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Abstract

Although weight quantization helps large lan-
guage models (LLMs) in resource-constrained
environments, its influence on the uncertainty
calibration remains unexplored. To bridge this
gap, we present a comprehensive investiga-
tion of uncertainty calibration for quantized
LLMs in this work. Specifically, we propose
an analytic method to estimate the upper bound
of calibration error (UBCE) for LLMs. Our
method separately discusses the calibration er-
ror of the model’s correct and incorrect pre-
dictions, indicating a theoretical improvement
of calibration error caused by weight quanti-
zation. Our study demonstrates that quantized
models consistently exhibit worse calibration
performance than full-precision models, sup-
ported by consistent analysis across multiple
LLM:s and datasets. To address the calibration
issues of quantized models, we propose a novel
post-calibration method to recover the calibra-
tion performance of quantized models through
soft-prompt tuning. Specifically, we inject soft
tokens into quantized models after the embed-
ding layers and optimize these tokens to recover
the calibration error caused by weight quantiza-
tion. Experimental results on multiple datasets
demonstrate its effectiveness in improving the
uncertainty calibration of quantized LLMs, fa-
cilitating more reliable weight quantization in
resource-constrained environments.

1 Introduction

Large language models (LLLMs) have demonstrated
remarkable capabilities across diverse tasks, includ-
ing text generation, translation, question answering,
and complex reasoning (Brown et al., 2020). A
critical application of these models involves their
deployment in resource-constrained environments,
such as medical devices and mobile phones, where
computational resources are limited. Weight quanti-
zation is a promising solution to reduce the memory
requirements of LL.Ms, enabling their deployment
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on local machines with restricted computational
capacity. This democratization of access to LLM
capabilities has been facilitated by advanced tech-
niques such as BitsandBytes (Dettmers et al., 2022)
and GPTQ (Frantar et al., 2022), which utilize low-
bit computation to improve generation efficiency.

While quantization effectively compresses these
models, it introduces potential trade-offs in perfor-
mance. Although quantized models generally main-
tain comparable accuracy to their full-precision
counterparts, their uncertainty calibration, a cru-
cial factor for trustworthy systems, requires careful
examination (Guo et al., 2017). Well-calibrated
uncertainty estimates are particularly vital in high-
stakes applications like finance and healthcare (Ba-
jwaetal., 2021). Additionally, accurate calibration
enables broader advances in model development,
such as leveraging high-confidence predictions on
unlabeled data for semi-supervised learning (Sui
et al., 2025; Jumper et al., 2021).

Despite the significance of uncertainty calibration,
the relationship between model quantization and
calibration performance remains understudied. Our
research addresses this gap through both theoretical
analysis and empirical investigation, focusing on
two key research questions:

What is the Impact of Quantization on Model
Calibration? Weight quantization significantly
impairs model calibration, leading to less reliable
uncertainty estimates. To better understand and
quantify this effect, we propose a novel closed-
form upper bound for calibration error. This met-
ric decomposes the calibration error into compo-
nents for correct and incorrect predictions. Our
comprehensive benchmark on multiple LLMs and
datasets reveals that quantized models consistently
demonstrate higher calibration error compared with
full-precision models. Weight quantization causes
the model to behave both under-confidence on the
correct answers and over-confidence on incorrect
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cases. This degradation in calibration quality sug-
gests that lower-bit representations introduce dis-
tortions that affect confidence estimates.

How Can We Address the Calibration Gap? We
propose a soft-prompt tuning method for reducing
the calibration gap of quantized models. This ap-
proach injects soft tokens to the embedding layers
of quantized models, without changing the model
weights. The optimization for the injected soft to-
kens aligns with the calibration error, ensuring that
the tuning process naturally improves uncertainty
calibration. Experimental results demonstrate that
the calibration error of quantized models consis-
tently reduces after the tuning, indicating its effec-
tiveness in calibrating quantized models without
significant computational overhead. The contribu-
tions of this work are summarized as follows:

» Calibration Gap. We discover the calibra-
tion gap between the quantized LLMs and full-
precision ones. Our comprehensive analysis re-
veals that quantized LLMs consistently exhibit
worse uncertainty calibration compared to full-
precision ones.

 Post Calibration. We propose a novel post cali-
bration method based on soft-prompt learning to
recover the calibration gap of quantized models.
The post calibration has a theoretical foundation
towards reducing the calibration error.

* Experimental Evaluation. Experimental re-
sults on two datasets demonstrate that our pro-
posed post calibration method can effectively
reduce the calibration error of quantized models,
reducing its gap with the full-precision models.

2 Preliminary

We introduce the notations and uncertainty metrics
in this section.

2.1 Notations

Let f represent the Large Language Model (LLM)
under consideration. We denote the instruction
prompt as p; the question content as g; the golden
answer a; and the model-generated answer a =
f(p, q). Additionally, we define the correctness of
aas c € {0,1} where ¢ = 1 if a is the same as a,
otherwise ¢ = 0.

2.2 Uncertainty Measurement

Uncertainty measurement aims to estimate the con-
fidence of a model-generated answer, denoted as
¢ € {0, 1}, where ¢ should be well aligned with
the answer’s correctness. Specifically, a value of
¢ approaching 1 indicates a higher likelihood of
correctness, while a value approaching 0 suggests
a higher likelihood of incorrectness. For this esti-
mation, we consider two existing methods for un-
certainty quantification: Correctness Classification
Token Probability (CCTP) and Verbalized Confi-
dence with Alternative Answers (VACC) (Kapoor
et al., 2024; Tian et al., 2023).

