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Abstract
Transforming dense, unstructured text into in-
terpretable tables—commonly referred to as
Text-to-Table generation—is a key task in in-
formation extraction. Existing methods often
overlook what complex information to extract
and how to infer it from text. We present
Map&Make, a versatile approach that decom-
poses text into atomic propositions to infer la-
tent schemas, which are then used to generate
tables capturing both qualitative nuances and
quantitative facts. We evaluate our method on
three challenging datasets: Rotowire, known
for its complex, multi-table schema; Livesum
which requires numerical aggregation; and
Wiki40 which require open text extraction from
mulitple domains. By correcting hallucina-
tion errors in Rotowire, we also provide a
cleaner benchmark. Our method shows signifi-
cant gains in both accuracy and interpretability
across comprehensive comparative and refer-
enceless metrics. Finally, ablation studies high-
light the key factors driving performance and
validate the utility of our approach in structured
summarization. Code and data are available at:
https://coral-lab-asu.github.io/map-make.

1 Introduction

Driven by the exceptional success of Large Lan-
guage Models (LLMs) in tasks such as question
answering (Chen et al., 2020; Zhu et al., 2024),
text summarization (Wiseman et al., 2017; Wang
et al., 2020a), and text data mining (Li et al., 2023a;
Sui et al., 2024), recent works have shifted to ex-
plore the structured summarization of text. Reading
lengthy texts is time-consuming, making it chal-
lenging to extract key information efficiently. Ta-
bles, as a widely used structured format, can or-
ganize data in a clear and interpretable manner,
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†This author supervised the research and serves as the
corresponding author.

Figure 1: Comparison between Naive methods and our
method for Text-to-Table generation.

facilitating information retrieval and comprehen-
sion.

Early works (Wu et al., 2022; Li et al., 2023b)
treat text-to-table generation as an information ex-
traction problem, viewing the table and its corre-
sponding text representation as essentially similar.
The pioneering work by (Deng et al., 2024) extends
beyond simple extraction, integrating and categoriz-
ing information in complex scenarios. However, to
the best of our knowledge, all existing studies per-
form this task under a predefined schema, where
information about the schema is either provided
during fine-tuning (Li et al., 2023b; Wu et al., 2022)
or included in prompts for few-shot methods (Deng
et al., 2024; Tang et al., 2024). This reliance on pre-
defined schemas limits adaptability to open-domain
text, where tabular structures may need to be in-
ferred dynamically.

For more generalized systems, a hybrid approach
is needed: leveraging schema induction techniques
to recognize patterns in structured representations
while retaining the flexibility to handle novel text
narratives. This ensures robustness in managing

30249

https://coral-lab-asu.github.io/map-make


both expected and unseen table structures. Never-
theless, tabular summarization of dense informa-
tion without any prior knowledge of the underlying
structure remains largely unexplored.

Regarding methodology, there are contrasting
findings on the effect of fine-tuning LLMs versus
zero-shot or few-shot prompting strategies across
different datasets. Extensive benchmarks indicate
that LLMs often perform suboptimally in zero-shot
settings, missing relevant information and introduc-
ing unattested data or hallucinations (Deng et al.,
2024). More sophisticated prompting techniques
have been proposed to mitigate these issues (Wei
et al., 2022; Khot et al., 2022). In-context learn-
ing (Brown et al., 2020), combined with chain-of-
thought (CoT) prompting (Wei et al., 2022) offers
some improvements but can overfit to the provided
shots (Perez et al., 2021), reducing effectiveness on
unseen data. Some studies (Tang et al., 2024; Sun-
dar et al., 2024) report performance gains from fine-
tuning, whereas others (Deng et al., 2024) observe
no or negative improvements for table generation
tasks.

Hence, there is a need for a generalized, schema-
agnostic tabular summarization framework that can
effectively "mine" the underlying structure from
free-form text and produce comprehensive infor-
mation under a given instruction. In this work, we
aim to address the aforementioned challenges with
the following contributions:

1. We introduce a generalized notion of Struc-
tured Summarization, evaluating LLMs’ ca-
pabilities on planning table schemas in Zero-
Shot and One-Shot settings to summarize in-
formation under a given instruction exhaus-
tively.

2. We propose a generalizable framework,
Map&Make (M&M), applicable to any
Instruction-Driven Tabular Summarization
task extending beyond simple extraction tasks.

3. We present a manually corrected version of
the Rotowire Benchmark, a popular text-to-
table benchmark. This correction addresses
hallucination and fidelity issues in previous
versions, ensuring a fair evaluation setting for
our methods.

4. We conduct comprehensive experiments on
multiple closed-source and open-source state-
of-the-art LLMs on a diverse suite of metrics

encompassing both table quality and informa-
tion coverage. Results show that M&M out-
performs existing methods and exhibits robust
generalization across different Tabular Sum-
marization paradigms. Additionally, M&M
maintains stable performance on large text
corpora, where other methods often degrade.

2 Map&Make Framework

We propose a three-staged methodology applica-
ble to any instruction-driven summarization task.
Figure 2 illustrates our approach. Mirroring how
humans construct tables—identifying key informa-
tion, planning the layout, and filling in values—we
employ a multi-agent prompting framework to en-
hance coverage and correctness.

2.1 Propositional Atomization
Propositional Atomization is the process of ex-
tracting atomic, self-contained facts from contex-
tually embedded sentences. The benefits of this
approach have been demonstrated in large-scale
datasets and practical applications, such as in natu-
ral language inference and summary hallucination
detection.(Chen et al., 2022) (Maynez et al., 2020).
We design a prompt to transform input statements
into atomic statements adhering to five key proper-
ties: Well-formedness, ensuring grammatical cor-
rectness and adherence to linguistic conventions;
Atomicity, maintaining the smallest meaningful
semantic unit; Self-containedness (Decontextual-
ization), making each proposition independently
understandable without requiring external context;
Support, ensuring all propositions are explicitly
derived from the input text; and Comprehensive-
ness, collectively covering all latent claims and
facts from the original text. This targeted parsing
resolves ambiguous entity attributions and prevents
the conflation of overlapping or nested entities. The
exact prompt is given in Appendix ??.

