which each
entity is enclosed in special tags (e.g., <entity>)
and reinserted into its source sentence for classifi-
cation. For this, we again use ROBERTa-PM as a
backbone. Entities marked absent or hypothetical
are discarded, while possible diagnoses, abnormal
findings, and health contexts are retained per ICD-
10-CM inpatient guidelines (Centers for Medicare
& Medicaid Services (U.S.) and National Center
for Health Statistics (U.S.), 2023). Entities labeled
not associated with the patient are also kept if they
are disorders or abnormal findings, as these often
denote family history. For procedures and medica-
tions, only entities marked present are preserved.

3.4 Filtering and Reformatting

Finally, entities marked as normal finding are re-
moved, as these are not coded in ICD-10-CM. After
AC and filtering, we reinsert the retained entities
into a consolidated entity-only document. Each
entity is prefixed with a learnable token indicat-
ing its category (e.g., <disorder> Diabetes). If
the entity is marked possible, we add a textual in-
dicator (“Possible:”) to convey uncertainty; if it
is not associated with the patient, we presump-
tively prepend “Family history:”, e.g., <disorder>
Family history: lung cancer. Section head-
ings are retained and standardized based on their
category (e.g., “Past Medical History,” “Physical
Exam”), and entities appear in their original sen-
tence order to preserve local context.

3.5 ICD Code Prediction Model

We use PLM-CA (Edin et al., 2024), a variant
of PLM-ICD (Huang et al., 2022), for final code
prediction.! This model was chosen for its open-
source status, state-of-the-art performance, and
customizability. In brief, PLM-CA employs a
RoBERTa-PM encoder with a label-wise cross-
attention layer. Each ICD code is represented by a
trainable embedding that attends to relevant tokens

"Readers interested in full technical details are encouraged
to consult Huang et al. (2022) and Edin et al. (2024).

in the text, producing the probability of that code
being assigned.

3.6 Evidence Extraction

For evidence extraction, we use AttnInGrad (Edin
et al., 2024), which combines token attention
weights with a gradient-based measure (InputX-
Grad) for more robust attributions. When applied
to the entity-only model, any high-attribution token
within an entity span is mapped back to the entire
entity. For example, if “Heart” is identified as the
top token for a code, then the entire entity “Heart
failure with preserved ejection fraction” is flagged
as supporting evidence.

4 Experimental Setup

4.1 Datasets

We conduct our experiments on MIMIC-1V (ver-
sion 2.2), a large publicly available research dataset
of de-identified EHR notes from the Beth Is-
rael Deaconess Medical Center (Goldberger et al.,
2000; Johnson et al., 2023a). We employ the
train/validation/test splits from Edin et al. (2023).
We focus on ICD-10-CM (diagnosis) and ICD-10-
PCS (procedure) codes documented in MIMIC-1V,
which are more contemporary and granular than
the ICD-9 codes used in MIMIC-IIL.

4.2 1ICD-Guided Entity Annotation
While prior clinical NER datasets (e.g., i2b2 2010)

feature broad “problem”, “test”, or “treatment” la-
bels (Ozlem Uzuner et al., 2011), ICD coding of-
ten requires more granularity (e.g., distinguishing
underlying etiologies from signs/symptoms) and
capturing important modifiers (e.g., the affected
body part and severity). Additionally, Chapters
V-Z of ICD-10-CM require coverage of external
factors such as socioeconomic status and the activi-
ties preceding an injury. We therefore developed an
ICD-10 grounded annotation schema prioritizing
specific entity types with an explicit inclusion of
modifiers within each entity’s span.