Correctness Classification Token Probability
(CCTP). CCTP quantifies the confidence of an
answer by querying the model to verify the correct-
ness of the answer (Kapoor et al., 2024). Given an
answer a to a question ¢, the CCTP confidence is
calculated as:

f(‘yes’;p,q,a)
‘yeS’;pa q, (I) + f(‘nO’;p, q, CL) ’(1

éa P —
CCT f(

where p represents the prompt used to query the
model about the correctness of a.

Verbalized Confidence with Alternative An-
swers (VCAA). VCAA quantifies the confidence
of an answer by querying the model to state its
confidence, given the alternative candidates for the
answer (Tian et al., 2023). Specifically, for a given
model-generated answer a, VCAA collects n alter-
native candidates of answer a1, - - , a, from the
model. The model then provides a verbalized con-
fidence score for a according to:

évcaa:f(p’%dadlv"‘ a&n)7 (2)

where p denotes the prompt used to query the
model’s confidence in a.

3 Uncertainty Calibration Gap

We explored the impact of model quantization on
confidence calibration by comparing calibration er-
rors between quantized and full-precision models.
Specifically, we first propose a metric to quantify
the calibration error of models; and then experimen-
tally compare quantized and full-precision models
based on this metric.
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3.1 Upper Bound Calibration Error (UBCE)

Traditional calibration metrics often provide aggre-
gate measures that may obscure important patterns
in model behavior. We propose the Upper Bound
Calibration Error (UBCE) as a novel metric that
enables more detailed analysis of calibration perfor-
mance by separately considering correct and incor-
rect predictions. Specifically, UBCE decomposes
the calibration error of a model into two compo-
nents: the confidence error of correct and incorrect
answers, and combines these components through
a weighted sum, where weights correspond to the
probability of answer correctness. The formal defi-
nition of UBCE is given in Definition 1.

Definition 1 (UBCE) UBCE combines the confi-
dence error of correct and incorrect answers using
the probability of correctness. Specifically, its defi-
nition is given by:

UBCE £ Pr(c = 0)E[¢|c = 0] +
Pr(c=1)(1—-El¢lc=1]) (3)

where c is the ground truth correctness and ¢ is
predicted confidence scores.

Intuitively, E[¢|c = ] indicates the average confi-
dence for the answers i € {0, 1}, where ¢ = 1 for
correct answers and ¢ = 0 for incorrect answers.
Thus, E[¢|c = 0] quantifies the calibration error
for incorrect answers, while (1 — E[¢|c = 1]) mea-
sures the error for correct answers. These errors are
weighted by their respective proportions P(c = 0)
and P(c = 1) to compute the overall UBCE.

Relationship to Other Calibration Metrics. We
demonstrate the relationship between our proposed
UBCE metric with two established calibration error
metrics: Brier Score (BS) and the Binned Expected
Calibration Error (binnedECE) (Guo et al., 2017;
Brier, 1950). Specifically, the Brier Score mea-
sures the mean squared error between confidence
predictions and true labels:

BS £ E. jo,13[(¢ - ¢)].

The binnedECE provides a more granular assess-
ment by examining calibration errors within confi-
dence intervals:

binnedECE(¢, 7) £~ |Eeoqo 1y [(6—0)1 (¢ € T))|

J€m|

where 7 = 7,...,Z,, defines the partition set.
The relationship between UBCE and these two met-
rics is formalized in Theorem 1.

Theorem 1 UBCE provides a strict tight upper
bound for both the Brier Score and binnedECE:

UBCE > BS, binnedECE “4)

The proof of Theorem 1 is given in Appendices A.

Theorem 1 indicates that UBCE provides an upper
bound of the BS and binnedECE metrics. It is
a more conservative estimate of calibration error,
ensuring that estimation based on UBCE represents
worst-case calibration performance.

3.2 Evaluation Experiment Setup

We benchmark the calibration error for three
state-of-the-art LLLMs at 7B scale of parameter:
Llama-3.1-8B (Touvron et al., 2023), Mistral-v0.3-
7B (Jiang et al., 2023), and Qwen-2.5-7B (Bai
et al., 2023). Specifically, we compare the cali-
bration error of their full-precision and quantized
versions. For the quantized models, we consider
the BNB (Dettmers et al., 2022) and GPTQ (Frantar
et al., 2022) for these LLMs with 4-bit quantiza-
tion. More details are given in Appendix J. The
calibration performance of models was assessed
through two metrics: the Brier Score (BS) and our
proposed Upper Bound Calibration Error (UBCE).

Benchmark Datasets. The benchmark datasets
are the CommonsenseQA and ARC-challenge
datasets. While both datasets feature multiple-
choice questions, we adapt them to an open-ended
format where models must generate responses from
the available options. Response correctness is deter-
mined through a comprehensive evaluation frame-
work combining exact match and n-gram similarity
metrics with ground truth answers.

Evaluation Pipeline. The evaluation process fol-
lows a systematic four-stage pipeline for assessing
calibration performance across different models.
First, we generate and collect responses through
iterative prompting, where each iteration incorpo-
rates previous responses in the prompt and em-
ploys greedy decoding for reproducibility. Once
we collect the complete set of responses across all
models, we compute confidence scores using meth-
ods of CCTP and VCAA for each model. Finally,
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Figure 1: Cumulative Distributions of Confidence Scores
Table 1: Calibration difference (%) of Quantized LLMs: The percentage values represent the relative difference of
calibration error with full-precision LLMs, using the full-precision model as the reference. Negative values indicate
a reduction in calibration error for the quantized model, signifying improved calibration. Conversely, positive values
indicate an increase in calibration error for the quantized model, meaning worse calibration performance.

