
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 2934–2952
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

TRACT: Regression-Aware Fine-tuning Meets
Chain-of-Thought Reasoning for LLM-as-a-Judge

Cheng-Han Chiang
NTU GICE

Taiwan
dcml0714@gmail.com

Hung-yi Lee
NTU GICE

Taiwan
hungyilee@ntu.edu.tw

Michal Lukasik
Google Research

New York
mlukasik@google.com

Abstract

The LLM-as-a-judge paradigm uses large lan-
guage models (LLMs) for automated text eval-
uation, which assigns a score to the text based
on some scoring rubrics. Existing methods
for LLM-as-a-judge use cross-entropy (CE)
loss for fine-tuning, which neglects the nu-
meric nature of score prediction. Recent work
addresses numerical prediction limitations of
LLM fine-tuning through regression-aware fine-
tuning, which, however, does not consider
chain-of-thought (CoT) reasoning for score pre-
diction. In this paper, we introduce TRACT
(Two-stage Regression-Aware fine-tuning with
CoT), a method combining CoT reasoning with
regression-aware training. The training objec-
tive of TRACT combines the CE loss for learn-
ing the CoT reasoning and the regression-aware
loss for the score prediction. TRACT consists
of two stages: first, a seed LLM is fine-tuned
to generate CoTs; next, we retrain the seed
LLM using the CoTs generated by the LLM
trained in stage 1. Experiments across four
LLM-as-a-judge datasets and two LLMs show
that TRACT significantly outperforms existing
methods. Extensive ablation studies validate
the importance of each component in TRACT.1

1 Introduction

Large Language Models (LLMs) have been ap-
plied to evaluate written based on the fine-grained
evaluation rubrics specified in the input by out-
putting a score indicating the quality (Chiang and
Lee, 2023a). The fine-grained evaluation rubrics
define the criteria for scoring answers, and each
instance to be evaluated can have a set of cus-
tomized fine-grained evaluation rubrics. This LLM-
as-a-judge paradigm has become the standard way
to evaluate LLMs (Zheng et al., 2023; Dubois et al.,
2024; Abdin et al., 2024; Lambert et al., 2025),
and has applications across diverse scenarios (Yuan

1All code and models can be found at https://github.
com/d223302/TRACT.

LLM-as-a-Judge

Input

Target CoT

'1' '2' '3' '4' '5' 'a' 'b'
......

Ground truth score

RAFT Loss:

CE Loss

str

(a) CoT-RAFT fine-tuning objective (§3.2).

 🔥

Input

 ❄

Input

 🔥

Input

Step 1: Train Step 2: Train

Score

CE Loss RAFT Loss

CE Loss

RAFT Loss

(b) TRACT algorithm (§3.3).

Figure 1: TRACT method overview. (a) Illustration of
the CoT-RAFT fine-tuning objective (Eq. 4), used in
both stages of TRACT. (b) Two fine-tuning stages of
TRACT (also see Algorithm 1). Stage 1: model ps is
trained over the ground truth scores and the annotation
CoTs (generated by the annotation model pa). Stage
2: CoT supervision is sampled from ps (frozen at this
stage) and used to fine-tune the final model ptract.

et al., 2024; Chiang et al., 2024). To induce the
fine-grained assessment ability of LLMs, LLM-as-
a-judge is typically trained with cross-entropy (CE)
loss to predict chain-of-thought (CoT) reasoning
about the evaluation, followed by a score (Kim
et al., 2024a,b; Li et al., 2024).

Although fine-tuning LLM-as-a-judge with CE
loss is a well-established practice (Kim et al.,
2024a,b), it has intuitive limitations when applied
to predicting numerical targets. For example, given
a ground truth score ’1’, placing high probability
on the token ’5’ is penalized the same as placing
high probability on the token ’2’, despite the fact
that they induce very different errors in terms of
numerical metrics such as squared error. To miti-

2934

https://github.com/d223302/TRACT
https://github.com/d223302/TRACT

gate this, Lukasik et al. (2025) proposed regression-
aware fine-tuning (RAFT; see §2.3), a method us-
ing squared error loss in fine-tuning LLMs.

RAFT has shown promising results on regres-
sion tasks; however, it does not incorporate CoT
reasoning (Wei et al., 2022; Kojima et al., 2022).
Chiang and Lee (2023b) show that not using CoT
can harm the performance of LLM-as-a-judge. This
makes us ask: Can CoT reasoning be effectively in-
tegrated into regression-aware fine-tuning?

In this paper, we propose Two-stage Regression-
Aware fine-tuning with CoT reasoning (TRACT),
a method that combines the benefits of CoT reason-
ing with RAFT for improved numerical prediction
abilities.. In stage 1, TRACT fine-tunes the seed
LLM over both the CoT supervision and the ground
truth scores in the original training data. TRACT’s
fine-tuning objective (which we refer to as CoT-
RAFT) is the sum of CE loss over the CoT, and the
RAFT loss over score prediction (see Figure 1a). In
stage 2, TRACT fine-tunes the seed LLM from the
CoTs generated by the model trained in stage 1 us-
ing the same CoT-RAFT objective. This two-stage
pipeline is for reducing the distribution between the
seed LLM and the CoT supervision used for fine-
tuning in stage 2 (see Figure 1b). We summarize
TRACT in Algorithm 1 and contrast its formulation
against baselines in Table 1.

We conduct experiments on five datasets and
two LLMs and show that TRACT consistently out-
performs baselines by a large margin, including
Prometheus-2-7B (Kim et al., 2024b), which is the
best model of equal size from prior works. Our
contributions are as follows:
(i) We propose TRACT, a fine-tuning method

that combines CoT reasoning with regression-
aware loss to improve the numerical scoring
ability of LLMs (§3).

(ii) We show that TRACT yields significant perfor-
mance improvements over existing baselines
for LLM-as-a-judge. We validate the impor-
tance of each component in TRACT with ex-
tensive ablations (§5, §6).

(iii) We show that TRACT, while trained on point-
wise LLM-as-a-judge datasets, can work well
on RewardBench (Lambert et al., 2024), a pair-
wise comparison dataset (§7).

(iv) We release our models. Our best model sur-
passes the prior state-of-the-art model of com-
parable size by 0.05 in Pearson’s correlation
when the inference-time compute is limited.

2 Background

We first introduce the notation and next review pre-
vious works on regression-aware numerical output
prediction with autoregressive models.

2.1 Notation

Let V denote a finite vocabulary of tokens, X ⊆ V∗

be a set of inputs comprising strings of tokens,
S ⊆ V∗ the set of CoT reasonings, and Y ⊂ R
be a set of numerical targets. We assume that each
y ∈ Y has a unique string representation str(y) ∈
V∗. Let P denote a ground-truth distribution over
X × S × Y , with the decomposition P(x, s, y) =
P(x) · P(s |x) · P(y | [x, s]), where [x, s] denotes a
string concatenation of x and s. Denote the training
data by Dtrain ∈ (X × Y)N , and each element in
Dtrain is composed of (x, y∗). Denote the training
data augmented with CoT by DCoT

train ∈ (X × S ×
Y)N , and each element in DCoT

train is composed of
(x, s∗, y∗), where s∗ can come from the human or
LLM annotation.

In this paper, we focus on LLM-as-a-judge ap-
plication; in this case, the input x ∈ X consists of
the instructions for LLM as a judge, the scoring
rubrics and a sample to be evaluated. The CoT rea-
soning s contains an analysis of the sample in the
inputs, and the target space is Y = {1, 2, 3, 4, 5}.
An example input-output pair is shown in Table 4
in the Appendix.

We denote an LLM by the probability distribu-
tion that it models given the input, that is, p(· |x).
We use subscripts to denote specific LLM variants:
p0 represents the seed LLM before fine-tuning, and
pa represents the LLM annotator used to generate
the CoTs in DCoT

train.
In the following sections, we describe different

methods for training and inference of predictor ŷ.

2.2 Standard Fine-tuning and Decoding with
No CoT

Fine-tuning without CoT seeks to adapt a seed
LLM p0(·|x) to the target distribution P by mini-
mizing a suitable loss function ℓ : Y ×∆V∗ → R,
where ∆V∗ denotes the set of distributions over a
set V ∗. A standard choice of ℓ is the cross-entropy
loss: ℓCE(y

∗, p) = − log p(str(y∗) |x), where
str(·) converts a numerical target y∗ to its string
representation. Inference is typically conducted by
standard (autoregressive) decoding, approximately
seeking the mode of the distribution p(· |x), i.e.,
ŷmode(x) := argmaxy∈Y p(y |x).

2935

Category Approach Predictor function ŷ(x) Fine-tuning loss Sec

Baselines

Standard fine-tuning and decoding w/o CoT argmaxy∈Y p(y |x) − log p(y∗ |x) §2.2

RAIL zero-shot (Lukasik et al., 2024)
∑

y′∈Y y′ · p(y′|x) N/A §2.3
RAFT (Lukasik et al., 2025)

∑
y′∈Y y′ · p(y′|x) (ŷ(x)− y∗)2 §2.3

Standard fine-tuning and decoding w/ CoT argmaxy∈Y p(str(y) | [x, ŝ]); ŝ ∼ p(· |x) − log p([s∗, y∗] |x) §3.1

Ours TRACT
∑

y∈Y p(str(y) | [x, ŝ]) · y; ŝ ∼ p(· |x) Algorithm 1 §3

Table 1: Approaches to autoregressive regression with decoder-based LLMs. Here, p(· |x) denotes a distribution
over possible outputs given an input string x, and ŷ(x) ∈ R a predictor function. Y denotes the targets space (unless
otherwise stated, {1, 2, 3, 4, 5}).

