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Abstract

Scientific language models drive research in-
novation but require extensive fine-tuning on
large datasets. This work enhances such mod-
els by improving their inference and evalua-
tion capabilities with minimal or no additional
training. Focusing on molecule caption gener-
ation, we explore post-training synergies be-
tween alignment fine-tuning and model merg-
ing in a cross-modal setup. We reveal intrigu-
ing insights into the behaviour and suitability
of such methods while significantly surpass-
ing state-of-the-art models. Moreover, we pro-
pose a novel atomic-level evaluation method
leveraging off-the-shelf Natural Language In-
ference (NLI) models for use in the unseen
chemical domain. Our experiments demon-
strate that our evaluation operates at the right
level of granularity, effectively handling mul-
tiple content units and subsentence reasoning,
while widely adopted NLI methods consis-
tently misalign with assessment criteria.

1 Introduction

AI in Chemistry is essential for developing
scalable and cost-effective scientific solutions,
such as pioneering drugs (Ferguson and Gray,
2018), advanced materials (Kippelen and Brédas,
2009), and improved chemical processes (Zhong
et al., 2023). The vast search spaces in which
these solutions reside make chemical language
models crucial for accelerating scientific discov-
ery (AI4Science and Quantum, 2023; Zhang et al.,
2023). Recent trends have led to the use of mul-
timodal models to learn molecular and linguistic
representations, either in separate but coordinated
spaces (Edwards et al., 2021, 2022; Liu et al.,

2023a), in a common space (Liu et al., 2023b),
or through dual approaches (Luo et al., 2023;
Christofidellis et al., 2023). These models often
rely heavily on extensive supervised fine-tuning.
However, merely increasing model size and data
does not guarantee improvement (Tirumala et al.,
2022; Xu et al., 2023). Thus, we propose focusing
on novel training methods.

Here we enhance molecule language models
using minimal post-training by leveraging syner-
gies between alignment fine-tuning (Ouyang et al.,
2022) and model merging (Yang et al., 2024) in
a crossmodal setup. Specifically, we focus on
molecule-language translation, using as little as
10% of the training data (Edwards et al., 2024).
Fig. 1 illustrates our comprehensive post-training
solution.

Model merging, a technique for fusing mod-
els fine-tuned on different tasks, builds a ver-
satile model without needing the original train-
ing data or expensive computation. This method
has been quickly adopted in foundation language
models (Yang et al., 2024). We extend this con-
cept to a crossmodal setting by merging per-task
pretrained molecule language models (see Fig. 1),
deploying both weight- and subspace-based tech-
niques to obtain universal models (§ 3.2.1).

For fine-tuning alignment, we focus on Re-
inforcement Learning from Human Feedback
(RLHF) (Stiennon et al., 2020) to align the uni-
versal models. Although alignment has typically
been used to calibrate LLM behaviour (Askell
et al., 2021), we hypothesise that it can also accel-
erate learning in crossmodal spaces by rewarding
preferred over dispreferred outputs, thus improv-
ing inference with minimal training data. We fo-
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Figure 1: Overview of our proposed post-training ap-
proach to address key limitations in chemical LLMs.
Top: Merging per-task pretrained models to create a
universal model (refer to § 3.2.1). Bottom: Generat-
ing synthetic preference data using pretrained per-task
encoder–decoders (refer to § 4.1) for alignment tuning
.

cus on optimisation algorithms using closed-form
losses on offline preferences, such as Direct Pref-
erence Optimisation (DPO) (Rafailov et al., 2024),
Contrastive Preference Optimisation (CPO) (Xu
et al., 2024), and Kahneman-Tversky Optimisa-
tion (KTO) (Ethayarajh et al., 2024). We incorpo-
rate golden data as human preferences and dispre-
ferred synthetic outputs generated by proprietary
models into the reward signal (see Fig. 1).

We evaluate our models on out-of-distribution
data using established statistical-based met-
rics (Sets, 2022; Edwards et al., 2022). Addition-
ally, we use Natural Language Inference (NLI)
models to assess generated text within the chem-
ical domain. However, off-the-shelf NLI mod-
els are suboptimal because: a) they are trained

on short texts (Williams et al., 2018), while
generated outputs may mix overlapping content
units (Nenkova et al., 2007); b) they struggle with
unseen domains (McIntosh et al., 2024); and c)
they lack subsentence inference, limiting their
handling of reordered content (see Fig. 3). Thus,
we propose a novel atomic-level cross-NLI ap-
proach that addresses these issues. By decom-
posing reference and generated texts into atomic
premises and hypotheses using an LLM, we calcu-
late probability distributions of contradiction and
entailment via an NLI model and finally apply
row-wise operations to obtain novel hallucination
and coverage metrics (§3.3).

Our findings and contributions are as follows:
• Extensive training doesn’t guarantee better

models. Models trained on large benchmark
datasets exhibit memorisation effects, with per-
formance dropping by 50% to 100% on out-of-
distribution data (§ 4.2.1).

• Alignment fine-tuning is not a panacea. Our
experiments reveal that not all fine-tuning ap-
proaches applicable to heavily trained models
are effective with minimal training (§ 4.2.1).

• Effective alignment methods balance struc-
tured learning and generalisation. Of the
alignment fine-tuning methods, only CPO man-
aged both crossmodal agnostic and minimal
training effectively (§ 4.2.1).

• Model merging addresses inherent limita-
tions in alignment fine-tuning. It improves
performance with minimal training, reduces de-
pendence on human-labelled data, and provides
a scalable, cost-effective alignment method for
LLMs. (§ 4.2.2).

• Our novel atomic-level cross-NLI evalua-
tion reveals intriguing insights about perfor-
mance interpretability and effectively han-
dles multiple content units in text. By con-
trast, widely adopted NLI methods consistently
misalign with assessment criteria (§ 4.2.3).

2 Related Work

2.1 LLMs for Chemistry

Existing approaches for LLMs in the chemi-
cal domain typically rely on costly pretraining
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with large unimodal datasets for reaction predic-
tion and retrosynthesis (Schwaller et al., 2019;
Vaucher et al., 2020), or task-specific fine-tuning
for language-molecule learning (Edwards et al.,
2021, 2022, 2024) and molecule editing (Liu
et al., 2023a; Fang et al., 2023). Other meth-
ods focus on multitask learning, which requires
resource-intensive pretraining and large multitask
datasets (Lu and Zhang, 2022; Ross et al., 2022;
Christofidellis et al., 2023; Zhang et al., 2024). In
contrast, we investigate synergies between fine-
tuning alignment (Gkoumas, 2024) and model
merging to enhance molecule language models
with minimal training.