2.2 Schema Extraction
This part builds on propositional segmentation to
extract tabular layouts. Directly planning schema
results in incomplete coverage for inputs that re-
quire big tables to represent information. Hence,
we iteratively build the table schema. The table
schema is initialized as an empty list of row and
column headers for each table. These lists are
iteratively populated based on each atomic state-
ment processed (as shown in Figure 2. Entities
are mapped to row headers while their attributes
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Figure 2: An illustration of our approach. Propositional Breakdown segments the text to generate atomic statements
b. Schema Extraction extracts the table structures to generate table schemas. c. Table Generation iteratively fills
tables based on the atomic statements.

are added to column headers. This iterative ap-
proach allows headers to evolve dynamically, en-
abling adaptation to the changing structure of in-
coming data, and improving coverage. The exact
prompt is given in Appendix ??.

2.3 Table Generation

In the final step, we perform table-filling on empty
tables defined by the extracted schema in the pre-
vious step. We again, process every statement iter-
atively to update or fill cell values as per the sum-
marization instruction. For example, for counting
events from live text as in the LIVESUM bench-
mark, cell values keep increasing with every state-
ment processed. Contrastively, for static text such
as in Rotowire, cell values are fixed once. We
explicitly instruct LLMs to return statement-wise
updates for every cell value to ensure transparency
and avoid hallucinations. Refer Appendix ?? for
the exact prompt.

3 Benchmarks

Pre-LLM methods for text-to-table generation (Wu
et al., 2022), (Li et al., 2023b), (Pietruszka
et al., 2024) have utilized four predominant

benchmarks; Rotowire (Wiseman et al., 2017),
E2E (Novikova et al., 2017), Wikibio (Lebret et al.,
2016), WikiTableText (Bao et al., 2018). Initially
proposed for table-to-text generation tasks, a
majority of these benchmarks lack the structural
complexity required to comprehensively evaluate
state-of-the-art LLMs for information coverage
in tabular summarization. In fact, E2E, WikiBio,
and WikiTableText consist of only single tables
with only two columns for every sample. Hence,
we evaluate our framework on the repurposed
version of the Rotowire proposed by (Wu et al.,
2022), Wiki40B (Jain et al., 2024), and the recently
released benchmark, Livesum (Deng et al., 2024).

Rotowire comprises dense post-match sum-
maries of NBA games (2014–2017), where the
task is to extract performance statistics to gener-
ate Player and Team Tables. In contrast, Livesum
consists of live football commentary†, requiring
the aggregation of various events into team sum-
mary tables. The dataset also assigns a difficulty
level: easy, medium, or hard to each column based
on varying descriptions of events that influence

†https://www.bbc.com/sport/football
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how challenging inferring the right value is. Each
dataset presents distinct challenges: Rotowire’s
long text and multi-table structure make schema
and sparse value extraction difficult, while Livesum
demands identifying and aggregating events de-
scribed in varying forms across the text.

While Rotowire and Livesum provide strong
benchmarks within the sports domain, we fur-
ther evaluate the generalization capability of
Map&Make on Wiki40B—a large-scale, open-
domain, multilingual corpus of cleaned and nor-
malized Wikipedia articles spanning 40 languages.
This dataset poses unique challenges for text-to-
table generation due to its diverse topical cover-
age (e.g., historical revolutions to astrophysics),
unstructured content, and varied narrative styles.
Inspired by Jain et al. (2024), we sample 500 En-
glish articles containing at least 30 numerical val-
ues and 3+ sentences, ensuring sufficient complex-
ity and coverage. Notably, Wiki40B also demands
multi-table generation, making it a comprehensive
testbed for evaluating the robustness and adapt-
ability of text-to-table frameworks. Additional de-
tails on the benchmark datasets are provided in
Appendix A.

3.1 Corrections and Fidelity Issues:

In our initial explorations, we observed several
discrepancies between the text and the ground
truth tables in the data presented by (Wu et al.,
2022). These discrepancies propagate on other
benchmarks developed on this data (Tang et al.,
2024) inhibiting fair and reliable evaluations of
developed frameworks. We suspect these chal-
lenges stem from LLM-driven attribution methods,
and existing problems in validating information
(Adewumi et al., 2024), (Yue et al., 2023),(Patel
et al., 2024). Thus the authors manually validate
every sample in the test set. Keeping ground truth
text the same, we attribute every row, column, and
cell value to the text and update tables.

Our findings are reported in Table 1, where
we compare our corrected version with the Origi-
nal (Wu et al., 2022), and STRUCBENCH (Tang
et al., 2024) benchmark which is another version
of Rotowire. More details about the correction
strategy can be found in Appendix A.2.1.

4 Experimental Setup

We describe the different prompting techniques,
LLMs, and evaluation metrics employed in this

Table Cell Row Col
H MI H MI H MI

Original to Strucbench
Team 1219 1271 8 8 627 626
Player 1390 1270 68 62 135 129

Original to Corrected
Team 613 1137 21 50 329 528
Player 7310 1752 85 82 1000 188

Strucbench to Corrected
Team 721 1247 21 50 385 585
Player 8104 2666 140 143 1077 271

Table 1: Total counts of corrected rows, columns, and
cells across error types for Rotowire. H denotes Hallu-
cination, and MI represents Missing Information. Here,
a row or a column is flagged as hallucinated/missing if
it contains at least one erroneous entry.

work.