2.3 Regression-Aware Inference and
Fine-tuning

Recently, Lukasik et al. (2024) noted that stan-
dard autoregressive decoding in LLMs implic-
itly minimizes the 0-1 error metric, m(y, ŷ) =
1(y ̸= ŷ), making it suboptimal for regression
metrics. Motivated by the minimum Bayes risk
decoding framework (Kumar and Byrne, 2004),
Lukasik et al. (2024) propose Regression-Aware
Inference for Language models (RAIL). RAIL
aims to determine the Bayes-optimal prediction
by minimizing the expected loss: ŷRAIL(x)

.
=

argminv∈R Ey∼p(· |x) [m(num(y), v)] , where m is
the metric of interests and num(·) converts a string
output to its numerical equivalent. For squared error
loss, m(y, ŷ) = (y− ŷ)2, the optimal decision rule
simplifies to the expected value of the numerical
predictions. In the case of finite numerical targets
Y , this can be exactly calculated by scoring and
averaging a set of candidate targets:

ŷRAIL(x)
.
=

∑

y∈Y
p(str(y) |x) · y. (1)

While RAIL is based on the Bayes-optimal deci-
sion rule, directly applying this rule to a model fine-
tuned with CE loss can still result in high regres-
sion error. This is due to the misalignment between
the CE fine-tuning loss and the regression evalua-
tion metrics (Lukasik et al., 2025). To address this,
Lukasik et al. (2025) proposed incorporating the
RAIL optimal decision rule directly into the fine-
tuning process using squared loss, leading to the
Regression-Aware Fine-Tuning (RAFT) loss:

ℓRAFT(y
∗, p) = (y∗ − ŷRAIL(x))

2 . (2)

3 Method: TRACT

While achieving notable success on natural lan-
guage regression tasks such as STS-B (Cer et al.,

2017), RAIL and RAFT do not use CoT reasoning.
In this section, we start by discussing learning with
CoT, and next introduce our method that incorpo-
rates CoT into RAIL and RAFT.

3.1 Learning and Inference with CoT

LLM-as-a-judge typically decodes a CoT sequence
prior to outputting the final score (Chiang and
Lee, 2023b). LLM-as-a-judge is fine-tuned over
a dataset DCoT

train ∈ (X × S × Y)N of N (in-
put, CoT, target score) tuples drawn from P. The
CoT annotations s∗ often come from a power-
ful LLM (e.g. GPT-4); we denote the distribu-
tion of CoT annotations provided in the dataset
as pa(· |x). The empirical loss for fine-tuning is
L̂CoT(p) =

1
N

∑
(x,y∗,s∗)∈DCoT

train
ℓ(y∗, s∗, p).

A typical choice is again the CE loss, i.e.,
ℓCoT(y

∗, s∗, p) = − log p([s∗, y∗]|x). Inference
is typically done by generatively predicting
a CoT reasoning and the score, which sam-
ples from the distribution p, thus approximating
the mode of the distribution: ŷCoT mode(x)

.
=

argmaxy∈Y p(str(y) | [x, ŝ]); ŝ ∼ p(· |x).

3.2 Regression-Aware Fine-Tuning with CoT

CoT reasoning elicits a reasoning s before out-
putting the score y. We propose and define the
CR (CoT-RAIL) predictor as first sampling a CoT ŝ
conditioning on the input x, and then applying the
RAIL predictor when conditioning on x and ŝ,

ŷCR(x)
.
=

∑

y∈Y
p(str(y) | [x, ŝ]) · y; ŝ ∼ p(· |x)

(3)
A practical question is how to determine where the
CoT reasoning ends and where the score starts so
that the RAIL predictor can be used at the appropri-
ate position. In practice, we assume each CoT ends
with the string d =’ So the overall score is ’.
We include the string d at the end of each CoT in

2936

the training set to ensure that the fine-tuned model
always ends its CoT with d.

In principle, we can sample a CoT and obtain
the score prediction using Equation 3, repeat the
CoT sampling multiple times to estimate the score,
and average the scores. Unless stated otherwise, we
sample ŝ once, as shown in Equation 3.

For training, analogously to the original RAFT
algorithm, we use the CoT-RAIL predictor in the
squared error loss. To guide the model in gener-
ating CoTs, we apply CE loss to the CoTs. We
combine the two losses using a weighting coeffi-
cient λ, forming the CoT-RAFT objective:

ℓλCoT−RAFT(y
∗, pt, p) =

λ


∑

y∈Y
p(str(y) | [x, ŝ]) · y − y∗




2

− log p([ŝ, y∗] |x); ŝ ∼ pt(· |x),

(4)

where pt denotes the (target) model used to gener-
ate the CoTs for training, which can be pa (GPT-4),
but we explore other options next.

3.3 Self-Generated Chain-of-Thoughts (CoTs)

When training with CoT-RAFT (Eq. 4), the score
predictor is conditioned on the CoT generated by
a target model, denoted as ŝ ∼ pt(· |x). However,
at inference time, CoT-RAIL (Eq. 3) relies on self-
generated CoTs from the fine-tuned model p, i.e.,
ŝ ∼ p(· |x). In our case, the CoTs used for training
are from GPT-4 (pa) and may be very different
from the CoTs generated by the fine-tuned model
p. This creates a mismatch between the CoTs used
during training and inference, which can harm the
performance, as empirically shown in §5.

To mitigate the distribution shift in annotation
and model CoTs, we propose to fine-tune the model
using CoTs more closely aligned with those sam-
pled from the trained model p(· |x). Let ps de-
note the model initialized from the seed LLM p0
and fine-tuned on the annotation CoTs sampled
from pa. For each input x in the training data,
we prompt ps to generate a response containing
a CoT and a score prediction. We then discard
the score prediction and pair the generated CoT
with the corresponding original ground truth score,
creating a new training dataset, denoted as Dself .
Formally, Dself = {(x,CoTs(x), y

∗)|(x, y∗) ∈
Dtrain,CoTs(x) ∼ ps(·|x)}, where Dtrain is the
original training dataset, y∗ is the ground truth

score, and CoTs(x) is the CoT generated by ps
for input x.

We use Dself to train from the seed LLM p0 to
obtain the final TRACT model, ptract. The com-
plete algorithm for training the TRACT model is
shown in Algorithm 1 and Figure 1. In summary,
we first train the seed LLM on the training data
with the CoT annotation from pa to obtain ps, use
ps to generate CoTs to form Dself , and use Dself

to retrain p0 again, leading to the resulting model
ptract.

4 Experiment Setup

Models We fine-tune TRACT from two LLMs,
Mistral-7B-Instruct-v0.2 (Jiang et al., 2023) and
Llama-3.1-8B-Instruct (Grattafiori et al., 2024).
Training Dataset We follow Kim et al. (2024b)
and use Feedback Collection (Kim et al., 2024a) as
the training set. The training set contains roughly
100K samples. The whole dataset, including the
samples to be evaluated, the evaluation responses,
and ground truth scores, are generated by GPT-4.
We follow the procedure in §3.3 to construct Dself .
We analyze the quality of the self-generated CoTs
in Appendix B.1.
Test Datasets We use four datasets for point-wise
LLM-as-a-judge, following Kim et al. (2024b).

(1) Feedback Bench (Kim et al., 2024a): This is
the official test set of Feedback Collection. Feed-
back Bench contains 1K responses to evaluate. The
instructions and scoring rubrics in Feedback Bench
do not overlap with the training set.

(2) FLASK (Ye et al., 2024): This is a
fine-grained evaluation benchmark with 200
test prompts and 2000 responses from Alpaca-
7B (Taori et al., 2023), Vicuna-13B, Bard (Google,
2023), and GPT-3.5-Turbo-0613.

(3) Vicuna Bench (Chiang et al., 2023): This is
a single-turn dialogue dataset with 80 user instruc-
tions. Kim et al. (2024a) extends this dataset for
LLM-as-a-judge by crafting the scoring rubrics for
each user instruction and generating responses by
WizardLM-13B (Xu et al., 2024), Vicuna-13B (Chi-
ang et al., 2023), Llama-2-Chat-13B (Touvron
et al., 2023), and ChatGPT-3.5-Turbo-0613. The
dataset contains 320 responses to evaluate.

(4) MT Bench (Zheng et al., 2023): MT Bench is
a multi-turn dialogue dataset with diverse tasks. To
form a direct assessment dataset, Kim et al. (2024a)
prepare human-written rubrics and generate the
dialogue responses from WizardLM-13B, Vicuna-

2937

Algorithm 1 TRACT: Two-stage Regression-Aware fine-tuning with CoT reasoning

1: input: CoT annotations distribution pa, base model p0, training data {(x, y∗)}, mixing coefficient λ.
2: stage 1: train ps using the objective ℓλCoT−RAFT(y

∗, pa, p) initializing from p0
3: stage 2: train ptract using the objective ℓλCoT−RAFT(y

∗, ps, p) initializing from p0
4: return ptract

13B, Llama-2-Chat-13B, and ChatGPT-3.5-Turbo-
0613. The dataset has 320 responses to evaluate.
Baselines We compare TRACT against multiple
baselines that differ in their training objectives and
in whether they use CoT reasoning, including: (1)
Standard fine-tuning and decoding without CoT
(§2.2), (2) Standard fine-tuning and decoding with
CoT (§3.1), (3) Zero-shot RAIL: Using RAIL pre-
dictor (Equation 1) on the seed LLM p0, (4) RAFT
(§2.3). A detailed comparison of the baselines is
shown in Table 1.

We also compare with (5) Prometheus-2-
7B (Kim et al., 2024b), a model obtained by merg-
ing the model trained on Feedback-Collection
and another model trained on Preference Collec-
tion (Kim et al., 2024b), a pairwise ranking dataset.
Kim et al. (2024b) show that merging the mod-
els trained on two datasets significantly improves
the performance. Prometheus-2-7B is trained from
Mistral-7B-Instruct-v0.2, the same seed LLM used
in this paper, and it is the best open-source model
of the same size for LLM-as-a-judge currently.
Training and Evaluation We fine-tune the
LLMs with LoRA (Hu et al., 2022) using Llama-
Factory (Zheng et al., 2024). We set λ = 1 in
Equation 4 unless otherwise stated.

During inference, for each sample in a dataset,
we predict a score from the LLM using either stan-
dard decoding or the predictor in Equation 1 or
3, and calculate the correlation coefficient against
the ground truth scores in the datasets. We report
Pearson’s r (Pearson, 1895), Spearman’s ρ (Spear-
man, 1961), and Kendall’s τ (Kendall, 1938) (see
Kendall’s τ results in Appendix B.2; we find the
trends to be consistent with other metrics).

