
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 2818–2830
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

HyperFM: Fact-Centric Multimodal Fusion for Link Prediction over
Hyper-Relational Knowledge Graphs

Yuhuan Lu, Weijian Yu, Xin Jing, Dingqi Yang*

State Key Laboratory of Internet of Things for Smart City and
Department of Computer and Information Science, University of Macau, China

{yc17462, yc47946, yc27431, dingqiyang}@um.edu.mo

Abstract

With the ubiquity of hyper-relational facts in
modern Knowledge Graphs (KGs), existing
link prediction techniques mostly focus on
learning the sophisticated relationships among
multiple entities and relations contained in a
fact, while ignoring the multimodal informa-
tion, which often provides additional clues to
boost link prediction performance. Neverthe-
less, traditional multimodal fusion approaches,
which are mainly designed for triple facts un-
der either entity-centric or relation-guided fu-
sion schemes, fail to integrate the multimodal
information with the rich context of the hyper-
relational fact consisting of multiple entities
and relations. Against this background, we
propose HyperFM, a Hyper-relational Fact-
centric Multimodal Fusion technique. It ef-
fectively captures the intricate interactions be-
tween different data modalities while accom-
modating the hyper-relational structure of the
KG in a fact-centric manner via a customized
Hypergraph Transformer. We evaluate Hy-
perFM against a sizeable collection of base-
lines in link prediction tasks on two real-world
KG datasets. The results show that HyperFM
consistently achieves the best performance,
yielding an average improvement of 6.0-6.8%
over the best-performing baselines on the two
datasets. Moreover, a series of ablation studies
systematically validate our fact-centric fusion
scheme.

1 Introduction

Knowledge Graphs (KGs) are semantic networks
that represent relationships between entities. They
have underpinned a wide range of real-world ap-
plications, including commonsense reasoning (Lin
et al., 2019), recommender systems (Wang et al.,
2019), and urban computing (Zhao et al., 2022a).
While early KGs are usually limited to binary re-
lationships and represent facts as triplets, modern
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KGs such as Freebase (Bollacker et al., 2008) and
Wikidata (Wikidata, 2022) often consist of hyper-
relational facts, which comprises a base triplet
(h, r, t) along with additional key-value pairs (k, v)
further enriching the information about the base
triplet, expressed as (h, r, t, k1, v1, ...). For in-
stance, one hyper-relational fact in Figure 1 can be
presented as (Microsoft, industry, software industry,
in the scope of, operating system). To effectively
make use of such KGs, link prediction is widely
adopted as a promising solution for KG completion
and reasoning, aiming to predict missing entities or
relations in a fact (Bordes et al., 2013).

Recent studies have substantiated the efficacy of
hyper-relational KG embeddings in link prediction.
They strive to capture the structural information of
the KG by learning the correlation between entities
and relations in each fact with Convolutional Neu-
ral Networks (CNNs) (Rosso et al., 2020), Graph
Neural Networks (GNNs) (Galkin et al., 2020), or
Transformers (Wang et al., 2021). However, ex-
isting approaches often overlook the significance
of multimodal data in the KG, which can provide
crucial information to distinguish the subtle differ-
ences between entities beyond the KG structure,
thus leading to more accurate link prediction. For
instance, suppose that the task is to predict the
missing triplet (Apple, headquarters location, ?) as
shown in Figure 1. It is easy to make the wrong pre-
diction Redmond based on the structural informa-
tion only, since the entity Apple presents a similar
structural role to the entity Microsoft with the com-
mon relation industry, tail software industry, and
key-value pair (in the scope of, operating system).
Nevertheless, by incorporating the visual and tex-
tual modalities, the image and textual description
of Apple both prompt the answer Cupertino. The
visual modality includes the image of Apple’s head-
quarters, while the textual description highlights
specific information about its location. Therefore,
multimodal information can be used to distinguish
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Figure 1: Real-world facts with multimodal information on Wikidata.

the subtle differences between entities based on
their unique attributes, thereby boosting the link
prediction performance.

In the current literature, existing works targeting
multimodal KGs mainly focus on the representa-
tion of triplets and are incapable of learning hyper-
relational facts (Chen et al., 2024). Moreover, in
their multimodal fusion process, most methods
adopt an entity-centric scheme, neglecting the in-
formative fact context (Li et al., 2023; Lee et al.,
2023). For example, the missing tail in the triplet
(Apple, headquarters location, ?) is inferred to be
a location based on the relation headquarters lo-
cation, suggesting that attention should be put on
location-specific information within the visual and
textual modalities. Although some further methods
(Zhang et al., 2024a) incorporate relational context
to adaptively adjust the weights of different modal-
ities, such a relation-guided scheme oversimplifies
the rich context of a hyper-relational fact containing
multiple entities and relations, where the interac-
tions among modalities should be assumed on the
basis of the hyper-relationality of the fact.

Against this background, we propose a novel
Hyper-relational Fact-centric Multimodal Fusion
(HyperFM) technique. HyperFM follows a fact-
centric design, where multiple entities of a fact and
their multi-modality features are integrated under
a hypergraph, capturing the intricate interactions
between different modalities while accommodat-
ing the hyper-relational structure of the KG. To
achieve effective multimodal fusion, we design a
customized Hypergraph Transformer to compre-
hensively learn the interaction across multimodal
features under the hypergraph setting. For re-
solving link prediction tasks, an edge-biased self-

attention layer is used to further capture the correla-
tion between elements in a fact while accommodat-
ing the heterogeneous connections between them.
We summarize our contributions as follows:

• We study the problem of link prediction over
multimodal hyper-relational KGs by addressing
two key drawbacks of existing approaches: 1)
hyper-relational KG models often ignore the mul-
timodal information, and 2) multimodal KG mod-
els fail to incorporate the hyper-relationality into
the multimodal fusion process.