We randomly sampled 400 discharge summaries
from MIMIC-IV (stratified by encounter type) and
annotated them using Label-Studio (v1.15). One
of the authors, who holds a medical degree, served
as annotator, labeling entities as Normal Finding,
Abnormal Finding, Disorder, Procedure, Health
Context, and Medication in a single pass and cap-
turing relevant modifiers within the same span. A
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Median IQR
Entities per document 207 [137,273]
Words per entity 2 [1, 3]
Entity Labels Count
Normal Finding 14,362
Abnormal Finding 26,463
Disorder 11,197
Procedure 7,665
Health Context 7,275
Medication 18,366
Total 85,328
Assertion Labels
Present 5,180
Absent 2,187
Possible 1,152
Hypothetical 1,796
Not associated with patient 607
Total 10,922

Table 1: Annotation statistics for the MIMIC-IV NER +
AC subset.

subset of these entities also received an assertion
label from present, absent, possible, hypothetical,
not associated with the patient. More detailed an-
notation guidelines and examples are given in Ap-
pendix A. Table 1 summarizes key statistics for our
400-note dataset. Notably, the frequency of normal,
negated, and hypothetical entities underscores the
extent of potentially non-relevant information.

Following the annotation guidelines, a second
author annotated a random subset of documents
containing roughly 1500 entities. Consistent with
earlier clinical NER studies (Deleger et al., 2012),
we assessed agreement against the original labels
with exact-span F1 and Cohen’s Kappa, yielding
scores of 0.77 and 0.81, respectively.

To increase training diversity for assertion clas-
sification, we also incorporated publicly avail-
able data from the i2b2 2010/2012 challenges
(Ozlem Uzuner et al., 2011; Sun et al., 2013) and
the MIMIC-III assertion dataset (van Aken et al.,
2021).

4.3 Training Details and Baselines

NER & AC We train separate RoBERTa-PM
models for NER and AC using cross-entropy loss,
applying class-weighting in AC to mitigate class
imbalance. Table 2 shows the shared hyperparame-
ters applied.

Hyperparameter Value

Batch size 8

Learning rate 3e-5

Weight decay 0.01

LR Scheduler Linear scheduler with 10% warmup
Max token length 512

Early Stopping On validation macro-F1

Table 2: Shared hyperparameters for the NER and AC
models.

ICD code prediction We train PLM-CA for one
run in two main conditions:

* Full-text (Baseline): Entire discharge sum-
maries, preprocessed as in Edin et al. (2024).

* Entity-only: The shortened notes from our
pipeline.

Aside from a smaller batch size of 1 (with gradient
accumulation) to accommodate GPU memory, we
leave all PLM-CA hyper-parameters at their pub-
lished default values (Edin et al., 2024). This setup
helps us attribute any observed performance dif-
ferences more directly to the input-preprocessing
strategy. We train until validation Mean Average
Precision (MAP) converges, then evaluate on the
test split.

4.4 Ablation Experiments

We also explore several ablations on the entity-only
approach to quantify each component’s contribu-
tion:

1. No Assertion Filtering: Retain all extracted
entities (including negated/hypothetical) to
measure the impact of AC filtering.

2. No Entity-Type Tokens: Omit the special to-
kens that mark each entity’s clinical category
(e.g., <disorder>, <abnormal finding>).

3. Plain Text Category Indicators: Replace
special tokens with plain-text equivalents (e.g.,
“Disorder:”), removing the need for learnable
class tokens.

4. Randomized Entity Order: Shuffle entities
and headings to test the importance of local
context.

In addition, to quantify how each entity cate-
gory influences coding performance, we retrain
PLM-CA on subsets of entities. Mentions of Dis-
orders and Procedures form the minimal subset as
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they map directly to ICD-10-CM and ICD-10-PCS
codes. From this baseline we test the addition of
Abnormal Finding, Health Context, or Medication
entities. For each configuration we report perfor-
mance relative to the full entity-only model, along
with the resulting median document length.

5 Results
5.1 Performance of NER & AC Models

Tables 3 and 4 report five-fold cross-validation
performance for the NER and AC models, respec-
tively. The NER system was recall-oriented, mini-
mizing the number of entities missed by the down-
stream PLM-CA model. Most mis-labeling oc-
curred within coding-relevant categories, particu-
larly between Disorder and Abnormal Finding, and
between Disorder and Health Context. Health con-
text proved to be a difficult category to classify,
being highly heterogeneous and often misclassified
as disorder or procedure.

