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Abstract

Some statements have one well-defined contin-
uation (e.g., “the Eiffel Tower is in [Paris]”),
whereas others have a natural distribution over
multiple options (e.g., “the weighted coin flip
was [Heads/Tails].”) We argue that language
model (LM) outputs should capture these nat-
ural distributions. Our work specifically tests
whether LM output probabilities are calibrated
to numeric information within their textual con-
texts. For example, if the context (the prompt)
concerns two equally likely options (e.g., heads
or tails for a fair coin), the LM output probabili-
ties should also be equal. Likewise, in a context
with nonuniformly likely events (e.g., rolling a
pair with two dice) an LM should output pro-
portionate probabilities. However, we find that
even in simple settings, the best LMs (1) are
poorly calibrated and (2) have systematic bi-
ases: artifacts like word identity, word order,
and word frequency all impact calibration. For
example, gpt-40-mini often picks the first of
two options presented in the prompt regardless
of the options’ implied likelihoods, whereas
Llama-3.1-8B picks the second. Models do
not allocate probability mass among valid op-
tions in a calibrated manner.

1 Introduction

We investigate if language model (LM) outputs are
calibrated to the numeric content of their contexts.
Consider the context below:

(1) From 98 blue marbles and 99 red mar-
bles, Tommy reached blindly into a bag
and grabbed a marble the color [blue/red)]

This work tests the normative assumption that
model probabilities for the next generated token
should be calibrated to the relevant numeric con-
tent. For example, in Figure 1, the probability that
an LM continues with one of the bracketed tokens
should be proportional to the respective bolded val-
ues. If the context defines or implies a probability

to hold within the context, then subsequent text
generation should condition on that probability.

Problem Calibrated GPT-40
Setup o Ideal Outputs
o 0
9 g 98 99 a 100% 99.7%
g f‘é’ E 50% 49.7% 50.2%
15) o 0
= O b 0% 0.2%
bluered blue red Dblue red

Figure 1: Models are un-calibrated. In this example,
gpt-4o over-weights the option with a higher count of
items beyond the calibrated probability, predicting red
with 99.7% probability when 50.2% is appropriate. We
find consistent patterns of uncalibrated behavior.

What Do We Mean By Calibration?

LMs’ output probabilities are calibrated to
their contexts if the probabilities of relevant
tokens correspond to the numeric content
implicitly or explicitly defined in those con-
texts. If tokens ¢, to, ..., t, are indicated
by context C' to have probabilities P =
P1,P2, - - -, Pn, a calibrated LM m outputs
corresponding probabilities m; = m(t;|C):
piox<m, € 1,2,...,n.

We set calibration as the distance between
Pand Il = 7, ms, ..., m, (Section 3.2).

Calibration within numeric contexts is a simple
concept, but there is good reason to believe that
models may struggle with it. Numbers within large
pre-training datasets do not all occur with identical
frequencies (e.g., numbers ending in 5 appear more
than numbers ending in 7), as shown by Zhou et al.
(2023) for the Pile dataset and our findings with
Dolmo (Soldaini et al., 2024) (Section 6). These
differences may have downstream effects on LMs’
biases across different numbers, making it difficult
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for language models to exhibit calibrated outputs.

Model calibration is related to models’ mathe-
matical capabilities. If a model struggles to answer
basic math questions, it may be difficult for the
model to be properly calibrated. Although models
are quickly improving at mathematical reasoning
(Lin et al., 2024; Shao et al., 2024; MistralAl, 2025;
Chervonyi et al., 2025), our work demonstrates that
models are not well calibrated even in simple sce-
narios that require little reasoning. This may be
because the difficulty lies not in the underlying
mathematical ratios but in connecting these im-
plicit probabilities with their explicit probabilities
through a softmax. Meister et al. (2024) shows that
models struggle to directly model distributions.

Because LMs are increasingly used, calibrating
LM outputs is increasingly important. Notably,
sampling is still often used to increase the diver-
sity of model outputs (Chen et al., 2021); if mod-
els were only used greedily studying model logits
would no longer be of direct interest. Not pro-
ducing a calibred result may have no impact over
a single interaction because any given outcome is
compatible with a calibrated distribution (assuming
some probability mass on all options).

However, failed calibration may have an impact
across multiple users or repeat interactions. For
example, an uncalibrated model may always rec-
ommend visiting a particular restaurant despite the
city having hundreds of equally good options. This
model’s calibration failure could result from some-
thing as idiosyncratic as the restaurant’s name. In
this scenario, the uncalibrated model negatively
impacts many parties (e.g., the other restaurants,
customers, etc). This restaurant example is simply
one of the many scenarios where users rely on accu-
rate and helpful recommendations (e.g., for movies,
job candidates, vacations, colleges, etc). Having
correctly calibrated models is critical for situations
involving medical or health services, such as mak-
ing radiology predictions (Shreekumar, 2025).

We find that many LMs are poorly calibrated in
numeric contexts, failing in systematic ways. Like
in Example 1, some models pick options based on
position (e.g., always the first option). Other mod-
els overly pick the option with the higher number.
Word identity of the options and the vocabulary
frequency of the numeric information appear to in-
teract with these biases and, thus, the calibration.
Our work demonstrates that LMs are consistently
biased suggesting that there is risk to using LMs
for probabilistic outcomes.

Contributions

1. Instruction-tuning helps by increasing
the model’s cumulative probability for
all relevant options. Yet, models gen-
erally remain poorly calibrated — some-
times worse than simple baselines.

2. Models exhibit mode collapse:
instruction-tuning  overly  reduces
the entropy of the output distribution.

3. Models exhibit systematic biases over
word identity and order, often overriding
the numeric information in the context.

4. Frequency effects of the number tokens
in the training data impact calibration.

2 Related Work

Models struggle to calibrate internal uncer-
tainty with textual outputs. A related line of
work studies how well models calibrate prediction
confidence with prediction accuracy: a calibrated
model with 0.80 confidence on each prediction
should classify 80% of examples correctly (Guo
et al., 2017; Minderer et al., 2021). Under this
definition, Wei et al. (2024) reports GPT models
have good calibration, whereas, Phan et al. (2025)
reports the opposite. Another line of work inves-
tigates how well model outputs align with uncer-
tainty (Yona et al., 2024; Kumar et al., 2024; Zhou
et al., 2023; Lin et al., 2022), termed linguistic cal-
ibration (Mielke et al., 2022). Yona et al. (2024)
reports that models struggle to exhibit internal un-
certainty in text. Kumar et al. (2024) measures
how well confidence is aligned internally (model
probabilities) and externally (via eliciting a model
to choose among a Likert scale). In our work, we
look at the agreement between the probability of
predicted outputs and the contextually defined like-
lihood of outputs in the text. We find that models
are often internally certain when they should be
uncertain; this mode collapse arises both via su-
pervised fine-tuning and reward-based fine-tuning
(O’Mahony et al., 2024; Janus, 2022). Zhou et al.
(2024) also finds that reward-based fine-tuning bi-
ases models towards certainty, generating strength-
eners (e.g., “I am certain. ..”) over weakeners (e.g.,
“Maybe...”). Notably, faithful calibration is not
always desirable; to simplify our experiments, we
set aside phenomena like hyperbole and pragmatic
effects (Tsvilodub et al., 2025).
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Recent work finds that language models struggle
to simulate randomness: coin flip predictions
are biased in favor of heads and the first outcome
mentioned in context (Van Koevering and Klein-
berg, 2024). Hopkins et al. (2023), similar to our
work, shows that LMs struggle to induce uniform
distributions in the O to 1 interval. Recentlt, Meister
et al. (2024) shows that models struggle to directly
model distributions and Gupta et al. (2025) again
showed that models have strong priors in proba-
bilistic settings (coin flips).

Biases in language models. There are large-
scale efforts to remove biases from models
(Rudinger et al.,, 2018; Bai et al., 2022).
Pezeshkpour and Hruschka (2024) shows that LMs
prefer multiple-choice options based on their posi-
tion. Using methods similar to our’s, Kusner et al.
(2017) studies probability differences in the setting
of counterfactual fairness. We find evidence of
similar biases impacting calibration.

3 Experimental Design

3.1 Problem Setup

We introduce three templated datasets. Each in-
stance is a context C to be continued by a relevant
token among t1,t2,...,t, =1 C V, where V is
the full vocabulary. Each token ¢; is associated with
an implied probability p;, forming a distribution
over T, P = p1,p2,...,pn. In Example 1, T' is
{red,blue} with P = {red : 98/197, blue : 99/197}.
For a model m, we define Il = m,m,..., T,
where m; ~ m(t;|C), with one modification. We
sum the probabilities of common tokenizations for
a given word, namely, capitalization and spaces:
= ZsETokenizations(ti) m(S‘C> For example, for
the option red, we sum probabilities for “red”,
“Red”, “_red”, and “_Red.” This approach does
not take into account there are many grammatically
ways of continuing the sentence. However, em-
pirically, instruction-tuned models put almost all
probability mass on 7'. This imperfect approach
still allows us to meaningfully study the problem.!