5 Main Results

The results for Mistral are presented in Table 2, and
the results for Llama are in Table 7 in the Appendix.
The first five rows (B.1∼B.5) in the two tables
correspond to the five baselines in §4 in the same
order. We next discuss the main observations.
TRACT outperforms standard training and de-
coding with CoT. Standard training and decod-

ing with CoT (row B.2) is the default training
and inference for LLM-as-a-judge in most prior
works (Kim et al., 2024a,b). For both Mistral and
Llama, TRACT (row 7) outperforms this baseline
by a significant margin. When the base model is
Mistral, TRACT reaches Pearson’s r as high as
0.650, significantly outperforming training and in-
ference with CoT (row B.2), which only attains
Pearson’s r of 0.557. When using Llama, TRACT
improves the average Pearson’s r by 0.100.
TRACT outperforms prior equally-sized SoTA.
Across all datasets, TRACT, trained without addi-
tional data, consistently outperforms Prometheus-
2-7B (row B.5), the prior SoTA of the same size, by
an average of 0.059 Pearson’s r. While we use self-
generated data, this differs from Prometheus-2-7B,
which is further trained on Preference Collection,
a dataset generated by GPT-4.
TRACT outperforms RAFT. RAFT (row B.4)
can be considered as an ablation of TRACT that
removes CoT. TRACT outperforms RAFT, show-
ing that CoT helps the model predict the score.
Quite surprisingly, RAFT achieves the best per-
formance among all baselines. RAFT even outper-
forms Prometheus-2-7B (row B.5) by 0.032 Pear-
son’s r, which is trained over additional data corre-
sponding to a ranking task. The same observation
holds for the models trained using Llama-3.1.

Next, we ablate each component of TRACT.
Training on self-generated CoTs is critical.
Row A.1 corresponds to training with CoT-RAFT
on the GPT-4 generated data, and running inference
with CoT-RAIL, without further training on self-
generated CoTs. The average Pearson’s r without
training on self-generated data is 0.094 lower than
TRACT. This shows that self-generated CoT is an
important component of TRACT.
Using CE for training harms the performance.
Row A.2 is the result when we replace the fine-
tuning objective from CoT-RAFT with the standard
CE loss but still use CoT-RAIL in inference. This
configuration leads to a Pearson’s r 0.033 lower
than TRACT. This shows that using CoT-RAFT for
fine-tuning better aligns the fine-tuning objective

2938

Train/Inference Configuration FB Bench FLASK Vic. Bench MT Bench Average
Id CoT Train Data Inf. r ρ r ρ r ρ r ρ r ρ

Baselines
B.1 ✗ CE GPT-4‡ Decode 0.890 0.891 0.355 0.361 0.429 0.414 0.279 0.268 0.488 0.483
B.2 ✓ CE GPT-4 Decode 0.872 0.872 0.413 0.407 0.463 0.456 0.480 0.482 0.557 0.554
B.3 ✗ ✗ ✗ RAIL 0.197 0.175 0.200 0.149 0.281 0.165 0.309 0.216 0.247 0.176
B.4 ✗ RAFT GPT-4‡ RAIL 0.932 0.930 0.509 0.502 0.567 0.519 0.483 0.469 0.623 0.605

Not directly comparable models (Different Training Data)
B.5 ✓ Prometheus-2-7B† Decode 0.845 0.847 0.512 0.493 0.488 0.480 0.519 0.483 0.591 0.576
6 ✓ CLoud (Reward model) Decode∗ 0.381 0.376 0.228 0.168 0.229 0.311 0.511 0.506 0.337 0.340

TRACT (ours)
7 ✓ C-RAFT Self C-RAIL 0.931 0.930 0.518 0.501 0.593 0.552 0.555 0.529 0.650 0.628

Ablation analysis for TRACT
A.1 ✓ C-RAFT GPT-4 C-RAIL 0.879 0.880 0.418 0.419 0.528 0.513 0.399 0.418 0.556 0.558
A.2 ✓ CE Self C-RAIL 0.919 0.917 0.468 0.436 0.562 0.526 0.517 0.503 0.617 0.596
A.3 ✓ CE Self Decode 0.873 0.873 0.358 0.346 0.418 0.404 0.435 0.426 0.521 0.512
A.4 TRACT with stage 2 initialized from ps 0.674 0.684 0.448 0.437 0.505 0.477 0.432 0.421 0.515 0.505

Table 2: The results for Mistral-7B-Instruct. The best and second-best results (excluding ablations) for each column
are marked with boldface and underline, respectively. Explanation of abbreviations: Train: training objective; Data:
source of CoT used for training; Inf.: inference method; FB Bench: Feedback Bench; Vic. Bench: Vicuna Bench; r:
Pearson’s correlation coefficient; ρ: Spearman’s rank correlation coefficient; C-RAFT: CoT-RAFT; C-RAIL: CoT-
RAIL. †: Prometheus-2-7B is obtained by merging two models trained from Feedback Collection and Preference
Collection. We re-run the inference using the model released by Kim et al. (2024b) with the official code. ‡: When
training without CoTs, the training target is simply the score, which is still generated by GPT-4. ∗: CLoud (trained
from Llama-3-8B) is a reward model; it is not designed for LLM-as-a-judge benchmarks (Section 7).

and the predictor used during inference.
CoT-RAFT objective is necessary: self-
generated CoTs alone are insufficient. Prior
research has demonstrated that fine-tuning LLMs
on self-generated data using the CE loss can be
beneficial (Yang et al., 2024). Here, we investigate
whether CE loss fine-tuning on self-generated data
alone can improve the performance compared with
training on GPT-4 CoTs. Contrary to expectations,
standard CE loss fine-tuning on self-generated
CoTs (row A.3) yielded a significantly lower
average Pearson’s r of 0.512, far below TRACT’s
performance. Moreover, this approach performed
worse than fine-tuning on GPT-4 generated data
(row B.2). This shows that self-generated CoTs
are harmful when fine-tuned with CE loss but are
beneficial when combined with the CoT-RAFT ob-
jective. Our finding marks the difference between
our work and prior work using self-generated
CoTs with CE loss, highlighting the distinct role
of self-generated CoTs in TRACT.
Stage 2 training needs to be initialized from the
seed LLM. In Algorithm 1, the model in stage
2 is initialized from the seed LLM p0. As an alter-
native, we explore initializing from ps, the model
trained in stage 1, while keeping everything else
the same as TRACT. The result shown in row A.4
achieves only 0.515 Pearson’s r. This shows that
initialization in stage 2 from the seed LLM (as

Algorithm 1 indicates) is crucial.

6 Analysis

We conduct further analysis of the key components
of TRACT to justify its design.

6.1 On the Distribution Shift between
Annotation vs Self-Generated CoTs

In §3.3, we motivated using self-generated CoTs by
the distribution shift between training and inference
CoTs. To empirically demonstrate this shift, we
design the following experiment.

Let DCoT
train(pt) = {(xi, s∗i ∼ pt(·|xi), y∗i)}Ni=1

represent the training dataset, where xi ∈ X is
the input, s∗i ∈ S is the CoT sampled from model
pt used as the training data, and y∗i ∈ Y is the
ground truth score. Let p(·) denote the probabil-
ity distribution defined by the LLM trained on
DCoT

train(pt). After p is trained, we generate CoTs
ŝi ∼ p(·|xi) for each input xi in Dtrain, and pre-
dict scores conditioned on these CoTs, denoted as
ŷi(ŝi) ∼ p(·|xi, ŝi). Using the fine-tuned model p,
we can also predict a score conditioned on s∗i , the
CoT in the training data DCoT

train(pt); this score is
denoted as ŷi(s∗i) ∼ p(·|xi, s∗i).

To quantify how different s∗i and ŝi are, we com-
pare the root mean square error (RMSE) across two
pairs of scores: 1) the predicted scores ŷi(s∗i) and
the ground truth scores y∗i , and 2) the predicted

2939

TRACT
s∗: CoTs used ŝ: CoTs sampled from RMSE w/ y∗

for training fine-tuned model ŷ(s∗) ŷ (ŝ)

Stage 1 s∗ ∼ pa ŝ ∼ ps 0.12 0.63
Stage 2 s∗ ∼ ps ŝ ∼ ptract 0.45 0.45

Table 3: RMSE between predicted scores ŷ and ground
truth scores y∗ over the training data. Each row corre-
sponds to stage 1 or stage 2 of TRACT. The CoT used
for fine-tuning the model in each stage is denoted by s∗

and is generated by the model indicated in the second
column. After fine-tuning, we sample ŝ from the fine-
tuned model; the fine-tuned model is specified in the
third column The last two columns are the RMSE across
two pairs of predictions: 1) the predicted scores ŷi(s∗i)
and the true scores y∗i , and 2) the predicted scores ŷi(ŝi)
and the true scores y∗i . Within each row, both ŷi(s

∗
i)

and ŷi(ŝi) are predicted by the same fine-tuned model
(indicated in the third column).

scores ŷi(ŝi) and the ground truth scores y∗i . No-
tably, both ŷi(ŝi) and ŷi(s

∗
i) are generated by the

same LLM p(·) conditioned on the same input xi
in the training set; the only distinction is the CoT:
ŷi(s

∗
i) conditioned on s∗i , and ŷi(ŝi) conditioned

on ŝi.
The results are presented in Table 3. The first row

shows the model ps trained in stage 1 in TRACT,
which is trained using CoTs sampled from pa (GPT-
4). We observe a significant RMSE gap of 0.51
between ŷi(s

∗
i) and ŷi(ŝi). This shows that for ps,

the distribution of training CoTs and self-generated
CoTs is very different.

The second row shows the result of the model
fine-tuned in stage 2, ptract, which is trained on
CoTs generated by ps. When predicting scores us-
ing ptract, the RMSE gap between using the train-
ing CoTs s∗ and predicted CoTs ŝ is 0. This indi-
cates that for ps (row 1), predicting scores using
self-generated CoTs is more challenging than using
CoTs generated by GPT-4, showing a substantial
distribution shift between self-generated and GPT-
generated CoTs. Conversely, for ptract, the predic-
tion difficulty is similar for both types of CoTs,
suggesting that the training and self-generated CoT
distributions are closer.