• We propose HyperFM, a Hyper-relational Fact-
centric Multimodal Fusion technique for link pre-
diction tasks over multimodal hyper-relational
KGs; it can capture the intricate interactions be-
tween different data modalities while accommo-
dating the hyper-relational structure of the KG
via a customized Hypergraph Transformer.

• We thoroughly evaluate the performance of Hy-
perFM against a wide range of state-of-the-art
baselines on two multimodal hyper-relational
KG datasets. Results show that HyperFM con-
sistently outperforms all baselines, with an av-
erage improvement of 6.0-6.8% over the best-
performing baselines on the two datasets. Fur-
thermore, a series of ablation studies systemati-
cally validate our fact-centric fusion scheme.

2 Related Work

Hyper-relational KG modeling. Traditional KGs
are usually represented by a set of triplets, which
fail to capture the ubiquitous hyper-relational facts
where multiple entities are connected via multi-
ple relations (Rosso et al., 2020). To address
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this issue, the n-ary representation has been used
to model a hyper-relational fact by transforming
it into a set of relation-entity pairs (Wen et al.,
2016; Zhang et al., 2018; Guan et al., 2019; Fatemi
et al., 2021; Liu et al., 2021). However, the n-
ary representation loses essential information en-
coded by the base triplet, thus showing subopti-
mal performance in link prediction. In this con-
text, models such as HINGE (Rosso et al., 2020),
NeuInfer (Guan et al., 2020), and ShrinkE (Xiong
et al., 2023) keep the base triplet of a hyper-
relational fact by learning from the base triplet and
its associated key-value pairs via different chan-
nels. Following this representation, models like
GRAN (Wang et al., 2021), HyNT (Chung et al.,
2023), and HyperFormer (Hu et al., 2023) employ
Transformer to capture the sophisticated correla-
tion between elements in a fact. Recently, the
(graph)encoder-(Transformer)decoder architecture
has shown promising results in resolving link pre-
diction tasks. In line with this paradigm, models
like MSeaHKG (Di and Chen, 2021), StarE (Galkin
et al., 2020), Hy-Transformer (Yu and Yang, 2021),
QUAD (Shomer et al., 2022), and HAHE (Luo
et al., 2023) focus on designing various graph en-
coders to capture the rich semantics of entities and
relations. Different from these existing works that
often ignore the multimodal information in hyper-
relational KGs, we propose in this paper HyperFM
to subtly integrate multimodal information to fur-
ther boost link prediction performance.
Multimodal KG modeling. Some recent stud-
ies have enriched the original KG dataset and at-
tempted to capture multimodal information for
link prediction, especially through the incorpo-
ration of images and textual descriptions of en-
tities (Xie et al., 2017; Pezeshkpour et al., 2018;
Liu et al., 2019). A few early works represent
different modalities in a unified space to extract
common features; however, they failed to main-
tain the distinctive characteristics of each modality
(Chen et al., 2022; Xu et al., 2022; Wang et al.,
2023b). Therefore, models like IMF (Li et al.,
2023), VISTA (Lee et al., 2023), NativE (Zhang
et al., 2024a), MoSE (Zhao et al., 2022b), and
AdaMF (Zhang et al., 2024b) capture complex
interactions between modalities while retaining
unique information about each modality. How-
ever, these multimodal KG embedding methods
are mainly designed for triple facts, under either
entity-centric or relation-guided fusion schemes,
and fail to integrate the multimodal information

with the rich context of the hyper-relational fact
consisting of multiple entities and relations. In
this paper, we propose HyperFM following a fact-
centric design capturing the intricate interactions
between different modalities while accommodating
the hyper-relational structure of the KG.

3 Preliminaries

In this section, we introduce key concepts about
the Multimodal Hyper-relational Knowledge Graph
(MHKG), including the definition of MHKGs and
the link prediction task over MHKGs.

Definition 3.1. Multimodal Hyper-Relational
Knowledge Graph. An MHKG consists
of multimodal hyper-relational facts, where
a hyper-relational fact is represented as
{(h, r, t) , {(ki, vi)}ni=1 |h, t, vi ∈ E , r, ki ∈ R},
where (h, r, t) denotes the base triplet and (ki, vi)
refers to an additional key-value pair. Here,
E and R indicate the entity and relation sets,
respectively. In a multimodal hyper-relational
fact, each entity contains multiple features of
different modalities. We denote the multimodality
by M = {ms,mv,mt}, representing the struc-
tural, visual, and textual modalities, respectively.
Accordingly, for an entity e ∈ E , its multimodal
information is represented by (ems , emv , emt).

Definition 3.2. Link Prediction over MHKGs.
The link prediction task aims to predict any missing
element in a hyper-relational fact. The missing
element could be an entity from {h, t, v1, . . . , vn}
or a relation from {r, k1, . . . , kn}.

4 HyperFM

The overall architecture of our Hyper-relational
Fact-centric Multimodal Fusion (HyperFM) is
shown in Figure 2. Specifically, it consists of three
modules: 1) a series of modal encoders that extract
the initial features of each modality for subsequent
multimodal fusion; 2) a multimodal fusion module
that integrates features from diverse modalities and
captures their interactions; and 3) a link prediction
module that resolves the link prediction tasks.