Entity Type Precision Recall F1

Disorder 824+1.1 84610 835+09
Abnormal Finding 83.8+0.6 87.8+£0.6 85.7+0.5
Normal Finding 86.8+09 89.6+x09 88.1+£0.8
Medication 85.8+12 883+04 87.0+0.8
Health Context 67.8+1.7 713+£13 695%13
Procedure 77.8+0.6 82.1+1.1 79908

Table 3: NER model performance (exact span match),
averaged over five cross-validation splits.

For AC, results were generally high across most
labels. However, hypothetical and possible enti-
ties were commonly misclassified as present, sug-
gesting that borderline or ambiguous samples are
challenging to distinguish.

Assertion Type Precision Recall F1
Present 96.7+0.3 96.8+0.3 96.7+0.2
Absent 96.4+0.2 96.6+x04 96.5+0.2
Possible 853+15 849+1.1 851%1.0
Hypothetical 90.6+19 905+12 905+1.2
Not Associated g6 1,50 953421 956+1.1
with Patient

Table 4: Assertion classification model performance,
averaged over five cross-validation splits.

5.2 Document Length Reduction

Table 5 shows the median and IQR for document
length in words before and after entity-based fil-
tering, computed across all documents. Overall,

our entity-driven pipeline reduces the median docu-
ment length from 1,627 to 353 words, representing
a roughly 78% reduction in document length. Ag-
gregated across the entire dataset, entity-only notes
total 47.8M words (versus 212.3M words in the
full-text set), a 77.5% reduction.

Median per note IQR
Full-text 1627 [1245, 2104]
Entity-only 353 [221, 509]

Table 5: Median document length before and after entity
filtering (words).

5.3 Training Efficiency

We measure training time on a single NVIDIA L4
GPU. Table 6 reports the hours per epoch and the
total number of epochs until convergence. The
entity-only approach reduces epoch time by over
50%. While NER+AC inference introduces some
overhead, it is applied only once per document.

Time/Epoch  Epochs Total (hrs)
Full-text 3.20 hr 9 28.8
Entity-only 1.36 hr 8 10.9

Table 6: Training time per epoch for PLM-CA on
MIMIC-IV.

5.4 Performance

We evaluated ICD-10-CM/PCS classification per-
formance using standard metrics from prior re-
search: micro- and macro-averaged AUC-ROC and
F1, as well as Exact Match Ratio (EMR), Preci-
sion@k, and Mean Average Precision (MAP). Per-
mutation testing (1000 rounds) was applied to the
prediction outcomes to test whether the differences
between models are statistically significant. Re-
sults are presented in Table 7.

Overall, the entity-only variant underperforms
the full-text baseline on both classification and rank-
ing metrics but remains close to the original PLM-
ICD model from Edin et al. (2023). The greatest
discrepancy is in macro F1, suggesting a differ-
ence on rarer codes. We found that each condition
excels on different codes; however, no clear seman-
tic or categorical patterns emerged among these
discrepancies.

5.5 Evidence Extraction Results

We evaluate AttninGrad explanations on the
MDACE dataset (Cheng et al., 2023), which pro-
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Classification

Ranking

AUC-ROC F1 EMR Precision@k MAP

Micro Macro Micro Macro 8 15
PLM-ICD (Edin et al., 2023) 99.2 96.6 58.5 21.1 040 699 550 619
PLM-CA (Full-text) 99.2 96.2 59.6 26.1 044 709 56.1 63.4
PLM-CA (Entity-only) 99.1 959* 58.8* 24.8* 045 70.3* 553*% 62.3%

Table 7: ICD-10-CM/PCS performance on the test set. EMR: percentage of documents with all codes predicted
correctly. We include the original PLM-ICD results (full-text) from Edin et al. (2023) for reference (averaged over
10 seeds). Asterisks (*) denote statistical significance at p<0.05, following 1,000-round permutation tests comparing

the entity-only model to the full-text model.