4.1 Models and Baselines

We experiment with M&M on both closed-source
and open-source LLMs. Among proprietary mod-
els, we use Gemini 2.0 Flash experimental and
GPT-4o (Hurst et al., 2024) (gpt-4o-2024-08-06),
maintaining consistent configurations for temper-
ature, top_p, and top_k across experiments. Ad-
ditionally, we assess performance on open-source
models such as Llama 3.3-70B Instruct. †.

For baselines, we employ various prompting
strategies. Zero-Shot CoT (Zhang et al., 2022) di-
rectly organizes and populates tables by leveraging
step-by-step reasoning, while One-Shot CoT (Wei
et al., 2022) enhances this by incorporating a sin-
gle example in the prompt. We also compare
against Text-Tuple-Table (T3) (Deng et al., 2024),
which extracts structured tuples (subject-object-
verb or subject-attribute-value) before table gener-
ation. Originally schema-dependent, we adapt T3

into a schema-agnostic setting, alongside its unified
variant T3D, which integrates tuple extraction and
table construction in a single prompt.

To evaluate the efficacy of our framework, we ex-
periment with two variants of our approach; M&M
- 3S, performs each task sequentially, where as
M&M - U; a unified variant of our approach, per-
forms all the tasks in a single LLM call. We
face several challenges on testing M&M on the
Livesum dataset on smaller models due to the large
input sizes, resulting in inefficient iterative table fill-
ing and same statements being duplicated multiple
times. This aligns with the findings of the bench-
mark authors (Deng et al., 2024), where they face
similar challenges in building prompting pipelines

†https://github.com/meta-llama/
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for this dataset over smaller models. Moreover, the
authors also show the no/negative improvements
from fine-tuning on this dataset. Hence, we only
experiment with prompting-based approaches for
this problem.

4.2 Evaluation Metrics

Due to the high variance in table structures,
where the same information can be presented
in different formats, we utilize a diverse set of
both LLM-based and Non-LLM-based metrics to
ensure a comprehensive evaluation of correctness
and competeness.

String Similarity Metrics: We utilize Ex-
act Match (EM), CHRF (Popović, 2015), and
BERTScore (Zhang* et al., 2020) as proposed
by (Wu et al., 2022) for reference-based table evalu-
ation. To measure information coverage, each (row,
column, cell) tuple from the ground truth table is
mapped to its most similar counterpart in the gen-
erated table, assigning the highest similarity score
to that tuple. Rows Headers and Column Headers
are evaluated in a similar fashion. The final EM,
CHRF, and BERT scores are averaged over all tu-
ples, as reported in Table 2. For Livesum, where
the correctness of generated outputs is determined
by the model counting the correct number of occur-
rences of an event, i.e numbers, metrics like CHRF
and BERTScore are unsuitable. Instead, we use
Root Mean Squared Error (RMSE) defined as:

RMSE =

√∑n
i=1(yi − ỹi)2

n

where n denotes the total number of cells, and yi
and ỹi represent the content of the cell at index
i in the ground truth table and the generated
table, respectively. For 2D tables, the index
i is determined by flattening the table into a
1D sequence. Additionaly, for exact cell value
matching, we report Error Rate (ER %) as a
percentage of erroneous cells.

Specialized Metrics: Evaluating table cells (or tu-
ples) using similarity-based metrics independently
without considering contextual information from
the neighbouring cells can lead to incorrect penal-
ization of good tables, or incorrect rewarding of
bad tables. TabEval (Ramu et al., 2024) addresses
these challenges by calculating table similarity by
unrolling tables into a list of atomic statements and
computes the entailment between statements gen-

erated from output tables and their ground truths.
Additionally, we also utilize Auto-QA, an refer-
nceless eval metric, as an information coverage
metric (Jain et al., 2024) defined as:

Cov(T ) =

∑|G(S)|
i=1 E(qi,ai) [Q({Tj}, qi)]

|G(S)| (1)

where G(S) represents a set of Question-Answer
pairs (qi, ai) generated by an LLM from the input
text S . The function Q({Tj}, q) denotes the LLM’s
response to question q, derived from a set of gen-
erated tables {Tj}. The term E(q,a)[x] evaluates
whether the LLM’s response x aligns with the ref-
erence answer a for the given question q. We report
accuracy as the percentage of correctly answered
questions based on the available tables.

5 Results and Discussion

Method EM CHRF BERT
Cell Row Col Cell Row Col Cell Row Col

GPT-4o Zero-Shot
CoT 20.75 51.58 30.13 39.62 81.46 49.05 38.25 62.31 59.59
T3 - D 18.39 51.32 29.01 37.13 81.24 46.37 36.44 62.35 58.25
M&M - U 19.95 50.43 30.39 41.99 78.97 53.12 42.90 62.57 64.82

Gemini-2.0 Zero-Shot
CoT 21.90 51.85 29.20 36.65 80.69 44.23 38.58 63.78 55.76
T3 - D 20.77 52.92 22.83 32.38 81.90 38.80 37.54 64.65 54.05
M&M - U 19.76 48.05 31.51 42.61 75.00 53.19 41.22 60.63 60.65

Llama-3.3 70B Zero-Shot
CoT 21.44 51.42 39.37 40.79 80.59 51.40 36.70 63.45 55.73
T3 - D 21.05 51.57 39.40 42.04 80.77 53.36 37.31 62.93 57.49
M&M - U 19.26 51.64 27.52 35.63 79.86 45.45 36.95 63.28 55.30

GPT-4o One-Shot
CoT 33.30 88.08 35.96 45.42 91.98 50.60 57.11 91.18 60.28
T3 - D 34.53 85.98 38.36 47.96 91.35 53.31 57.83 89.79 61.90
T3 17.92 53.92 34.43 40.94 82.69 52.25 39.21 64.49 61.77
M&M - U 51.20 90.87 55.25 68.27 93.61 73.38 74.39 95.24 77.88
M&M - 3S 35.24 64.06 52.72 61.89 85.06 72.49 57.90 73.30 76.80