Dataset ARC CSQA

Uncertainty Metrics CCTP VCAA CCTP VCAA
Model CE Metric  BNB GPTQ BNB GPTQ BNB GPTQ  BNB GPTQ
Llama. 3.1.8B BS 21.05% 23.61%  3.14%  4826% 17.06%  7.65%  1.56%  24.24%
: UBCE 1529% 1635% -0.75% 24.65% 11.86%  3.44%  -056%  4.70%
Mistral 7Bv0.3 BS 1.71%  -072%  1.58%  -1.15%  296%  2.52%  231%  0.08%
stra : UBCE 0.91% 1.14%  042%  0.36% 1.72%  -019%  097%  0.77%
Qwen-2.5-7B BS 491%  2400% 052%  3.63%  177%  3642% 3.60% = 657%
: UBCE 637%  10.09%  024%  -1.59%  192%  23.80% 331%  2.18%

we calculated calibration error metrics to measure
the alignment between predicted confidence and
answer correctness. For the convenience of com-
parison, the calibration performance gap between
quantized and full-precision models is quantified
as the relative percentage difference:

(CEQ — CEF) x 100
CEr

Difference (%) = (5)
where C'Eq and C'Er denote the calibration er-
rors of the quantized and full-precision models, re-
spectively, which consider both the BS and UBCE
metrics. This difference greater than O indicates
a quantized model has a greater calibration error,
indicating a negative impact of quantization on
calibration performance. More details about the
experiments are given in Appendix E.

3.3 Empirical Analysis

Our comprehensive analysis consistently reveals
patterns of calibration degradation across various
quantization methods and evaluation metrics. This

is evidenced by a persistent calibration discrepancy
between quantized and full-precision models, high-
lighting the existence of a calibration gap.

Calibration Difference Statistics. Our system-
atic analysis of calibration errors, presented in Ta-
ble 1, provides a comprehensive comparison of
quantized models with their full-precision counter-
parts across multiple metrics. The values represent
the relative percentage change in calibration er-
ror following the quantization process. The data
demonstrates that quantized models exhibit higher
calibration errors in 85% of calibration error met-
ric values, as evidenced by 41 out of 48 measure-
ments. This consistent pattern of increased cali-
bration errors following quantization establishes a
significant calibration gap between the two model
types. The observed gap between quantized and
full-precision models clearly indicates the negative
impact of quantization on the calibration perfor-
mance of models. Therefore, it is necessary to
measure and evaluate the calibration error after
quantization for reliable model deployment.
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Source of Calibration Gap. Understanding the
sources of calibration errors requires a more nu-
anced analysis beyond aggregate metrics. To iden-
tify specific patterns of miscalibration, we examine
the cumulative distribution of confidence scores for
correct and incorrect predictions separately. In a
perfectly calibrated model, confidence scores for
correct predictions should approach 1, while scores
for incorrect predictions should approach 0, as in-
dicated by the dashed lines in Figure 1 (a) and
(b). Specifically, Figure 1 (a) presents the cumu-
lative distribution of confidence scores for correct
answers by the Llama-3.1-8B model, while Fig-
ure 1 (b) shows the distribution for incorrect an-
swers by the Qwen-2.5-7B model. It indicates that
full precision model has better calibration perfor-
mance than the quantized models, as evidenced by
its confidence density curve closer to the perfectly
calibration results.

This comprehensive analysis provides significant
evidence of the quantization on calibration perfor-
mance. While the weight quantization enhances
computational efficiency, it unintentionally intro-
duces systematic biases in the model’s uncertainty
estimates. Identifying and reducing this calibration
error is crucial for developing reliable quantized
models in practice.

4 Towards Calibration Recovery

In this section, we present an efficient method for
reducing the calibration error of quantized LLMs.
Specifically, we (i) establish an upper bound on
the calibration error in Theorem 2, (ii) propose
a soft-prompt-learning framework to reduce this
error, (iii) empirically validate the framework’s ef-
fectiveness, (iv) demonstrate its superiority to ex-
isting calibration techniques, and (v) show that it
improves accuracy on relevant downstream tasks
while preserving generalization on others.

4.1 Post Calibration

We establish the upper bound of calibration error
as the perplexity of quantized models.

Theorem 2 (Upper bound of UBCE) The per-
plexity establishes an upper bound for the UBCE.
Specifically, for a golden answer a = [t1,- - ,t,],

the upper bound of UBCE is given by

n—1

UBCE; < Z—logPr[tH_l | pyq,t1, - 1]
i—1
(6)

We given the proof of Theorem 2 in Appendix B.
Theorem 2 suggests that minimizing for perplex-
ity of quantized models can naturally reduce the
calibration error. This provides a theoretical foun-
dation for optimizing the quantized models for re-
ducing their calibration error.

4.2 Soft-prompt Learning for Post
Calibration

We propose an efficient way to the quantized mod-
els to reduce their calibration error. Specifically,
LLMs typically have embedding layers to map the
prompts to the embedding space: [t1,--- ,t,] —
R™*4_ To reduce the calibration error of quantized
models, we inject k learnable soft tokens after the
embedding layer’s mapping (Xu et al.). Specifi-
cally, these soft tokens are vectors in the embed-
ding space, defined as ey, eq,--- ,e;, € RY We
note that the soft prompt learning process is data-
driven, and we utilize a text dataset D for learning.
For every sequence [t1, - ,t,] € D, we minimize
the following loss function L,

n—1

L= Z —logPr[tHl | q,€1," " ,ek,tl, e ,ti].
i=1

(7

Different from the prompt tokens ¢1, - - - , ¢, which

are processed by the embedding layer, the soft to-
kens ey, eq,- - , e are injected into the model after
the embedding layer. For minimizing the loss func-
tion in Equation (7), the model parameters remain
frozen, and only the soft tokens ey, eo, - - - , e are
updated. Formally, the optimization is given by
el, - ,ep = ming, .. ., £. Algorithm 1 in Ap-
pendix C provides the step-by-step procedure of
post calibration.