The above results can also be interpreted as ps
memorizing the training CoTs and cannot gener-
alize to its own generated CoTs, while ptract is
capable of generalizing to its own generations.

6.2 Sensitivity to λ

We analyze the performance of TRACT when
varying λ in Equation 4 over a grid of values

0.2 0.5 1 2 5 10
 (log scale)

0.56
0.58
0.60
0.62
0.64

Av
er

ag
e

Pe
ar

so
n'

s r

TRACT
Prometheus-2-7B
Baseline 2

Figure 2: Performance of TRACT across varying values
of λ in Equation 4. Results from the Mistral model. For
a wide range of λ values we find TRACT outperforming
the baselines.

{0.2, 0.5, 1.0, 2, 5, 10}, using Mistral as the seed
model. The results are shown in Figure 2. We ob-
serve that λ = 1 performs well. For most val-
ues of λ TRACT outperforms both 1) the model
trained using CE loss on the same dataset, and 2)
Prometheus, the SoTA model of the same size.

6.3 Multi-Objective Fine-tuning vs.
Sequential Single-Objective Fine-tuning

TRACT relies on the CoT-RAFT objective from
Eq. 4, combining the CE loss over CoTs and the
RAFT loss over score predictions. An alternative
training strategy could involve a sequential, two-
stage fine-tuning process: first, fine-tuning with the
CE loss over both CoTs and scores (corresponding
to baseline 2); and next, fine-tuning on the same
dataset using solely the RAFT objective over scores.
In the second stage, while the model’s output still
includes CoTs, the CE loss is not computed for
them, i.e., the second term in Eq. 4 is not used.

We empirically find that this sequential fine-
tuning approach significantly degrades the model’s
ability to generate coherent and complete CoTs.
The resulting model struggles to terminate CoT
outputs correctly and sometimes yields very long
CoTs. We show some example CoTs in Table 9 in
Appendix C. This deficiency highlights the critical
role of multi-objective fine-tuning: jointly optimiz-
ing both the CE loss for CoTs and the squared-error
loss for scores.

6.4 Scaling the Number of Sampled CoTs

We analyze the effect of sampling multiple CoTs
for TRACT during inference; this is done by sam-
pling multiple ŝ, calculating ŷCR for each CoT
(Eq. 3), and averaging the ŷCR. For comparison, we
also sample multiple CoTs and average the scores
for the following two baselines: the model trained
using the CE loss (baseline 2, row B.2 in Table 2),
and Prometheus-2-7B. To gauge the significance

2940

1 2 3 4 5
Number of CoTs

0.525
0.550
0.575
0.600
0.625
0.650
0.675
0.700

Pe
ar

so
n'

s r

CE+Decode (Row B.2 in Table 1)
Prometheus-2-7B
TRACT

Figure 3: Average Pearson’s r as a function of the num-
ber of sampled CoTs. Results from fine-tuning the Mis-
tral model. Shaded regions correspond to the standard
deviations across multiple inference runs with varying
random seeds. Note that Prometheus is trained on sig-
nificantly more data compared to other two methods in
this Figure. Despite that, under limited inference budget,
TRACT outperforms Prometheus.

of the differences across methods, we repeat the
experiment by varying the random seed. For each
seed, we sample K CoTs to calculate the score,
average the score across four testing dataset, and
repeat the above process with four seeds.

The results are shown in Figure 3. We find that
the performance of TRACT is stable across dif-
ferent numbers of CoTs, while the performance
of standard decoding increases when sampling
more CoTs. While this might indicate TRACT can-
not benefit from scaling the inference-time com-
pute (Irvine et al., 2023; Brown et al., 2025; Snell
et al., 2025), the superiority of TRACT under lim-
ited inference-time compute is clear. Baseline 2
uses the same amount of training data and serves as
a fair comparison baseline to TRACT. Compared to
it, TRACT with one CoT consistently outperforms
baseline 2 with more than one CoTs. Additionally,
the variance of the performance of TRACT across
the random seeds is much smaller than that for
standard decoding.

TRACT outperforms Prometheus when sam-
pling fewer CoTs. Given that Prometheus is trained
with more data, we find it to be a very strong out-
come that TRACT outperforms Prometheus under
the limited CoT sampling setting.

7 Comparing Point-Wise
LLM-as-a-Judge and Reward Models

Given an instruction and a response, a reward
model (RM) assigns a scalar reward to indicate
the quality of the response (Wang et al., 2024a; Liu
et al., 2024; Dorka, 2024). While this formulation
is similar to pointwise LLM-as-a-judge, RMs are

typically trained to evaluate specific attributes, e.g.,
helpfulness, harmlessness, etc. (Bai et al., 2022).
As a result, RMs cannot take fine-grained evalua-
tion metrics and evaluate based on the evaluation
rubrics. Furthermore, the reward of a RM is only
meaningful when comparing the reward of two re-
sponses for the same instruction, since RMs are
trained with pairwise data. In contrast, the score
of point-wise LLM-as-a-judge is meaningful stan-
dalone since it directly corresponds to the descrip-
tion of a specific score in the scoring rubrics.

Critique-out-loud (CLoud) (Ankner et al., 2024)
RM is an RM that generates some CoT reason-
ing before predicting the reward using a regression
head. While CLoud uses self-generated CoT rea-
soning to improve the numeric prediction (the re-
ward), there are several differences between CLoud
and TRACT. First, CLoud is trained on pairwise
reward modeling datasets, while TRACT is trained
on a point-wise LLM-as-a-judge dataset. Next,
TRACT uses the language model head to predict
the score, while CLoud uses a regression head to
predict the score. Most importantly, CLoud, as
a reward model, cannot take fine-grained evalu-
ation rubrics and evaluate the responses based on
the evaluation criteria, which is different from all
other LLM-as-a-Judge based baselines in Section 4,
which can take fine-grained evaluation rubrics.

7.1 Results on Point-wise LLM-as-a-Judge
Datasets

Since CLoud also uses CoT to improve numeric
predictions, we compare CLoud with TRACT on
point-wise LLM-as-a-judge datasets to understand
whether RMs can perform well on point-wise
LLM-as-a-judge datasets. In row 7 in Table 2, we
show the results of CLoud on LLM-as-a-judge
datasets. We can see that CLoud performs poorly,
and TRACT significantly outperforms CLoud. This
is not surprising, as CLoud is a reward model
trained on pairwise ranking datasets, and it cannot
take the fine-grained evaluation metrics. Our goal
here is not to criticize the performance of CLoud;
we use the above evidence to highlight that RMs
are not the same as point-wise LLM-as-a-judge
models.

7.2 Results on RewardBench
Having seen that RM cannot yield reasonable per-
formance on point-wise LLM-as-a-judge datasets,
one may ask whether the reverse holds as well:
Can point-wise LLM-as-a-judge models be used

2941

as a reward model? To answer this question, we
use RewardBench (Lambert et al., 2024), a reward
model dataset, to evaluate our baseline models and
TRACT. Each evaluating instance in RewardBench
consists of an instruction, a winning response, and
a losing one; the goal is to see whether a reward
model can assign a higher reward to the winning re-
sponse. To test point-wise LLM-as-a-judge models
on RewardBench, we prompt the model with both
responses separately, obtaining scores for them,
and then compare the scores for the final ranking.
We report the accuracy on RewardBench.

The results for RewardBench are presented in
Table 10 in the Appendix. We see that TRACT per-
forms quite well: the model fine-tuned from Mistral
reaches an average score of 0.736, slightly worse
than CLoud (0.759). This shows that even though
TRACT, a point-wise LLM-as-a-judge model, is
not trained on pairwise ranking for reward mod-
eling, it can still obtain reasonably good perfor-
mance on RewardBench, a pairwise ranking bench-
mark. This is in stark contrast with the result of
CLoud on point-wise LLM-as-a-judge shown in
Table 2, where CLoud underperforms TRACT by a
large margin. Lastly, we note that TRACT, a model
trained on only a point-wise dataset, outperforms
Prometheus-2-7B, a model trained on point-wise
scoring and pairwise ranking datasets.

8 Related Work

8.1 LLM-as-a-Judge

LLM-as-a-judge paradigm is an application of
LLMs as an automatic judge to assess texts (Chiang
and Lee, 2023a). There are two types of LLM-as-
a-judge: (1) Direct assessment: the LLM assigns
a score to a given sample (Chiang and Lee, 2023a;
Liu et al., 2023). (2) Pairwise ranking: the LLM
determines which sample is better given a pair of
samples (Zheng et al., 2023; Wang et al., 2024b; Li
et al., 2024). In this paper, we focus on improving
the direct assessment ability of the LLM.

Many prior works focus on fine-tuning open-
source LLMs into better LLM judges using open-
source data (Vu et al., 2024; Li et al., 2024). LLM-
as-a-judge is often trained with the CE loss over
CoT reasoning and a score (Kim et al., 2024a,b).

8.2 Training LLMs with Self-Generated Data

An important component of TRACT is fine-tuning
over self-generated CoTs. Using self-generated
data for training LLMs has been considered in the

literature (Wang et al., 2023; Kim et al., 2023) and
is sometimes referred to as self-training (Singh
et al., 2024) or self-distillation (Yang et al., 2024).
Early work has already shown that self-distillation
can improve the performance of machine transla-
tion (Freitag et al., 2017; Guo et al., 2021). Self-
generated data can be used to augment the training
data of LLMs (Wu et al., 2025; Sun et al., 2024) to
mitigate the scarcity of high-quality labeled data.
Self-generated CoTs, when combined with proper
filtering methods, have been shown to improve
LLM’s reasoning ability (Zelikman et al., 2022;
Gulcehre et al., 2023; Dou et al., 2024).