2.2 Model Merging

Existing model merging techniques can be
broadly categorised into weight-based, subspace-
based, and routing-based approaches. Weight-
based methods often use optimisation algo-
rithms (Yang et al., 2023; Akiba et al., 2024)
or geometric interpolations (Zhou et al., 2024;
Goddard et al., 2024) to determine optimal task
vector coefficients. Subspace-based methods in-
volve pruning (Yadav et al., 2023; Yu et al.,
2024) or masking (Wang et al., 2024) to remove
insignificant parameters, reducing task interfer-
ence. Routing-based methods combine models
adaptively during inference based on specific in-
put (Muqeeth et al., 2023; Tang et al., 2024).
We experiment with weight- and subspace-based
merging in a crossmodal context.

2.3 Aligning LLMs

LLM alignment methods can be divided into test-
time and fine-tuning approaches. Test-time align-
ment techniques, such as prompt engineering and
guided decoding (Khanov et al., 2024; Huang
et al., 2024), adjust LLMs without changing their
weights, but depend on the original model’s per-
formance. Fine-tuning methods, like RLHF (Sti-
ennon et al., 2020; Ouyang et al., 2022), are effec-
tive but complex, requiring model retraining and
continuous sampling. DPO (Rafailov et al., 2024)
simplifies RLHF by directly optimizing PPO’s ob-
jective, while CPO (Xu et al., 2024) improves effi-
ciency by using a uniform reference model. Other

methods leverage SFT for optimizing RLHF man-
agement and parameter tuning (Ethayarajh et al.,
2024; Meng et al., 2024). Here, we explore align-
ment fine-tuning in a crossmodal setup.

2.4 NLI-based Evaluation
NLI models determine the relationship between
a premise and a hypothesis. Existing approaches
either identify a sentence in the reference text
as the premise (sentence-level NLI)(Nie et al.,
2019b; Laban et al., 2022), or use the entire refer-
ence as the premise (Dziri et al., 2022; Honovich
et al., 2022), which can be inefficient for long
texts (Schuster et al., 2022). Context-level NLI
addresses this by retrieving relevant sentences to
create a short context (Nie et al., 2019a; Schus-
ter et al., 2022; Kamoi et al., 2023), but lacks
sufficient granularity (Nenkova et al., 2007). We
propose a novel atomic-level NLI evaluation for
the chemical domain to address these limitations.

3 Methodology

3.1 Task Definition
Let (x, y) represent a pair of source and target
sequences mapped to the X and Y spaces, re-
spectively. We cast molecule caption genera-
tion (MoCG) as a crossmodal alignment task
that operates on offline preference data D =

{x(i), y(i)w , y
(i)
l }Ni=1, where x is the input, and yw

and yl are the preferred and dispreferred outputs,
respectively, with N being the total number of
pairs in D. The goal is to learn an optimal func-
tion f : X ↔ Y via a model πθ parameterised
by θ. We coordinate the molecule and caption
generation tasks via instruction modelling 1.

3.2 Aligned Mixed Molecule Language
Models

This section elaborates on how we obtain aligned
universal molecule language models.

3.2.1 Universal Models via Model Merging
Let τ1 and τ2 represent task vectors 2 from pre-
trained molecule and caption generation models.

1Instructions can be found in Appx. F.
2A task vector τ represents the model’s parameters Θ(t)

fine-tuned for task t (Ilharco et al., 2022).
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Our goal is to obtain a multitasking cross-modal
model Θ(merge) without accessing training data
by exploring weight-based and subspace-based
merging techniques. Fig. 2 illustrates the process.
Specifically, we experiment with model merging
approaches that inherently manage conflicts and
mitigate modality dominance or instability when
integrating modality-specific information using
off-the-shelf LLMs, ensuring that neither modal-
ity overshadows the other.
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Figure 2: Model merging techniques for obtaining uni-
versal models. (A) Weight-based merging via spher-
ical interpolation. (B) Subspace-based merging by
pruning and merging parameter magnitudes. τ1 and
τ2 are task vectors obtained from pretrained molecule
and caption generation models, respectively.

Weight-based model merging: We experiment
with SLERP (Goddard et al., 2024), which ap-
plies spherical interpolation to fuse model pa-
rameters in a more nuanced approach, blending
models in a way that preserves unique charac-
teristics. The goal is to find optimal coefficients
λ1 and λ2 so that the merged model Θ(merge) =
λ1τ1 + λ2τ2 retains the capabilities of the inde-
pendent models. The coefficients are given by
sin((1−λ1)·ρ)

sin(ρ) and sin(λ2·ρ)
sin(ρ) , respectively, where

ρ = arccos
(

τ1·τ2
|τ1|·|τ2|

)
is the angle between the

task vectors, and λ is the merging coefficient.

Subspace-based model merging: We utilise
TIES (Yadav et al., 2023) to prune the task vectors
τ1 and τ2, retaining the top 20% parameters, re-
sulting in refined vectors τ̂1 and τ̂2 (see Fig. 2 (B)).
We then fuse the vectors via Task Arithmetic (Il-
harco et al., 2022) to obtain the merged model as
Θ(merge) = 1

2

∑2
i=1 τ̂i. During the merging pro-

cess, conflicts arising from differing signs in the

parameters p are resolved by aligning the pruned
vectors as follows:

Align(τ̂p1 , τ̂
p
2 ) =

{
τ̂p1 if |τ̂p1 |> |τ̂p2 |
τ̂p2 if |τ̂p2 |≥ |τ̂p1 |

(1)

3.2.2 Crossmodal Alignment Fine-tuning
Let πref be the reference policy (i.e., the uni-
versal model from model merging), πθ the pol-
icy model being trained, parameterised by θ, and
D = {x(i), y(i)w , y

(i)
l } the offline preference data.

Our goal is to learn effective crossmodals for the
MoCG task with minimal training via alignment
fine-tuning. We experiment with different opti-
mizations that differ substantially in how they
learn a reward signal, as overviewed in Table 1.
• SFT minimises the difference between gener-

ated output z and target yw by optimising model
πθ through negative log-likelihood (Eq. 2).

• DPO (Rafailov et al., 2024) enhances cross-
modal translations using an offline preference
dataset D. It aligns model πθ by maximising
the likelihood of preference data, with reference
model πref, Sigmoid function σ, and hyperpa-
rameter β (Eq. 3).

• CPO (Xu et al., 2024) reduces reliance on high-
quality data by avoiding suboptimal transla-
tions, but not perfect translations in ML tasks. It
modifies Eq. 3 using a uniform reference model,
ensuring equal likelihood for all outputs. A be-
haviour cloning (BC) regulariser is injected to
reflect uniform output matching, with an addi-
tional SFT term in the final loss (Eq. 4).