4.1 Modal Encoder

We design modal encoders similar to (Li et al.,
2023; Lee et al., 2023), utilizing pre-trained
VGG16 and BERT as the visual and textual en-
coders, respectively. For the structural encoder, we
employ learnable embeddings to refine entity and
relation representations during the multimodal fu-
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Figure 2: The overall architecture of HyperFM for link prediction over MHKGs.

sion process. Detailed descriptions of the modal
encoders are provided in Appendix A. Note that our
HyperFM can flexibly adopt any modal encoders
as plug-and-play components. In the following,
we focus on the design of the multimodal fusion
process, which is our core contribution.

4.2 Multimodal Fusion

The multimodal fusion module captures the interac-
tions between different modalities and learns multi-
modal representations that enhance link prediction
performance. Most current multimodal KG embed-
ding methods fuse multimodal information without
considering the rich context of a hyper-relational
fact, which consists of multiple entities and rela-
tions. To this end, we propose a Hypergraph Trans-
former that integrates multimodal information on
the basis of the hyper-relationality of the KG.

Hypergraph construction for MHKG. To ef-
fectively integrate multimodal data in the KG,
we consider the inherent hypergraph nature of
MHKGs as the basis, and then aggregate multi-
modal features through message passing on the
graph. Specifically, a multimodal hyper-relational
fact involves more than two entities, with each con-
taining up to three modalities; the entire MHKG
forms a hypergraph. To effectively represent the
MHKG, inspired by the incidence graph represen-
tation of a hypergraph (Antelmi et al., 2023), we
propose a novel hypergraph construction strategy.
The hypergraph of the MHKG is represented by
GH = {EH ,HH , IH}. Here, HH is the hyperedge
set, with each hyperedge corresponding to a multi-
modal hyper-relational fact and the entities of the
fact being an incident of the hyperedge. The node
set EH =

{
Ems
H , Emv

H , Emt
H

}
, where Ems

H , Emv
H , and

Emt
H denote the node sets of structural, visual, and

textual modalities, respectively. IH ∈ R|EH |×|HH |

Figure 3: Comparison of the three fusion schemes 1)
the entity-centric scheme fuses information of other
modalities directly to entities (the structural modality);
2) the relation-guided scheme fuse information of other
modalities to entities under the guidance of the relation
of the given triplet rH ; 3) our fact-centric scheme fuses
information of different modality to a hyper-relational
fact (hyperedge), which can flexibly accommodate mul-
timodality and hyper-relationality at the same time.

is an incidence matrix defined by:

IH(vH , hH) = 1, if vH ∈ hH ,

IH(vH , hH) = 0, if vH /∈ hH .
(1)

where vH ∈ EH and hH ∈ HH . If vH belongs to
the hyperedge (fact) hH , then vH ∈ hH ; otherwise,
vH /∈ hH . The constructed hypergraph serves as
the basis for achieving fact-centric multimodal fu-
sion. Figure 3 compares our fact-centric scheme
against the existing entity-centric (Li et al., 2023;
Lee et al., 2023; Zhang et al., 2024b) and relation-
guided (Zhao et al., 2022b; Zhang et al., 2024a)
fusion schemes.
Hypergraph Transformer layer. Based on the
built hypergraph, we model the interactions be-
tween multimodal features by propagating informa-
tion between nodes and hyperedges using a GNN.
For informative message passing, we incorporate
the multi-head attention mechanism into the GNN,
where each head corresponds to a relation type,
discriminating the different positions of modalities
within a fact. The aggregation function and update
function in the GNN are designed as follows:
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1) Aggregation function: The aggregation process
is a bi-directional operation, including node-to-
hyperedge (N-H) and hyperedge-to-node (H-N)
steps. To apply multi-head attention, we first define
the relation type between hyperedges and nodes as
(here, vH ∈ hH ):

r(hH , vH) =





rh, if phH
(vH) = head

rt, if phH
(vH) = tail

rv, if phH
(vH) = value

(2)
where phH

(vH) denotes the position of vH in
hH . There are three possible positions of a node:
head, tail, and value. Accordingly, rh, rt, and
rv represent the three relation types between hy-
peredges and nodes. Notably, relation types are
independent of relation direction, meaning that
r(hH , vH) = r(vH , hH). We denote the embed-
dings of hH and vH by hH and vH , respectively.
Notably, the input to the first layer consists of the
initialized embeddings of hyperedges and the em-
beddings of nodes, which are obtained from the
output of the modal encoders.

For N-H aggregation, we denote the embeddings
of nodes connecting to the hyperedge hH with re-
lation type rj by Vj

H . Then the attention score of
this specific relation type for hH is computed by:

aj = φSoftmax

(
qjKj√

d

)
(3)

where qj = hHWQj and Kj = Vj
HWKj . WQj

and WKj are the query and key transformation ma-
trices for relation type rj , respectively. φSoftmax (·)
refers to the Softmax function and d is the dimen-
sion of embeddings incorporated for numerical sta-
bility. Subsequently, the attention score becomes
relation type-aware, accounting for the heteroge-
neous relationships among elements within a fact.
Afterward, the aggregated node embedding of rela-
tion type rj for hH is obtained by:

v̂j
H = Vj

Haj (4)

We implement multi-head attention and gain a
set of aggregated embeddings

{
v̂j
H | j ∈ [1, nr]

}
,

where nr denotes the number of relation types for
hH . These aggregated embeddings can be further
integrated by:

v̂H = φMLP

(
φConcat

({
v̂j
H | j ∈ [1, nr]

}))

(5)

where φMLP(·) and φConcat (·) denote the MLP and
concatenation operations, respectively.