Most related to our work is Yang et al. (2024),
who argue that self-generated data helps fine-tuning
by reducing the distribution gap between the train-
ing data and the seed LLM. Ren et al. (2024)
show that self-generated data yields lower perplex-
ity under the seed LLM, which can explain the
performance gain of fine-tuning on self-generated
data. While we confirm that self-generated data
has a lower perplexity under the seed LLM (Ap-
pendix B.4), we use a fine-tuning objective differ-
ent from prior works. Interestingly, we find that
fine-tuning over self-generated data with the CE
loss, as recommended in prior works, does not
improve the performance. Our proposed objective
does significantly benefit from self-generated CoTs,
showing how self-generated data is important for
TRACT.

9 Conclusion

In this paper, we introduce Two-stage Regression-
Aware fine-tuning with CoT reasoning (TRACT), a
method integrating CoT reasoning with the RAFT
framework to harness the step-by-step reasoning
ability of LLMs while learning the numerical struc-
ture of the scoring task. TRACT consists of (1) CoT-
RAFT for training, (2) CoT-RAIL for inference,
and (3) two-stage fine-tuning for self-generated
CoTs training. Our experiments across two mod-
els and five datasets show that TRACT consis-
tently outperforms all prior baselines finetuned on
the same dataset by a significant margin. Under
limited inference compute, TRACT also outper-
forms Prometheus-2-7B, a same-sized SoTA model
trained on more data. We carry out careful abla-
tions to explicate the importance of each compo-
nent in TRACT. We believe our proposed method
and open-source models can benefit the community
working on LLM-as-a-judge.

2942

Limitations

One of the limitations of TRACT is that it requires
access to the model’s output probabilities, which
is not always possible for proprietary models. Our
technique can be readily applied to open-source
models.

Acknowledgments

We thank the reviewers for their valuable and con-
structive feedback. We compare with CLoud and
include the results of RewardBench based on the
reviewers’ suggestions. Cheng-Han Chiang is sup-
ported by a Google PhD Fellowship and a Ph.D.
scholarship program by Delta Electronics.

References
Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed

Awadallah, Ammar Ahmad Awan, Nguyen Bach,
Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat
Behl, Alon Benhaim, Misha Bilenko, Johan Bjorck,
Sébastien Bubeck, Martin Cai, Qin Cai, Vishrav
Chaudhary, Dong Chen, Dongdong Chen, and 110
others. 2024. Phi-3 technical report: A highly capa-
ble language model locally on your phone. Preprint,
arXiv:2404.14219.

Zachary Ankner, Mansheej Paul, Brandon Cui,
Jonathan D Chang, and Prithviraj Ammanabrolu.
2024. Critique-out-loud reward models. arXiv
preprint arXiv:2408.11791.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda
Askell, Anna Chen, Nova DasSarma, Dawn Drain,
Stanislav Fort, Deep Ganguli, Tom Henighan, and 1
others. 2022. Training a helpful and harmless assis-
tant with reinforcement learning from human feed-
back. arXiv preprint arXiv:2204.05862.

Bradley Brown, Jordan Juravsky, Ryan Saul Ehrlich,
Ronald Clark, Quoc V Le, Christopher Re, and Aza-
lia Mirhoseini. 2025. Large language monkeys: Scal-
ing inference compute with repeated sampling.

Daniel Cer, Mona Diab, Eneko Agirre, Inigo Lopez-
Gazpio, and Lucia Specia. 2017. Semeval-2017
task 1: Semantic textual similarity multilingual and
crosslingual focused evaluation. In Proceedings of
the 11th International Workshop on Semantic Evalua-
tion (SemEval-2017). Association for Computational
Linguistics.

Cheng-Han Chiang, Wei-Chih Chen, Chun-Yi Kuan,
Chienchou Yang, and Hung-yi Lee. 2024. Large lan-
guage model as an assignment evaluator: Insights,
feedback, and challenges in a 1000+ student course.
In Proceedings of the 2024 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2489–2513, Miami, Florida, USA. Association for
Computational Linguistics.

Cheng-Han Chiang and Hung-yi Lee. 2023a. Can large
language models be an alternative to human evalua-
tions? In Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 15607–15631, Toronto,
Canada. Association for Computational Linguistics.

Cheng-Han Chiang and Hung-yi Lee. 2023b. A closer
look into using large language models for automatic
evaluation. In Findings of the Association for Compu-
tational Linguistics: EMNLP 2023, pages 8928–8942,
Singapore. Association for Computational Linguis-
tics.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion
Stoica, and Eric P. Xing. 2023. Vicuna: An open-
source chatbot impressing gpt-4 with 90%* chatgpt
quality.

Nicolai Dorka. 2024. Quantile regression for dis-
tributional reward models in rlhf. arXiv preprint
arXiv:2409.10164.

Zi-Yi Dou, Cheng-Fu Yang, Xueqing Wu, Kai-Wei
Chang, and Nanyun Peng. 2024. Re-ReST:
Reflection-reinforced self-training for language
agents. In Proceedings of the 2024 Conference on
Empirical Methods in Natural Language Processing,
pages 15394–15411, Miami, Florida, USA. Associa-
tion for Computational Linguistics.

Yann Dubois, Balázs Galambosi, Percy Liang, and Tat-
sunori B. Hashimoto. 2024. Length-controlled al-
pacaeval: A simple way to debias automatic evalua-
tors. Preprint, arXiv:2404.04475.

Markus Freitag, Yaser Al-Onaizan, and Baskaran
Sankaran. 2017. Ensemble distillation for neural
machine translation. Preprint, arXiv:1702.01802.

Google. 2023. An important next step on our ai journey.
Accessed on Feb 6, 2025.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle,
Aiesha Letman, Akhil Mathur, Alan Schelten, Alex
Vaughan, Amy Yang, Angela Fan, Anirudh Goyal,
Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie
Sravankumar, Artem Korenev, Arthur Hinsvark, and
542 others. 2024. The llama 3 herd of models.
Preprint, arXiv:2407.21783.

Caglar Gulcehre, Tom Le Paine, Srivatsan Srini-
vasan, Ksenia Konyushkova, Lotte Weerts, Abhishek
Sharma, Aditya Siddhant, Alex Ahern, Miaosen
Wang, Chenjie Gu, Wolfgang Macherey, Arnaud
Doucet, Orhan Firat, and Nando de Freitas. 2023.
Reinforced self-training (rest) for language modeling.
Preprint, arXiv:2308.08998.

Jiaxin Guo, Minghan Wang, Daimeng Wei, Hengchao
Shang, Yuxia Wang, Zongyao Li, Zhengzhe Yu,
Zhanglin Wu, Yimeng Chen, Chang Su, Min
Zhang, Lizhi Lei, shimin tao, and Hao Yang.

2943

https://arxiv.org/abs/2404.14219
https://arxiv.org/abs/2404.14219
https://openreview.net/forum?id=0xUEBQV54B
https://openreview.net/forum?id=0xUEBQV54B
https://doi.org/10.18653/v1/s17-2001
https://doi.org/10.18653/v1/s17-2001
https://doi.org/10.18653/v1/s17-2001
https://doi.org/10.18653/v1/2024.emnlp-main.146
https://doi.org/10.18653/v1/2024.emnlp-main.146
https://doi.org/10.18653/v1/2024.emnlp-main.146
https://doi.org/10.18653/v1/2023.acl-long.870
https://doi.org/10.18653/v1/2023.acl-long.870
https://doi.org/10.18653/v1/2023.acl-long.870
https://doi.org/10.18653/v1/2023.findings-emnlp.599
https://doi.org/10.18653/v1/2023.findings-emnlp.599
https://doi.org/10.18653/v1/2023.findings-emnlp.599
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://doi.org/10.18653/v1/2024.emnlp-main.861
https://doi.org/10.18653/v1/2024.emnlp-main.861
https://doi.org/10.18653/v1/2024.emnlp-main.861
https://arxiv.org/abs/2404.04475
https://arxiv.org/abs/2404.04475
https://arxiv.org/abs/2404.04475
https://arxiv.org/abs/1702.01802
https://arxiv.org/abs/1702.01802
https://blog.google/technology/ai/bard-google-ai-search-updates/
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2308.08998

2021. Self-distillation mixup training for non-
autoregressive neural machine translation. Preprint,
arXiv:2112.11640.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. 2020. The curious case of neural text de-
generation. In International Conference on Learning
Representations.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. LoRA: Low-rank adaptation of
large language models. In International Conference
on Learning Representations.

Robert Irvine, Douglas Boubert, Vyas Raina, Adian
Liusie, Ziyi Zhu, Vineet Mudupalli, Aliaksei Kor-
shuk, Zongyi Liu, Fritz Cremer, Valentin Assassi, and
1 others. 2023. Rewarding chatbots for real-world
engagement with millions of users. arXiv preprint
arXiv:2303.06135.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, Lélio Renard Lavaud,
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,
Thibaut Lavril, Thomas Wang, Timothée Lacroix,
and William El Sayed. 2023. Mistral 7b. Preprint,
arXiv:2310.06825.

Maurice G Kendall. 1938. A new measure of rank
correlation. Biometrika, 30(1-2):81–93.

Seungone Kim, Jamin Shin, Yejin Cho, Joel Jang,
Shayne Longpre, Hwaran Lee, Sangdoo Yun,
Seongjin Shin, Sungdong Kim, James Thorne, and
Minjoon Seo. 2024a. Prometheus: Inducing fine-
grained evaluation capability in language models. In
The Twelfth International Conference on Learning
Representations.

Seungone Kim, Juyoung Suk, Shayne Longpre,
Bill Yuchen Lin, Jamin Shin, Sean Welleck, Graham
Neubig, Moontae Lee, Kyungjae Lee, and Minjoon
Seo. 2024b. Prometheus 2: An open source language
model specialized in evaluating other language mod-
els. In Proceedings of the 2024 Conference on Empir-
ical Methods in Natural Language Processing, pages
4334–4353, Miami, Florida, USA. Association for
Computational Linguistics.

Sungdong Kim, Sanghwan Bae, Jamin Shin, Soyoung
Kang, Donghyun Kwak, Kang Yoo, and Minjoon
Seo. 2023. Aligning large language models through
synthetic feedback. In Proceedings of the 2023 Con-
ference on Empirical Methods in Natural Language
Processing, pages 13677–13700, Singapore. Associ-
ation for Computational Linguistics.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large
language models are zero-shot reasoners. In Pro-
ceedings of the 36th International Conference on
Neural Information Processing Systems, NIPS ’22,
Red Hook, NY, USA. Curran Associates Inc.