Gemini-2.0 One-Shot
CoT 40.65 91.57 43.21 55.19 93.92 60.10 64.60 95.53 66.22
T3 - D 38.89 87.84 42.91 55.19 92.90 60.70 63.31 92.54 67.18
T3 28.61 65.89 40.21 53.38 85.94 62.05 51.91 74.19 69.09
M&M - U 56.44 90.77 60.82 71.38 93.50 76.34 76.12 94.85 78.37
M&M - 3S 61.78 89.49 67.37 76.12 92.92 81.57 79.48 93.86 82.69

Llama-3.3 70B One-Shot
CoT 39.57 91.82 41.52 53.08 93.77 57.41 62.69 94.61 64.09
T3 - D 38.02 89.38 41.61 50.44 91.79 56.87 61.10 92.09 63.23
T3 33.82 85.41 38.84 49.75 89.95 57.17 59.04 89.52 64.54
M&M - U 44.27 92.78 47.27 60.54 94.85 65.62 66.96 95.77 70.25
M&M - 3S 41.01 72.02 44.94 54.47 74.39 58.87 58.15 74.99 61.42

Table 2: Performance comparison of different methods on
Rotowire across models using various string similarity metrics

Our experiments demonstrate Map&Make out-
performs other prompting strategies improving in-
formation coverage and correctness significantly
across all models and evaluation metrics, showing
excellent generalization capabilities.

5.1 Performance on Rotowire

From Table 2, we observe that M&M outperforms
other baselines such as CoT, T3 consistently in the
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TabEval Auto-QA
Method Correctness Completeness Overall AccuracyTeam Player Team Player Team Player

GPT-4o Zero-Shot
CoT 57.32 62.78 39.62 79.92 42.66 67.64 70.13
T3 - D 58.60 73.85 42.44 79.37 45.36 73.66 66.69
M&M - U 43.74 68.40 41.74 85.96 38.27 73.20 76.95

Gemini-2.0 Zero-Shot
CoT 73.41 66.94 36.27 81.35 44.72 71.39 60.52
T3 - D 55.82 63.70 31.57 80.80 36.65 68.62 61.94
M&M - U 58.01 68.93 44.19 77.94 46.53 68.72 64.63

Llama-3.3 70B Zero-Shot
CoT 67.63 70.57 30.66 13.35 38.09 16.21 54.24
T3 - D 63.60 74.88 33.43 34.23 40.56 33.14 52.41
M&M - U 61.15 72.32 27.78 14.61 33.55 17.88 59.17

GPT-4o One-Shot
CoT 80.23 86.74 56.26 57.74 64.34 65.57 41.42
T3 - D 80.24 87.56 56.12 64.34 64.09 70.84 38.08
T3 81.65 85.39 46.43 60.66 56.05 66.61 39.46
M&M - U 66.28 86.16 77.65 88.15 69.56 85.85 69.51
M&M - 3S 48.78 74.22 61.43 87.34 51.01 78.56 80.38

Gemini-2.0 One-Shot
CoT 82.91 91.51 63.50 75.89 69.72 81.06 60.52
T3 - D 81.86 91.08 65.18 76.27 70.01 80.92 47.94
T3 75.70 87.22 61.75 82.07 64.93 82.68 56.58
M&M - U 75.27 91.17 77.47 92.92 74.80 91.36 64.88
M&M - 3S 65.89 83.54 79.49 92.43 69.95 86.71 71.21

Llama-3.3 70B One-Shot
CoT 80.93 80.41 59.33 47.79 66.33 47.29 54.20
T3 - D 69.54 80.86 48.57 45.32 55.21 45.92 46.57
T3 65.31 70.66 64.38 36.38 61.13 33.03 53.49
M&M - U 74.33 76.47 71.87 43.34 70.57 39.53 55.96
M&M - 3S 47.92 57.12 53.59 34.04 48.21 31.34 64.61

Table 3: Performance comparison using TabEval and Au-
toQA on Rotowire across strategies on various models.

cell- and column-level metrics. In a zero-shot set-
ting, M&M improves coverage by up to 32% (from
CHRF) at the column level and 32% at the cell
level. In a one-shot setting, M&M improves by
about 29% at the cell level and by 27% at the col-
umn level. We see minimal to no improvement in
the Row-level metrics across all metrics for both
zero-shot and one-shot settings. The row headers
in all the tables consist of proper nouns (Player
Names, Team Names), and LLMs perform well in
extracting named entities (Villena et al., 2024). At
the table level, we observe up to 42% improvement
in TabEval scores (Table 3) for the Team tables and
22% for the Player table. A bigger improvement is
seen in the Team Tables as the global set of column
headers for team tables is larger, introducing more
variety in the team schemas. Also, we observe a
decrease in the Tab-Eval Correctness. This is dis-
cussed in detail in the Appendix B.1, as the Ground
Truth tables in the RotoWire dataset consist only of
statistical values, and M&M being a loosely super-
vised method also extracts non-statistical columns
( such as Injury Status and Average Player Perfor-
mance, etc.), attributes not present in the Ground
Truth, leading to decreased correctness scores. We
validate the precision of our generated tables using
the Auto-QA metric and observe an improvement

of up to 15% in coverage from CoT baselines.