• KTO (Ethayarajh et al., 2024) utilises non-
paired preference data D = {x(i), y(i), λ(i)}
where λ denotes the desirability of y. It directly
maximizes the utility of generations instead of
maximizing the log-likelihood of preferences.
The loss is computed from the generated output
z in relation to a reference zref and λ (Eq. 5).

3.3 Atomic-level Cross-NLI Evaluation
Our aim is to develop a method that operates at
the right level of granularity, precisely captur-
ing small distinctions and subtle nuances in cap-
tions, ensuring reliable evaluation. Atomic-level
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Method Optimisation Objective
SFT

min
θ

− log πθ(yw|x) (2)

DPO

log σ
(
β log

πθ(yw|x)
πref(yw|x)

− β log
πθ(yl|x)
πref(yl|x)

)

(3)

CPO

min
θ

log σ
(
β log πθ(yw|x)− β log πθ(yl|x)

)
− log πθ(yw|x)

s.t. E(x,yw)∼D

[
KL(πw(yw|x)||πθ(yw|x))

]
< ϵ

(4)

KTO

−λwσ

(
β log

πθ(yw|x)
πref(yw|x)

− zref

)
+ λlσ

(
zref − β log

πθ(yl|x)
πref(yl|x)

)

where zref = E(x,y)∼D [βKL(πθ(y|x)∥πref(y|x))]
(5)

Table 1: Alignment fine-tuning algorithms for the
MoCG task given preference data D = {x, yw, yl}.

cross-NLI evaluation uses an LLM and an NLI
model to assess relationships between generated
and reference captions. The process begins with
an LLM (Touvron et al., 2023) decomposing a
(reference, generated) pair into atomic premises
{Pi}Ni=1 and hypotheses {Hj}Lj=1, where each
atomic unit conveys a single piece of information
(see Appx. E). An NLI model (He et al., 2020)
then constructs probabilistic distributions of en-
tailment and contradiction by considering all pos-
sible combinations of premises and hypotheses.
Finally, pooling operators match atomic hypothe-
ses and premises in terms of both factual correct-
ness, i.e., hallucination, and completeness, i.e.,
coverage. Fig. 3 illustrates this process.

Hallucination we define here as the introduc-
tion of information not present in the reference
text. Given {(Pi, Hj)}, the NLI model constructs
a contradiction probability distribution for each
atomic hypothesis against all premises, such as
pj,i = (Cj,i|Pi, Hj). This results in an ML×N

matrix of contradiction probabilities Cj,i (see
Fig. 3). To measure hallucination, we apply min
row-wise pooling and average the matching prob-
abilities to compute the score by the formula:

Hallucination =
1

L

L∑

j=1

min
i

Cj,i (6)

Coverage we define as atomic unit recall, rep-
resenting how much reference information is
present in the generated text. Unlike halluci-
nation, here generated text forms the atomic
premises (Pj) and the reference text the hypothe-
ses (Hi). The NLI model constructs an entail-
ment probability distribution for each Hi against
all Pj , such that pi,j = (Ei,j |Pj , Hi), resulting in
an MN×L matrix of entailment probabilities Ei,j .
To measure coverage, we apply max row-wise
pooling and average the matching probabilities to
compute the score given by the formula:

Coverage =
1

N

N∑

i=1

max
j

Ei,j (7)

4 Experiments

4.1 Experimental Setup

Data: We conduct experiments training Med-
itron (Chen et al., 2023) on the benchmark L+M-
24 (Edwards et al., 2024) dataset, using only 10%
of the data for training, and evaluate on out-of-
distribution data (see Appx. D for details). For
alignment fine-tuning, we create synthetic dis-
preferred outputs generated by MolT5 (Edwards
et al., 2022). In practice, this involves feeding
MolT5 with inputs from the 10% subset of L+M-
24 used in our experiments, generating outputs,
and then using these outputs as dispreferred sam-
ples (see Fig. 1 ). Our training, validation, and
test sets contain approximately 12.7k, 3.4k, and
3k samples.

Baselines: We selected established baselines
based on their relevance to our hypotheses, en-
abling comparison with models trained on fully
(i.e., Chem-LLM (Zhang et al., 2024)) and par-
tially (i.e., TxtChem-T5 (Christofidellis et al.,
2023)) out-of-distribution data, as well as in-
distribution data (Meditron (Chen et al., 2023)).
In this context, TxtChem-T5 and Chem-LLM are
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It impacts both atherosclerosis and cardiovascular disease. 
The molecule is a nutrient, thyroxine treatment, fat storage 
that impacts pancreatitis and metabolic syndrome.
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Figure 3: The process of atomic-level cross-NLI evaluation when measuring the level of hallucination.

evaluated in a zero-shot setting. For more de-
tails about the baselines, please refer to Appx. G.
Lastly, we fine-tune Meditron with SFT using
only 10% of the training data. We leave all the
implementation details in Appx. J.

Evaluation: When evaluating the performance
of both baselines and our models, we employ es-
tablished statistical metrics (see Appendix H), in
addition to our atomic-level cross-NLI evaluation
method (§ 3.3). For our proposed evaluation, we
assess the robustness of different NLI methods by
measuring the relative entropy of textual entail-
ment between generated outputs from high and
low performance models in association with lin-
guistic ones derived by bioinformatic databases
curated by humans. Specifically, we compare
our atomic-level NLI approach with leading ones,
including full NLI, which treats entire premises
and hypotheses as single units, and sentence-level
NLI (Laban et al., 2022), i.e., which evaluates
chunks in text.

4.2 Experimental Results

4.2.1 Aligning Molecule-Language Modals
with Minimal Training

We first present results for molecule language
models with minimal alignment fine-tuning, ini-
tialising pretrained weights from molecule gener-
ation rather than deploying model merging (see
Appx. J for details). Tables 2 and 3 summarise
experimental results. Generally, benchmarking
models trained on extensive data with SFT exhibit
memorisation effects, with performance dropping
by 50% to 100% compared to reported results,
when evaluated on out-of-distribution data.

Our experiments show that not all alignment
optimisations are effective in the minimal training
setting. Both DPO and KTO show zero perfor-
mance in caption generation when models are
initialised with crossmodal weights unrelated to
the task (see Table 2). However, performance
improves significantly when the crossmodals are
known (see Table 3). In molecule generation,
DPO achieves up to 42% better performance than
Meditron, trained on the full dataset, while KTO
still performs poorly, likely due to overfitting (see
Appx. I).

By contrast, CPO effectively handles both the
crossmodal agnostic and minimal training set-
tings, outperforming Meditron by up to 20% in
caption generation and 42% in molecule gener-
ation. This is likely due to its inherent ability
to balance structured learning and generalisation.
It aligns with preferred data through behaviour
cloning and SFT, which encourage the model
to mimic expert behaviour while reducing bias
and suboptimal outcomes via a uniform reference
model that assigns equal likelihood to all possible
outputs.