vides ground-truth evidence spans for 302 MIMIC-
III discharge summaries. Code classification met-
rics for the models are described in Appendix B.
The attribution threshold for AttnInGrad was tuned
using the MDACE validation set to maximize par-
tial span overlap with ground truth (F2 score), giv-
ing higher weight to recall, a priority in medical
contexts to avoid missing any clinically salient evi-
dence. We also reuse the code prediction thresholds
derived from the MIMIC-IV evaluation.

Since the MDACE training set had not been used
previously, it was combined with the test set to pro-
vide a more robust evaluation. To avoid conflating
model accuracy with evidence extraction quality,
we analyzed evidence spans only for true-positive
predictions. False negative codes are likely exacer-
bated by coding style differences between MDACE
and MIMIC. Only 45.1% of the codes assigned in
MIMIC also appeared in MDACE (Cheng et al.,
2023), and approximately 11% of MDACE codes
were absent in the MIMIC-IV training data.

To accommodate the entity-based approach,
position-invariant matching was performed
along with normalization (lowercasing, punc-
tuation/whitespace removal). For each code,
the evidence was categorized as: Exact Match
(identical to ground truth), Superset (the extracted
span contains and expands the ground truth span),
Subset (the span is a subset of the ground truth
span), or No Overlap. Table 8 outlines these
proportions for the two approaches.

Exact No
Match  Superset Subset Overlap
Full-text 65.4% 9.7% 19.5% 5.4%
Entity-only  65.3% 20.4% 6.9% 7.4%
Table 8: Proportion of evidence spans matching

MDACE gold references (true positives only).

The entity-only model produces more superset
spans, often capturing relevant modifiers or expan-
sions overlooked in the MDACE annotations. Su-
perset spans extended the ground truth span by a
median of 2 words (IQR 3). Examples of these
superset spans are in Table 9.

Meanwhile, the proportion of subset matches
drops from 19.5% to 6.9% when using entity-only
summaries, mitigating the risk of missing clinically
important information. No Overlap cases (7.4% for
entity-only) mostly involved synonyms or abbrevia-
tions of the gold span (58.1%), with the remainder
being either equally relevant (21.3%), less relevant
(13.7%), or insufficient (6.8%) for coding.

An error analysis was performed on 200 ran-
domly selected false positive codes to examine the
relevance of their evidence spans. 45% of evidence
spans were deemed relevant for the predicted code,
fully covering its description. 26.5% were partially
relevant, covering part of the code’s description.
17% were insufficient, oftentimes capturing the de-
vice or medication associated with a code, rather
than the code itself. Finally, 11.5% of spans were
related to a false negative code, representing situ-
ations where the model predicted the correct ICD
code chapter, but the wrong specific code.

5.6 Ablation Results

Table 10 shows how various aspects of the pipeline
affect performance. Removing assertion filtering
or learnable entity category tokens mostly affects
macro-F1, suggesting that these features help the
model correctly identify rare codes. Randomizing
entity order yields the largest drop, underscoring
that local context is important.

Further, Table 11 summarizes coding outcomes
for various entity subsets. The minimal subset
of Disorder + Procedure trims the median note to
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ICD Code MDACE Evidence Entity Evidence

M43.16: Spondylolisthesis, lumbar “spondylolisthesis”  “grade 1 spondylolisthesis at

region L4-1L5”

125.2: Old myocardial infarction “MI” “history of large anterior MI in
past”

M75.02: Adhesive capsulitis of left
shoulder

“frozen shoulder”

“left frozen shoulder”

C78.7: Secondary malignant neoplasm  “liver” “Melanoma with metastatic disease
of liver and intrahepatic bile duct to lung, bone, and liver”
J12.9: Viral pneumonia, unspecified “Pneumonia” “Viral Pneumonia”

Table 9: Examples of superset spans from the entity-based model, capturing extra ICD-relevant detail.