3.2 Metrics and Evaluation

We use three metrics to test if models calibrate to

numeric contexts and where they go wrong.
Probability Mass (PM): A model’s calibration,

the relative probability mass across tokens in 7, is
'See Appendix A for details on reproducibility

and https://drive.google.com/drive/folders/
11mY5vbNangMA2wwci84I5¢cipwh7FPPPB for code/results.

well-founded only if there is sufficient probabil-
ity mass upon the tokens in 7. We measure this
directly with PM, PM(T) =}, . m;. If PM(T')
for a model is low (say, 0.30), then it is unclear
if the model is capturing the intended relationship
between the context and 7. While meaningful dis-
tribution across 7' could still exist if these values
were normalized, we set this case aside. When
PM is high (say, > 0.75), we can start to meaning-
fully ask questions about how probability mass is
allocated among, say, red and blue.

Wasserstein Distance (WD): To measure cali-
bration, we use WD (Kantorovich, 1939), which
captures the movement between one distribution
(or set of values) and another.” We use SciPy’s
wasserstein_distance_nd implementation.’

Relative Entropy (RE): To help understand a
model’s behavior, we propose RE = H(II) —H(P),
the difference in entropy H between model and
ideal calibrated probabilities. RE < 0 means the
model’s probabilities are overly concentrated and
RE > 0 means they are overly diffuse.

3.3 Models

Our experiments assume access to model logits.
We test range of open-source models with
both base and instruction-tuned versions avail-

able: Mistral-7B-v@.1, Mistral-7B-v0.3,
Mixtral-8x7B-v0.1, Yi-1.5-9B, Yi-1.5-34B,
Llama-3.1-8B, gemma-2-9b, gemma-2-27b

(Jiang et al., 2023, 2024; Young et al., 2024;
Dubey et al., 2024; Team et al., 2024); and four
proprietary models, gpt-3.5, gpt-4-turbo,
gpt-4o-mini, and gpt-4o0 (Brown et al., 2020;
Achiam et al., 2023; OpenAl, 2024). We prompt
instruction-tuned models to calibrate outputs to the
numbers in context. We refer to the base version
of the models as “Base” and the instruction-tuned,
prompted models as “Chat.”

3.4 Datasets

We introduce three datasets colors, wordproblems,
and distributions. The following are representative
examples, respectively: 4

2Kullback-Leibler (KL) divergence is also a natural choice.
However, some problems in our datasets include options with
the value zero where KL would be undefined. We also com-
pute Mean-Squared Error (MSE) but don’t find a material
difference in the findings so we only report the WD.

3https: //docs.scipy.org/doc/scipy/reference/
generated/scipy.stats.wasserstein_distance_nd.
html

*Our datasets test basic ratios and probability. As models
improve, it would be exciting if datasets targeted concepts like
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(2) From 17 red marbles and 99 blue mar-
bles, Billy reached blindly into the bag and
grabbed a marble with the color [red/blue]

(3) There was a grove with 17 spruce and 99
cedar. During a thunderstorm lightning
struck a tree. All the trees were about the
same height and elevation. Turned out, the
species of the tree was [spruce/cedar)

(4) Sampling from a uniform distribution with
support from 2 inclusive to 5 exclusive, |
sampled the number [0/1/2/3 ... 9]

Table 1 reports the number of problems per
dataset. For (a) colors, we use 5 templates, 3 nu-
meric scales with 100 configurations each, and 110
permutations of color options (e.g., red/blue and
blue/red).> The numeric scales are (1) numbers 1
to 10, (2) ten numbers sampled from 10 to 100, and
(3) ten numbers sampled from 100 to 999. Pilot
experiments with larger numbers (> 1000) did not
see marked differences in calibration. Still, future
work should study a wider range of numbers. For
(b) wordproblems, there are 10 templates, the same
3 numeric scales with 100 configurations each, and
4-10 pairs of options (e.g., spruce/cedar, or nurse/-
doctor) depending on the template. For every pair
of options in colors and wordproblems, we include
all combinations of numbers creating a balanced
set of examples: the first number is smaller in half
of the examples and larger in the rest. For (¢) distri-
butions, the configuration is different. The task is
to pick a number uniformly from an interval. The
valid options in 7 are all integers in the interval.
There are 5 templates, different range inclusivities,
and 320 pairs of numbers that define the intervals
ranging from 10 to 1000. Each problem is set to
occur within an interval length of less than 10 and
requires only a single token prediction.

When we compute standard errors we cluster
option pairs together (Miller, 2024). All our results
show the 95% confidence interval (not the standard
error) either explicitly or using + notation.

3.5 Reference Behaviors and Baselines

Reference Behaviors. Understanding a model’s
behavior across many instances can be difficult,
but we observe that models often produce one of

Bayes’ theorem, De Morgan’s laws, event independence, etc.

>Calibration could be well-studied by sampling non-
exhaustively across these permutations but doing so lets us
highlight biases across different options.

Dataset # Problems  # Option Sets  Entropy (bits)
colors 165.0K 55 (110) 0.810.06
wordproblems 33.6K 55 (110) 0.810.06
distributions 4.5K 320 2.270.17

Table 1: Datasets. The first two datasets have 55 pairs
of options; 110 when order is considered. For the the
third, there are 320 pairs of numbers that define the
distribution intervals. The first two datasets use the
same underlying numbers, sharing the same average
entropy per problem instance. The entropy is shown
as an average and sub-scripted by the variance across
problem instances. Distributions problems are across
more options (2+) and expect a uniform distribution.

six different patterns of behavior, and as such, we
categorize model behavior into these as references.

Summaries are limited: gpt-4o0-mini, when the
color white is listed second in the prompt, tends to
pick the color listed first. This is classified as Pick
First but could be “pick the option not starting with
w.” These behaviors are compatible with model
outputs over many examples and settings, but are
descriptive, not causal. Also note that over one
example there are multiple valid explanations (e.g.
in Example 1 could be Pick Higher or Pick Lower).
Thus, we classify behavior over sets of examples
balanced over the numeric values.

0. Null: PM (see below) is closer to O than other
behaviors.

1. Calibrated: Sets II = P, the best case.

2. Pick Higher: Sets all probability mass on
arg max P.

3. Pick lower: Sets all probability mass on
arg min P.

4. Pick First: Sets all probability mass on the
first option, ignoring numeric information.

5. Pick Second: analogously sets all probabil-
ity mass on the second option.

Baselines. We introduce two more baselines
besides using the reference behaviors above as
baselines. First, Pick Higher,_, places g (say,
0.7) on argmax P and the remainder of the
probability mass evenly across other tokens in 7.
Second, Random baselines to contextualize our re-
sults. For every problem in the dataset, the random
baseline Random., produces a II by uniformly
sampling two random numbers from O to 1, which
are then transformed into a distribution parameter-
ized by a temperature 7 using the softmax function.
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Example with Baseline Scores. Table 2 provides
baseline scores for a single example (numbers 51
and 98) to provide reference metric scores. Beyond
showing how WD scores range, this example again
highlights how different baselines (say, Pick First
and Pick Higher) will have the same behavior for
some instances; references are only delineated over
a pool of examples were the behaviors are mutually
exclusive. See Appendix D to see how different
models behave on this example.

P(t1) P(tz) PM RE WD

Ideal 0.34 0.66 1.00 1.00 0.00
Null 0.00 0.00 0.00 n/a 0.74
Pick First 1.00 0.00 1.00 -0.93 0.93
Pick Lower 1.00  0.00 1.00 -0.93 0.93
Pick Second 0.00 1.00 1.00 -0.93 0.48
Pick Higher 0.00 1.00 1.00 -0.93 0.48

Pick Higherp—o.7 0.30 0.70 1.00 -0.05 0.06
Pick Higherp,—o.6 0.40 0.60 1.00 0.04 0.08
Pick Higherp—o.8 0.20 0.80 1.00 -0.21 0.20
Pick Higherp—o.9 0.10  0.90 1.00 -0.46 0.34

Table 2: Each row shows the performance of the given
baseline an example with numbers 51 and 98. This table
is meant to be a helpful reference to build an intuition
about performance score magnitudes.

4 Results

4.1 Probability Mass

First, we closely examine the probability mass
(PM) on the relevant tokens. Consider Example 1
where gpt-4o is to pick either Red or Blue. There,
a high PM means that the model successfully allo-
cated probability mass over these tokens. Success
depends on the design of our problem scenarios
and model capability. The high scores suggest that
the models correctly interpret the basic task.

Table 3 reports PM for the base and chat ver-
sions of all tested models. Instruction-tuned mod-
els have statistically significantly higher PMs
over their base versions. This can be seen by
the strictly positive 95% confidence intervals of
the difference between the chat and base scores in
the rightmost column. Except for L1ama-3.1-8B
and Yi-1.5-34B on distributions, this holds for
all models. The instruction-tuned PM scores are
all reasonably high, suggesting that the datasets’
sentence templates are well-formed. The primary
exception is Mistral-7B-v@.1. Notably, gpt-*
models had lower PM on wordproblems.