4.2.2 Alignment with Model Merging

Tables 4 and 5 summarise the experimental results
when we incorporate model merging in alignment
fine-tuning while keeping the training data the
same. Combining DPO with molecule and cap-
tion crossmodals via TIES improves caption gen-
eration (see ∆DPOvsTIES+DPO in Table 4) but
leads to significant performance loss in molecule
generation (see ∆DPOvsTIES+DPO in Table 5).
Conversely, fusing CPO with crossmodals via
SLERP significantly boosts performance in cap-
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Method Blue-2 ↑ Blue-4 ↑ Rouge-1 ↑ Rouge-2 ↑ Rouge-L ↑ METEOR ↑
TxtChem-T5 (Christofidellis et al., 2023) 0.08 0.09 0.19 0.06 0.17 0.16

Chem-LLM (Zhang et al., 2024) 0.03 0.00 0.11 0.02 0.09 0.14
Meditron (Chen et al., 2023) 0.42 0.30 0.63 0.47 0.49 0.54

SFT §4.1 0.37 0.26 0.55 0.40 0.39 0.61
DPO (Rafailov et al., 2024) 0.00 0.00 0.00 0.00 0.00 0.00

CPO (Xu et al., 2024) 0.62 0.45 0.68 0.50 0.48 0.62
KTO (Ethayarajh et al., 2024) 0.00 0.00 0.00 0.00 0.00 0.00

∆CPOvsMED +20% +19% +5% +3% -1% +8%

Table 2: Alignment fine-tuning results for caption generation on 3k unseen pairs. Arrows next to metrics denote
value increase with performance gains. Best results are in bold. ∆CPOvsMED is the performance gain of our
best model, trained on 10% of the data, compared to Meditron trained on the entire dataset.

Method BLEU ↑ Levenshtein ↓ MACCS FTS ↑ RDK FTS ↑ Morgan FTS ↑ FCD ↓ Validity ↑
TxtChem-T5 0.18 133.29 0.21 0.10 0.03 37.67 0.58
Chem-LLM 0.04 732.74 0.00 0.00 0.00 59.44 0.19

Meditron 0.43 66.16 0.35 0.29 0.19 13.64 0.57
SFT 0.30 186.99 0.70 0.62 0.41 11.14 0.98
DPO 0.72 42.40 0.77 0.69 0.49 10.47 0.99
CPO 0.71 42.65 0.77 0.70 0.48 4.19 1.00
KTO 0.23 294.63 0.03 0.03 0.02 32.64 0.06

∆CPOvsMED +29% -23.76% +42% +41% +30% -9.45% +41%

Table 3: Alignment fine-tuning results for molecule generation on 3k unseen pairs. Arrows next to metrics indicate
whether higher or lower values denote better performance. Best results are highlighted in bold. ∆CPOvsMED

represents the performance gain of our best model compared to Meditron trained on the entire dataset.

tion generation (see ∆CPOvsSLERP+CPO in Ta-
ble 4) while having minimal impact on molecule
generation (see ∆CPOvsSLERP+CPO in Table 5),
demonstrating overall gains compared to Med-
itron trained on the full dataset.

For our best-performing model, CPO+SLERP,
we conducted ablation studies to assess the impact
of weight interpolation coefficients when merging
pretrained models on MoCG tasks. Specifically,
we explored blending weights across all layers
(0–32) to preserve Mol2Cap performance while
improving Cap2Mol performance (see Appx. A
for details), aiming to create a universal model
with enhanced overall capability. Fig. 4 shows the
performance trends across different mixing ratios
of per-task model weights. Empirically, we found
that a 1:18 ratio (Mol2Cap:Cap2Mol) yields the
best balance, favoring Mol2Cap performance at
lower ratios and Cap2Mol performance at higher
ones. Further comparison with a baseline method,
namely model soup (Wortsman et al., 2022), is

provided in Appx. A.

Ratio (Mol2Cap : Cap2Mol) = 1:4 Ratio (Mol2Cap : Cap2Mol) = 1:8

Ratio (Mol2Cap : Cap2Mol) = 1:18 Ratio (Mol2Cap : Cap2Mol) = 1:32

Figure 4: Ablation of best performance model,
CPO+SLERP, for Mol2Cap and Cap2Mol tasks, evalu-
ating the effect of per-task model weight mixing ratios.

Overall, our experiments show that model
merging mitigates key limitations in alignment
fine-tuning. By fusing pretrained models, it
boosts performance with minimal training, re-
duces reliance on human-labeled data, lowers
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Fusion Method Blue-2 ↑ Blue-4 ↑ Rouge-1 ↑ Rouge-2 ↑ Rouge-L ↑ METEOR ↑

TIES (Yadav et al., 2023)
DPO 0.74 0.53 0.74 0.54 0.51 0.70
CPO 0.74 0.54 0.76 0.57 0.53 0.72

SLERP (Goddard et al., 2024)
DPO 0.00 0.00 0.02 0.01 0.00 0.00
CPO 0.73 0.53 0.76 0.56 0.53 0.71

∆DPOvsTIES+DPO +74% +53% +74% +54% +51% +70%
∆CPOvsSLERP+CPO +11% +8% +8% +6% +5% +9%
∆MEDvsSLERP+CPO +31% +28% +13% +9% +4% +17%

Table 4: Model merging and alignment fine-tuning results for caption generation. ∆DPOvsTIES+DPO,
∆CPOvsSLERP+CPO, and ∆MEDvsSLERP+CPO measure performance gains of the best-combined approaches
compared to the vanilla crossmodal setting of DPO, CPO, and the benchmark Meditron, as reported in Table 2.

Fusion Method BLEU ↑ Levenshtein ↓ MACCS FTS ↑ RDK FTS ↑ Morgan FTS ↑ FCD ↓ Validity ↑

TIES
DPO 0.32 93.18 0.31 0.22 0.19 19.80 0.42
CPO 0.68 46.91 0.72 0.65 0.45 24.50 0.94

SLERP
DPO 0.72 43.85 0.77 0.70 0.51 10.35 0.98
CPO 0.71 44.01 0.73 0.66 0.45 11.22 0.95

∆DPOvsTIES+DPO -40% +51% -46% -47% -30% +7.33% +58%
∆CPOvsSLERP+CPO 0% +1.36% -4% -4% -3% +5% -4%
∆MEDvsSLERP+CPO +29% -22.40% +38% +37% +27% -4.45% +37%

Table 5: Model merging and alignment fine-tuning results for molecule generation. ∆DPOvsTIES+DPO,
∆CPOvsSLERP+CPO, and ∆MEDvsSLERP+CPO measure performance gains of the best-combined approaches
from the vanilla crossmodal setting of DPO, CPO, and the benchmark Meditron, as reported in Table 2.

costs, minimizes bias, and improves generaliza-
tion. Caption and molecule generation examples
are in Appx. K.