Condition AF1 AF1 A
Micro Macro MAP

No assertion -0.1 -1.2 -0.2

classification

No entity category  -0.2 -1.2 -0.2

prepending

Entity classes as -0.1 -1.5 -0.2

plain text instead

of special tokens

Randomized -1.5 -3.0 -1.7

entity/heading

order

Table 10: Ablation results on the test set showing the
performance change (A) relative to the baseline entity-
only condition.

roughly one-third of the full entity-only input, albeit
with a sizable drop in performance. Adding Health
Context recovers nearly the same performance as
Abnormal Findings while keeping the input 28%
shorter, giving it the highest performance-per-token
payoff. In contrast, Medications delivers only mod-
est gains despite a similar input length to Health
Context.

6 Discussion

In this study, we introduce an entity-focused
approach for assisted ICD-10-CM/PCS coding
that leverages clinical Named Entity Recognition
(NER) and Assertion Classification (AC) to re-
move non-essential text from discharge summaries.
Across our evaluations on MIMIC-1V, the PLM-CA
(entity-only) model achieves performance compara-
ble to a full-text baseline while discarding approxi-
mately 78% from the original note. The approach

provides several benefits: (1) a substantial reduc-
tion in computational overhead, (2) competitive
coding performance, and (3) straightforward map-
ping from model attributions to clinically meaning-
ful entities.

Computational Efficiency Because PLM-CA
employs a transformer-based encoder (RoBERTa-
PM), its computational complexity scales quadrat-
ically with the number of tokens. Although this
may be feasible for shorter documents, long clini-
cal notes containing thousands of tokens can render
training and inference computationally expensive.
By focusing on clinically relevant entities, we re-
duce training time by more than half. This time
efficiency is especially beneficial for hyperparame-
ter tuning or rapid prototyping of new architectures,
making large-scale experimentation more feasible
and cost-effective.

Further, given the reliance on BERT/RoBERTa
encoders with 512-token limits, the entity-based
approach reduces reliance on workarounds such as
pooling. The framework is also advantageous for
including additional documents beyond discharge
summaries, such as operation reports.

Coding Performance Despite differences from
the full text baseline, the entity-only model main-
tains strong performance. The 1-2 percentage point
difference in metrics surpasses findings from an
ablation experiment by Wiegreffe et al. (2019),
where dictionary-based entity extraction led to a
9-percentage-point decline in micro F1 when sub-
stituting entities for raw text. Our findings suggest
that a more flexible, neural-driven entity extraction
process tailored to ICD coding better preserves pre-
dictive signals.

Beyond PLM-CA, the performance of the entity-
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Condition

A F1 Micro A F1 Macro

A MAP Length

Disorders + Procedures

Disorders + Procedures + Abnormal Findings
Disorders + Procedures + Health Context
Disorders + Procedures + Medications

-6.7 -4.0 -8.7 112
-3.6 -2.6 -4.5 241
-3.5 -2.8 -4.5 173
-5.5 -5.0 -7.0 160

Table 11: Test set performance of entity category subsets, relative to the baseline entity-only condition. Length

refers to median words per document.

only model is competitive with prior full-text mod-
els, mirroring or surpassing the performance of the
original PLM-ICD model. This competitive per-
formance, despite a major reduction in document
length, reflects prior remarks about redundancy
and ‘bloat’ in clinical documentation (Searle et al.,
2021; Liu et al., 2022a).

Considering efficiency and performance on a
Pareto frontier, the entity-based approach offers
a cost-effective balance, sacrificing ~1 percent-
age point in F1 metrics for greatly increased effi-
ciency. This balance may be desirable in resource-
constrained clinical settings or large-scale produc-
tion environments. Future work could explore ad-
ditional entity selection or representation strategies
to refine this balance.