Shankar Kumar and William Byrne. 2004. Minimum
Bayes-risk decoding for statistical machine transla-
tion. In Proceedings of the Human Language Tech-
nology Conference of the North American Chapter
of the Association for Computational Linguistics:
HLT-NAACL 2004, pages 169–176, Boston, Mas-
sachusetts, USA. Association for Computational Lin-
guistics.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E. Gon-
zalez, Hao Zhang, and Ion Stoica. 2023. Efficient
memory management for large language model serv-
ing with pagedattention. In Proceedings of the ACM
SIGOPS 29th Symposium on Operating Systems Prin-
ciples.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin,
Shengyi Huang, Hamish Ivison, Faeze Brahman,
Lester James V. Miranda, Alisa Liu, Nouha Dziri,
Shane Lyu, Yuling Gu, Saumya Malik, Victoria
Graf, Jena D. Hwang, Jiangjiang Yang, Ronan Le
Bras, Oyvind Tafjord, Chris Wilhelm, Luca Sol-
daini, and 4 others. 2025. Tulu 3: Pushing fron-
tiers in open language model post-training. Preprint,
arXiv:2411.15124.

Nathan Lambert, Valentina Pyatkin, Jacob Morrison,
Lester James Validad Miranda, Bill Yuchen Lin, Khy-
athi Chandu, Nouha Dziri, Sachin Kumar, Tom Zick,
Yejin Choi, and 1 others. 2024. Rewardbench: Evalu-
ating reward models for language modeling.

Junlong Li, Shichao Sun, Weizhe Yuan, Run-Ze Fan, hai
zhao, and Pengfei Liu. 2024. Generative judge for
evaluating alignment. In The Twelfth International
Conference on Learning Representations.

Chris Yuhao Liu, Liang Zeng, Jiacai Liu, Rui Yan, Ju-
jie He, Chaojie Wang, Shuicheng Yan, Yang Liu,
and Yahui Zhou. 2024. Skywork-reward: Bag of
tricks for reward modeling in llms. arXiv preprint
arXiv:2410.18451.

Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang,
Ruochen Xu, and Chenguang Zhu. 2023. G-eval:
NLG evaluation using gpt-4 with better human align-
ment. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing,
pages 2511–2522, Singapore. Association for Com-
putational Linguistics.

Ilya Loshchilov and Frank Hutter. 2017. SGDR:
Stochastic gradient descent with warm restarts. In In-
ternational Conference on Learning Representations.

Michal Lukasik, Zhao Meng, Harikrishna Narasimhan,
Yin Wen Chang, Aditya Krishna Menon, Felix Yu,
and Sanjiv Kumar. 2025. Better autoregressive re-
gression with llms via regression-aware fine-tuning.
In The Thirteenth International Conference on Learn-
ing Representations.

Michal Lukasik, Harikrishna Narasimhan, Aditya Kr-
ishna Menon, Felix Yu, and Sanjiv Kumar. 2024.

2944

https://arxiv.org/abs/2112.11640
https://arxiv.org/abs/2112.11640
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://arxiv.org/abs/2310.06825
https://openreview.net/forum?id=8euJaTveKw
https://openreview.net/forum?id=8euJaTveKw
https://doi.org/10.18653/v1/2024.emnlp-main.248
https://doi.org/10.18653/v1/2024.emnlp-main.248
https://doi.org/10.18653/v1/2024.emnlp-main.248
https://doi.org/10.18653/v1/2023.emnlp-main.844
https://doi.org/10.18653/v1/2023.emnlp-main.844
https://aclanthology.org/N04-1022
https://aclanthology.org/N04-1022
https://aclanthology.org/N04-1022
https://arxiv.org/abs/2411.15124
https://arxiv.org/abs/2411.15124
https://openreview.net/forum?id=XiConLcsqq
https://openreview.net/forum?id=XiConLcsqq
https://openreview.net/forum?id=gtkFw6sZGS
https://openreview.net/forum?id=gtkFw6sZGS
https://doi.org/10.18653/v1/2023.emnlp-main.153
https://doi.org/10.18653/v1/2023.emnlp-main.153
https://doi.org/10.18653/v1/2023.emnlp-main.153
https://openreview.net/forum?id=Skq89Scxx
https://openreview.net/forum?id=Skq89Scxx
https://openreview.net/forum?id=xGs7Ch3Vyo
https://openreview.net/forum?id=xGs7Ch3Vyo

Regression aware inference with LLMs. In Find-
ings of the Association for Computational Linguistics:
EMNLP 2024, pages 13667–13678, Miami, Florida,
USA. Association for Computational Linguistics.

Karl Pearson. 1895. Vii. note on regression and inheri-
tance in the case of two parents. proceedings of the
royal society of London, 58(347-352):240–242.

Xuan Ren, Biao Wu, and Lingqiao Liu. 2024. I learn
better if you speak my language: Understanding the
superior performance of fine-tuning large language
models with LLM-generated responses. In Proceed-
ings of the 2024 Conference on Empirical Methods in
Natural Language Processing, pages 10225–10245,
Miami, Florida, USA. Association for Computational
Linguistics.

Avi Singh, John D Co-Reyes, Rishabh Agarwal, Ankesh
Anand, Piyush Patil, Xavier Garcia, Peter J Liu,
James Harrison, Jaehoon Lee, Kelvin Xu, Aaron T
Parisi, Abhishek Kumar, Alexander A Alemi, Alex
Rizkowsky, Azade Nova, Ben Adlam, Bernd Bohnet,
Gamaleldin Fathy Elsayed, Hanie Sedghi, and 21 oth-
ers. 2024. Beyond human data: Scaling self-training
for problem-solving with language models. Transac-
tions on Machine Learning Research. Expert Certifi-
cation.

Charlie Victor Snell, Jaehoon Lee, Kelvin Xu, and Avi-
ral Kumar. 2025. Scaling test-time compute opti-
mally can be more effective than scaling LLM param-
eters. In The Thirteenth International Conference on
Learning Representations.

Charles Spearman. 1961. The proof and measurement
of association between two things.

Zhiqing Sun, Longhui Yu, Yikang Shen, Weiyang Liu,
Yiming Yang, Sean Welleck, and Chuang Gan. 2024.
Easy-to-hard generalization: Scalable alignment be-
yond human supervision. In The Thirty-eighth An-
nual Conference on Neural Information Processing
Systems.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Stanford al-
paca: An instruction-following llama model. https:
//github.com/tatsu-lab/stanford_alpaca.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, and 49 oth-
ers. 2023. Llama 2: Open foundation and fine-tuned
chat models. Preprint, arXiv:2307.09288.

Tu Vu, Kalpesh Krishna, Salaheddin Alzubi, Chris Tar,
Manaal Faruqui, and Yun-Hsuan Sung. 2024. Foun-
dational autoraters: Taming large language models
for better automatic evaluation. In Proceedings of the
2024 Conference on Empirical Methods in Natural
Language Processing, pages 17086–17105, Miami,

Florida, USA. Association for Computational Lin-
guistics.

Haoxiang Wang, Wei Xiong, Tengyang Xie, Han Zhao,
and Tong Zhang. 2024a. Interpretable preferences
via multi-objective reward modeling and mixture-of-
experts. In EMNLP.

Yidong Wang, Zhuohao Yu, Wenjin Yao, Zhengran
Zeng, Linyi Yang, Cunxiang Wang, Hao Chen,
Chaoya Jiang, Rui Xie, Jindong Wang, Xing Xie,
Wei Ye, Shikun Zhang, and Yue Zhang. 2024b. Pan-
daLM: An automatic evaluation benchmark for LLM
instruction tuning optimization. In The Twelfth Inter-
national Conference on Learning Representations.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa
Liu, Noah A. Smith, Daniel Khashabi, and Hannaneh
Hajishirzi. 2023. Self-instruct: Aligning language
models with self-generated instructions. In Proceed-
ings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 13484–13508, Toronto, Canada. Association
for Computational Linguistics.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
and 1 others. 2022. Chain-of-thought prompting elic-
its reasoning in large language models. Advances
in neural information processing systems, 35:24824–
24837.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pierric
Cistac, Tim Rault, Remi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven
Le Scao, Sylvain Gugger, and 3 others. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Tianhao Wu, Weizhe Yuan, Olga Golovneva, Jing Xu,
Yuandong Tian, Jiantao Jiao, Jason E Weston, and
Sainbayar Sukhbaatar. 2025. Meta-rewarding lan-
guage models: Self-improving alignment with LLM-
as-a-meta-judge.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng,
Pu Zhao, Jiazhan Feng, Chongyang Tao, Qingwei
Lin, and Daxin Jiang. 2024. WizardLM: Empow-
ering large pre-trained language models to follow
complex instructions. In The Twelfth International
Conference on Learning Representations.

Zhaorui Yang, Tianyu Pang, Haozhe Feng, Han Wang,
Wei Chen, Minfeng Zhu, and Qian Liu. 2024. Self-
distillation bridges distribution gap in language
model fine-tuning. In Proceedings of the 62nd An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1028–
1043, Bangkok, Thailand. Association for Computa-
tional Linguistics.