4.2.3 Atomic-level Cross-NLI Evaluation
Atomic-level NLI revealed intriguing insights re-
garding performance interpretation. Fig. 5 shows
assessment score distributions from our proposed
evaluation method, comparing our top models
against Meditron trained on the entire dataset. All
models exhibit low hallucination, likely due to the
narrow, well-defined topics that enable factually
correct captions without unrelated information.
However, our models excel in coverage, gener-
ating more comprehensive captions, with perfor-
mance increasing to 69% compared to Meditron’s
51% (Fig. 5 (B)). Examples of insights captured
by our proposed evaluation are in Appx. L.

We also evaluated the robustness of our pro-
posed NLI evaluation method against leading ap-
proaches by measuring the relative entropy of
textual entailment between human-curated texts
(i.e., gold labels) and outputs generated by our

10% training – CPO+SLERP10% training – CPO100% Training – Meditron

Coverage Score

Di
st

rib
ut

io
n

Hallucination Score

(B)

(A)

Figure 5: Score distributions from our atomic-level
cross-NLI evaluation comparing (A) hallucination and
(B) coverage between our top models and Meditron.

top-performing model, CPO+SLERP (preferred),
versus those from a low-performing model, Med-
itron (dispreferred). Ideally, all NLI methods
should favour preferred outputs over dispreferred
ones. However, we observed that both the full and
sentence-level NLI methods misclassify preferred
captions as non-entailment and dispreferred cap-
tions as entailment (see Fig. 6 (B)-(D)). By con-
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trast, atomic-level cross-NLI accurately favours
preferred captions, assigning higher scores to
certain cases (Fig. 6 (A)). Additionally, Kull-
back–Leibler divergence shows that atomic-level
NLI offers better discrimination, achieving a di-
vergence score of 0.54 compared to 0.12–0.17 for
other methods, demonstrating its effectiveness in
distinguishing the quality of generated captions.
We leave further ablation analysis in Appx. B.

(A) (B)

(C) (D)

Figure 6: Relative entropy in coverage scores for
preferred vs. dispreferred generated captions across
atomic-level (A), full (B), and sentence-level (C & D)
NLI approaches.

We conducted ablation studies on our atomic-
level NLI evaluation method to assess its seman-
tic robustness, particularly in handling complex,
lengthy captions that may lose cohesiveness due
to excessive decomposition into atomic units. To
evaluate this, we analyzed the word count dis-
tribution (see Appx. B), filtered captions with at
least 50 words, and recalculated relative entropy
against standard NLI methods. Fig. 7 demon-
strates the superior performance of our method
on longer cases compared to leading alternatives.
Our NLI method demonstrated a significant im-
provement in its ability to differentiate preferred
outputs from dispreferred ones accurately, achiev-
ing a KL divergence of 2.53 (see Fig. 7), as op-
posed to a KL divergence of 0.54 across all cases
in the test subset (see Fig. 6). In contrast, other
leading NLI methods experienced a marked in-
crease in KL divergence, favouring dispreferred
outputs, which misaligned with the entailment
aspect.

Figure 7: Relative entropy in coverage scores for
preferred vs. dispreferred generated captions across
atomic-level and leading NLI approaches in long cap-
tions.

5 Conclusion

In this work, we address limitations of scientific
language models that rely on extensive training.
Focusing on molecule caption generation, we pro-
pose synergies between model merging and align-
ment fine-tuning with minimal post-training to
enhance chemical language models. Our experi-
ments show that while alignment fine-tuning per-
forms poorly, incorporating model merging signif-
icantly outperforms extensively trained models on
out-of-distribution data, offering a cost-effective
approach that relies less on human-labelled data.
Furthermore, we propose an atomic-level cross-
NLI evaluation to overcome limitations of widely
used NLI evaluation methods, which lack appro-
priate granularity. Our method provides valuable
insight into performance interpretability and ef-
fectively handles multiple content units, where
existing NLI methods consistently misalign with
assessment criteria.

Limitations

In this work, we employ weight-based and
subspace-based merging methods to create univer-
sal models for the MoCG task, facilitating align-
ment fine-tuning in a training setting with mini-
mal data. However, both are static merging meth-
ods. This means the merged model remains the
same for all samples or tasks. Given that there
are differences between input samples/tasks, the
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models’ ability may vary when processing dif-
ferent samples/tasks. In the future, we aim to
investigate dynamically merging models (or sub-
sets of layers) based on the samples/tasks during
the inference phase (Kang et al., 2024; Yang et al.,
2024).

We also propose an atomic-level NLI evalua-
tion method that successfully handles multiple
content units, offering valuable insights into per-
formance interpretability for caption generation,
where widely adopted NLI methods consistently
misalign with assessment criteria. However, de-
composing text into atomic units can be challeng-
ing for other tasks involving complex or lengthy
text. While this method captures nuanced content,
there is a risk of over-fragmentation, which may
lead to a loss of context or coherence in evaluation.
Additionally, the effectiveness of this approach
relies heavily on the LLM for decomposition and
the NLI model for entailment and contradiction
assessment. The evaluation could yield inaccu-
rate or biased results if either model struggles
with domain-specific content (e.g., highly tech-
nical language). Furthermore, if generated texts
introduce valid but creative or non-standard con-
tent, this approach may penalise them by classi-
fying such deviations as contradictions or hallu-
cinations, even when they provide accurate infor-
mation. Future work will need to address these
limitations across various domains.

Finally, the proposed methods in this work are
tailored specifically for the chemical domain, fo-
cusing on tasks like molecule caption generation.
While these techniques—such as model merging
and alignment fine-tuning—show promising re-
sults within this context, their ability to generalise
to other domains or scientific fields is uncertain.
Different domains may have distinct data struc-
tures, tasks, and requirements, which might not
align well with the crossmodal setup used here.
For instance, a method optimised for chemical
language and molecular structures may not work
as effectively in domains like physics or biology,
where the types of entities and relationships differ
significantly. This potential lack of generalisation
highlights the need for future research to explore
the applicability of the proposed approaches in

diverse scientific domains beyond chemistry, aim-
ing to adapt and validate the methods for varying
data structures and task requirements.