Base Chat Chat - Base
PM PM A (95% CI)
colors
Llama-3.1-8B 0.3840.01 0.8010.00 (+0.41,+0.43)

Mistral-7B-v0.1
Mistral-7B-v0.3
Mixtral-8x7B

0.30+0.01 0.54+0.01
0.3310.01 0.76+0.02
0.36+0.01 0.99+0.00

(+0.22, +0.25)
(+0.42, +0.44)
(+0.62, +0.63)

Yi-1.5-9B 0-31j:0.01 0-99j:0.00 (+0.67, +0.70)
Yi-1.5-34B 0.42410.01 0.6210.02 (+0.17,+0.22)
gemma-2-9b 0.3940.01 0994000 (+0.59, +0.61)
gemma-2-27b 0.54410.01 1.0040.00 (+0.45,+0.46)
gpt-3.5 - 1.00+0.00 -
gpt-4-turbo - 1.00+0.00 -
gpt-4o0-mini - 1.00+0.00 -
gpt—40 - 1.00+0.00 -
wordproblems

Llama-3.1-8B 0.5410,05 0.8610‘03 (+0.25, +0.38)

Mistral-7B-v0.1
Mistral-7B-v0.3
Mixtral-8x7B

0.4440.04 0.69+0.03
0.4240.04 0.8410.06
0.57+0.03 0.97+0.02

(+0.22, +0.28)
(+0.33, +0.51)
(+0.37, +0.44)

Yi-1.5-9B 0.5810.03 0.88+0.03 (+0.25, +0.36)
Yi-1.5-34B 0.53i0,05 0.72;‘:0,0(,‘ (+O.14, +0.25)
gemma-2-9b 0.6310.04 0981001 (+0.31, +0.40)
gemma-2-27b 0.5910.03 1.0010.00 (+0.38, +0.45)
gpt-3.5 - 0.60+0.05 -
gpt-4-turbo - 0.4640.07 -
gpt-4o0-mini - 0.55+0.05 -
gpt-4o - 0.600.05 -
distributions

Llama-3.1-8B 0.8210.00 0.7840.01  (-0.06, -0.04)

Mistral-7B-v0.1
Mistral-7B-v0.3
Mixtral-8x7B

0.9240.00 0.95+0.00
0.9140.00 1.00+0.00
0.96+0.00 1.0040.00

(+0.03, +0.03)
(+0.09, +0.09)
(+0.03, +0.04)

Yi-1.5-9B 0.9010.00 0.96+0.01 (+0.06, +0.07)
Yi-1.5-34B 0.9510.00 0911002 (-0.06, -0.02)
gemma-2-9b 0.8410.01 0.9710.01 (+0.13,+0.15)
gemma-2-27b 0.96+0.00 1.00+0.00 (+0.03, +0.04)
gpt-3.5 - 0.99+0.00 -
gpt-4-turbo - 1.00+0.00 -
gpt-4o0-mini - 0.6810.01 -
gpt-40 - 095+0.01 -

Table 3: Probability Mass Results for the base and chat
versions of models and the 95% confidence intervals of
their paired difference. Statistically significant increases
in PM are highlighted blue (better performance); de-
creases are highlighted orange (worse performance).

4.2 Calibration

Next, we examine the calibration scores of
instruction-tuned models in Table 4. Given the
low PM scores of the base models, we leave those
results to Appendix Table 11. Our high-level find-
ing is simple: all tested models are poorly cali-
brated, and their performance is typically worse
than simple baselines. Some models are mildly
better than a baseline that sets 100% probability to
the option associated with the higher number, but
most are not. Another baseline, Pick Higher,_, 7,
which allocates 70% probability to the option as-
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colors wordp. distr. colors wordp. distr.
Pick Higher 0471001 0.4410.00 - Pick Highf:rpzo‘7 0.02+0.01 0.07+0.00 -
Pick Higher,,; 0.15t0.01  0.17+0.00 - Pick Higher / Lower -0.8610.01 -0.8110.00 -
Pick Lower 0951001 0.9810.00 - Pick First/ Second -0.86+0.01 -0.8140.00 -2.26+0.01
Pick First/Second 0.7140.02  0.71+0.00 0.38+0.00 Random;—¢.01 -0.80+0.01 -0.7610.00 -2.07+0.01
Random;—g.01  0.714+0.02  0.69+0.00 0.86+0.00 Random,—1.9 0.1140.01  0.16+0.00 1.35+0.01
Randomr—1.00 027+0.01  029+0.00 0-3820.00 Llama-3.1-8B 0111002 0331005 0701003
Llama-3.1-8B 0.40;0_01 0.48+0.02 0431001 Mistral-7B-v0.1 -0.21t0.02  -0.2410.04 0.0510.02
Mistral-7B-v0.1  0.5010.01 0491001  0.22%, Mistral-7B-v0.3 -0.36+0.03  -04710.04 -1.07+0.04
Mistral-7B-v0.3  0.4840.02 0.5540.01 0.5640.01 Mixtral-8x7B-v0.1  -0.67+9.01 -0.6510.05 -1.59+0.04
Mixtral-8x7B 0.5140.01  0.6040.03 0.71+0.01 Yi-1.5-9B -0.55+0.01  -0.554+0.03 -1.13+0.05
Yi-1.5-9B 0.4940.01 0.56+0.01 0.6140.01 Yi-1.5-34B -0.4510.02 -0.5340.04 -1.3240.04
Yi-1.5-34B 0.5540.01 0.57+0.01 0.62+0.01 gemma-2-9b 0444001 -0451t0.03 -1.11xo0.04
gemma-2-9b 0.50+0.00  0.5240.02  0.59+0.01 gemma-2-27b -0.63+0.01  -0.57+0.02 -1.1440.05
gemma-2-27b 0.40% 00 048:10.01 0.5940.01 gpt-3.5 -0.3510.03  -0.6810.04 -0.69+0.02
Py gpt—4—turbo -0.6510.01 -0.6910.04 -1.5410.03
gpt—3.5 0'30:t0.01 0.57+0.02 0.4240.01 L.
t-4-turbo 0.42% 0.62 0.69 gpt-40-mini 033001 0581005 -1.30z0.02
&P - 200 +0.02 *0.01 gpt-4o -0.6110.00 -0.6310.04 -0.9210.02
gpt-4o-mini 0402001 0571002 0.57+0.01
gpt-40 0.40% 00 0571002 0494001

Table 4: Calibration Results. This table shows calibra-
tion scores (WD) for Chat models along with 95% confi-
dence intervals (+). For colors, six models have a statis-
tically significantly better calibration than Pick Higher,
denoted a. For wordproblems, all models underperform
the baselines. For distributions, only Mistral-7B-v@. 1

outperforms the Pick First baseline, &.

sociated with the higher number, outperforms all
models. This result, more than anything, describes
the best average output probabilities for colors and
wordproblems. This all goes to say: Although the
models can allocate probability mass on valid
options, they cannot properly allocate proba-
bility mass among these options in a calibrated
manner. In Appendix B, we find evidence that our
calibration results are stable across a broader range
of templates and template variations.

4.3 Relative Entropy

The section above demonstrated that the models
cannot allocate the probability mass among the
valid options in a calibrated manner. Here, as
shown in Table 5, we find that these models fail pri-
marily by over-allocating probability mass on one
of the two options: mode collapse. Every model’s
RE was statistically significantly less than the cali-
brated result with large effects on all datasets. Mod-
els with the best calibration scores (gpt-* models)
also have the lowest relative entropy, suggesting
that no model approaches well-calibrated behavior.

Instruction-tuning appears to cause this mode
collapse. There is a reduction in entropy between
the base and chat model versions, on average,
0.50/0.36/1.19 bits on the three datasets, respec-

Table 5: Relative Entropy (RE) Results. With the ex-
ception of Mistral-7B-v@. 1, RE is below a calibrated
level across all datasets.

tively, corresponding to a 47/42/55% percent of
the entropy of the ideal calibrated result. (See Ap-
pendix G for more details.)

5 Analysis: Option Identity and Order

In this section, we study the particular behaviors
that models exhibit on the colors dataset, find-
ing that the models exhibit systematic biases
and preferences based upon word identity and
word order. Understanding that (1) the models
are poorly calibrated and (2) exhibit low entropy
falls directly out of our proposed metrics. However,
understanding how the models behave is more com-
plicated. To start, we characterize the behavior of
gpt-4o-mini in Figure 2 (more in Appendix H).
Figure 3 shows model behavior across all settings.
We define these behaviors in Section 3.5.

Beyond the specific systematic patterns we un-
cover, we want to stress that the existence of these
patterns is important. Every use case of LMs
that requires such choices may have similar pat-
terns. That these systematic errors arise even
with innocuous features like color should give us
pause about using models to make probabilistic
choices in more complicated scenarios.

Figure 2 captures model behavior across all
tested pairs of color options. The most apparent
note to make is the diagonal asymmetry. This
asymmetry shows a hierarchical, systematic bias
across word identity (specific colors) and word
order. Each cell within the heatmap reports the
rate at which the model’s output probabilities are
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GPT 40 Mini

white 1.001.001.001.001.000.971.001.000.981.00
brown 41.001.001.001.001.000.981.000.990.95
black 11.001.001.001.000.990.931.000.98
green 1.000.960.971.000.86@

1.001.001.001.001.001.00 1.000.870.840.91

18:110.920.990.980.