For H-N aggregation, we apply a similar proce-
dure as in N-H aggregation and obtain the refined
aggregated embedding for vH by:

ĥH = φMLP

(
φConcat

({
ĥj
H | j ∈ [1, nr]

}))

(6)
where

{
ĥj
H | j ∈ [1, nr]

}
denotes the set of aggre-

gated embeddings of hyperedges that connect to
vH through different relation types.
2) Update function: We use a Feed-Forward Net-
work (FFN) to update the aggregated embeddings:

h̃H = φLN (φFFN (v̂H) + hH) (7)

ṽH = φLN

(
φFFN

(
ĥH

)
+ vH

)
(8)

Note that we employ Layer Normalization φLN(·)
(Ba et al., 2016) for training stability.

By stacking multiple Hypergraph Transformer
layers, high-order multimodal interactions with re-
lation type-aware semantics are extracted. The
updated features of the structural modality are then
read out from the final layer LM for link prediction:

Xe =
{
v
(LM )
H |vH ∈ Ems

H

}
(9)

In summary, our multimodal fusion module first
builds a fact-centric hypergraph that flexibly ac-
commodates multimodality and hyper-relationality
at the same time, and then designs the Hypergraph
Transformer applying multi-head attention to aggre-
gate multimodal information while discriminating
the different positions of modalities in a fact.

4.3 Link Prediction

The link prediction module aims at predicting the
missing element in a hyper-relational fact, where
the missing element is represented by a learn-
able [MASK] token. We use an edge-biased self-
attention layer to make predictions.
Edge-biased self-attention layer. Through
the previous module, a hyper-relational
fact {(h, r, t) , {(ki, vi)}ni=1} is encoded
into

{
(xh,xr,xt) , {(xki ,xvi)}ni=1

}
, where

{xh,xt,xvi} ∈ Xe denote the updated entity
features and {xr,xki} denote the initialized
relation features. For an element xi in the fact, its
features can be further updated by the self-attention

2822



Dataset Entities Entities with images Entities with text Relations Training Test Facts (Hyper%) Arity
WikiPeople 34,839 33,265 34,839 178 294,439 37,712 332,151 (2.6%) 2-7
WD50K 47,156 43,823 47,156 532 166,435 46,159 212,594 (13.6%) 2-67

Table 1: Dataset statistics. The columns (from left to right) denote the number of entities, entities with images,
entities with textual descriptions, relations, training facts, test facts, all facts (the ratio of hyper-relational facts), and
the range of arity.

mechanism:

αij =

(
WLP

Q xi + bQ
ij

)⊤ (
WLP

K xj + bK
ij

)

√
d

(10)

x̄i =
2n+2∑

j=1

exp (αij)∑2n+2
k=1 exp (αik)

(
WLP

V xj + bV
ij

)
+xi

(11)
where WLP

Q , WLP
K , and WLP

V are linear transfor-
mation matrices of query, key, and value, respec-
tively. 2n+2 is the total number of input elements
excluding xi. αij refers to the importance of xj

to xi. bQ
ij , b

K
ij , and bV

ij are edge biases used to
accommodate the heterogeneous connections be-
tween different elements in the fact. We design five
categories of edge biases based on the edge hetero-
geneity: (xh,xr), (xt,xr), (xr,xki), (xki ,xvi),
and others not included in the above categories.
Note that the edge biases are independent of edge
direction; the edge biases of (xh,xr) and (xr,xh)
are thus the same. With an LP -layer edge-biased
self-attention network, an informative feature of
the [MASK] token is generated, providing a rich
context for predicting the missing element.
Fully-connected decoder. We denote the final
output embedding of the [MASK] token by x̄M . A
fully-connected layer with Softmax function is then
employed to produce the link prediction results:

p = φSoftmax (WM x̄M + bM ) (12)

where WM is the weight matrix of the MLP in the
structural encoder, and bM denotes the learnable
entity bias. The prediction outcome p is a probabil-
ity distribution over the entity set E , indicating the
likelihood of each entity being the actual missing
element. Notably when predicting missing rela-
tions, WM and bM are the weight matrix of the
initial embedding layer and the learnable relation
bias, respectively.

Our model training process optimizes the cross-
entropy loss in the link prediction tasks using Adam

optimizer (Kingma, 2014):

L =

|E|∑

i=1

yi logpi (13)

where yi is the ground-truth label for i-th entry.
The code of HyperFM is publicly available online1.