Method Easy Medium Hard Average
RMSE ER RMSE ER RMSE ER RMSE ER

GPT-4o Zero-Shot
CoT 0 0 1.55 47.71 1.84 79.84 1.55 48.14
T3D 0.05 1.82 1.93 53.66 2.76 84.76 2.04 50.10
M&M - U 0.03 1.92 0.80 26.56 1.50 55.19 0.97 24.63

Gemini-2.0 Zero-Shot
CoT 0.05 2.51 2.00 60.78 2.82 87 2.09 53.92
T3D 0.05 2.82 3.45 60.20 4.39 93.26 3.34 54.44
M&M - U 0.08 3.82 0.87 31.31 2.63 80.31 1.47 35.00

GPT-4o One-Shot
CoT 0.05 2.62 2.05 55.30 1.73 76.86 1.61 45.34
T3D 0.08 0.43 1.46 46.62 2.73 84.73 1.75 44.91
T3 0.23 16.5 1.48 34.16 2.39 51.91 1.76 35.62
M&M - U 0.03 1.85 0.81 31.06 1.96 68.10 1.19 32.94
M&M - 3S 0.07 3.44 0.63 25.48 0.93 32.34 0.71 21.77

Gemini-2.0 One-Shot
CoT 0.01 0.63 1.69 58.31 2.23 82.80 1.68 48.32
T3D 0.01 0.54 1.21 49.63 2.34 85.12 1.49 46.44
T3 0.19 9.26 0.93 26.32 2.51 54.72 1.59 29.10
M&M - U 0.04 1.45 0.89 36.64 1.98 69.93 1.21 34.65
M&M - 3S 0.10 4.58 0.60 23.72 0.89 33.13 0.70 21.37

Table 4: Performance comparison using string similarity
metrics across different categories showing Error Rates (in %)
and RMSE scores of GPT-4o and Gemini-2.0-flash-exp for
Livesum

5.2 Performance on Livesum

Table 4 compares the difficulty wise and overall per-
formance of M&M with other techniques. M&M
significantly enhances performance by reducing
overall error rate by upto 35% and RMSE by upto
29% in zero shot setting, and by upto 55% in er-
ror and 57% in RMSE in one-shot setting. CoT
also outperforms T3-D in most experiments, sig-
nifying lack of generalization across a schema-
agnostic setting. However we see consistent im-
provement across T3 from CoT baselines, as it uses
code-generation to integrate, or count the events
before generating the final table. On comparing per-
formance of zero-shot - vs one-shot methods, we
see our methods consistently improve performance
across all methods and models. This finding is
consistent across both benchmarks, hence showcas-
ing emergent capabilities as an adaptable one-shot
framework.

5.3 Performance on Wiki40B

In the table 5, we report AutoQA scores on
Wiki40B for different methods. Due to the ab-
sence of gold-standard tables, we adopt AutoQA, a
reference-less evaluation metric that tests whether
the generated table can accurately answer factoid
questions derived from the original article.

Map&Make achieves a 14% improvement over
CoT and a 9% gain over T3, demonstrating its gen-
eralization capacity to open-domain, non-synthetic
text. Moreover, as compared to generating a
fixed number of tables, we observe our framework
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dynamically adapts to multiple table generation
(Range 1-13; Mean: 6.02; Std: 4.33) to improve
comprehension.

Method AutoQA-Score

Chain of Thoughts 63.68
Text-Tuple-Table 67.07
Map & Make (3-step) 76.40

Table 5: AutoQA scores using GPT-4o in zero-shot
settings.

These results suggest that our modular frame-
work, especially the atomization and iterative
schema construction, scales effectively to struc-
turally diverse open-domain text, making it a gen-
eralised and interpreted framework.

5.4 Performance Across LLMs:

In the Zero-Shot setting, GPT-4o and Gemini 2.0
Flash Exp demonstrate largely comparable perfor-
mances across most metrics, with only minor varia-
tions. The largest observed difference is a 4.8-point
delta in Column CHRF score for CoT prompting,
where GPT slightly outperforms Gemini, and a 6-
point delta in Column CHRF for M&M prompting,
favoring Gemini. In the One-Shot setting, Gemini
exhibits a slight edge, with improvements of up to
4.8 in CHRF Column score for CoT prompting, and
2.1 in Cell-level coverage for M&M Multistep. The
overall TabEval score difference remains minimal,
with a delta of just 0.2 in favor of Gemini. These
results highlight the robustness and adaptability of
our framework, maintaining stable and consistent
performance across diverse datasets and evaluation
metrics.

6 Discussion and Analysis

6.1 Error Analysis

To qualitatively analyze and pinpoint exactly where
information loss occurs in table generation, we
employ a table-transformation agent to transform
CoT and M&M generated outputs to exactly match
the Row and Column headers of the Ground
Truth tables. The agent first maps the given
rows and columns of the inputs with the Ground
Truth schema and subsequently populates the ta-
ble. Rows and Columns that occur in the model
outputs but are not present in the ground truth are
reported separately (extra information) and vice
versa (missing information). This agent facilitates
a more granular analysis of each table giving in-
sights into what information a strategy it’s misses.

CoT M&M
Extra Information

Team Rows 0.05 0
Player Rows 0.41 0.06
Team Column 0 0.09
Player Columns 0.07 1.93

Missing Information
Team Rows 0.019 0
Player Rows 0.11 0.04
Team Columns 1.04 0
Player Columns 2.6 0.21

Table 6: Average Per-Table Error Counts Across Rows
and Columns for Rotowire

Rotowire: As shown in Table 6. Row-wise cov-
erage improves from the CoT baseline when em-
ploying Map&Make reducing missing rows from
0.05 to 0 per table for Teams, and from 0.41 to 0.06
per table for players. We also observe a substantial
improvement in Column level coverage. CoT base-
lines miss out on covering columns both in Team
and Player tables, averaging 1.04 and 2.6 columns
per table respectively. Map&Make, in contrast,
misses out on 0 and 0.21 columns in the Team and
Player tables respectively. Map&Make also pro-
duces extra columns for every table capturing the
non-statistical aspects of entities, which are absent
in the Ground Truths.

Figure 3: RMSE of Overcounting and Undercounting In-
stances for Livesum. Uncercounted refers to cell values less
than the ground truth, Overcounted refers to cell values more
than the ground truths.