2945

https://doi.org/10.18653/v1/2024.findings-emnlp.799
https://doi.org/10.18653/v1/2024.emnlp-main.571
https://doi.org/10.18653/v1/2024.emnlp-main.571
https://doi.org/10.18653/v1/2024.emnlp-main.571
https://doi.org/10.18653/v1/2024.emnlp-main.571
https://openreview.net/forum?id=lNAyUngGFK
https://openreview.net/forum?id=lNAyUngGFK
https://openreview.net/forum?id=4FWAwZtd2n
https://openreview.net/forum?id=4FWAwZtd2n
https://openreview.net/forum?id=4FWAwZtd2n
https://openreview.net/forum?id=qwgfh2fTtN
https://openreview.net/forum?id=qwgfh2fTtN
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://doi.org/10.18653/v1/2024.emnlp-main.949
https://doi.org/10.18653/v1/2024.emnlp-main.949
https://doi.org/10.18653/v1/2024.emnlp-main.949
https://openreview.net/forum?id=5Nn2BLV7SB
https://openreview.net/forum?id=5Nn2BLV7SB
https://openreview.net/forum?id=5Nn2BLV7SB
https://doi.org/10.18653/v1/2023.acl-long.754
https://doi.org/10.18653/v1/2023.acl-long.754
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://openreview.net/forum?id=lbj0i29Z92
https://openreview.net/forum?id=lbj0i29Z92
https://openreview.net/forum?id=lbj0i29Z92
https://openreview.net/forum?id=CfXh93NDgH
https://openreview.net/forum?id=CfXh93NDgH
https://openreview.net/forum?id=CfXh93NDgH
https://doi.org/10.18653/v1/2024.acl-long.58
https://doi.org/10.18653/v1/2024.acl-long.58
https://doi.org/10.18653/v1/2024.acl-long.58

Seonghyeon Ye, Doyoung Kim, Sungdong Kim, Hyeon-
bin Hwang, Seungone Kim, Yongrae Jo, James
Thorne, Juho Kim, and Minjoon Seo. 2024. FLASK:
Fine-grained language model evaluation based on
alignment skill sets. In The Twelfth International
Conference on Learning Representations.

Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho,
Xian Li, Sainbayar Sukhbaatar, Jing Xu, and Jason
Weston. 2024. Self-rewarding language models. In
Proceedings of the 41st International Conference on
Machine Learning, ICML’24. JMLR.org.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Good-
man. 2022. STar: Bootstrapping reasoning with rea-
soning. In Advances in Neural Information Process-
ing Systems.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, Hao Zhang,
Joseph E. Gonzalez, and Ion Stoica. 2023. Judging
LLM-as-a-judge with MT-bench and chatbot arena.
In Thirty-seventh Conference on Neural Information
Processing Systems Datasets and Benchmarks Track.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan
Ye, Zheyan Luo, Zhangchi Feng, and Yongqiang Ma.
2024. Llamafactory: Unified efficient fine-tuning
of 100+ language models. In Proceedings of the
62nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 3: System Demonstra-
tions), Bangkok, Thailand. Association for Computa-
tional Linguistics.

A Hyperparameters

Training Hyperparameters We train our mod-
els using Llama-Factory (Zheng et al., 2024). All
models are trained with LoRA (Hu et al., 2022).
We use all the default LoRA parameters in Llama-
Factory: the rank of LoRA is set to 8, and we apply
LoRA on all the linear layers of the transformer
model. We fine-tune the model with a learning rate
of 1.0 × 10−5, use a cosine learning rate sched-
uler (Loshchilov and Hutter, 2017), and fine-tune
for two epochs. The warm-up ratio is set to 1.0.
We use bf16 for training. The effective batch size
of training is set to 8. All our training is run on a
single NVIDIA RTX A6000; training the model
on the whole training dataset takes about 50 hours.
When training TRACT, we need to first fine-tune
on the GPT-4 generated data and fine-tune on the
self-generated data, making the total training time
about 100 hours.

Inference Hyperparameters For inference, we
use vLLM (Kwon et al., 2023). Most inference hy-
perparameters follow Kim et al. (2024b): the top-p

is set to 0.9 (Holtzman et al., 2020), the temper-
ature is set to 1.0, the repetition penalty is set to
1.03, the maximum number of output tokens is set
to 1024.

The only different hyperparameter from Kim
et al. (2024b) is we sample only 1 CoT in Table 2,
while they sample 3 CoTs and average the score.
To obtain the results of Prometheus-2-7B with 1
CoT, we use their official model from Hugging-
face (Wolf et al., 2020) and use the official code
from https://github.com/prometheus-eval/
prometheus-eval/tree/main/eval. We made
some necessary modifications to the official code to
make it executable; we find that we can reproduce
the Prometheus results using our modified code.

B Supplementary Results

B.1 Quality of the Self-Generated CoTs

In this section, we investigate the quality of the
self-generated CoTs used in the second training
stage in TRACT. To investigate the quality of self-
generated CoTs, we use LLM-as-a-meta-judge to
evaluate the evaluation CoTs generated by GPT-4
(the original CoTs in Feedback Collection (Kim
et al., 2024a)) and the student model ps. We call
GPT-4 the meta-judge since it is used to evaluate
the evaluation of LLM-as-a-judge. We prompt the
meta-judge to evaluate the quality of the evaluation
CoTs using a 5-point scale, with 1 being the lowest
and 5 the highest. The evaluation prompt is shown
in Table 5. We ask meta-judge to evaluate whether
the evaluation CoT follows the scoring rubric and
is grounded on the response.

Note that the [judgement] to be evaluated in Ta-
ble 5 includes the score, which is the original score
in Feedback Collection. That is, no matter whether
the evaluation CoT is generated from GPT-4 or ps,
the final score is always the one in Feedback Col-
lection. This is the setting that is used to train the
models. Including the score in this meta-evaluation
experiment allows the meta-judge to determine if
the final score is consistent with the evaluation
CoTs.

We randomly sample 200 samples from the train-
ing set and collect the evaluation CoTs in the Feed-
back Collection (GPT-4 generated) and the CoTs
generated by ps, the student model fine-tuned on
GPT-4 CoTs. The average score for GPT-4 gener-
ated CoTs is 4.78/5.00, while the average score of
CoTs generated by ps is 4.50/5.00. While the av-
erage score of ps-generated is slightly worse than

2946

https://openreview.net/forum?id=CYmF38ysDa
https://openreview.net/forum?id=CYmF38ysDa
https://openreview.net/forum?id=CYmF38ysDa
https://openreview.net/forum?id=_3ELRdg2sgI
https://openreview.net/forum?id=_3ELRdg2sgI
https://openreview.net/forum?id=uccHPGDlao
https://openreview.net/forum?id=uccHPGDlao
http://arxiv.org/abs/2403.13372
http://arxiv.org/abs/2403.13372
https://github.com/prometheus-eval/prometheus-eval/tree/main/eval
https://github.com/prometheus-eval/prometheus-eval/tree/main/eval

that of GPT-4, a score of 4.50/5.00 is still very high,
indicating that the self-generated CoTs have good
quality.

B.2 Results of Kendal’s τ Correlation
Coefficients

The results of Kendall’s τ correlation coefficient
when fine-tuned with Mistral are shown in Table 6.

B.3 Results from Llama-3.1
We report the results from experiments with Llama-
3.1-8B-Instruct in Table 7 and the corresponding
Kendall’s τ in Table 8. We find that TRACT out-
performs all baseline methods. Compared with
Prometheus-2-7B in Table 2, TRACT fine-tuned
on Llama-3.1 8B leads to much stronger results.
However, Prometheus-2-7B is fine-tuned with a dif-
ferent base model (Mistral-7B), which is a smaller
model, and thus the results may not be directlu
comparable.

B.4 Perpexity of Training Data
We use the base LLM p0 (Mistral-7b-Instruct-v0.2)
to calculate the perplexity of the CoTs from pa
and the CoTs generated by ps and ptract. For the
above three types of CoTs, their perplexity is 7.78,
6.67, and 6.34 respectively. Similar to Ren et al.
(2024), we find that self-generated CoTs (from
ps and ptract) yield lower perplexity compared to
those generated by GPT-4.

C Corrupted CoTs for Section 6.3

We show examples of corrupted CoTs generated
from the model trained with sequential fine-tuning
(see Section 6.3). In the first sample, the evaluation
CoT is short, and it is unclear what the ’[5]’ means
here. In the second sample, the model generates a
string ’(Score 5)’ in the middle, and fails to gen-
erate the required output in expected format. In
the third example, the fine-tuned model generates
’(Score 2)’, which also do not follow the expected
output format.

D License

We release the model under the Apache 2.0 license.
Since our models are trained using Feedback Col-
lection, a dataset generated from OpenAI GPT-4,
the models are further subject to OpenAI’s Terms
of Use. Additionally, the models fine-tuned from
Llama-3.1-8B-Instruct is also further subject to the
Llama 3.1 Community License.

2947

https://openai.com/policies/row-terms-of-use/
https://openai.com/policies/row-terms-of-use/
https://github.com/meta-llama/llama-models/blob/main/models/llama3_1/LICENSE

An instruction (might include an Input inside it), a response to evaluate, a reference answer that gets a score of 5, and a score rubric
representing a evaluation criteria are given.
1. Write a detailed feedback that assess the quality of the response strictly based on the given score rubric, not evaluating in general.
2. After writing a feedback, write a score that is an integer between 1 and 5. You should refer to the score rubric.
3. The output format should look as follows: "Feedback: (write a feedback for criteria) [RESULT] (an integer number between 1 and 5)"
4. Please do not generate any other opening, closing, and explanations.

###The instruction to evaluate:
You are a well-known psychiatrist who has a reputation for being empathetic and understanding. A client comes to you saying they’ve had a
really hard day at work. They describe their boss as being overly critical and not listening to their ideas, which has left them feeling
frustrated and undervalued. They also mention feeling overwhelmed with the workload and a growing sense of loneliness as they are new to
the city. How do you respond to them to make them feel heard and understood, as well as offering helpful advice?

###Response to evaluate:
It’s indeed challenging to deal with a difficult boss and to carry a large workload, especially when you are new to a city and haven’t
established a supportive network. I would suggest taking a step back to think about your situation and perhaps speak to your boss regarding
the issues you’re facing. On the other hand, dealing with a large workload can be managed by prioritizing tasks, and maybe you can discuss
it with your superiors too.

In regards to feeling lonely, you might want to explore activities or groups that align with your interests to meet new people. And also,
remember to take time for yourself to relax and destress. I’m here to assist you as we navigate through these issues.

###Reference Answer (Score 5):
I hear that you’re dealing with quite a few challenging situations at once. It must be tough to have your ideas dismissed by your boss
and to feel undervalued in your work environment. It’s understandable that such experiences can lead to frustration and a feeling of being
overwhelmed.