5 Experiments

5.1 Experimental Setup
Datasets. The experiments are conducted on
two widely-used hyper-relational KG datasets,
WikiPeople (Guan et al., 2019) and WD50K
(Galkin et al., 2020), with pre-defined data splits
provided for fair comparison. Since these datasets
do not include multimodal information, we crawl
images and textual descriptions of entities from
their data source Wikidata. Specifically, we ex-
tract the image for each entity through the “image”
property and obtain the textual description from the
“description” label. The detailed statistics of both
datasets are presented in Table 1.
Baselines. We compare our HyperFM with a
wide range of state-of-the-art baselines, which are
divided into two categories. The first category
includes hyper-relational KG (HKG) embedding
methods: m-TransH (Wen et al., 2016); RAE
(Zhang et al., 2018); NaLP (Guan et al., 2019);
NeuInfer (Guan et al., 2020); HINGE (Rosso
et al., 2020); ShrinkE (Xiong et al., 2023); Hy-
ConvE (Wang et al., 2023a); HJE (Li et al., 2024);
GRAN (Wang et al., 2021); MSeaHKG (Di and
Chen, 2021); HyNT (Chung et al., 2023); Hyper-
Former (Hu et al., 2023); StarE (Galkin et al.,
2020); Hy-Transformer (Yu and Yang, 2021);
QUAD (Shomer et al., 2022); HAHE (Luo et al.,
2023). The second category consists of multimodal
KG (MKG) embedding methods: IMF (Li et al.,
2023); VISTA (Lee et al., 2023); NativE (Zhang
et al., 2024a); MoSE (Zhao et al., 2022b); AdaMF
(Zhang et al., 2024b). The detailed descriptions of
baselines are in Appendix B.

1https://github.com/UM-Data-Intelligence-Lab/HyperFM
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Method Type Method
WikiPeople WD50K

All entities Head/Tail All entities Head/Tail
MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10

HKG Embedding

m-TransH 0.167 0.162 0.354 0.081 0.079 0.321 0.074 0.072 0.198 0.058 0.057 0.298
RAE 0.193 0.175 0.388 0.073 0.073 0.305 0.132 0.118 0.243 0.062 0.061 0.325
NaLP 0.327 0.265 0.449 0.401 0.327 0.535 0.223 0.162 0.337 0.135 0.134 0.368
NeuInfer 0.349 0.281 0.506 0.483 0.416 0.581 0.235 0.178 0.355 0.257 0.181 0.396
HINGE 0.367 0.305 0.488 0.447 0.381 0.567 0.245 0.181 0.362 0.243 0.169 0.392
ShrinkE N/A 0.489 0.419 0.594 N/A 0.321 0.237 0.462
HyConvE 0.277 0.172 0.467 0.275 0.171 0.465 0.244 0.171 0.382 0.226 0.154 0.365
HJE 0.472 0.387 0.609 0.471 0.387 0.608 0.345 0.274 0.477 0.322 0.252 0.455
GRAN 0.494 0.423 0.617 0.492 0.420 0.616 0.361 0.287 0.504 0.327 0.252 0.473
MSeaHKG 0.393 0.301 0.562 0.456 0.392 0.607 0.324 0.239 0.481 0.287 0.204 0.416
HyNT 0.457 0.376 0.597 0.459 0.377 0.597 0.337 0.271 0.464 0.308 0.240 0.439
HyperFormer N/A 0.473 0.378 0.626 N/A 0.332 0.249 0.479
StarE N/A 0.394 0.290 0.593 N/A 0.315 0.240 0.458
Hy-Transformer N/A 0.399 0.298 0.588 N/A 0.314 0.241 0.453
QUAD N/A 0.379 0.272 0.583 N/A 0.316 0.245 0.451
HAHE 0.495 0.421 0.623 0.492 0.418 0.620 0.379 0.305 0.521 0.345 0.269 0.491

MKG Embedding

IMF N/A 0.462 0.393 0.605 N/A 0.298 0.212 0.429
VISTA N/A 0.457 0.389 0.593 N/A 0.251 0.174 0.408
NativE N/A 0.458 0.391 0.582 N/A 0.252 0.173 0.388
MoSE N/A 0.412 0.349 0.557 N/A 0.227 0.151 0.346
AdaMF N/A 0.407 0.331 0.559 N/A 0.214 0.136 0.342

MHKG Embedding HyperFM 0.515 0.448 0.645 0.514 0.446 0.643 0.408 0.337 0.546 0.375 0.302 0.523

Table 2: Overall link prediction performance (All entities and Head/Tail entities). “N/A” indicates tasks that the
method cannot be applied to (specifically, ShrinkE, HyperFormer, StarE, Hy-Transformer, QUAD, IMF, VISTA,
NativE, MoSE, and AdaMF can only predict head/tail entities).

Evaluation metrics. In the link prediction task, a
ranking list of entities is generated for the missing
entity in a test fact. We then apply the filtered
setting to remove any potential true entities other
than the ground-truth entity. The prediction results
are evaluated using Mean Reciprocal Rank (MRR),
Hits@1, and Hits@10. We report both results on
all entities and on head/tail entities only (because
some baselines can only predict head/tail entities).

Hyperparameters and environment. Our Hy-
perFM is trained for 300 epochs using the early
stopping strategy on our benchmark hardware (In-
tel Xeon 6416H@2.20GHz, NVIDIA GeForce
RTX4090 24GB, Ubuntu 22.04). Three key hy-
perparameters for HyperFM are the number of Hy-
pergraph Transformer layers LM , the number of
edge-biased self-attention layers LP , and the em-
bedding dimension d. The optimal hyperparameter
settings (LM = 2, LP = 12, d = 256) on both
datasets are identified by grid search (more details
in Appendix C).

Efficiency of Hypergraph Construction. As
hyper-relational facts inherently form a hypergraph
structure, there is no need to manually design a
specific hypergraph for hyper-relational facts. As a
result, the cost of constructing the hypergraph in the
context of HKG embedding is negligible, because

they are ready-to-use. For reference, the whole
graph indexing process for HyperFM takes only
46.2 seconds on the WikiPeople dataset and 57.6
seconds on the WD50K dataset. In comparison, the
total training time on the WikiPeople and WD50K
datasets is 18.6 hours and 14.3 hours, respectively.
Thus, the time required for graph indexing is negli-
gible relative to the overall training process.