4.3 Training Dataset

The training dataset integrates data from ARC-
challenge (Clark et al., 2018) and Common-
senseQA (Talmor et al., 2019) into a unified
structure designed for effective calibration learn-
ing. Each training instance is built from four es-
sential components: questions from the source
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Table 2: Reduced Calibration Gap (| lower is better): The percentage values indicate the relative difference in
calibration error between the pre-calibrated and post-calibrated models, using the pre-calibrated quantized model as
the reference. A negative percentage means the calibration error decreased by that amount, indicating successful
calibration improvement. A positive percentage means the calibration error increased, indicating a decline in
calibration quality. Differences are highlighted using colored cells: green for improvement and red for deterioration.

ARC CSQA
CCTP VCAA CCTP VCAA

Model CE Metric BNB GPTQ BNB GPTQ BNB GPTQ BNB GPTQ
Llama-3.1-8B BS -11.42% -16.30% 12.84% -31.50% -6.34% 16.36% 16.09% -13.95%
o UBCE -4.15% -13.86% -19.06% -35.07% -10.10% 9.48% -22.17% -26.22%
Mistral-v0 3-7B BS -42.99% -40.60% -27.11% -27.87% -42.26% -35.14% -44.04% -26.16%
' UBCE -6.98% -7.17% -29.69% -22.81% -11.82% -9.78% -46.32% -22.68%
Qwen-2.5-7B BS 2.57% -9.60% -53.38% -49.87% 5.39% -14.64% -44.25% -40.36%
' UBCE 43.76% 47.43% -41.11% -52.10% 52.56% 40.07% -35.32% -47.39%
~~~~~~ BNB (pre) = GPTQ (pre) ---Perfect Calibration == BNB (pre) o GPTQ (pre) -=--Perfect Calibration

—— BNB (post) —— GPTQ (post) —— BNB (post) —— GPTQ (post)

Cumulative Density

0.0 0.2 0.4 0.6
Confidence Score Values
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(b) Distributions of VCAA for Incorrect Answers

Figure 2: Distributions of Confidence Scores for Calibrated Quantized Models on the ARC-Challenge Dataset

datasets, corresponding ground truth answers,
model-generated responses, and associated cor-
rectness scores derived from our evaluation func-
tion. We construct these instances by combining
soft prompt tokens with instruction prompts and
question-answer pairs, using the correctness evalu-
ation function’s output as ground truth labels. To
ensure dataset quality while maintaining computa-
tional efficiency, we implement a 4,000-sample cap
per source dataset, using complete datasets when
they fall below this threshold. Model responses
and correctness scores are systematically collected
following the Response Generation procedure out-
lined in our evaluation pipeline (detailed in Ap-
pendix E). This comprehensive approach yields a
training dataset that maintains consistency across
model variants while supporting effective calibra-
tion fine-tuning. The training resources usage is
reported in Table 8.

4.4 Post Calibration Empirical Analysis

We evaluate the effectiveness of our proposed post-
calibration method in terms of the calibration error
of quantized LLMs. To be specific, the calibra-
tion error difference between post-calibrated and
pre-calibrated models is given in Table 2, where a
difference smaller than 0 indicates a post-calibrated
model has a lower calibration error, indicating the
effectiveness of the post-calibration process. On
different models and datasets, almost 80% of the
cases (38 out of 48) show a significantly lower cal-
ibration error after the post-calibration. These sys-
tematic improvements indicate that our proposed
post-calibration process effectively addresses the
discrepancy between confidence and correctness
introduced by quantization.

We further give detailed analysis of confidence
score distributions, conditioned on answer cor-
rectness to show this improvement. Specifically,
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Figure 2 demonstrates that post-calibrated models
achieve better alignment with the ideal calibration
distribution. This improvement is quantitatively
verified through calibration error measurements for
both correct and incorrect answers. For the confi-
dence scores conditioned on correct answers Figure
2 (a), the GPTQ quantized model’s calibration er-
ror decreased from 0.39 to 0.19, while the BNB
quantized model’s error reduced from 0.37 to 0.24.
In addition, incorrect answers in Figure 2 (b), the
GPTQ model’s calibration error improved from
0.85 to 0.74, and the BNB model showed a sub-
stantial reduction from 0.86 to 0.21. This improve-
ment is consistent with the overall improvements
in calibration performance in Table 2, indicating
the effectiveness of our proposed post-calibration
in reducing calibration error in quantized models.

Additionally, to evaluate the scalability of our ap-
proach, we examined the effect of both model
size and the number of trainable soft-prompt to-
kens. For different scaled models, we conducted
experiments on the ARC dataset using VCAA as
confidence-score measures measured by UBCE
across Qwen-2.5 models ranging from 0.5B to 32B
parameters with both BNB and GPTQ quantization
techniques. Results in Table 10 demonstrate that
the problem of quantization-induced calibration
degradation exists across all model sizes, indicating
that larger models cannot inherently compensate
for this effect. Importantly, our proposed calibra-
tion approach effectively reduced calibration error
for both quantization methods. We further inves-
tigated the impact of soft-prompt token quantity
using Mistral-v0.3-7B on the CommonsenseQA