0.92 (0174°10.980.970.91
pink 41.000.970.91 (08:{510.98(08:{¢J0.901.000.980.98
0.99

blue 1.000.940.991.000.94
red 11.000.950.971.00

Second Option Listed

yellow {1.00 0.9811:°1:11.001.001.000.98

1.00 0.990.99

purple 0.950.871.000.83(¢1°1510.82(¢ = om MoJUR R0 [0) 05 1c)
£ L3 £%8 82§53 8¢
20T T 5sE
First Option Listed
Pick Pick
First Higher

0.5 0.75 1.0 05 0.6 0.7 0.8 0.9 1.0

Figure 2: Systematic Patterns in Model Behavior.
Each cell corresponds to model behavior across 100
examples. The number is the rate the outputs are com-
patible with the given behavior. For example, 1.00 in
the first top-left cell means that for 100/100 instances
a majority of the probability mass is on the first option.
The top-left cell corresponds to instances where purple
is first in the prompt and white is second. High rates
across multiple behaviors are impossible; they are mutu-
ally exclusive across the 100 instances. See Figure 4 for
a representative instance drawn from the top-left cell.

compatible with the given behavior across a full
grid (set of combinations) of number pairs. For ev-
ery number combination we include both orderings
meaning that there are equal number of cases where
the first number is higher as there where the second
number is higher. The behavior with the highest
compatibility rate is displayed and indicated by the
color. For example, if the model had rates 100
Pick Higher, 50 Pick First, and 50 Pick Second, the
plot would show the rate of 1.00 (100/100) for Pick
Higher. A high rate of two behaviors cannot hap-
pen because the 100 examples are balanced over
numeric values.

The behaviors exhibited across the diagonal are
often different. This means that option order, list-
ing a color first or second, greatly affects calibra-
tion. For example, in Figure 2, we can see that
when “white” is mentioned first, the model tends to
Pick Higher and when it is mentioned second, the

model tends to Pick First. Because Pick Higher is a
more calibrated behavior than Pick First, mention-
ing “white” first leads to lower calibration scores.

We measure these differences in calibration
across options and models, more in Appendix H.
Color orderings are correlated among similar mod-
els (gpt-4o/gpt-40-mini), suggesting that train-
ing data help form these patterns of behavior.

Figure 3, reports the overall behavior rates for
each model. Appendix H details how we compute
the proportions of different behaviors across the
dataset. gpt-* models (and gemma-2-27b) tend to
Pick Higher, others also Pick First and Second.
Smaller models also exhibit null. These patterns
(1) differ across models (whether it is Pick First or
Second vs Pick Higher or something else) but (2)
the word identity (red/white with the same numeric
information) consistently interacts with word order
(redlwhite vs whitelred) to create systematic error
patterns per model.

6 Analysis: Number Token Frequency

Numbers appear at different frequencies in
training data. Does frequency explain the differ-
ences in calibration? Across almost all models,
we find a significant correlation between number
frequency and average calibration scores. How-
ever, this is only a correlation, and further study is
required to causally understand model behavior.

(5) From 50 blue marbles and 84 red. . .

Repeating an example similar to those above, here
we focus on the frequencies of the numeric content
numeric, N1 = 50/Ny = 84, in the training data.
(Frequencies of the options (e.g., blue, red) were
statistically insignificant with little effect.) Because
the models we test do not publish their training data
details, we approximate the frequency of numbers
in their training data using infini-gram® (Liu et al.,
2024) over the 3 trillion token corpus Dolma (Sol-
daini et al., 2024). Given the limited amount of
natural text available online, we expect pre-training
datasets to overlap and be similarly distributed.’

We use the Spearman’s correlation between the
calibration scores and the Frequency Gap, the
log absolute difference of the number frequencies,
log |(Freq(N7) —Freq(N)|.® Using the Frequency

6https: //infini-gram.io/api_doc.html

"We query for the number counts with spaces both before
and after each number: “_/N_", to account for numbers ap-
pearing within other numbers assuming the introduced noise

is distributed similarly across numbers.
8See Appendix I for more results and correlations.
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Figure 3: Systematic Patterns in Model Behavior for the colors dataset. Each bar shows the percent of the
different behaviors models exhibit averaged across templates, color pairs, and numeric scales.

Base \ Chat

colors wordp. distn‘ colors wordp.  distr.
Llama-3.1-8B +0.68 +0.46 -0.26 +0.57 +0.03 -0.09
Mistral-7B-v0.1 +0.58 +0.60 -0.40 +0.17 +0.08 -0.25
Mistral-7B-v0.3  +0.57 +0.59 -0.44 +0.21 +0.00 +0.02
Mixtral-8x7B +0.71 +0.52 -0.34 -044 -0.04 +0.00
Yi-1.5-34B +0.66 +0.49 -0.35 -0.01 +0.02 -0.00
Yi-1.5-9B +0.57 +0.49 -0.48 -0.24 -0.06 -0.20
gemma-2-27b  +0.61 +0.52 -0.44 -0.55 -0.57 -0.12
gemma-2-9b +0.55 +0.65 -0.47 -0.08 -0.02 -0.16
gpt-3.5 - - - -040 -038 -0.12
gpt-4-turbo - - -1 054 -047 -0.01
gpt-4o - - -| -046 -034 -0.24
gpt-4o-mini - - -| -0.61 -0.07 -0.31

Table 6: Frequency Effects. Each cell reports the Spearman’s correlation between the Frequency Gap between
the numbers in context and the calibration scores. Positive correlations mean that larger word frequency gaps
predict worse calibration, highlighted orange (worse). Negative correlations mean that larger frequency gaps predict
improved calibration, highlighted blue (better). Cells not highlighted are not statistically significant at p < 0.01.

Instance  problem Setup GPT-40-Mini Outputs
18/100 > 98%
8 B 100% 2
- ) = 75%
C“m:rli S 50%
ontex 2
17 g 2526 2,
[ B 0%

purple white purple white

Figure 4: Representative Examples of Model Behav-
iors. This instance is from gpt-40-mini results in Fig-
ure 2, Pick First behavior from the top-left cell.

Gap is a simple way to capture if there is a relation-
ship between the frequencies of the two numbers.
We present the correlation results in Table 6.
Frequency effects appear to negatively impact the
base models: Larger Frequency Gaps correlate
with worse calibration. Conversely, frequency ef-
fects appear to positively impact instruction-tuned
models: Larger Frequency Gaps correlate with im-
proved calibration. Frequency effects on distri-
butions differ; Effects are weaker, and increased

frequency improves calibration. Frequency effects
are a known issue for LMs (Wei et al., 2021; Lover-
ing and Pavlick, 2023; McCoy et al., 2024); Our
results suggest that increases in model scale and
performance have not canceled out such biases.
As mentioned above, this study is not causal, and
while we hope it is helpful, only is a correlative
result. Controlled methods that involve re-training
models would better yield a more complete under-
standing of how frequency and calibration relate.

7 Conclusion

All models we test are generally less calibrated than
simple baselines. Word identity, word order, and
the vocabulary frequency of the numeric informa-
tion correlate with and appear to modulate model
behavior. Even in the basic problem settings we
test in this paper, LMs are biased, suggesting there
are significant risks to using models in probabilistic
scenarios to make decisions.
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Limitations

This work strikes a balance between sampling
across a large space of options—more numbers
(Shrestha et al., 2025), more unique templates—and
uncovering biases present in those chosen options,
which benefits from a “grid-search” approach. Fu-
ture work that increases the diversity and size of
these datasets could only improve this line of work.

We report Spearman’s correlation in Section 6.
Using mixed-effects models may provide addi-
tional nuance. Increasing the range of numbers
used, especially in this section, could improve the
robustness of our results.

Potential Risks

This work does not pose a risk. Instead, this work
highlights several risks of using uncalibrated mod-
els and shows that current models are uncalibrated
even in simple settings.
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BASICS
A Housekeeping

* First off, we apologize to any color-blind read-
ers; we make heavy use of color in this paper.
We do our best to use color-blind aware color
palettes. (We found David Nichols’s resources
helpful:  https://davidmathlogic.com/
colorblind/#%23D81B60-%231E88E5-%
23FFC107-%23004D40.)

* We used ChatGPT to assist with IATEX debug-
ging. (Editorial comment: it was net helpful
if not always right.)

* Because we have a large number of figures in
this appendix, we front-load the (almost) text-
only sections first and then follow this with
a single column, mirrored section structure,
with only figures.

B Reproducibility

All data and experiments will be released under
The MIT License. All details required for
reproducing our results, like problem templates
and prompts, will also be released at the link. Data
was created with research settings in mind, but
can be used in any setting (research/professional).
https://drive.google.com/drive/folders/
11mY5vbNangMA2wwci84I5cipwh7FPPPB

Appendix K report the prompts (formatted as
messages) and problem templates.

We use the models listed in Table 9. For visual
acuity, we only put the full model codes in this
table, rather than throughout the paper. All experi-
ments can be run on a P4de-24 (8 NVIDIA A100)
in approximately 48 hours.

C Additional Motivation

The training objective of language modeling will
capture whatever pattern of calibration best de-
scribes data in the wild, not necessarily probabil-
ity or rank. If natural language texts show exam-
ples that are calibrated then models should learn
to be calibrated. If natural language texts show ex-
amples that are anti-calibrated then models might
even learn an inverted rank-order. That would be
a strange result, but it is conceivable. (Perhaps,
if models were only trained on fictional stories
where only unlikely events occur, then we could
see this type of result.) However, if data and events
described by language model training data were

distributed naturally then minimizing the cross-
entropy would yield a calibrated model.