5.2 Overall Performance
Table 2 presents the link prediction performance
on both datasets. The best results are highlighted
in bold, while the second-best results are under-
lined. We observe that HyperFM consistently out-
performs all baselines, achieving 6.0% and 6.8%
improvements on average over the best-performing
baselines in predicting all entities and head/tail en-
tities, respectively.

Note that HyperFM performs better on WD50K
than on WikiPeople, due to the larger ratio of
hyper-relational facts in WD50K, as HyperFM is
specifically designed for learning from such facts.
We also find that three MKG embedding meth-
ods achieve performance comparable to HKG em-
bedding methods in predicting head/tail entities,
even without utilizing key-value pair information.
This suggests that multimodal information is in-
deed helpful in link prediction. These observa-
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Method
WikiPeople WD50K

All entities Head/Tail All entities Head/Tail
MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10

HyperFM 0.515 0.448 0.645 0.514 0.446 0.643 0.408 0.337 0.546 0.375 0.302 0.523
w/o multi 0.496 0.422 0.625 0.493 0.418 0.623 0.379 0.306 0.522 0.346 0.271 0.495
w/o visual 0.499 0.424 0.630 0.497 0.420 0.625 0.385 0.312 0.530 0.356 0.273 0.508
w/o textual 0.504 0.431 0.637 0.502 0.430 0.633 0.392 0.318 0.538 0.362 0.280 0.513
w/ EC 0.497 0.420 0.631 0.495 0.415 0.630 0.382 0.302 0.533 0.358 0.283 0.499
w/ RG 0.498 0.420 0.631 0.495 0.417 0.625 0.377 0.295 0.531 0.356 0.282 0.490
w/o FC 0.503 0.430 0.629 0.500 0.424 0.631 0.389 0.313 0.534 0.361 0.281 0.505
w/o biases 0.509 0.441 0.643 0.510 0.443 0.642 0.402 0.334 0.541 0.369 0.298 0.521

Table 3: Ablation study of HyperFM with five variants.

tions further support the design principle of our
HyperFM, which incorporates features from dif-
ferent modalities and integrates them through a
hypergraph structure. We also report the results on
relation prediction in Appendix D.

5.3 Ablation Study

To systematically validate the design choices of our
HyperFM, we conduct a series of ablation studies to
evaluate the effectiveness of the visual and textual
modalities, our fact-centric fusion scheme, and the
edge-biased mechanism.
Impact of multimodality. We consider three vari-
ants of HyperFM: 1) w/o multi removes both visual
and textual modalities, 2) w/o visual removes the
visual modality, and 3) w/o textual removes the
textual modality. As shown in Table 3, we observe
that both modalities contribute to performance im-
provement. Moreover, removing the visual modal-
ity shows a larger performance drop (4.5-4.9%)
than removing the textual modality, showing that
the visual modality provides more information to
distinguish the subtle differences between entities
than the textual modality.
Impact of the multimodal fusion scheme. We
first design two variants, w/ EC and w/ RG, to eval-
uate the superiority of our fact-centric fusion over
the Entity-Centric (EC) and Relation-Guided (RG)
fusion schemes, respectively. Specifically, in the w/
EC variant, bi-directional aggregation is performed
between the structural modality and the structural,
visual, and textual modalities. The w/ RG variant
follows a similar pipeline to w/ EC, with the key
difference being that, prior to the N-H aggrega-
tion, the representations of the three modalities are
transformed by the primary relation-specific matrix.
A detailed explanation of both fusion schemes is
provided in Figure 3. The results of the two vari-
ants are presented in Table 3. We see that both w/
EC and w/ RG variants significantly underperform

HyperFM, highlighting the superiority of our fact-
centric fusion scheme over the entity-centric and
relation-guided fusion strategies. In addition, we
introduce a variant w/o FC that replaces the fact-
centric hypergraph with a fully connected graph,
to demonstrate the effectiveness of the proposed
Hypergraph Transformer. As shown in Table 3, the
results of w/o FC demonstrate that the Hypergraph
Transformer boosts the link prediction performance
with an average improvement of 4.0-4.1% across
different datasets. This indicates that capturing
interactions between diverse modalities while in-
corporating the hyper-relational structure of the
fact is vital for link prediction tasks.
Impact of the edge biases. We verify the utility
of edge biases by designing a variant w/o biases,
which removes edge biases from the self-attention
network. Results show that edge biases can also
improve the link prediction performance and yield
consistent improvements across different datasets.