dataset, varying the count from 128 to 512 tokens.
As shown in Table 9, increasing the number of
soft-prompt tokens generally improved calibration
performance, confirming that our approach scales
effectively with both model size and prompt length.

4.5 Reliability Diagram of Calibration

To compare pre- and post-calibrated models, we
adopt the reliability diagram to show their perfor-
mance of binECE (Guo et al., 2017). Specifically,
Figure 3 shows the binECE performance in terms
of accuracy versus confidence, where the dashed
black line represents perfect calibration—the ideal
scenario where nominal predictions of correctness
align exactly with empirical accuracy. Across Fig-
ure 3 (a)-(c), it is observed a consistent pattern of

calibration error reduction from the post-calibrated
models. This improvement can be implied by the
decreased calibration gap between the top of the
bins and the perfect calibration reference line when
comparing the post-calibrated model to both the
full precision and pre-calibrated models.

The post-calibrated model exhibits several empty
bins in the range of low confidence. This pattern
demonstrates improved calibration behavior. The
absence of predictions in these ranges reflects the
model’s ability to consistently produce high confi-
dence scores for the dataset that contains its own
generated response, which predominantly contains
correct answers. The concentration of confidence
scores in high-accuracy bins aligns with the ex-
pected behavior for a well-calibrated model.

4.6 Confidence Score Adaptation

To examine the effectiveness of calibration on fine-
tuned quantized models at the sample level, we
conducted a case study using the ARC-Challenge
dataset, as illustrated in Figure 4. While our pre-
vious analysis demonstrated improved calibration
through summary statistics and confidence score
distributions, this case study allows us to verify
these improvements at the most granular level.
Specifically, we analyzed how confidence scores
changed for individual question-answer pairs, ex-
amining whether these scores better aligned with
the ground truth correctness after fine-tuning. The
results, shown in Figures 4 (a) and (b), demon-
strate improved calibration performance for both
BNB and GPTQ quantized Llama models for two
cases which are the correct answer and incorrect
answer, with updated confidence scores more ac-
curately reflecting answer correctness comparing
to the original confidence score generated by the
uncalibrated quantized models.

4.7 Baseline Calibration Techniques
Comparison

To contextualize the effectiveness of our ap-
proach, we benchmarked it against two widely used
tuning-free calibration techniques—temperature
scaling and isotonic regression. Both baselines
learn a monotonic mapping from the model’s raw
confidence scores to calibrated probabilities: tem-
perature scaling optimizes a single scalar tempera-
ture via negative log-likelihood, while isotonic re-
gression fits a piece-wise constant non-decreasing
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Figure 3: Reliability Diagram for Evaluating the Calibration of Confidence Scores

Table 3: Brier Score (left block) and Upper-Bound Calibration Error (right block) for three calibration methods ({
lower is better). Best value within each (Calibration Error Metric, Quantization, Confidence Score) column is bold.

Calib. Method Brier Score UBCE
GPTQ BNB GPTQ BNB
CCTP VCAA CCTP VCAA CCTP VCAA CCTP VCAA
Temperature Scaling  0.249 0.251 0.249 0.251 0.499 0.499 0.499 0.499
Isotonic Regression 0.261 0.248 0.298 0.248 0.472 0.492 0.468 0.492
Ours 0.181 0.244 0.176 0.286 0.456 0.387 0.455 0.381

function. Experiments were conducted with a quan-
tized Mistral-v0.3-7B model on the ARC dataset.
The comparison of calibration errors for the cali-
bration approaches is summarized in Table 3. Our
post-training calibration consistently outperforms
both baselines on every metric, demonstrating supe-
rior alignment between predicted confidences and
empirical accuracies.

4.8 Impact on Accuracy of Downstream Task
and Generalization

Since calibrating confidence scores can inadver-
tently alter model outputs, we investigated the
change in accuracy of the quantized model before
and after calibration on the downstream tasks and
cross-domain generalization tasks.

Downstream tasks. After calibration, we as-
sessed answer accuracy on ARC and Common-
senseQA with the Mistral-v0.3-7B model (Table 4).
Calibration increased average accuracy by 7%, in-
dicating that our method simultaneously improves
probabilistic reliability and task performance.

Generalization. To evaluate the impact of our
calibration on the generalization tasks, we mea-
sured the accuracy of the pre- and post-calibrated
Llama-3.1-8B-bnb model on the MMLU bench-
mark dataset (Table 11). The average accuracy
decreased by less than 2%, indicating that our pro-

posed post-calibration keeps the generalization of
quantized models on other tasks.

Table 4: Down-stream accuracy on ARC and CSQA
before and after our post-calibration of Mistral-7B-v0.3
model (1 higher is better). Best accuracy is in bold.

Quant. Model ARC CSQA
GPTQ Baseline (Mistral) 0.648  0.455
+ Post-Calibration 0.746  0.448
BNB Baseline (Mistral) 0.660  0.555
+ Post-Calibration 0.683  0.717

5 Related Work

Uncertainty quantification in large language mod-
els (LLMs) has emerged as a critical research area,
leading to numerous approaches for estimating con-