Ethical Considerations

The potential for generating misleading or incor-
rect information poses significant ethical consid-
erations in this work, particularly given the sci-
entific context in which the language models are
applied. If the models produce inaccurate cap-
tions or misrepresent molecular characteristics, it
could lead to erroneous conclusions in research
and applications that rely on these outputs. This
risk is particularly critical in fields like chemistry,
where precise data interpretation is vital for safety,
compliance, and advancing scientific knowledge.
Furthermore, the reliance on automated evalua-
tions may not adequately catch nuanced errors
that human experts would recognise, potentially
allowing flawed outputs to go unchecked. There-
fore, ensuring that the models maintain a high
standard of accuracy and reliability is essential
to prevent the dissemination of misinformation,
which could undermine trust in automated sys-
tems and hinder scientific progress. Addressing
these ethical concerns requires implementing ro-
bust validation mechanisms and continuously in-
volving domain experts in the evaluation process
to ensure the integrity of the generated content.
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A Complementary Experiments in
Model Merging

We compared SLERP and TIER model merging
techniques against a weighted linear combination
of parameters, referred to as model soup (Worts-
man et al., 2022), when applying CPO in the
MoCG task. Our results indicated that model soup
caused a significant drop in performance for both
Mol2Cap and Cap2Mol tasks (see Fig. 8). We hy-
pothesise that this is because model soup assumes
that performance improvement or preservation is
linearly related to weight blending, which may
not hold for complex models. This observation
justifies our decision to explore task-specific arith-
metic and geometric merging approaches, as they
inherently manage conflicts and better preserve
the strengths of each model in specialised tasks.

Figure 8: Comparison of SLERP and TIES with Model
Soup for (A) Mol2Cap and (B) Cap2Mol generation.

B Complementary Experiments in Our
Atomic-Level NLI Evaluation Method

First, we analysed the distribution of word counts
in captions from the test subset. We observed
that the captions are typically short, with an av-
erage of 31 words (STD = 50) as shown in Fig.9.

Additionally, the captions generally exhibit lit-
tle dependency across sentences, as they consist
of simple natural language describing chemical
properties (for a more detailed view, see Table 6).

Figure 9: Distribution of word counts in captions from
the test subset.

Based on the word count distribution analysis,
we filtered captions with at least 70 words and
recalculated the relative entropy against standard
NLI methods. As shown in Fig. 10, our method
demonstrates superior performance on extremely
long cases compared to leading alternatives. No-
tably, the performance trend is consistent with
that observed for generally lengthy captions (at
least 50 words, see § 4.2.3).

Figure 10: Relative entropy in coverage scores for
preferred vs. dispreferred generated captions across
atomic-level and leading NLI approaches in extreme
captions.
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C Foundations in Alignment with RLHF

Feedback-aligned LLMs traditionally undergo
fine-tuning with RLHF, where human preferences
serve as a reward signal in optimisation (Stiennon
et al., 2020; Ouyang et al., 2022). To train a LLM
with RLHF, a reinforcement learning optimisation
algorithm such as PPO (Schulman et al., 2017)
is typically deployed on offline preference data,
commonly involving three steps:
• Model Training: Typically, a model π is

trained for auto-regressive language generation
on a large generic corpus. This training operates
under the premise that the probability distribu-
tion of a sequence of words can be broken down
into the product of conditional distributions for
the next word (Radford et al., 2019).

• Reward Model Training: A reference model
πref is employed to optimise π for a downstream
task. Typically, the πref model undergoes fine-
tuning with an auto-regressive objective, using
data pertinent to the downstream task. This
often involves instruction tuning πref to regulate
the generated outputs.

• Reinforcement Learning: The optimisation
of π with respect to πref operates on a triple
dataset D = {x, yw, yl}, where x represents the
input, and yw and yl denote preferred and dis-
preferred outputs, respectively, such that yw ≻
yl for x. In the Bradley–Terry model (Bradley
and Terry, 1952), the probability of yw being
preferred over yl in pairwise comparisons can
be formulated as follows:

p∗(yw ≻ yl|x) = σ(r∗(x, yw)− r∗(x, yl))
(8)

Here, σ represents the logistic function, and
r∗ denotes the “true” reward function that un-
derlies the preferences. As obtaining the true
reward directly from a human would be pro-
hibitively expensive, a reward model rϕ is
trained to act as a surrogate. This is achieved
by minimising the negative log-likelihood in
human preference data;

L(rϕ) = −E(x,yw,yl)∼D[ log σ(rϕ(x, yw)

− rϕ(x, yl))]
(9)

Additionally, the Kullback-Leibler (KL) diver-
gence between the outputs generated by πref
and the parameterised πθ models serves as an
additional reward signal, ensuring that the gen-
erated responses closely align with the refer-
ence model. Consequently, an optimal model
πθ is one that maximises;

E(x∈D,y∈πθ)[rϕ(x, y)]− βDKL(πθ(y | x)
||πref(y | x))

(10)

where β is parameter typically ∈ [0.1, 0.5].

Human-aware Loss Functions (HALOs):
Definition 1 (HALOs) Let x ∈ X and y ∈ Y
denote an input and output respectively. An f :
(x, y) → R is considered a human-aware loss
function if it satisfies

f(x, y; θ) = t
(
vf (rθ(x, y)

− Ex′∼Q′,y′∼Q′ [rθ(x
′, y′)])

) (11)

with a parameterised reward function rθ such
that ∀(x1, y1), (x2, y2) ∈ X × Y , rθ(x1, y1) >
rθ(x2, y2) ⇔ (x1, y1) ≻rθ (x2, y2), reference
point distributions Qx(X

′) and Qy(Y
′|X ′), a

value function vf : R → R that is monotonic non-
decreasing and concave in (0,∞), and a negative
affine function t.

RLHF can present challenges due to inherent
slowness and instability, especially in the case
of highly varied outputs (Zheng et al., 2024).
Recently, there has been a shift towards using
closed-form losses in RLHF to align LLMs with
human preferences. These losses are predomi-
nantly HALOs that model human biases, as dis-
cussed in (Tversky and Kahneman, 1992), aiming
to maximise the margin between preferred and
dispreferred generated outputs. This approach
offers a mathematical equivalence with RLHF,
while effectively addressing inherent limitations.

D Data

Experiments are conducted on the benchmark
L+M-24, which integrates molecular and linguis-
tic modalities in four key categories: biomedi-
cal; light and electricity; human interaction and
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organoleptics; and agriculture and industry (Ed-
wards et al., 2024). The dataset was created by
extracting SMILES (Simplified Molecular-Input
Line-Entry System) strings and their chemical
properties from databases. The properties were
transformed into natural language using GPT-4
templates. The training and validation subsets
contain around 127k and 34k language-molecule
pairs, with only 10% used for our experiments.

For evaluation, we randomly selected 3k un-
seen pairs from a separate dataset provided by the
L+M-24 research group. The samples were drawn
from 635k molecule-caption pairs included in the
supplementary data for the Language + Molecules
@ ACL2024 workshop 3.