5.4 Insights on the Multimodal Fusion Process

To further understand our fact-centric multimodal
fusion process, we extract attention weights be-
tween hyperedges and nodes from the final layer of
the Hypergraph Transformer and conduct in-depth
analyses as follows.
Importance of different modalities. We compute
the attention weights assigned to each modality
averaged over all facts. We analyze the averaged
attention weights on 1) all entities and 2) head/tail
entities only. Figure 4a-4b shows the results on
WikiPeople and WD50K datasets, respectively. We
observe that the structural modality maintains the
highest importance (weights) across different en-
tity positions in a fact. This implies the primary
role of the graph structure in multimodal fusion,
aligning with our design of incorporating the hyper-
relationality of the KG. Moreover, the Hypergraph
Transformer can also learn to adjust the attention
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(a) (b) (c) (d)

Figure 4: Insights on the multimodal fusion process. (a)-(b) show the average attention weights of different
modalities on WikiPeople and WD50K datasets, respectively. (c)-(d) show the distributional difference of attention
weights over facts between different modalities on WikiPeople and WD50K datasets, respectively.

weights for different positions, as evidenced by the
different attention weights of the structural modal-
ity between all entities and head/tail entities.
Varying relationship between modalities of dif-
ferent entities. We further analyze the importance
of different modalities of entities by measuring
their variations across different facts. To this end,
we compute the Jensen–Shannon divergence (JSD)
between the attention weight distributions (over
facts) of two different modalities of two entities,
and we compare the cases of the two entities be-
ing 1) different entities and 2) the same entity (as
a reference). We report the results on each pair
of modalities ms −mv, ms −mt, and mv −mt.
As shown in Figure 4c-4d, we see that the JSD
between the modalities of different entities (>0.45
in most cases) is much larger than that of the same
entity (<0.2 in most cases). This implies that
the relative importance of different modalities of
different entities indeed varies across facts. Our
fact-centric fusion scheme can model such varia-
tion through the incidence graph representation of
MHKG, where multimodal nodes of entities of a
fact are directly connected to the fact hyperedge,
as shown in Figure 3.

6 Conclusion

In this study, we propose HyperFM, a Hyper-
relational Fact-centric Multimodal Fusion tech-
nique, which can directly learn from multimodal
hyper-relational facts by capturing intricate interac-
tions between diverse modalities while at the same
time accommodating the hyper-relational struc-
ture using our designed Hypergraph Transformer.
Experiments on two real-world multimodal KG
datasets show the superiority of HyperFM in link
prediction tasks, outperforming a sizeable collec-
tion of state-of-the-art baselines with an average
improvement of 6.0-6.8%. Furthermore, ablation

studies systematically validate the fact-centric fu-
sion scheme of our HyperFM.

Our future work will study multimodal link
prediction tasks for images/text using large vi-
sion/language models. We also identify multi-hop
reasoning over HKGs as a promising direction for
addressing complex query scenarios. To this end,
we will explore the incorporation of multimodal
information to enhance the effectiveness and inter-
pretability of multi-hop reasoning on HKGs.

7 Limitations

In this study, we focus on the link prediction task
for entities and relations, combining multimodal in-
formation of images and text for each entity. How-
ever, images and text in real-world KGs also face
missing data challenges. Therefore, we plan to ex-
tend our model beyond traditional link prediction to
address image and text prediction using advanced
large vision and language models.

8 Ethics Statement

This paper investigates the problem of knowledge
graph link prediction, aiming at hyper-relational
knowledge graph completion with multimodal in-
formation to empower a wide range of web appli-
cations, such as question answering, recommender
systems, and query expansion. The multimodal KG
datasets used in this paper are all publicly available.
Therefore, we believe it does not raise any ethical
issues.
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Appendix

A Modal Encoder

This section introduces the three modal encoders
used to extract specific modal features.
Structural encoder. Traditionally, the structural
features of entities are extracted using pre-trained
KG embedding models, and the obtained features
are fed in parallel with extracted visual and tex-
tual features into the subsequent multimodal fusion
module (Li et al., 2023; Lee et al., 2023). However,
this design overlooks the fact-level information for
link prediction and thus impairs the essential infor-
mation preserved by the graph structure. Therefore,
we propose to directly use randomly initialized
learnable embeddings as structural features, thus
allowing for the multimodal fusion process to flex-
ibly learn the intricate structural information by
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Method WikiPeople WD50K
LM LP d LM LP d

HyperFM 2 12 256 2 12 256
w/o multi 2 10 256 2 10 256
w/o visual 2 12 256 2 12 256
w/o textual 2 12 256 2 12 256
w/o FC 2 10 256 2 10 256
w/o biases 2 12 256 2 10 256

Table 4: The optimal hyperparameter settings for Hy-
perFM and its variants.

fusing information from other modalities (more
detail below) in the training process.
Visual encoder. Visual information encoded in the
entity images characterizes additional information
about entities beyond the KG structures. Follow-
ing (Li et al., 2023; Lee et al., 2023), we utilize
pre-trained VGG16 (Liu et al., 2019) as the visual
encoder to derive visual embeddings for the cor-
responding entities. Specifically, for each image
fed into VGG16, we get embeddings from the last
hidden layer before the Softmax function as the
visual features for the corresponding entity.
Textual encoder. Textual descriptions populate
and enrich semantic information for entities. To ex-
tract textual features, we resort to pre-trained BERT
(Devlin et al., 2018), which can comprehensively
represent textual descriptions and convert them into
semantically enriched embeddings. Specifically,
for each textual description fed to BERT, we get
the pooled outputs of BERT as the textual features
for the corresponding entity.

It should be noted that the pre-trained visual or
textual models (VGG16 and BERT respectively)
are not fine-tuned during the training stage but are
employed as fixed feature extractors. In addition,
our HyperFM is designed to be flexible, allowing
for any of these pre-trained models to be replaced
with other pre-trained visual or textual models if
necessary.