fidence scores. However, while uncertainty quan-
tification in standard LLMs has received consider-
able attention, its application to quantized models
remains understudied, particularly for generative
tasks that characterize modern LLM applications.

Previous research in this domain has been limited
in scope. Proskurina et al. (2024) investigated un-
certainty calibration of quantized LLMs, but their
work primarily addressed single-token classifica-
tion in multiple-choice scenarios. This narrow fo-
cus leaves critical questions unanswered about cal-
ibration in more complex generative tasks, such as

30510



Question: Beavers build their homes in ponds
and streams. Which characteristic is least criti-
cal to building homes in an aquatic environment?
Choices: [’waterproof fur’, *webbed hind feet’,
’large, sharp teeth’, *flat, wide tail’].

Ground Truth Answer: large, sharp teeth

Question: An atom of which element contains
one more proton than one atom of chlorine (CI)?
Choices: [’sulfur (S)’, ’argon (Ar)’, ’fluorine (F)’,
’bromine (Br)’].

Ground Truth Answer: argon (Ar)

Model Generated Answer: large, sharp teeth
Answer Correctness: 1

Full Model VCAA: 0.75
BNB Model VCAA: 0.75 — 0.95
GPTQ Model VCAA: 0.25 — 0.5

Model Generated Answer: bromine (Br)
Answer Correctness: 0

Full Model VCAA: 0.75
BNB Model VCAA: 0.5 — 0
GPTQ Model VCAA: 0.5 — 0

(a) Correct answers.

(b) Incorrect answers.

Figure 4: Confidence of quantized LL.Ms between pre-calibration and post-calibration on correct answers (a) and
incorrect answers (b). The question is from the ARC-Challenge dataset. The change in calibration is represented as
(pre-calibrated confidence scores — post-calibrated confidence scores).

open-ended question answering.

Recent promising approaches to uncertainty quan-
tification, while innovative, face substantial
methodological challenges. Huang et al. (2023)
introduced the Variation Ratio for Original Pre-
diction (VRO), which employs a sentence trans-
former model to evaluate response consistency as
a proxy for confidence (Reimers, 2019). However,
this method encounters significant limitations in
real-world applications. First, its effectiveness is
compromised in scenarios with multiple valid re-
sponses, as it assumes the sentence transformer can
accurately comprehend context and assess consis-
tency. Furthermore, maintaining the effectiveness
of these auxiliary models presents an ongoing chal-
lenge, as they must be continuously updated to
keep pace with rapidly evolving LLM capabilities.

Another notable approach, proposed by Yadkori
et al. (2024), measures response independence for
confidence scoring. This method operates on the
assumption that an LLM’s generation probabilities
for confident responses remain stable regardless of
additional input information, such as hints or previ-
ous answers. However, this approach assumes that
LLMs can robustly discriminate relevant prompt
information—a capability that current open-source
LLMs have not yet demonstrated, as they typically
process all prompt information indiscriminately.

Kapoor et al. (2024) has shown promising results
in reducing model calibration error through direct
training on answer correctness evaluation. Their ap-
proach achieved notable improvements in Expected

Calibration Error using a confidence score function
similar to our proposed C'CT' P approach. How-
ever, their work lacks the theoretical foundations
necessary to explain these improvements, limiting
our understanding of why these methods succeed
and how they might be further enhanced.

Our work addresses these limitations by focusing
on three key aspects: identifying the calibration gap
in quantized LLMs, providing a theoretical founda-
tion for understanding this gap, and introducing a
post-calibration method with theoretical guarantees.
This comprehensive approach advances the field
beyond existing empirical studies and provides a
more robust framework for uncertainty calibration
in quantized LLMs.

6 Conclusion

In this work, we presented a systematic investiga-
tion of uncertainty calibration for quantized LLMs.
First, we propose a upper bound calibration error
(UBCE) that provides deeper insights on calibra-
tion performance. Second, our empirical analysis
definitively establishes that quantized models con-
sistently demonstrate higher calibration errors than
full-precision ones. Finally, we propose an efficient
method to recover the calibration gap of quantized
models based on soft-prompt tuning. The tuning
process can explicitly reduce the upper bound cali-
bration error with a theoretical foundations. This
facilitates more reliable quantization of LLMs in
resource-constrained environments.
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Limitations

As the demand for more sophisticated LLLMs con-
tinues to grow, so does their environmental impact.
This limitation underscores the urgent need to ex-
plore and adopt more sustainable practices and
technologies in the development and learning to
calibrate with fewer optimization steps to mitigate
their ecological footprint.
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Appendix

A Derivation of UBCE Definition and
Inequalities

The Upper Bound Calibration Error (UBCE) could
be derived as an upper bound for both Brier Score
and binnedECE.

Recall the definition of binnedECE,
bInECE(?, 7) 2 S B, o) [(6 — )1 (E € Z,)])
j€[m]