Take for example a token that is purported to
occur with 80% probability. If we sum the loss
across 100 tokens where this token occurs 80 times
and the alternate occurs 20 we can see that the
losses for a calibrated model are lower than one
that only gets the rank-order correct placing almost
100% of the probability mass on the correct token
every time.

loss(rank-order) = —log(1.00 — €) x 80 + —log(e) x 20
= —10g(0.99) x 80 4+ —log(0.01) x 20
= 0.004 x 80+ 2 x 20
= 40.349

loss(calibrated) = —10g(0.8) x 80 + —log(0.2) x 20
=0.10 x 80+ 0.70 x 20
=21.73

This is true generally; the loss for the rank-order
model will increase with decreasing epsilon. As-
suming that the training dataset is calibrated to
some p you can show that the optimal probabilities
for a model to learn is the calibrated probability p,
by solving for the derivative of the loss with respect
to the output probability in question and setting it
to zero. There is still, of course, the empirical ques-
tion of how the training data is distributed and what
kind of behavior we would want from our models.

MORE RESULTS

D More Results on What Do Metric
Values Mean?

In this section, we show reference performance
scores, Table 10. Second, we show that most mod-
els are capable of doing well and sometimes (albeit
rarely) do in fact produce well-calibrated outputs.
The results here are over a small, new set of num-
bers for demonstration purposes: 8, 9, 48, 51, 98,
99. Figures are in Appendix L.

The scores in Table 10 show WD on the high
end will be around 1.00. What these results don’t
show well is what is a “good” calibration score.
We find that in a small number of cases the model
achieves calibration scores near 0, less than 0.05.
We consider these examples solved.

E More Results on Is It Possible For The
Models To Do Well?

Figures 10 to 12 shows the count of solved inputs
across either pairs of numbers (left) or pairs of col-
ors (right). Each number is a raw count out of 500,
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shown as such for visual acuity. For these plots we
considered the model to have solved an instance if
the WD < 0.05. This tends to constitute a good
fit. Making this threshold more strict, say, 0.01,
maintains the trends present in the figure. Mostly,
these plots show that (1) in some cases the models
do calibrate well even if in general they tend not
to; (2) the number pair and option pair have a large
impact on whether a model ever yields a solved
result, mirroring previous results; (3) the patterns
differ per model but again mirror previous results.
The most important result is the first. Models are
clearly capable of yielding calibrated probabil-
ties, but do not do so in the (large) majority of
cases.

F More Results on Calibration And Low
Probability Mass

In this section the first question we ask is if our cal-
ibration results are stable across a greater diversity
of data. We do this by 1) introducing variations
of each template, and 2) creating more templates.
Specifically, using gpt-40-2024-08-06, we create
500 leading introductions to prefix our templates
in the colors dataset, ranging from one to ten sen-
tences. Next, we create 500 more templates for
the colors dataset using gpt-40-2024-08-06. For
both new splits we test a subset of our instruction-
tuned models. The calibration scores did changed
little from the original performances, Table 7. In
two cases, the calibration was worse (the confi-
dence interval was strictly positive), though the
effect was not large. Using synthetically gener-
ated data has its risks, nonetheless, we take these
results as evidence that calibration over a wider
distribution of similar data remains poor.

Intros - WD
WD A (95% CI)

Llama-3.1-8B 0.40 (-0.04, +0.00)
Yi-1.5-9B 0.49 (-0.03, +0.02)
gemma-2-9b 0.50 (-0.02, +0.04)

Templates - WD
A (95% CI)

(+0.02, +0.05)
(+0.09,+ 0.13)
(-0.00, +0.04)

Table 7: Calibration Scores for Additional Experiments.
The first column WD is the original calibration score
(repeated from Table 4). The remaining columns show
the 95% confidence intervals of the change in perfor-
mance between the original results and the alternate
settings, intros and templates. Statistically significant
increases in calibration scores are highlighted orange
(worse calibration).

G More Results on Mode Collapse

Table 12 shows the drop in RE from base models
to chat models. This occurs across all datasets.

We also provide a more in-depth analysis on
mode collapse in the distributions dataset.

Additional Metrics for distributions. We intro-
duce three metrics to understand if there are pat-
terns in the mode.

Mode Probability is the mean max probability
of IT over the dataset, AVGggaser max I1.

Mode Stability is the rate at which the most
likely token is preserved between base and chat
versions of a model averaged over the dataset,
AVGyaaset (1 (arg max [pase = arg max [epy)).

Mode Frequency examines whether there are
biases for particular tokens (numbers). This met-
ric measures the frequency of the mode averaged
across distributions. Because different distributions
cover different digits, we group the distributions
by underlying problem range and inclusivity: E.g.,
[2, 5) and [132, 135) are grouped. This is equiv-
alent to: (1) setting the temperature to O (greedy
sampling), (2) averaging over the groups, keeping
the digits dimension, (3) taking the maximum for
each group, and (4) averaging across all maximums,
AVG(maXdigits AVGdistributions, keepdim (HT:O ) ) .

Results We find evidence that the reduced perfor-
mance of chat models results from their tendency
to over-allocate probability on a subset of valid
tokens. Table 13 provides additional metrics that
suggest mode-collapse. For chat models, the most
likely token receives, on average, 66% of the proba-
bility mass (up from 28% for base models, beyond
the empirical ideal 23%, on this dataset). The most
likely token remains the same for 48% instances
across base and chat models, suggesting that the
mode is often preserved. Figure 5 reports the mode
frequency for gpt-4o0-mini. (For all models see
Figure 13.) If all probability mass were on valid
tokens, the minimum mode frequency would be
the same as the rate of the uniform distribution; we
see much higher rates, ranging from 429 to +50%.
The implication is that models are also uncalibrated
at an outcome level with systematic biases (prefer-
ences) for certain numbers.

H More Results on Ordering and Colors

We categorize model output behavior over sets
of results by using computing the distance to
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gpt-40-mini

0.8 - Base |
0.6 [ N
0.4 1 H
0.2 H

Mode Frequency (%)

2 3 4 5 6 7
Distribution Domain Length

Figure 5: Models Over-represent Some Numbers; the
modes are heavily over-represented. Each bar is the
mode frequency, i.e., how often the top-chosen token
is chosen averaged over distributions. The black lines
mark the expected rate for a calibrated model.

reference behaviors. Figure 3 computes the pro-
portion of each behavior by classifying a set of
results (across an number scale, template, and op-
tion pair) as one of the reference points. This is
done by measuring the WD between the output
probabilities and reference point. We additionally
classify any grid where the average PM is less than
0.5 as Null. Meaning, anything where more than
50% of the probability mass is on tokens outside
of T" are considered out of scope. This is how the
results in Figure 21, Figure 20, and Figure 19 are
computed.

The bias across for individual option words
varies model to model, but there is some shared
ordering. Figure 14 shows how win rates change
when a color is placed before vs after other colors.
If the color did not matter we would expect the
win rates to be around 50% (with more variance).
Instead, there are clear rank orders. Appendix P
shows the average change in calibration (lower is
better, or a reduction in calibration error).

When looking at the hierarchies formed by the
options on the X-axes of Figure 14 there appears
to be some shared structure across models. For
example, for most models, listing the color white
first leads to an improvement in calibration. No-
tably, this does not mean the models prefer this
color or pick it. Always picking it would not be
particularly calibrated. The example we saw in the
main body of the paper was the gpt-4o-mini was
biased against picking white when it was second
and tended to Pick Higher when it was first.

Table 14 shows the correlation of the hierarchy
orderings across models. The structure similarity
(and dissimilarity) is sometimes far beyond random.

Similar models generally have more correlated or-
derings. gpt-4-turbo is the most dissimilar from
others.

We show a pictorial/imagistic view of all the
data via collections of heatmaps. The sets of
heatmaps are computed in two different ways. Fig-
ure 18 shows a space-station-view of all the hierar-
chical, diagonal patterns; Figure 16 is the legend
showing what the colors correspond to. The 15
heatmaps per model are the variations across dif-
ferent templates and number scales. The number
scales appear to have relatively little impact on the
patterns. The templates, for some models, have
a larger impact. The behaviors are computed as
in the main body of the paper; only among the
references, we report the highest rate of behavior
compatible with the model’s outputs.

Figure 21 shows the same results but we create
the heatmaps using a different, more high-fidelity
approach. We also provide a more zoomed in look
at Figure 20. To assign a behavior per cell we
now use the distance to each type of behavior. The
cells now show distance instead of rate. (Lower
is better). This is reflected by the updated legend,
Figure 19.

I More Results on Frequency Effects

Here we present more results on the frequency ef-
fects and consider alternate independent variables.
Firstly, we designed our experiments, in the main,
to highlight how the word identity and order im-
pacted calibration. Experiments that examine a
wider range of numbers and therefore frequencies
would better study this problem. Nonetheless, we
find clear and strong effects and report them here.

Figure 22 shows the frequency statistics of the
number tokens used in our different datasets. Fig-
ure 23 shows how those frequency stats relate to
the calibration scores for gpt-40. Not shown here
is there is also an order effect (which number is
more frequent).

J Human Study: Model vs Human
Randomness

Our experiments demonstrated that language mod-
els are poorly calibrated. Here, we provide further
context by comparing the proprietary model and
human behavior, asking if models are as random
(or not) as people. Previous work suggests that
both would be not random (see our Related Work
section). We test this again. To get at this question,
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we use a variation of the two-player game Match-
ing Pennies. We focus on a variation of the game
similar to Eliaz and Rubinstein (2011). Each round,
the “guesser” aims to match her chosen coin face
with “misleader’s” choice, earning a +1 reward if
their coin faces match, and -1 otherwise. The Nash
Equilibrium is for both agents to act randomly. A
calibrated model can trivially achieve random be-
havior.