It’s important to acknowledge these feelings and not to dismiss them. Feeling heard and validated in our experiences can often be the
first step towards resolving the challenges we face. So, I want you to know that your feelings are completely valid and it’s okay to be
frustrated and overwhelmed.

In terms of dealing with your boss, have you considered seeking a private conversation with them to express your feelings? It’s often
beneficial to communicate what you’re experiencing, using "I" statements to express how you feel when your ideas are not taken into
consideration. This can lead to mutual understanding and possibly a change in behavior.

About the workload, it might help to prioritize tasks and potentially delegate, if possible. Also, consider discussing your workload with
your superiors. There might be a misunderstanding about what’s manageable or they might have suggestions about how to handle the situation.

On the personal front, feeling lonely, especially when you’re new to a city, can be really hard. Seek out opportunities to meet new people,
perhaps through hobbies, community activities, or online groups. It might take a bit of time, but gradually, you can build a network of
friends and acquaintances.

Remember, it’s perfectly okay to have bad days and it’s important to take care of your mental health. Consider incorporating activities
into your daily routine that make you happy and help you unwind. This could be anything from reading, yoga, going for a walk, or even
listening to your favorite music.

Please know that you’re not alone in this. I’m here to support you through this challenging time and together, we can work towards resolving
these issues.

###Score Rubrics:
[Is the model able to identify and react correctly to the emotional context of the user’s input?]
Score 1: The model utterly fails to grasp the user’s emotional context and responds in an unfitting manner.
Score 2: The model sporadically identifies the emotional context but frequently replies in a manner that doesn’t match the user’s emotional
status.
Score 3: The model typically identifies the emotional context and reacts suitably, but occasionally misreads or misjudges the user’s
feelings.
Score 4: The model often identifies the emotional context and reacts suitably, with minor cases of misreading or misjudging.
Score 5: The model flawlessly identifies the emotional context of the user’s input and consistently responds in a considerate and empathetic
manner.

###Feedback:

(a) Input example with the input prompt template.

The response offers practical, original, and effective solutions (...). So the overall score is 3

(b) Example output

Table 4: The input prompt template (with an input example) and an example output used in our main experiment.

2948

A judge model is required to evaluate the quality
of a response generated by an AI model based on the
user’s instruction.

The following are the instructions and inputs for
the judge model:

Begin of Inputs to Judge Model
[input]
End of Inputs to Judge Model

Here is the judgement from the Judge model:

Begin of Judgement
[judgement]
End of Judgement

Question: Please evaluate the quality of the
judgement based on whether the judgement is grounded
on the responses and carefully follows the rubric.
Provide some reasoning and analysis to support your
evaluation. Next, provide an **integer rating**
between 1 to 5, where 1 is the lowest quality and 5
is the highest quality, to asssess the quality of
the judgement. Please always conclude with "Score:
score", where score is the integer rating.

Table 5: The prompt used to evaluate the quality of the
evaluation CoTs. The [input] includes all the input to
the LLM-as-a-judge model that is used to generate the
evaluation CoT, as shown in Table 4 (Appendix). The
[judgement] includes the evaluation CoT and the final
score.

2949

Train/Inference Configuration FB Bench FLASK Vic. Bench MT Bench Average
Id CoT Train Data Infer. τ τ τ τ

Baselines
B.1 ✗ CE GPT-4‡ Decode 0.824 0.294 0.344 0.211 0.418
B.2 ✓ CE GPT-4 Decode 0.798 0.328 0.380 0.380 0.472
B.3 ✗ ✗ ✗ RAIL 0.130 0.109 0.122 0.150 0.127
B.4 ✗ RAFT GPT-4‡ RAIL 0.818 0.375 0.401 0.342 0.484

B.5 ✓ Prometheus-2-7B† Decode 0.765 0.405 0.411 0.392 0.493

TRACT (ours)
7 ✓ C-RAFT Self C-RAIL 0.820 0.373 0.423 0.386 0.500

Ablation analysis for TRACT
A.1 ✓ C-RAFT GPT-4 C-RAIL 0.763 0.315 0.409 0.307 0.448
A.2 ✓ CE Self C-RAIL 0.798 0.321 0.406 0.369 0.474
A.3 ✓ CE Self Decode 0.795 0.281 0.339 0.337 0.438

Table 6: The Kendall’s τ results for Mistral-7B-Instruct. The best and second-best results (excluding ablations) for
each column are marked with boldface and underline, respectively. Explanation of abbreviations: Train: training
objective; Data: source of CoT used for training; Inf.: inference method; FB Bench: Feedback Bench; Vic. Bench:
Vicuna Bench; C-RAFT: CoT-RAFT; C-RAIL: CoT-RAIL. †: Prometheus-2-7B is obtained by merging two models
trained from Feedback Collection and Preference Collection. We rerun the inference using the model released
by Kim et al. (2024b) with the official code. ‡: When training without CoTs, the training target is simply the score,
which is still generated by GPT-4.

Train/Inference Configuration FB Bench FLASK Vic. Bench MT Bench Average
Id CoT Train Data Inf ρ r ρ r ρ r ρ r ρ r

Baselines
B.1 ✗ CE GPT-4 Decode 0.857 0.857 0.433 0.435 0.423 0.400 0.556 0.541 0.567 0.558
B.2 ✓ CE GPT-4 Decode 0.834 0.835 0.484 0.475 0.483 0.467 0.494 0.466 0.574 0.561
B.3 ✗ ✗ ✗ RAIL 0.689 0.683 0.445 0.412 0.487 0.485 0.583 0.547 0.551 0.532
B.4 ✗ RAFT GPT-4‡ RAIL 0.918 0.920 0.493 0.506 0.541 0.509 0.614 0.618 0.642 0.639

TRACT (ours)
7 ✓ C-RAFT Self C-RAIL 0.917 0.920 0.493 0.500 0.650 0.605 0.639 0.672 0.675 0.674

Table 7: The results when using Llama3.1-8B as the base model. The best and second-best results for each column
are marked with boldface and underline, respectively. The abbreviations are the same as those in Table 2. ‡: When
training without CoTs, the training target is simply the score, which is still generated by GPT-4.

Train/Inference Configuration FB Bench FLASK Vic. Bench MT Bench Average
Id CoT Train Data Infer. τ τ τ τ

Baselines
B.1 ✗ CE GPT-4‡ Decode 0.772 0.353 0.333 0.429 0.472
B.2 ✓ CE GPT-4 Decode 0.749 0.385 0.406 0.372 0.478
B.3 ✗ ✗ ✗ RAIL 0.535 0.298 0.360 0.398 0.398
B.4 ✗ RAFT GPT-4‡ RAIL 0.799 0.371 0.386 0.455 0.503

TRACT (ours)
7 ✓ C-RAFT Self C-RAIL 0.805 0.367 0.468 0.494 0.534

Table 8: The Kendall’s τ results for Mistral-7B-Instruct. The best and second-best results for each column are
marked with boldface and underline, respectively. Explanation of abbreviations: Train: training objective; Data:
source of CoT used for training; Inf.: inference method; FB Bench: Feedback Bench; Vic. Bench: Vicuna Bench;
C-RAFT: CoT-RAFT; C-RAIL: CoT-RAIL. ‡: When training without CoTs, the training target is simply the score,
which is still generated by GPT-4.

2950

Example CoTs

The response effectively adapts its language to the user’s Hindi language preference and rural Indian background by
providing a step-by-step guide in Hindi. [5] So the overall score is 2

Feedback: The response effectively addresses the issue of improving a chatbot’s ability to validate and incorporate user
input. It outlines several strategies including the use of advanced Natural Language Processing techniques, handling
multi-part inputs, maintaining conversation context, encouraging user feedback, and iterative testing. These approaches
closely align with the reference answer. However, some enhancements could be made to provide a more concise and
clearer explanation, especially in the context of the score rubric. (Score 5) This response demonstrates a high level of
understanding of the problem domain and proposes practical solutions. The use of examples, such as b̈reaking down
multi-part questions into smaller componentsänd m̈aintaining a context stack,ädds clarity to the suggestions and improves
overall comprehension. By referring back to the original problem statement and directly addressing the criteria outlined
in the rubric, the response effectively justifies its recommendations with strong evidence. So the overall score is 4

Feedback: The model does not demonstrate an understanding of the cultural idiom ’an old broom knows the corners’ and
fails to provide a thoughtful response. Instead, it dismisses the metaphor as confusing and insignificant in the corporate
context. Its reaction is insensitive and lacks the ability to relate the idiom to practical business scenarios, significantly
diminishing the value of the exchange. (Score 2) So the overall score is 1

Table 9: Examples of corrupted CoT sampled from a model trained via sequential fine-tuning: first fine-tuning using
CE loss, and second fine-tuning with RAFT. See Section 6.3 for more details.

2951

Id Chat Chat-Hard Safety Reasoning Average

B.1 0.592 0.290 0.700 0.355 0.484
B.2 0.629 0.305 0.120 0.368 0.355
B.3 0.595 0.358 0.651 0.312 0.479
B.4 0.883 0.581 0.807 0.828 0.775

B.5.1 0.679 0.423 0.673 0.378 0.538
B.5.2 0.855 0.491 0.771 0.765 0.720
B.6 0.965 0.455 0.754 0.862 0.759

TRACT (ours)
7.M 0.927 0.542 0.759 0.716 0.736
7.L 0.922 0.434 0.799 0.837 0.748

A.1 0.777 0.513 0.569 0.482 0.585
A.2 0.886 0.564 0.773 0.645 0.717
A.3 0.564 0.292 0.385 0.194 0.359
A.4 0.824 0.469 0.700 0.568 0.640

Table 10: Accuracy on RewardBench. The indices are
identical to those in Table 2. 7.M and 7.L denote
TRACT trained from Mistral and Llama-3-8B, respec-
tively. All models are trained from Mistral, except for
B.6 (CLoud) and 7.L, which are based on Llama-3-8B.
For Prometheus-2-7B, we report two results since it can
be used as a pointwise (B.5.1) and a pairwise (B.5.2)
LLM-as-a-judge.

2952