E LLM Instruction for Decomposing
Text into Atomic Context Units

### User:
Please breakdown the following text into indepen-
dent facts:
{It impacts both atherosclerosis and cardiovascular
disease. The molecule is a nutrient, thyroxine
treatment, fat storage that impacts pancreatitis and
metabolic syndrome.}

**
IMPORTANT: No words or explanation is needed.
Only include truths that are factual.
You should NOT include any prior knowledge, and
take the text at face value when extracting facts.
**
### Assistant:
- The molecule impacts atherosclerosis. - The
molecule impacts cardiovascular disease. - The
molecule is a nutrient. - The molecule is a thyrox-
ine treatment. - The molecule impacts pancreatitis.
- The molecule impacts metabolic syndrome. - The
molecule is involved in fat storage.

Figure 11: Instruction for decomposing text into
atomic content units conveying one piece of infor-
mation.

F Instructions for Molecule Language
Translation

3https://github.com/language-plus-molecules/
LPM-24-Dataset

Below is an instruction that describes a task, paired
with an input that provides further context.
Write a response that appropriately completes the
request.

### Instruction: You are a researcher. You
can come up captions based on your existing
knowledge.
Captions are given against the following input. You
should be as detailed as possible.

### Input: Molecule: {source molecule}
In that molecule, could you formulate a caption
about?

### Response:{target caption}

Instruction for caption generation, i.e., M → L

Below is an instruction that describes a task, paired
with an input that provides further context.
Write a response that appropriately completes the
request.

### Instruction: You are a researcher. You
can come up molecule smile strings based on your
existing knowledge.
Molecule smile strings are given against the
following input. You should be as detailed as
possible.

### Input: Caption: {source caption}
In that caption, could you generate a molecule
smile string?

### Response: {target molecule}

Instruction for molecule generation, i.e., L → M

G Baselines

• TxtChem-T5 (Christofidellis et al., 2023) is a
T5XL multitask model trained on linguistic and
molecule modalities across multiple datasets,
including CheBI-20, akin to L+M-24.

• Chem-LLM (Zhang et al., 2024), an InternLM2-
Base-7B model, is trained on large chemical
knowledge databases using DPO, achieving
GPT-4-level results.

• Meditron (Chen et al., 2023), a 7B model, is
fine-tuned on the entire L+M-24 dataset.
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H Evaluation Metrics

For performance evaluation, we employ estab-
lished metrics from the literature (Sets, 2022; Ed-
wards et al., 2022). In translation from molecule
to language, we assess using BLEU-2, BLEU-
4, ROUGE-1, ROUGE-2, ROUGE-L, and ME-
TEOR metrics. For translation from molecule to
language, evaluation metrics include BLEU, Lev-
enshtein distance, fingerprint metrics (MACCS,
RDK, and Morgan), Fréchet ChemNet Distance
(FCD), and molecule validity metrics. The anno-
tations in the result tables indicate whether higher
or lower values indicate superior performance.

I Training Efficiency

Train Convergence Train Efficiency

Val Loss

Figure 12: Training efficiency across alignment fine-
tuning methods

J Implementation Details

All implementations used Meditron (Chen et al.,
2023) as the backbone model, known for its per-
formance on L+M-24. For alignment fine-tuning
experiments, we initialised Meditron crossmodals,
trained for molecule generation 4. For the model
merging experiments, we combined Meditron
weights trained on MoCG tasks in a 1:18 ratio.
This ratio aimed to preserve the balance of in-
formation between the linguistic and molecule
modalities. All models were fine-tuned using
QLoRA (Dettmers et al., 2024).

For the atomic-level NLI evaluation method,
we instruct Meta-Llama-3-8B (Touvron et al.,

4Crossmodal initialisation was based on the most chal-
lenging task reported in (Edwards et al., 2024).

2023) to break down (reference, generated) pairs
into a series of atomic premises and hypotheses.
We then use DeBERTa 5 to measure hallucination
and coverage by performing NLI across all the
atomic premises and hypotheses.

(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type=nf64,
bnb_4bit_compute_dtype=torch.bfloat16
)

Figure 13: Quantisation Configurations

args = TrainingArguments(
output_dir=save_path,
overwrite_output_dir=True,
load_best_model_at_end=True,
num_train_epochs=3,
per_device_train_batch_size=1
per_device_eval_batch_size=1
gradient_accumulation_steps=64
gradient_checkpointing=False
optim="adamw_torch_fused",
learning_rate=5e-5,
max_grad_norm=0.3,
warmup_ratio=0.1,
lr_scheduler_type="cosine",

)

Figure 14: Training configurations

(
lora_alpha=16,
r = 64,
lora_dropout=0.1,
task_type="CAUSAL_LM",
bias=False,
target_modules= "all-linear"
)

Figure 15: LoRA Configurations

5https://huggingface.co/MoritzLaurer/DeBERTa-v3-
large-mnli-fever-anli-ling-wanli
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K Examples of generated molecules and
captions.

Fig. 16 and 17 illustrate examples of molecules
and captions generated by our top-performing
models compared to Meditron, respectively.

L Examples of Atomic-level Cross-NLI
evaluation

Table 6 presents examples of assessing hallucina-
tion and coverage in generated captions using our
atomic-level cross-NLI evaluation method.
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Ground Truth SLERP+CPOMeditron CPO

!!"#:32, Char-F:0.23, Validity:1 !!"#:15, Char-F:0.32, Validity:1 !!"#:13, Char-F:0.29, Validity:1

!!"#:-60, Char-F:0.28, Validity:0

#$%&'() *+',-.', /,0.,$-,

!!"#: 1, Char-F:0.42, Validity:1 !!"#:-1, Char-F:0.29 Validity:1

!!"#:2, Char-F:0.21, Validity:1 !!"#:31, Char-F:0.30, Validity:1 !!"#:2 Char-F:0.35, Validity:1

Figure 16: Examples of molecules generated by our top-performing models compared to Meditron, the best
benchmark model trained on the entire dataset.

Ground Truth SLERP+CPOMeditron CPO
The molecule is a stabilizing 
cytochrome oxidase, cholesterol 
translocation, proton trap for oxidative 
phosphorylation, apoptosis that 
impacts non-alcoholic fatty liver 
disease. The molecule is a stabilizing 
mitochondrial structure that impacts 
diabetic heart disease, aging, barth
syndrome, and tangier disease

The molecule is a stabilizing 
cytochrome oxidase, a cholesterol 
translocation, and a energy source, and 
it impacts tangier disease. The 
molecule is a membrane stabilizer, a 
proton trap for oxidative 
phosphorylation, and a food additive

The molecule is a stabilizing cytochrome 
oxidase and a stabilizing mitochondrial 
structure that impacts non-alcoholic fatty 
liver disease, aging, and diabetic heart 
disease. The molecule is a cholesterol 
translocation, proton trap for oxidative 
phosphorylation, apoptosis that impacts 
barth syndrome and tangier disease.