Livesum: We further segregate instances of over-
counting and undercounting of events separately to
analyze where LLMs miss out on information (un-
dercounting) and hallucinate (overcount). Figure
3 shows the segregated RMSE scores across both
instances. We observe over 67% of the total errors
for CoT are hallucinations. These findings align
with other research the demonstrate LLM’s struggle
with counting tasks.(Ball et al., 2024);(Zhang et al.,
2024). Contrastively, our methodology shows sta-
ble performance across all difficulty levels with
overcounting RMSE decreasing by a big margin.

6.2 Analysis on Efficiency and Table Planning
Figure 4 describes the schemas coverage of CoT
and our method’s extracted schemas. We see a
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very high correlation between missing columns
and Ground Truth tables for CoT, showcasing poor
performance as schema size increases. We show
stable performance across larger table sizes for both
player and team tables.

Figure 4: Comparison of Schema-Coverage with Increasing
Table Sizes for Rotowire.

The facets of information coverage and accu-
rate extraction in structured summarization tasks
are challenging due to the high variability of lin-
guistic structures, implicit relationships, and con-
textual dependencies present in unstructured text.
These complexities, including syntactic ambigui-
ties, coreference resolution challenges, and implicit
entity attributions, make it difficult for models to
reliably infer and represent structured information
while preserving the fidelity of the original con-
tent. Rotowire tests the capabilities of models in
planning exhaustive Table schemas from highly
contexualised narratives where as Livesum tests
exacting occurrences of different events. M&M
prompting shows significant improvements across
both datasets and hence, is a more reliable and
exhaustive table generation strategy.

6.3 Ablation Study

M&M Correctness Completeness Overall
Team Player Team Player Team Player

Unified
No Ablation 75.27 91.17 77.47 92.92 74.80 91.36
- Atomization 72.91 82.80 77.37 85.61 73.28 82.42
- Iterative

Schema 69.74 80.45 70.75 86.42 68.50 81.73
Table 70.58 83.38 69.18 89.05 67.55 84.79

3-Step
No Ablation 65.89 83.54 79.49 92.43 69.95 86.71
- Atomization 73.43 84.39 77.62 88.52 73.41 84.87
- Iterative

Schema 69.48 80.72 67.99 90.63 65.85 83.91
Table 63.98 77.39 80.26 93.69 68.84 83.12

Table 7: Ablations on Rotowire.

To understand different components our method,
we conducted some additional studies, where we
focused on removing a key step from our method,
showcased in Table 7 & 8.

Rotowire We observed that removing Atomiza-
tion step leads to a drop in the Completeness of
both the Team and the Player table across both Un-
fied and 3-Step variation. This demonstrates that
breaking down multi-entity complex statements is
essential for information coverage. Ablating the
Iterative Schema Generation step consistently de-
grades the performance, which illustrates that it is
a crucial step in our method, as this is effective for
tabular structure and enables better table filling as
manifested. Furthermore, removing Iterative Table
Generation step, we observe a significant drop in
the Correctness and Overall metrics, however it is
to be noted that there is slight increase in the Com-
pleteness for 3-Step. This suggests that without
iterative updates there is less information captured
and introduces redundancy.

M&M Easy Medium Hard Average
RMSE ER RMSE ER RMSE ER RMSE ER

Unified
No Ablation 0.08 3.84 0.87 31.34 2.63 80.29 1.47 35.00
- Atomization 0.05 2.73 0.53 18.58 1.15 44.37 0.75 21.06
- Iterative 0.02 0.93 1.52 54.33 3.41 86.20 2.08 48.94

3-Step
No Ablation 0.1 4.54 0.6 23.74 0.89 33.14 0.70 21.37
- Atomization 0.05 2.90 0.64 20.36 1.59 47.89 1.01 22.96
- Iterative 0.08 3.73 1.47 37.44 2.81 65.67 1.85 36.07

Table 8: Ablations on Livesum

Livesum We perform the following ablations of
our 3-step (M&M - 3S) and unified (M&M - U)
approach. Since the schema for every table is the
same for every test sample, we don’t ablate the
iterative structure step for this study. We see a
significant decrease in performance without the it-
erative table-filling step across both Unified and
3-step settings. This underscores the importance
of iterative table filling as models can more accu-
rately track dynamic updates without hallucinating
or missing out on events. Interestingly, we see a
small performance increase after removing the uni-
fied variant’s atomization step. This is because in
a one-shot setting, removing the atomization part
boils the problem down to a fixed schema updation.

6.4 Can Fine-Tuning Smaller Models Help?

We investigate whether our modular Map&Make
framework can enable effective fine-tuning of
smaller language models for structured genera-
tion. Using our pipeline, we applied Gemini 2.0
to the ROTOWIRE training set to generate high-
quality table-text supervision, which we used to
fine-tune a LLaMA 3 8B Instruct model. Eval-
uation on the ROTOWIRE test set was conducted
using AUTOQA, which assesses QA alignment,
and TABEVAL (Recall), which measures table re-
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construction. We compared the fine-tuned model to
a Chain-of-Thought (CoT) baseline and our M&M
(3-step) framework. Results are shown in Table 9.

Method AutoQA TabEval (Recall)
Team Player

Fine-tuned LLaMA-3 8B 48.65 41.61 61.58
Chain-of-Thought (CoT) 41.42 56.26 57.74
M&M (3-step) 80.38 61.43 87.34

Table 9: Performance on AutoQA and TabEval metrics
using Gemini 2.0-generated QA supervision.

ine-tuning with Gemini-generated supervision
yields a clear gain in AutoQA (48.65 vs. 41.42) and
a modest improvement in player-level recall (61.58
vs. 57.74) over CoT prompting. However, perfor-
mance drops on team-level recall (41.61 vs. 56.26),
indicating challenges in aggregating broader con-
tent. The full M&M framework consistently outper-
forms both alternatives across all metrics. While
challenges such as formatting consistency and long-
context reasoning persist, Map&Make remains
effective both as an inference-time solution and
as a scalable data generation engine for schema-
agnostic table generation in low-resource and mul-
tilingual settings.