J.1 Experimental Design

This experiment is based on a simple heads/tails
game. Our motivation for including this exper-
iment is to allow a human baseline in a setting
where random behavior is optimal. This section
makes no distinction between calibrated probabil-
ities and unbiased outputs because we don’t have
access to this information for humans. However,
to “perform” well, or appear calibrated, requires
either the model/person to (1) produce calibrated
probabilities which when sampled from will yield
random outputs, (2) use an internal random pro-
cess to produce uncalibrated probabilities that yield
random outputs, or (3) have a systematic process
for producing outputs that appear random enough.
(Previous work would suggest that humans are lim-
ited in this regard and will likely not be random
(and therefore not calibrated).) This leaves us with
a one-sided problem. If the humans/models were
proficient at producing random outcomes we would
have to adjudicate between the above possibilities.

In a single-round game, the Nash Equilibrium
is to select a coin face randomly. We set there to
be 100 rounds of play. To focus on calibration, we
frame the tested model as the “misleader.” The
misleader is prompted to submit answers, and the
“guesser” is set to predict the misleader’s answers.
The misleader submits m, ma, ..., Mg answers,
and the guesser bases each of its g; answers incre-
mentally based upon previous misleader’s answers,
{m;|0 < j < i}. We use an-gram’ based strategy
as our guesser.

Models We focus on gpt-* models sampling
temperature 7 = 1. Human behavior is drawn
from a sample of 44 games of 100 rounds from 10
different volunteers with technical backgrounds up
to 10 different games each.

Figure 24 reports our the implementation for the
n-gram model. We find that most n from 1 to 5

‘Motivated by the strategy here:  https://www.
expunctis.com/2019/03/07/Not-so-random.html.

do similarly well. In the paper we report a 4-gram
model.

Additional Metrics Whereas previous metrics
rely on model probabilities, this experiment as-
sumes access only to outputs, meaning we cannot
use the metrics used in previous sections.

Player Win Rate (PWR) is the rate the mis-
leader wins, averaging over 100 games each for
up to 100 rounds. The higher this rate, the more
random the outputs of the misleader, and thus the
more calibrated it is at an outcome level.

Randomness Testing (WW). Wald—Wolfowitz
(Wald and Wolfowitz, 1940) tests if the elements
of a sequence are mutually independent. Using
this test at a significance level of 0.05, we report
the proportion of samples that cannot statistically
be rejected as non-random, labeling this value as
WW. For reference, as shown in Table 8 when we
sampled random sequences using python, 98% of
the sequences could not be rejected; only 7% of
human-generated samples could not be rejected.

J.2 Results

PWR; WW;
Random 0.50 0.98
Human 0.33  0.07
gpt-3.5 040 043
gpt-4-turbo 033  0.25
gpt-4o 0.36  0.19

Table 8: Human Study Results: Player win rates
(PWR) and statistical tests for randomness (WW).
Higher values for both metrics suggest that models are
more able to produce random (and thus more calibrated)
outputs. Takeaways: (1) gpt-3.5 stands out as the
most random model; (2) Models pass a greater num-
ber of the statistical tests for randomness than humans,
though are still far from random; (3) Model sequences
are predictable at rates similar to humans.

Both best-performing proprietary models and
human behavior are not random. Models are
prompted with the game rules and we explicitly
instruct the models (and humans) to be random.
Not doing so reduces model performance to near 0.
PWR for models and humans are similar, WW for
models is higher, but still low.

Table 8 reports the proportion of samples (where
each sample is 100 coin flips) the result could not
be considered non-random (p = 0.05): Higher
WW values suggest the model is more random.
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More model- than human-generated samples were
considered random: 19 — 43% vs. 7%.
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CONTINUED FIGURES AND TABLES

K Figures: Reproducibility

Our Name \ HF Model Key (Base) HF Model Key (Chat)

Yi-1.5-9B 01-ai/Yi-1.5-9B 01-ai/Yi-1.5-9B-Chat

Yi-1.5-34B 01-ai/Yi-1.5-34B 01-ai/Yi-1.5-34B-Chat
Llama-3.1-8B meta-llama/Llama-3.1-8B meta-llama/Llama-3.1-8B-Instruct

Mistral-7B-v0.1
Mistral-7B-v0.3
Mixtral-8x7B-v0.1

mistralai/Mistral-7B-v0.1
mistralai/Mistral-7B-v0.3
mistralai/Mixtral-8x7B-v0.1

mistralai/Mistral-7B-Instruct-vO0.1
mistralai/Mistral-7B-Instruct-v0.3
mistralai/Mixtral-8x7B-Instruct-v0.1

gemma-2-9b google/gemma-2-9b google/gemma-2-9b-it
gemma-2-27b google/gemma-2-27b google/gemma-2-27b-it
| OpenAl Model Key
gpt-3.5 gpt-3.5-turbo-0125
gpt-4-turbo gpt-4-turbo-2024-04-09
gpt-4o gpt-40-2024-08-06
gpt-4o0-mini gpt-40-mini-2024-07-18

Table 9: Models
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# prompt @
L

"role": "user",

"content”: "You are a perfectly calibrated language model that produces tokens with probabilities
— that correspond to values in the context and prompt. I will give you a scenario. Produce
— only a single word and nothing else. The word will be one of the options in context.”,

})

{

"role": "assistant”,

"content”: "Excellent. I will continue by producing a single word after your next message.”,

})

{"role": "user”, "content”: text},]

# prompt 1
L

"role": "user",

"content”: "You are a perfectly calibrated language model that produces tokens with probabilities
< that correspond to values in the context and prompt. I will give you a context where
< there are some probabilities involved. Produce one token.",

}’

{

"role": "assistant”,

"content”: "Excellent. I will generate a single token calibrated to the statistics of the context
— .",

}!

{"role": "user"”, "content”: text},]

# prompt 2
L

"role": "user",

"content”: "You are a master of statistics and math. Produce tokens perfectly calibrated to the
< numbers in context. Produce one token.”,

}!

{"role": "assistant”, "content”: "Excellent. Ask away!"},

{"role": "user”, "content”: text},]

# prompt 3
L

{

"role": "user",

"content”: "Produce tokens with probability calibrated to the numbers in context. Produce a
— single token.”,

})

{"role": "assistant”, "content”: "Excellent. Ask away!"},

{"role": "user", "content”: text},]

# prompt 4
L
"role": "user",

"content”: "Produce tokens with probability calibrated to the statistics implicit and explicit in
<— context. Produce only a single token.”,

}7
{"role": "assistant”, "content”: "Excellent. Ask away!"},
{"role": "user", "content"”: text}, 1,

We use the message format shared by OpenAl and HuggingFace. The problem {text} is injected into

the prompt message.

Figure 6: Prompts For Instruction-Tuned Models; Colors/Wordproblems.
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# prompt 0

L

"role": "user",

"content”: "You are a perfectly calibrated language model that produces tokens with probabilities
< that correspond to values in the context and prompt. I will give you a sentence. Finish
<— the sentence by producing only a number and nothing else.”,

},

{

"role”: "assistant”,

"content”: "Excellent. I will continue by producing a single number after your next message.",

},

{"role": "user"”, "content": @text},

1
# prompt 1
L
"role”: "user",

"content”: "You are a master of statistics and math. Produce tokens perfectly calibrated to the
< numbers in context. I will give you a sentence. Produce one number to finish the sentence.

C% ”!
}!
{"role": "assistant”, "content”: "Excellent. Ask away!"},
{"role": "user”, "content”: @text},
]
# prompt 2
L
{
"role": "user",
"content”: "Produce tokens with probability calibrated to the numbers in context. Given the
< scenario, produce a number.",
})
{"role": "assistant”, "content”: "Excellent. Go ahead!"},
{"role": "user”, "content"”: @text},
]

We use the message format shared by OpenAl and HuggingFace. The problem {text} is injected into

the prompt message.

Figure 7: Prompts For Instruction-Tuned Models; Distributions.

# template 0

"There were {number_1} {option_1} marbles and {number_2} {option_2} marbles in a bag. Jane
< randomly picked a marble and saw it was the color”

# template 1

"Billy got to pick one marble from a big urn with many marbles. There were {number_13} {option_1}
< marbles and {number_2} {option_23} marbles in an urn. The color of the marble Billy
< randomly picked was”

# template 2

"Amanda had a huge pile of shirts. There were {number_1} {option_1} shirts and {number_2} {
< option_2} shirts. Without looking, she picked one by chance. The color of the shirt was”

# template 3

"Bill and Rick went to the hardwore store for paint in a hurry. The store had {number_1} shades of
— {option_1} and {number_23} shades of {option_23}. They didn't have any time to test out
< colors so they randomly grabbed a can. The color they grabbed turned out to be”

# template 4

"Kids at soccer practice randomly grabbed pinnies from a bag. There were {number_1} {option_1}
< pinnies and {number_2} {option_2} pinnies. Tommy's pinny was the color”

The variables are injected into the text; {number_1}, {number_2}, {option_1}, {option_2}.