Model Interpretability Explainability consti-
tutes a major requirement in clinical decision-
making settings. Our evaluation using MDACE
shows that the entity-based model provides broader
yet meaningful spans when mapping attributed to-
kens to their source entity. The entity-based evi-
dence in many cases included additional modifiers
or expansions needed for specific ICD code assign-
ment. In contrast, models that operate on full-text
inputs must deal with extracting and aligning dis-
jointed subtokens, complicating the process of re-
assembling coherent explanations.

The completeness of entity spans is likely ad-
vantageous for downstream auditing and code val-
idation. For false positive predictions, the corre-
sponding entity evidence can be reviewed and ei-
ther confirmed or discarded, helping coders iden-
tify overlooked conditions or refine incorrect codes.
Importantly, a sizable portion of false positives in
our analysis included relevant code evidence, high-
lighting a possible secondary benefit of detecting
overlooked or under-specified codes.

7 Conclusion

We have shown that focusing on clinically rele-
vant entities, coupled with assertion filtering, is an
effective strategy to streamline assisted ICD-10-
CM/PCS coding on MIMIC-IV. By compressing
notes to around one-fifth of their original length,
our approach reduces training cost, maintains com-
petitive performance, and provides interpretable
explanations. Future work could extend this ap-
proach by integrating direct entity-to-code linkage
methods. In addition, the reduced input size can ac-
commodate entities from other document sources
(e.g., progress notes, surgical or radiology reports),
offering a more comprehensive view of a patient
encounter. These findings underscore the promise
of entity-centric design for real-world clinical in-
formatics, providing a solid foundation for further
exploration and refinement. Our newly annotated
dataset, aligned with ICD-10 needs, can facilitate
further research in entity-based coding and serve
as a general-purpose resource for clinical NLP.

8 Limitations

We acknowledge several limitations. First, while
entity-based pruning retains vital details for most
codes, errors in the NER model could result in con-
textual loss. Additionally, although our method
improves the plausibility of model-generated ev-
idence by linking attributions to entities, it does
not directly address faithfulness. Second, while
the newly created NER + AC dataset is designed
to align with ICD coding conventions and under-
went validation, it has not yet been validated by
professional clinical coders. Third, although the
MIMIC-IV population is large, it is geographically
and institutionally specific to Beth Israel Deaconess
Medical Center, limiting the generalizability of our
findings to other healthcare settings, particularly
those outside critical care.
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9 Ethical Considerations

This research uses de-identified patient data
(MIMIC-1V), which is publicly available under
stringent guidelines. Tools based on data from a
single institution risk misclassifying certain patient
groups; therefore, training with diverse datasets is
essential for fairness and accuracy in real-world de-
ployments. Furthermore, any assistive coding tools
leveraging approaches described in this work must
be integrated responsibly into workflows, with over-
sight by professional coders and clinicians to min-
imize the risk of errors that could impact patient
care and billing. This includes efforts to mitigate
automation bias, where a user may accept code
predictions without sufficient scrutiny.
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A Annotation Guidelines

The following guidelines outline the standards em-
ployed for annotating discharge summaries from
MIMIC-IV. Our annotation schema is motivated by
the ICD-10-CM/PCS coding framework, ensuring
consistency and clinical relevance.

A.1 Entity Categories

We define six primary entity categories: Normal
Finding, Abnormal Finding, Disorder, Health
Context, Medication, and Procedure. Each cat-
egory is annotated with neighboring contextual
information (e.g., severity, laterality) to support
downstream modeling.

A.1.1 Normal Findings

A Normal Finding is a physiologically normal ob-
servation or test result that would not usually map
to an ICD-10-CM code.

* “The patient is normotensive.”
Entity: “normotensive”

e “Normal bowel sounds were auscultated.”
Entity: “Normal bowel sounds”

A.1.2 Abnormal Findings

An Abnormal Finding is any atypical or patholog-
ical observation, including explicit statements of
abnormal test results. Numeric results alone do not
qualify, unless explicitly described as abnormal.
When there is a known etiological cause, annotate
the cause as a Disorder, and the manifestation as
an Abnormal Finding.

o “Elevated white blood cell count was noted.”
Entity: “Elevated white blood cell count”

* “The patient exhibited jaundice.”
Entity: “jaundice”

A.1.3 Disorders

A Disorder is the underlying pathology or etiology
of a clinical finding.