7 Related Works

With the advent of Large Language Models
(LLMs), numerous methods for information ex-
traction and summarization have been developed.
For extraction tasks that involve structured data,
two fields have been researched; Table-to-Text and
Text-to-Table have been researched, with the latter
being less explored.

Table-to-Text Prior works have been referred
to as data-to-text in a more general sense. Former
works in table-to-text traditionally uses sequence-
to-sequence (seq2seq) models to generate table de-
scriptions (Lebret et al., 2016), (Wiseman et al.,
2017), (Liu et al., 2018), (Wang et al., 2020b).
Since there exists a bidirectional relationship be-
tween structural data and unstructured text, the
inverse task text-to-table, has also started gained
attention.

Text-to-Table Recent studies investigates di-
verse methods to transform unstructured text into
structured tables while addressing the underlying
issues of schema inference, handling complex data
relations, and knowledge integration. A key contri-
bution to this area has been covered by (Wu et al.,
2022), who introduced the approach of informa-

tion extraction. They developed a seq2seq model
with a fine-tuned version of BART for text-to-table
translation using the Rotowire dataset. Addition-
ally, studies like (Li et al., 2023b); (Sundar et al.,
2024) have explored more sophisticated methods
recognising challenges of interpreting 2-d struc-
tures as a linearized sequence object. While these
methods outperforms traditional methods that em-
ploy relation extraction (Zheng et al., 2017), (Zeng
et al., 2018), (Luan et al., 2019), (Zhong and Chen,
2021) and named entity recognition (NER) (Huang
et al., 2015), (Ma and Hovy, 2016), (Lample et al.,
2016), (Devlin et al., 2019), there has been less
exploration of this task on leveraging the emergent
capabilities of LLMs in developing a generalisable
methodology. We introduce a schema-agnostic ap-
proach that can dynamically infer table structures
from open-domain text. Our method aims to pro-
vide a more flexible and comprehensive solution to
the text-to-table generation task.

8 Conclusion

We introduce Map&Make, a versatile approach to
extract complex information from unstructured text.
M&M tackles the challenges by breaking down
the text into its atomic statements, this decompo-
sition then helps extract the latent schema, which
ultimately aids in populating the tables. M&M’s
core strength lies in its ability to dynamically in-
fer schema from open-domain language, as well
as its ability to handle complex information such
as numerical aggregation and detailed qualitative
descriptions. Furthermore, our corrections of the
Rotowire benchmark provides a more reliable and
fairer evaluation platform for future research in this
domain. Our meticulous evaluation on Rotowire,
Livesum, and Wiki40B showcases improvements
in information coverage and localization. M&M
mitigates information loss and maintains stable per-
formance even with a larger input context length.

Future work can explore richer evaluation
methodologies, including human-centered assess-
ments, to better capture the nuanced utility and
faithfulness of the generated tables. Another excit-
ing direction is extending Map&Make to support
structurally complex tables, such as those with hi-
erarchical headers or merged cells (Cheng et al.,
2021), which would further expand the applicabil-
ity of schema-guided text-to-table generation in
diverse domains.
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Limitations

While Map&Make demonstrates significant ad-
vancements in schema-guided text-to-table genera-
tion, it is important to acknowledge certain limita-
tions.

Reliance on LLMs M&M’s performance is tied
to the text generation capabilities of the LLMs, the
quality of atomization, schema extraction, and ta-
ble generation/filling is directly proportional to the
LLM’s reasoning abilities. This leads to several de-
pendencies such as handling highly ambiguous text,
grammatical errors, and contradictory information.

Computational Cost While the iterative nature
helps in information coverage as seen in Table 7
and Table 3, but becomes computationally ex-
pensive due to lengthy outputs, such as those in
Livesum. We explore fine-tuning smaller models
like Llama 8B to reduce computational overhead,
and we find that, while it improves performance,
there is a significant gap between smaller fine-
tuned models and larger SoTA LLMs like GPT-40,
Gemini-2.0-flash.

Ethics Statement

The authors ensure that this work meets the high-
est ethical standards in research and publication.
We have carefully addressed ethical considerations
to guarantee appropriate behavior and fair use of
computational linguistics methods. Our assertions
are consistent with experimental data. While some
stochasticity is predicted with black-box Large Lan-
guage Models, we minimize it by keeping a con-
stant temperature, top_p, top_k. Furthermore, the
use of LLMs such as GPT-4o, Gemini, and Llama
in this study adheres to their policies of usage. We
have used AI assistants (Grammarly and ChatGPT)
to address the grammatical errors and rephrase the
sentences. Finally, to the best of our knowledge,
we believe that this work introduces no additional
risk.
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Appendices

A Datasets

In this section, we present more details about the
datasets used in this study.

A.1 Livesum
This benchmark was created by scraping live com-
mentory of football games played in the English
Premier League. Player Names and Team Names
were anonymised and summary tables were anno-
tated manually. The difficulty level of each event
(columns in a table) is determined by the number
of different descriptions that are present for each
event, as shown in figure 5. Goals and Red Cards
are classified as easy due to their rare occurrences
and straightforward descriptions. Shots and Fouls
are classified as Hard as they have the most vary-
ing descriptions. The remaining four events are
classified as Medium difficulty.