Figure 8: Templates for Probabilities.
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# template 0

"Picking an integer between {number_1} inclusive and {number_2} exclusive, the integer I got was{
— prefix}”

# template 1

"Picking an integer between {number_13} and {number_23}, exclusive on both sides, the integer I got
— was{prefix}"

# template 2

"I sampled an integer from a random variable distributed uniformly between {number_1} inclusive
<— and {number_23} exclusive, getting the value{prefix}"

# template 3

"I sampled an integer from a random variable distributed uniformly between {number_1} and {
< number_2}, exclusive on both ends, getting the value{prefix}"

The variables are injected into the text; {number_1}, {number_2}, {prefix}. {prefix} is always set to

empty; early pilot experiments suggest that using an ellipsis leads to a similar pattern of results.

Figure 9: Templates for Distributions.
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L. Figures: What Do Metric Values Mean?

Settings: 51 purple, 98 white
P(t1) P(t2) PM RE WD

Ideal 0.342 0.657 1.000 1.000 0.000
Pick First 1.000  0.000 1.000 -0.927 0.930
Pick Second 0.000 1.000 1.000 -0.927 0.484

Pick Higherp—o.7 0.300  0.700 1.000 -0.046 0.060
Pick Higherp—o.6 0.400 0.600 1.000 0.044 0.082
Pick Higher,—o.8 0.200  0.800 1.000 -0.205 0.201
Pick Higherp,—o.9 0.100  0.900 1.000 -0.458 0.343

Pick Higher 0.000  1.000 1.000 -0.927 0.484
Pick Lower 1.000  0.000 1.000 -0.927 0.930
Meta-Llama-3.1-8B  0.687  0.279 0.966 -0.060 0.512
Mistral-7B-v0.1 0.698 0.024 0.723 -0.715 0.727
Mistral-7B-v0.3 0938 0.000 0938 -0.926 0.887
Mixtral-8x7B-v0.1 1.000  0.000 1.000 -0.927 0.930
Yi-1.5-34B 0.581 0.010 0.591 -0.800 0.690
Yi-1.5-9B 0999 0.000 0999 -0.924 0.929
gpt-4-turbo 0.014 0985 1.000 -0.818 0.464
gpt-4o 0245 0.755 1.000 -0.124 0.137
gpt-40-mini 0.998 0.002 1.000 -0.902 0.927

Settings: 51 white, 98 purple

P(t;) P(t2) PM RE WD
Ideal 0.342  0.657 1.000  1.000 0.000
Meta-Llama-3.1-8B  0.027 0955 0982 -0.747 0.433
Mistral-7B-v0.1 0.304 0361 0.665 0.068 0.299
Mistral-7B-v0.3 0.035 0.886 0921 -0.694 0.383
Mixtral-8x7B-v0.1  0.101  0.899 1.000 -0.455 0.341
Yi-1.5-34B 0.179 0.147 0326  0.066 0.536
Yi-1.5-9B 0.951  0.048 0999 -0.649 0.862
gpt-4-turbo 0.000 1.000 1.000 -0.927 0.484
gpt-40 0.095 0905 1.000 -0.473 0.349
gpt-40-mini 0.095 0905 1.000 -0.473 0.349

Table 10: Each row is a single result for a single setting. The first row shows the ideal, calibrated result. The first
section of each tables shows baseline values, which are helpful for understanding the practical ranges of RE and
WD values. The subsequent rows show how different models behave. These values, see in particular gpt-4o0-mini,
line up with the summary behaviors seen in Figure 2 and Appendix Figure 20. In the second section we invert the
order of the color options. No model produces a well-calibrated result for this problem.
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M Figures: More Results on Is It Possible For The Models To Do Well?
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Figure 10: Best Results Over Different Settings for L1ama-3.1-8B, Mistral-7B-v@.1, Mistral-7B-vo. 3.
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Mixtral-8x7B-v0.1
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Figure 11: Best Results Over Different Settings for Mixtral-8x7B-v0.1, Yi-1.5-9B, Yi-1.5-34B.
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gpt-4-turbo gpt-4-turbo
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Figure 12: Best Results Over Different Settings for gpt-4-turbo, gpt-40-mini, gpt-4o.
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N Figures: More Results on Calibration And Low Probability Mass

colors wordproblems distributions

Pick Higher 0.47+0.01 0.4410.00 -
Pick Higher,_ ; 0.15+0.01 0.17+0.00 -
Pick Lower 0.95+0.01 0.98-+0.00 -
Pick First/Second 0.71+0.02 0.71+0.00 0.38+0.00
Randomr—o.01 0.71+0.02 0.69+0.00 0.86+0.00
Random;,—1.0 0.27+0.01 0.2940.00 0.38+0.00

Base Chat | Base Chat | Base Chat
Llama-3.1-8B 0~55i0.00 0‘40i0.01 0~53i0.03 0.48i0‘02 0-17i0.00 0~43i0.01

Mistral-7B-v0.1 0.60:{:0,00 0.50i0,01 0.55i0,o3 0.49:{:0,01 0.]3:{:0,00 0.22i0,01
Mistral-7B-v0.3 0.5840.00 0.48+0.02 | 0.5710.03 0.55+0.01 | 0.1310.00 0.5640.01
Mixtral-8x7B-v0.1 0.56:{:0,00 0.51i0,01 0.51i0,03 0.60:{:0‘03 0.16:{:0,01 0.71i0,01

Yi-1.5-34B 0.544+0.01 0.55+0.01 | 0.56+0.024 0.57+0.01 | 0.2140.01 0.62+40.01
Yi-1.5-9B 0.6010.01 0491001 | 0531002 0.56+001 | 0.18+10.01 0.6110.01
gemma-2-27b 0.47+0.00 0.40+0.00 | 0.5040.04 0.48+0.01 | 0.1310.01 0.5910.01
gemma—2—9b 0.54i0,00 0.50i0,01 0.48i0,03 0.52:{:0‘02 0.14:{:0,00 0.59i0,01
gpt-3.5 - 0.30+0.01 | - 0.57+0.02 | - 0.4210.01
gpt-4-turbo - 04240.01 | - 0.62+0.02 | - 0.69+0.01
gpt-4o - 0.4010.00 | - 0.57+0.02 | - 0.4910.01
gpt-4o-mini - 0.40+0.01 | - 0.57+0.02 | - 0.57+0.01

Table 11: Calibration Results. Across two datasets, this plot shows the calibration scores (WassersteinSistance,
WD) for chat versions of models along with 95% confidence intervals. (Lower Better). For colors, six models have
a statistically better calibration than the baseline of always picking the option associated with the higher number,
denoted a. For wordproblems, no model is better than this simple baseline. For distributions, the Base models do
better, but this partially because models are have low probability mass on all the options.
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O Figures: More Results on Mode Collapse

Base Chat CI(A)
colors
Meta-Llama-3.1-8B 0.0810.01 -0.1140.02  (-0.21,-0.17)
Mistral-7B-v0.1 0.10+0.01 -02140.02  (-0.33,-0.29)
Mistral-7B-v0.3 0.0940.01 -0.3640.03  (-0.47,-0.42)
Mixtral-8x7B-v0.1 0.06+0.01 -0.6740.01 (-0.74,-0.72)
Yi-1.5-9B 0.06+0.02 -0.5510.01  (-0.63,-0.59)
Yi-1.5-34B 0.02+0.02 -0.45410.02  (-0.49,-0.45)
gemma-2-9b 0.13+0.01 0441001  (-0.58,-0.56)
gemma-2-27b 0.06+0.01 -0.63+0.01 (-0.7, -0.69)
gpt—3.5 - -0.3510.03 -
gpt-4-turbo - -0.65410.01 -
gpt-4o0-mini - -0.5310.01 -
gpt-40 - -0.61 40.00 -
wordproblems
Meta-Llama-3.1-8B -0.1140.04 -0.3340.06 (-0.27,-0.17)
Mistral-7B-v0.1 -0.10+0.05 -0.2440.04 (-0.18, -0.1)
Mistral-7B-v0.3 -0.1240.05 -047+0.04 (-0.37,-0.33)
Mixtral-8x7B-vO0.1 -0.1310.07  -0.6510.05 (-0.59,-0.47)
Yi-1.5-9B -0.1140.05 -0.5510.03 (-0.48,-0.4)
Yi-1.5-34B -0.1710.05 -0.5310.04 (-04,-0.32)
gemma-2-9b -0.0740.04 -0.4510.03 (-0.41,-0.34)
gemma-2-27b -0.0740.06 -0.57+0.02  (-0.56,-0.44)
gpt-3.5 - -0.68+0.04 -
gpt-4-turbo - -0.69+0.04 -
gpt-4o-mini - -0.5840.05 -
gpt-4o - -0.63410.04 -
distributions
Meta-Llama-3.1-8B  0.341¢.02 -0.7040.03  (-1.06,-1.01)
Mistral-7B-v0.1 0.2440.01 0.05+0.02 (-0.21,-0.18)
Mistral-7B-v0.3 0.254+0.01 -1.0710.04  (-1.36,-1.28)
Mixtral-8x7B-v0.1 0.04+0.01 -1.5940.04  (-1.67,-1.59)
Yi-1.5-9B 0.1910.01 -1.1310.05 (-1.36,-1.27)
Yi-1.5-34B 0.04+0.01 -1.3240.04  (-14,-1.33)
gemma-2-9b 0.34+0.02 -1.1040.04 (-1.49, -1.39)
gemma-2-27b 0.09+0.01 -1.1440.05 (-1.28,-1.19)
gpt—3.5 - -0.6940.02 -
gpt-4-turbo - -1.5410.03 -
gpt-40-mini - -1.3040.02 -
gpt-40 - -0.9210.02 -