B Baseline Details

The first category includes hyper-relational KG em-
bedding methods: m-TransH (Wen et al., 2016)
captures the interactions among entities within an
n-ary fact; RAE (Zhang et al., 2018) extends m-
TransH by explicitly taking the pairwise correla-
tion features between entities into account; NaLP
(Guan et al., 2019) captures the interactions be-
tween relation-entity pairs using CNNs; NeuIn-
fer (Guan et al., 2020) separately learns from
the base triplet and its affiliated key-value pairs;

HINGE (Rosso et al., 2020) repeatedly learns from
triplets and affiliated key-value pairs using CNNs;
ShrinkE (Xiong et al., 2023) models a base triplet
as a spatio-functional transformation from the head
entity to a relation-specific box; HyConvE (Wang
et al., 2023a) leverages 3D convolution to cap-
ture the sophisticated interactions among entities
and relations in a fact; HJE (Li et al., 2024) ex-
tends HyConvE to further capture the global se-
mantics between facts; GRAN (Wang et al., 2021)
incorporates edge biases to discriminate connec-
tions between elements in a fact and harnesses
the self-attention mechanism to further capture
the correlation; MSeaHKG (Di and Chen, 2021)
employs neural architecture search to identify the
most suitable graph encoder for hyper-relational
facts; HyNT (Chung et al., 2023) develops a con-
text Transformer to learn representations of the
primary triplets and the qualifiers by exchanging
information among them; HyperFormer (Hu et al.,
2023) encodes the local-level semantics in hyper-
relational facts using Transformers; StarE (Galkin
et al., 2020) designs a directed heterogeneous graph
encoder to capture the interactions among elements
in a fact; Hy-Transformer (Yu and Yang, 2021)
replaces the computation-heavy graph neural net-
work module with light-weight entity/relation pro-
cessing techniques; QUAD (Shomer et al., 2022)
is another variant of StarE by designing two paral-
leled pipelines to learn from the triplets and key-
value pairs, respectively; HAHE (Luo et al., 2023)
employs a hypergraph attention mechanism to en-
code the global structure of a KG and leverages
edge-biased self-attention networks to capture lo-
cal semantics in a fact.

The second category includes multimodal KG
embedding methods: IMF (Li et al., 2023) inte-
grates multimodal information with bilinear func-
tions; VISTA (Lee et al., 2023) models the correla-
tion between structural and visual modalities via a
relation-aware Transformer; NativE (Zhang et al.,
2024a) balances the information of different modal-
ities using a collaborative adversarial training ap-
proach; MoSE (Zhao et al., 2022b) learns modality-
split relation embeddings for each modality instead
of a single modality-shared one; AdaMF (Zhang
et al., 2024b) achieves multimodal fusion with
adaptive modality weights and generates adversar-
ial samples for imbalanced modality information.
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Method Type Method
WikiPeople WD50K

All relations Primary relations All relations Primary relations
MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10

HKG Embedding

NaLP 0.875 0.838 0.929 0.854 0.817 0.929 0.775 0.702 0.896 0.748 0.685 0.853
NeuInfer 0.906 0.852 0.954 0.853 0.824 0.901 0.816 0.759 0.924 0.802 0.738 0.886
HINGE 0.935 0.895 0.976 0.927 0.875 0.951 0.878 0.812 0.963 0.850 0.796 0.928
GRAN 0.959 0.944 0.976 0.957 0.937 0.983 0.945 0.917 0.983 0.929 0.891 0.970
MSeaHKG 0.836 0.792 0.953 0.801 0.783 0.906 0.825 0.778 0.917 0.787 0.759 0.901
HyNT 0.948 0.928 0.973 0.953 0.935 0.978 0.907 0.881 0.948 0.906 0.875 0.952
HAHE 0.959 0.944 0.977 0.953 0.939 0.972 0.940 0.914 0.977 0.930 0.900 0.971

MKG Embedding IMF N/A 0.867 0.839 0.903 N/A 0.845 0.756 0.929
MHKG Embedding HyperFM 0.971 0.955 0.989 0.969 0.952 0.988 0.961 0.934 0.995 0.949 0.928 0.989

Table 5: Overall relation prediction performance (All relations and Primary relations). “N/A” indicates tasks that the
method cannot be applied to (specifically, IMF can only predict primary relations). All baselines are implemented in
our environment using their original hyperparameter settings. Other baselines, including m-TransH, RAE, ShrinkE,
HyConvE, HJE, HyperFormer, StarE, Hy-Transformer, QUAD, VISTA, NativE, MoSE, and AdaMF, cannot predict
relations by design, and are thus excluded from the table.

C Hyperparameter Settings

Three key hyperparameters of HyperFM are the
number of Hypergraph Transformer layers LM , the
number of edge-biased self-attention layers LP ,
and the embedding dimension d. We employ the
grid search strategy to identify the optimal hyper-
parameter setting. The range of candidate values
for hyperparameters LM , LP , and d are {1, 2, 3,
4}, {6, 8, 10, 12}, and {64, 128, 256, 512}, re-
spectively. Afterward, the optimal hyperparameter
setting of a model is identified by comparing the
link prediction performance under different hyper-
parameter combinations. The final hyperparameter
settings for all models (HyperFM and its variants)
are shown in Table 4.

D Experiments on Relation Prediction

Table 5 shows the relation prediction performance
on the two datasets. We observe that the proposed
HyperFM consistently outperforms all baselines,
achieving average improvements of 1.4% and 1.7%
over the best-performing baselines in predicting all
relations and primary relations (namely the rela-
tion connecting head and tail entities), respectively.
The slight improvements are due to the solution
space for relations being much smaller than that for
entities, resulting in a high benchmark in relation
prediction for all methods.
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