* “The patient has viral gastroenteritis causing
vomiting.”
Entity: “viral gastroenteritis” (Disorder),
“vomiting” (Abnormal Finding)

* “Hypertension is responsible for the patient’s
headaches.”
Entity: “Hypertension”
“headaches” (Abnormal Finding)

(Disorder),

A.1.4 Health Context

Health context captures contextual circumstances
that impact health, such as socioeconomic factors,
personal medical history, allergies, injury context,
and code status. These often appear following ex-
pressions such as “history of”” or “status post (s/p)”,
which should also be included in the entity span.

* “The patient’s condition was due to a motor
vehicle accident.”
Entity: “motor vehicle accident” (Health Con-
text)

* “The patient is DNR.”
Entity: “DNR” (Health Context)

*“The patient smokes 2 packs of cigarettes

daily.”
Entity: “smokes 2 packs of cigarettes daily”
(Health Context)

* “The patient has a history of renal transplant.”
Entity: “history of renal transplant” (Health
Context)

A.1.5 Medications

Any mention of a drug (brand name or generic)
together with a relevant action (e.g., “discontinued,”
“started,” “titrated”’). Administration route details
are included in the span where possible. Dosage
numbers are omitted unless they appear between
the drug name and its action or route or administra-
tion.

* “The patient was started on atorvastatin.”
Entity: “started on atorvastatin”

* “Ibuprofen was held.”
Entity: “Ibuprofen was held”
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A.1.6 Procedures
A Procedure is any diagnostic or therapeutic in-
tervention (including named devices used during

the intervention). Routine laboratory tests are ex-
cluded.

* “Patient underwent angioplasty.”
Entity: “angioplasty”

* “The team performed an elective laparoscopic

cholecystectomy.”
Entity: “elective laparoscopic cholecystec-
tomy”

A.2 General Annotation Principles

Entity Spans and Contextual Modifiers. In-
clude relevant modifiers (e.g., acuity, anatomy, lat-
erality) within the entity span.

* “The patient has acute right lower lobe pneu-

monia.”
Entity: “acute right lower lobe pneumonia”
(Disorder)

® “The test showed severe anemia.”
Entity: “severe anemia” (Abnormal Finding)

Ambiguity between Abnormal Finding and Dis-
order: When uncertain, default to Abnormal
Finding.

Ambiguity between Normal Finding and Ab-
normal Finding: If an ICD-10-CM code can be
found for the span, treat it as Abnormal Finding.

Negated or speculative mentions: Still annotate
the entity, but do not include the negation or specu-
lation cue in the span.

Entity boundary uncertainty: When unsure
whether a span contains multiple entities, split it
into separate entities.

A.3 Assertion Categories
Each entity is assigned one of the following asser-

tion labels:

* Present: Directly stated as existing for the
patient.

» Absent: Explicitly negated (e.g., “No evi-
dence of pneumonia,” “Denies chest pain”).

* Possible: Mentioned as uncertain or proba-
ble (e.g., “Probable pneumonia,” “Could be
myocardial infarction”).

* Hypothetical: Speculative or future-oriented
(e.g., “If pneumonia were to occur,” “Consid-
ering intubation”).

* Not associated with patient: Mention per-
tains to someone else (e.g., “Family history of
diabetes,” “Mother has osteoporosis”).

B MDACE Classification Performance

Classification performance was measured on the
combined MDACE train and test sets, using predic-
tion thresholds from the MIMIC-IV evaluation.

Model Precision Recall F1
Full-text 473 64.8 54.7
Entity-only 41.8 659 51.1

Table 12: Micro-averaged performance of the full-text
and entity-only models on the MDACE test set.
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