where 7 = 71, ...,7Z,, defines the partition set.
Then, we will show that UBCE is an upper bound

for binnedECE.
XIW

[m]

<Y
j€lm]
by Jensen’s inequality

= D E[E[(E~¢) - I(¢ € 1)]|e]
Jj€[m]

by tower rule

binnedECE = (¢ € )]

¢ € 1))

= P(c=0)

XZE ¢—0)-I(¢€Ij)le=0]
j€[m]

+ P(c=1)

« STE[(E—1) - 1@ € L)lfe = 1]
jelm]

= P(c=0)

X Z [¢-I(¢ € Ij)|c=0]

[m]
+P(c:1)
XZ (1 —=¢)-I(¢ e 1j)|c=1]
[m]

since ¢ € [0, 1]

= P(c=0)

xE[Y e I(¢€ I)|e=0]

jelm]
+ P(c=1)
xE[> (1-¢)-I(¢€Ij)e=1]
Jj€lm]

= P(c = 0)E[¢|c = 0]

+Plc=1)(1-E[¢|e =1))

=UBCE
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Similarly, recall the definition of Brier Score,
BS £ E..(o1;[(¢ — ¢)?].

Then, we will show that UBCE is an upper bound
for the Brier Score:

— 1
BS == (& —c)’
S ni(c ci)

1
= *Zé? —|—CZ2 — 2¢;¢;
"
Since ¢ < ¢; for & € [0, 1]
and ¢ = ¢; for ¢; € {0,1}

I R
< EZCH—Q_%M
K3

1
= — ic(l=0)+(1—¢a) G
DNRIEL RN
= UBCE

B Derivation of UBCE < BCE

Denote

¢ ng as the number of correct answers
¢ ny as the number of incorrect answers

* n = ng + nq as the total number of answers
The sample estimator of U BC'E could be obtained

naturally from its formal definition:

UBCE = P(c = 0)E[¢|c = 0]
+Plc=1)(1—E[é¢|lc =1])

— no 1 “
UBCE = — i 1(c; =0
n0+n1nozc (c )

i

ni 1 .
— 1-— (e =1
ny + ni ny ( &) 1lei )
1
= Cr - I [ — O
no + nq ¢ Ie )

+(1-¢) ¢
1
= ci-(1-¢
7104-71121.:z ( 2
+(1—¢) ¢
1

Similarly, the sample estimator of Binary Cross
Entropy (BCE) could be obtained as:

BCE = c¢- —log(¢) + (1 —¢) - —log(1 — ¢)
1 A
BCE = - ; [cl- - —log(¢é;)

+ (1 —¢) - —log(1 - éi)}

Putting the sample estimator of BCE and UBCE
together and compare every term,

Um—iZ[Ci-(l—éi)
+(1—Ci)'éi:|
BCE = 312 [ci - —log(¢é;)

+ (1 —¢) - —log(l - éi)}

Note that (1 —¢;) < —log(¢;) and ¢; < —log(1 —
¢;) for ¢; € [0, 1] with log base 2 and e. Therefore,
UBCE < BCE for log with base 2 and e. Strict
equality occurs only at optimality.

C Soft Prompt Tuning Details

The calibration process employs Supervised Fine-
Tuning (SFT) with Cross Entropy loss, imple-
mented through PyTorch. The initial soft prompt
text is included in Appendix D. The pseudo code
of soft prompt tuning is provided below in Algo-
rithm 1. Specifically, soft prompt tuning begins
by initializing a sequence of learnable embeddings
e, ...ey that act as 'virtual tokens” with text prompt
detailed in Appendix D (line 2). We then freeze
all the weights of the quantized LLM and train
only these new embeddings (line 3). For each train-
ing example (x,y) from the dataset, we first to-
kenize the input x into numerical tokens x (line
6). Next, we prepend the learnable embeddings
[e1, ...ex] to these tokens, forming the combined
input E = [e1, ...ex, X] (line 7). We feed this aug-
mented sequence into the model and compute the
perplexity loss by comparing the model’s output
to the target y (line 8). Finally, we adjust the soft
prompt embeddings to minimize that loss (line 9),
while leaving the LLM itself untouched. This iter-
ative process continues across the entire training
set, yielding a tailored prompt that effectively di-
rects the frozen model toward producing the correct
output. Please see Figure 5 for a diagram that pro-
vides a holistic overview of the soft prompt tuning
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Algorithm 1: Soft-Prompt Learning for a
Quantized LLM
Input: Quantized LLM f, training data D
Output: Soft-prompt embeddings

e1,...,eg
###-— Initialization ——#4#
1 Initialize ey, . . ., e} with textual tokens or
random vectors
2 Freeze all parameters of f; Only ey, ..., ex
are trainable
###-— Optimization loop ——###

3 foreach (x,y) ~ D do

4 | X < Tokenize(x)

5 E(—[el,...,ek,i]

¢ | L+ PPL(f(E),y) from Eq. (7)
7 Update ey, . . ., e to minimize £
s end

process used for the uncertainty calibration of a
quantized LLM.

Specifically, the training hyperparameter used in
the fine-tuning is in the Table 5.

Table 5: Hyper-parameters used for soft-prompt tuning

Hyper-parameter Value

Task type CAUSAL-LM
Prompt-tuning initialization =~ Text

Number of virtual tokens 256

Optimizer AdamW

LR scheduler Linear
Warm-up steps (%) 3%

Learning rate 107°

Batch size 1

Fine-tuning epochs 50

Complete training performance metrics are docu-
mented in Table 6.

D Initialization Prompt for Soft Prompt
Tuning

"Before formulating your response, take the neces-
sary time to thoroughly read and analyze the pro-
vided instructions and the question. Ensure that you
fully comprehend all requirements, constraints, and
nuances of the request. Carefully consider how to
structure your response to address each component
effectively while adhering to any specified format-
ting or style guidelines. Once you have achieved a

Quantized Large
Language Model

Prompt

Question

Answer

Question

Answer

Input Tokens Frozen Weight

Figure 5: Visual representation of the Soft Prompt Tun-
ing process for a Quantized Large Language Model.
Trainable soft prompt tokens are prepended to input to-
kens and processed by a frozen LLM. The PPL loss on
the confidence prediction is used to update only the soft
prompts.

Trainable Soft
Prompt Tokens

complete understanding of the question, construct
a comprehensive and well-structured response that
reflects your careful consideration of all aspects
of the task. Pay close attention to the context of
the question, recall all relevant information, and
use it appropriately into your answer.Both the an-
swer to the question and your response should be