Table 12: Relative Entropy (RE) Results. The RE is far below a calibrated level across all datasets. That being
said, on all datasets, placing all probability mass on a single option (Pick First) has lower RE than models’ behavior,
suggesting that models have some success. This table also shows how this large drop in entropy occurred with
instruction tuning. See Table 5 for the subset of results we show in the main body of the paper. Table 5 captured
differences in entropy relative to the target calibrated entropy. Here, in this table, the rightmost column
captures the difference in entropy between the Base and Chat models.
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Mode Prob Mode
Base Chat Stability

Idealized 0.23 0.23 0.05
Meta-Llama-3.1-8B  0.25  0.60 0.48
Mistral-7B-v0.1 0.26 0.33 0.58
Mistral-7B-v0.3 0.26  0.65 0.35
Mixtral-8x7B-v0.1 032  0.82 0.52
Yi-1.5-34B 0.75 0.53

Yi-1.5-9B 0.30 0.75 0.49
gemma-2-27b 0.29  0.68 0.46
gemma-2-9b 0.22  0.66 0.40
AVGopenSource 0.28 0.66 0.48
gpt-3.5 - 053 -
gpt-4-turbo - 079 -
gpt-4o0 - 058 -
gpt-4o0-mini - 073 -
AVGProprielary - 0.66 -

Table 13: Distributions Results. Mode-related metrics. (1) Averaged, the probability mass on the top-token for chat
models is 43% above the calibrated ideal, showing where relative entropy increased. (2) The top-tokens remain the
same across base and chat models for 48% of instances. These results together suggest mode collapse.

Yi-1.5-9B Yi-1.5-34B Meta-Llama-3.1-8B Mistral-7B-v0.1

1.0 - +0.33% +0.31% +0.43% +0.46%
S
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o5 “ i 1 L . I
s O
o
e

0.0 -

Mistral-7B-v0.3 Mixtral-8x7B-v0.1 gemma-2-9b gemma-2-27b
+0.37% +0.35%

ik

+0.43%

+0.47%

Top Token (%)

gpt-3.5 gpt-4-turbo gpt-4o0-mini gpt-4o0
1.0 4 +0.50% 4 +0.30% 1 +0.29%

+0.35%
Il Base

I Chat
Expected

Top Token (%)

|
2 3 4 5 6 7 2 3 4 5 6 7 2 3 4 5 6 7 2 3 4 5 6 7
Dist. Domain Length Dist. Domain Length Dist. Domain Length Dist. Domain Length

Figure 13: Models Over-represent Numbers. Each bar shows how often the top-chosen token is chosen (percent).
The bars mark the expected rate for a calibrated model; the blue annotation marks the average excess probability
on the top-chosen token, ranging from 29 — 50% across models. Takeaways (1): Models over-represent a token
(number) over other valid options. This token is not always the same but the pattern of over-representing a number
irrespective of the numeric context holds.
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P Figures: More Results on Ordering and Colors
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Win rates correspond to option order.
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Figure 15: Reductions in error that correspond to option order.
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Spearman’s Corr  PValue Kendall’s Tau PValue
gpt-4-turbo gpt-4o -0.61 8.83e-13 -0.45 2.08e-06
gpt-4-turbo gpt-4o-mini -0.58 3.37e-11 -0.35 3.10e-04
gemma-2-9b gpt-4-turbo -0.49 6.90e-08 -0.27 4.41e-03
Mistral-7B-v0.1 Mixtral-8x7B-v0.1 -0.44 1.46e-06 -0.35 3.10e-04
gemma-2-27b gpt-4-turbo -0.40 1.51e-05 -0.42 1.27e-05
Mixtral-8x7B-v0.1 gpt-4-turbo -0.36  1.10e-04 -0.16 8.76e-02
Meta-Llama-3.1-8B gpt-4-turbo -0.34 2.64e-04 -0.31 1.25e-03
Mistral-7B-v0.3 gemma-2-9b -0.34 3.10e-04 -0.09 3.43e-01
Mistral-7B-v0.3 Yi-1.5-34B -0.32  6.85e-04 -0.38 6.71e-05
Mixtral-8x7B-v0.1  Yi-1.5-9B -0.30 1.41e-03 -0.20 3.68e-02
Mistral-7B-v0.3 gemma-2-27b -0.29 1.89¢-03 -0.38 6.71e-05
Meta-Llama-3.1-8B gemma-2-9b -0.26  6.73e-03 -0.35 3.10e-04
Mistral-7B-v0.1 Yi-1.5-34B -0.25 7.97e-03 -0.31 1.25e-03
Yi-1.5-9B gemma-2-9b +0.26 6.30e-03 +0.20 3.68e-02
gpt-3.5 gpt-40 +0.28 3.37e-03 +0.31 1.25e-03
Meta-Llama-3.1-8B Yi-1.5-34B +0.33 4.45e-04 +0.31 1.25e-03
Meta-Llama-3.1-8B gemma-2-27b +0.33 3.97e-04 +0.09 3.43e-01
gemma-2-9b gemma-2-27b +0.33 3.69e-04 +0.20 3.68e-02
gemma-2-27b gpt-4o +0.34 2.83e-04 +0.31 1.25e-03
Yi-1.5-9B gpt-40-mini +0.42 4.90e-06 +0.42 1.27e-05
Mistral-7B-v0.1 Yi-1.5-9B +0.42 4.08e-06 +0.27 4.41e-03
Mixtral-8x7B-v0.1 gemma-2-9b +0.42 3.88e-06 +0.31 1.25e-03
gpt-4o-mini gpt-4o +0.46 4.08e-07 +0.24 1.36e-02
Mixtral-8x7B-v0.1 gpt-40 +0.47 2.04e-07 +0.42 1.27e-05
Mistral-7B-v0.1 gpt-4o-mini +0.48 1.50e-07 +0.56 3.99e-09
gemma-2-9b gpt-4o0-mini +0.51 1.10e-08 +0.42 1.27e-05
Yi-1.5-34B gemma-2-27b +0.57 7.59e-11 +0.42 1.27e-05
gemma-2-9b gpt-4o +0.62 4.33e-13 +0.53 3.69e-08

Table 14: Correlation matrix between model rankings. We show only the statistically significant correlations, others
had both lower effect sizes and were not significant. In most cases both Kendall Tau and Spearman were significant;
there are two exceptions where for p = 0.01 Kendall Tau was not significant where Spearman was significant.
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Figure 16: Legend for heatmaps on the following page.
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Behavior Compatibility-based Heatmap for gpt-4o0-mini.
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Figure 18: Space Station View of Model Behaviors.
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Figure 19: Legend for heatmaps on the following page.
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Figure 20: Distance-based Heatmap for gpt-4o-mini.
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Figure 21: Space Station View of Model Behaviors.
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Q Figures: More Results on Number Frequency
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Figure 22: This plot shows dataset frequency statistics proportions for the number tokens used across the different
datasets. We also present, highlighted orange, gpt-4o0’s calibration score distribution.
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Figure 23: This plot shows gpt-40 data comparing calibration performance and different frequency data. Each row
of results is across a different dataset.
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R Figures: Human Experiments

CoinFace = str, H: CoinFace = "H", T: CoinFace = "T"
def flip(face: CoinFace) -> CoinFace:
return {H: T, T: H}[face]
def mdp_lgram(sequence: List[CoinFace]) -> CoinFace:
return _mdp_ngram(sequence, 1)
def mdp_2gram(sequence: List[CoinFace]) -> CoinFace:
return _mdp_ngram(sequence, 2)
def mdp_3gram(sequence: List[CoinFace]) -> CoinFace:
return _mdp_ngram(sequence, 3)
def mdp_4gram(sequence: List[CoinFace]) -> CoinFace:
return _mdp_ngram(sequence, 4)
def mdp_5gram(sequence: List[CoinFace]) -> CoinFace:
return _mdp_ngram(sequence, 5)
def _mdp_ngram(sequence: List[CoinFace], ngram_size: int) -> CoinFace:
"""Picks the most common continuation for a given sequence based upon all n_grams of the
< current size.

Defaults to H if sequence is empty. Flips previous coinface if the length of the sequence is
— 1.

nnn

assert ngram_size >= 1

# Handle short sequences
if len(sequence) ==
return H
elif len(sequence) ==
if sequencel[0@] ==
return T
else:
return H
if len(sequence) <= ngram_size:
return _mdp_ngram(sequence, min(ngram_size - 1, len(sequence) - 1))

map_ = {H: @, T: 1}

sequence_numbers = [map_[face] for face in sequence]

mdp = np.zeros([2 for _ in range(ngram_size + 1)])

for i in range(@, len(sequence_numbers) - ngram_size):
index = tuple(sequence_numbers[i : i + (ngram_size + 1)1])
mdp[index] = mdp[index] + 1

last = tuple(sequence_numbers[-ngram_size:])
transitions = mdp[last]
if transitions[@] > transitions[1]:
return H
elif transitions[@] == transitions[1]:
# NOTE: Alt, we could pick which ever is more common
# or fall back to a lower ngram or sample.
return H
else:
return T

n-gram model implementation

Figure 24: n-gram model implementation.
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