The molecule is a cholesterol translocation
and a stabilizing cytochrome oxidase that 
impacts barth syndrome, non-alcoholic fatty 
liver disease, and aging. The molecule is a 
stabilizing mitochondrial structure, proton 
trap for oxidative phosphorylation, 
apoptosis that impacts tangier disease and 
diabetic heart disease.

It impacts non-alcoholic fatty 
liver disease. The molecule is a 
nutrient that impacts 
Parkinson's disease, Alzheimer's 
disease, and diabetes mellitus 
type 2.

The molecule is a nutrient that 
impacts non-alcoholic fatty liver 
disease, diabetes mellitus type 2, 
and Alzheimer's disease.

The molecule is a nutrient that impacts 
non-alcoholic fatty liver disease, 
diabetes mellitus type 2, Alzheimer's 
disease, and Parkinson's disease

It impacts cardiovascular disease, 
Alzheimer's disease, seizure, and 
diabetes mellitus. 

The molecule is a stabilizing 
mitochondrial structure, a stabilizing 
cytochrome oxidase, and a apoptosis, 
and it impacts diabetic heart disease. 
The molecule is a proton trap for 
oxidative phosphorylation and a 
cholesterol translocation, impacting 
both tangier disease and non-alcoholic 
fatty liver disease. It impacts both aging 
and barth syndrome.

The molecule is a stabilizing 
cytochrome oxidase and a stabilizing 
mitochondrial structure that impacts
non-alcoholic fatty liver disease, 
aging, and diabetic heart disease. The 
molecule is a cholesterol 
translocation, proton trap for 
oxidative phosphorylation, apoptosis
that impacts barth syndrome and 
tangier disease.

The molecule is a cholesterol 
translocation, stabilizing cytochrome 
oxidase, proton trap for oxidative 
phosphorylation that impacts barth
syndrome and non-alcoholic fatty liver 
disease. The molecule is a stabilizing 
mitochondrial structure and a
apoptosis that impacts tangier disease, 
aging, and diabetic heart disease.

The molecule is a stabilizing 
mitochondrial structure, apoptosis, 
and stabilizing cytochrome oxidase.

Figure 17: Examples of captions generated by our top-performing models compared to Meditron, the best
benchmark model trained on the entire dataset.
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Reference Text Atomic Premises Generated Text Atomic Hypothesis Hallucination Coverage
It impacts pancreatitis. The
molecule is a fat storage and nu-
trient, belonging to the thyrox-
ine treatment class of molecules,
and impacts metabolic syndrome,
atherosclerosis, and cardiovascu-
lar disease.

- The molecule impacts pancre-
atitis.
-The molecule is a fat storage
molecule.
-The molecule is a nutrient.
- The molecule belongs to the
thyroxine treatment class of
molecules.
- The molecule impacts metabolic
syndrome.
- The molecule impacts
atherosclerosis.
- The molecule impacts cardio-
vascular disease.

The molecule is a nutrient. - The molecule is a nutrient. 0.00 0.14

The molecule is a energy storage
and is floral. The molecule is
a emulsifier, nutrient, surfactant,
energy source, membrane stabi-
lizer, and rose.

- The molecule is a floral energy
storage.
- The molecule is an emulsifier.
- The molecule is a nutrient.
- The molecule is a surfactant.
- The molecule is an energy
source.
- The molecule is a membrane sta-
bilizer.
- The molecule is rose.

The molecule is a energy storage,
a membrane stabilizer, and a en-
ergy source. The molecule is a
surfactant, a emulsifier, and a nu-
trient.

- The molecule is an energy stor-
age.
- The molecule is a membrane sta-
bilizer.
- The molecule is an energy
source.
- The molecule is a surfactant.
- The molecule is an emulsifier.
- The molecule is a nutrient.

0.00 0.75

The molecule is a orexin receptor
antagonist.

- The molecule is an orexin
receptor antagonist.

The molecule is a anti viral. - The molecule is an anti-viral. 0.75 0.00

The molecule is a stabilizing
cytochrome oxidase, apoptosis,
stabilizing mitochondrial struc-
ture that impacts non-alcoholic
fatty liver disease and tangier dis-
ease. The molecule is a choles-
terol translocation and a proton
trap for oxidative phosphoryla-
tion that impacts aging, barth syn-
drome, and diabetic heart dis-
ease.

- The molecule is a cytochrome
oxidase.
- The molecule is a stabilizer of
apoptosis.
- The molecule is a stabilizer of
mitochondrial structure.
- The molecule impacts non-
alcoholic fatty liver disease.
- The molecule impacts Tangier
disease.
- The molecule is a cholesterol
translocation.
- The molecule is a proton trap.
- The molecule impacts oxidative
phosphorylation.
- The molecule impacts aging.
- The molecule impacts Barth syn-
drome.
- The molecule impacts diabetic
heart disease.

The molecule is a cholesterol
translocation, a apoptosis, and a
stabilizing cytochrome oxidase,
and it impacts tangier disease.
The molecule is a stabilizing mi-
tochondrial structure and a pro-
ton trap for oxidative phospho-
rylation that impacts barth syn-
drome, aging, and non-alcoholic
fatty liver disease. It impacts dia-
betic heart disease.

- The molecule is a cholesterol
translocation.
- The molecule is involved in
apoptosis.
- The molecule is a stabilizing cy-
tochrome oxidase.
- The molecule impacts Tangier
disease.
- The molecule is a stabilizing mi-
tochondrial structure.
- The molecule is a proton trap
for oxidative phosphorylation.
- The molecule impacts Barth syn-
drome.
- The molecule impacts aging.
- The molecule impacts non-
alcoholic fatty liver disease.
- The molecule impacts diabetic
heart disease.

0.00 0.91

The molecule is a anti microbial
member of the anti fungal class.

- The molecule is anti-microbial.
- The molecule is a member of
the anti-fungal class.

It belongs to the anti viral class
of molecules. The molecule is
both a hepatitis c treatment and a
hcv inhibitor.

- The molecule belongs to the
anti-viral class of molecules.
- The molecule is a hepatitis C
treatment.
- The molecule is an HCV in-
hibitor.

0.02 0.10

Table 6: Cases showcasing insights captured by our atomic-level cross-NLI in assessing the level of hallucination
and coverage in generated captions. Red highlights indicate missing information in atomic premises or invalid
information in atomic hypotheses. Hallucination refers to the introduction of information absent from the
reference, while coverage assesses the recall of atomic units (refer to § 3.3).
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