accurate, concise, and directly address the question
without unnecessary elaboration. If any of these
criteria are not met-such as incorrect information,
excessive verbosity, or failure to directly answer
the question-the response should be considered in-
correct or inadequate and revised accordingly."

E Evaluation Pipeline

The evaluation pipeline systematically assesses cal-
ibration performance through a four-stage process
that generates model responses, computes confi-
dence scores, evaluates calibration metrics, and
quantifies calibration gaps between full-precision
and quantized models.

1. Response Generation. Model responses are
collected through iterative prompting, where
each subsequent generation incorporates all
previous responses in the input prompt. The
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process employs greedy decoding for repro-
ducibility and continues for seven iterations,
yielding between one and seven unique re-
sponses per model (allowing for repetition).
Each response is then evaluated for correct-
ness using dataset-specific evaluation func-
tions.

. Confidence Score Computation. Confidence

scores are generated for the complete set of
responses collected across all models. This
comprehensive approach requires each model,
whether quantized or full-precision, to evalu-
ate both its own responses and those generated
by other models, ensuring consistent compari-
son across the unified response set.

. Calibration Metric Assessment. Calibration

errors are computed by measuring the align-
ment between predicted confidence scores and
actual correctness values. These metrics quan-
tify how well each model’s confidence predic-
tions correspond to its true performance.

. Comparative Analysis. The calibration per-

formance gap between quantized and full-
precision models is expressed as a relative
percentage difference:

(CEq — CEp) x 100

Difference (%) = L
F

®)
where C'Eg and C'Er represent the calibra-
tion errors of the quantized and full-precision
models, respectively. This metric provides
a direct measure of how quantization affects
calibration performance relative to the full-
precision baseline.

Training Result

Table 6: Training and validation loss for each 7B quan-
tized model.

Model Quantization Trainloss Valid loss

Llama BNB 0.11 0.09
Llama GPTQ 0.11 0.09
Mistral BNB 0.19 0.21
Mistral GPTQ 0.19 0.25
Qwen BNB 0.15 0.05
Qwen GPTQ 0.14 0.06

G Computational Resource

Table 7: Configuration of Computational Resource

Name Value
Computing Infrastructure GPU
GPU Model NVIDIA-A100
GPU Memory 80GB
GPU Number 1
CUDA Version 12.1

CPU Memory 128GB

H Training Resource Usage

Table 8: Training throughput and peak GPU memory
for different quantization schemes.

o Training speed Memory usage
Quantization (samp%es /s) ( )
None 10 23257
GPTQ 4 24643
AWQ 3 13243
BNB 6 13661

I Calibration Error for Different Number
of Soft Prompt Tokens

Table 9: Calibration error for different number of soft
prompt tokens after fine-tuning.

Measure LFOMPL ypep g
Tokens
128 0504  0.299
CCTP 256 0.505  0.240
512 0447 0276
128 0431 0313
VCAA 256 0.3%0  0.303
512 0351 0.285

J Model and Packages

All models are sourced from the Huggingface plat-
form (Wolf et al., 2020). The list of models used

are:

1. Qwen/Qwen2.5-7B-Instruct-GPTQ-Int4

2. unsloth/Qwen2.5-7B-bnb-4bit

3. Qwen/Qwen2.5-7B-Ins

truct

4. parasail-ai/Mistral-7B-Instruct-v0.3-GPTQ-

4bit
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Table 10: Upper Bound Calibration Error (UBCE) for varying sizes of Qwen-2.5 models evaluated on the ARC
dataset using VCAA confidence scores (] Lower is better). Model size is denoted in billions of parameters (B).

Model Type 0.5B 1.5B 3B 7B 14B  32B

Full Model 0.666 0.460 0.394 0.357 0.436 0.187
GPTQ Model 0.482 0.473 0.408 0.441 0.443 0.184
Calibrated GPTQ Model 0.253 0.454 0.321 0.216 0.471 0.145
BNB Model 0.603 0.482 0.358 0.449 0.457 0.189

Calibrated BNB Model  0.259 0.469 0.319 0.270 0.415 0.165

5. unsloth/mistral-7b-instruct-v0.3-bnb-4bit L Code

6. hugging-quants/Meta-Llama-3.1-8B-
Instruct-GPTQ-INT4

The source code can be found on GitHub.
7. unsloth/Meta-Llama-3.1-8B-Instruct-bnb-

4bit
8. meta-llama/lLlama-3.1-8B-Instruct

9. mistralai/Mistral-7B-Instruct-v0.3

The experiments were conducted using the
vLLM (Kwon et al., 2023) framework and the Hug-
gingface Transformers library.

K MMLU Accuracy

Table 11: MMLU accuracy of Llama—-3.1-8B-BNB
before and after calibration. A denotes the accuracy
gap. The overall accuracy drop is < 2%, indicating
generalization is preserved.

Category Pre-Calib. Post-Calib. A

subcat:math 0.472 0.444 —0.028
subcat:health 0.717 0.681 —0.036
subcat:physics 0.577 0.559 —0.017
subcat:business 0.682 0.668 —0.014
subcat:biology 0.782 0.784 0.002
subcat:chemistry 0.564 0.528 —0.036
subcat:computer science  0.638 0.590 —0.049
subcat:economics 0.685 0.658 —0.027
subcat:engineering 0.634 0.607 —0.028
subcat:philosophy 0.631 0.606 —0.025
subcat:other 0.768 0.768 0.000
subcat:history 0.767 0.763 —0.003
subcat:geography 0.843 0.823 —0.020
subcat:politics 0.781 0.779 —0.002
subcat:psychology 0.786 0.762 —0.024
subcat:law 0.532 0.527 —0.005
subcat:sociology 0.866 0.846 —0.020
cat:STEM 0.581 0.556 —0.025
cat:humanities 0.620 0.607 —0.013
cat:social sciences 0.769 0.749 —0.019
cat:other 0.723 0.701 —0.022
overall 0.667 0.649 —0.019
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