Figure 5: Eight types of event information (inner circle) that
require summarization in Livesum dataset, along with their
common expressions (outer circle) in the commentary. (Deng
et al., 2024)

A.2 Rotowire
The Rotowire dataset was originally introduced
by (Wiseman et al., 2017) for table-to-text gener-
ation, comprising NBA game summaries paired
with detailed box and line scores. It was later re-
purposed by (Wu et al., 2022) for text-to-table gen-
eration by filtering the original tables to retain only
records that could be grounded in the textual sum-
maries. For each sample summary, a team-level and
a player-level table were constructed. The bench-
mark consists of 3,398 training, 727 validation, and

728 test samples. During our experiments, we ob-
served multiple table entries with no grounding in
the corresponding text, which we corrected to have
a clean and reliable benchmark.

A.2.1 Dataset Corrections
The match summaries often contain information
about player and team performances outside the
scope of the match in question. For example, the
recent performance trends of teams, upcoming fix-
tures, players on impressive streaks, etc. To distill
relevant information, we operate the instruction to
keep only statistical values of Teams and Players
pertinent to the match in question.
First, we extract the global column headers from
the complete test set for the Team and Player tables.
We further add two column headers to the global
set "Points in the Paint" and "Half-Time Score".
The former represents the points made by the team
through 2-point shots, and the latter represents the
score of both teams at half-time, hence relevant
to the team performance summary. Row Headers
require no correction at the global level as they
contain Player Names and Team Names, hence are
validated for every sample individually.

Every table follows the same structure with Row
Headers as the teams (Home Team, Away Team)
and 8 columns, one for each event. As our problem
statement involves generating summary tables with-
out any schematic constraints, we find extra events
such as Passes, Assists, Through Balls that are
contextually relevant but cannot be evaluated using
the ground truth. Hence, we employ a paraphrasing
agent to transform our outputs as per the ground
truth’s structure. Full prompt used for paraphrasing
can be found in appendix ??

B Additional Results

B.1 Rotowire

Method EM CHRF BERT
Cell Row Col Cell Row Col Cell Row Col

GPT-4o Zero-Shot
CoT 18.52 47.28 27.89 34.10 77.60 46.06 34.92 57.19 66.58
M&M - U 15.07 46.43 21.73 29.92 74.59 41.48 34.34 57.54 59.56

GPT-4o One-Shot
CoT 56.62 88.44 61.20 76.16 92.36 79.50 83.01 91.41 87.20
M&M - U 45.41 88.39 50.38 61.24 91.38 68.77 68.52 93.37 74.50
M&M - 3S 23.30 58.33 34.69 40.17 79.36 53.71 43.05 67.41 60.87

Gemini-2.0 Zero-Shot
CoT 33.56 21.90 51.85 37.71 76.49 49.09 40.46 58.64 79.93
M&M - U 16.85 45.41 28.03 36.39 71.97 48.98 36.91 56.66 61.78

Gemini-2.0 One-Shot
CoT 56.27 91.79 59.85 75.56 94.13 79.10 84.18 95.95 85.90
M&M - U 57.00 90.32 61.61 71.77 93.20 77.64 77.90 94.76 80.38
M&M - 3S 49.90 86.11 55.95 62.49 89.82 71.86 69.86 91.52 74.65

Table 10: Rotowire Correctness Scores
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Figure 6: Instances of hallucinations and missing information in Rotowire.

Method EM CHRF BERT
Cell Row Col Cell Row Col Cell Row Col

GPT-4o Zero-Shot
CoT 18.93 48.71 28.36 35.56 78.90 46.87 35.49 58.92 61.74
M&M - U 16.61 47.79 24.69 33.72 76.16 45.87 37.20 59.25 61.29

GPT-4o One-Shot
CoT 38.93 87.99 42.22 53.22 91.95 58.93 65.69 91.09 69.47
M&M - U 46.85 89.05 51.71 63.08 92.01 70.21 70.33 93.92 75.47
M&M - 3S 26.66 60.28 40.20 46.60 81.37 60.41 48.05 69.48 66.81

Gemini-2.0 Zero-Shot
CoT 20.72 49.02 30.30 35.68 77.91 45.55 38.33 60.34 64.07
M&M - U 17.71 46.09 28.91 38.00 72.82 50.24 37.97 57.81 60.42

Gemini-2.0 One-Shot
CoT 45.65 91.36 48.71 61.78 93.75 66.89 71.66 95.59 73.46
M&M - U 56.03 90.24 60.63 70.75 93.08 76.56 76.44 94.66 78.89
M&M - 3S 53.63 87.14 59.89 66.88 90.82 75.61 73.32 92.30 77.74

Table 11: Rotowire Overall Scores

In Table 10 and 11, we provide the Correctness
(Precision) and Overall Scores (F1) for Rotowire on
GPT-4o, and Gemini-2.0-flash-exp. We see mini-
mal to no improvement in correctness scores across
similarity metrics due to the lack of any statisti-
cal attributes in the ground-truths. Map & Make,
being an unsupervised designed to enhance cover-
age of information produces descriptive columns
such as Injury Status, categorical columns such
as Starting 5 player/ Off the Bench Player (used
to describe whether a player is present in the game
from the start of the match or is substituted mid-
game). Also, columns that represent attributes
not directly relevant to the game such as Average
Points Scored past 3 games, Win Streak have no
reference in ground truths which leads to penali-
sation of our methodology. However, to validate

the correctness of the extra columns generated in
our tables we employ AutoQA (shown in Table 3).
M&M’s consistent improvement on this metric val-
idates the faithfulness of extra information to the
gold text.

C M&M Sample Outputs

The sample outputs of all the prompts in
our framework (on Gemini-2.0-flash) can be
found here: https://github.com/coral-lab-asu/map-
make/tree/main/code/sample-outputs

D Prompts

All the prompts used for baselines and Map&Make
can be found here:https://github.com/coral-lab-
asu/map-make/tree/main/code/prompts. These con-
tains prompts for:

• Chain of Thoughts

• Text Tuple Table (Merged and 3-step)

• Map&Make (Propositional Atomization,
Schema Extraction, Iterative Table Filling,
and Unified) -0.5em.
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