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Abstract

Despite the widespread use of Transformer-

based text embedding models in NLP tasks,

surprising “sticky tokens” can undermine the

reliability of embeddings. These tokens, when

repeatedly inserted into sentences, pull sentence

similarity toward a certain value, disrupting the

normal distribution of embedding similarities

and degrading downstream performance. In

this paper, we systematically investigate

such anomalous tokens, formally defining

them and introducing an efficient detection

method, Sticky Token Detector (STD), based

on sentence and token filtering. Applying

STD to 40 checkpoints across 14 model

families, we discover a total of 868 sticky

tokens. Our analysis reveals that these tokens

often originate from special or unused entries

in the vocabulary, as well as fragmented

subwords from multilingual corpora. Notably,

their presence does not strictly correlate

with model size or vocabulary size. We

further evaluate how sticky tokens affect

downstream tasks like clustering and retrieval,

observing substantial performance degradation

that approaches 50% in certain cases. Through

attention-layer analysis, we show that sticky

tokens disproportionately dominate the model’s

internal representations, raising concerns about

tokenization robustness. Our findings show

the need for better tokenization strategies and

model design to mitigate the impact of sticky

tokens in future text embedding applications.

� https://github.com/March-7/StickyT
oken

1 Introduction

Dense vector representations of text, often called

text embeddings, capture semantic content and

power a wide range of downstream applications,

such as retrieval, classification, clustering, and

semantic similarity tasks (Mikolov et al., 2013;

Devlin et al., 2018; Muennighoff et al., 2023).

The embedding-based retriever is also a critical
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Figure 1: An example illustrating how a sticky token

affects sentence cosine similarity in text embedding

models. Inserting the token multiple times makes two

sentences appear more similar than they actually are.

component for retrieval-augmented generation

(RAG) (Gao et al., 2024), which allows large

language model (LLM) to access the most up-to-

date external or proprietary knowledge without

modifying parameters (Lewis et al., 2021).

In recent years, Transformer-based embedding

models have become increasingly prominent due

to their high performance, including Sentence-

BERT (Reimers and Gurevych, 2019a), Sentence-

T5 (Ni et al., 2021a), and others. Recently, the

community started to fine-tuning decoder-only

LLMs for embedding (BehnamGhader et al., 2024;

Muennighoff et al., 2024; Yavuz et al., 2024).

Crucially, all these models depend on tokenization

to convert text into subword units — tokens.

Despite ongoing efforts to refine tokenization

algorithms (Sennrich et al., 2016; Kudo and

Richardson, 2018; Kudo, 2018; Schmidt et al.,

2024), anomalous token behaviors still emerge.

For example, “glitch tokens” (BehnamGhader

et al., 2024; Muennighoff et al., 2024) can exhibit

unintended effects on language model outputs.

More recently, Kaggle (2024) reported another

surprising behavior in text embedding model:

inserting certain tokens can make two sentences

appear more similar than they actually are. As

illustrated in Figure 1, repeatedly appending the

token “lucrarea” to an unrelated sentence yields a

noticeable increase in its similarity to a reference
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sentence when using Sentence-T5 (ST5) (Ni et al.,

2021a). This suggests the existence of a novel class

of anomalous tokens that not only alters embedding

distributions but also can degrade downstream

performance in real-world tasks. However, no

systematic study has yet investigated how these

tokens operate, how to detect them, and how they

affect embedding-based applications.

In this paper, we conduct an in-depth exploration

of these unusual “sticky tokens”. Through

preliminary experiments, we find that while

such tokens sometimes raise similarity between

sentences, their primary tendency is to “pull”

sentence pairs toward a particular similarity value—

often the mean similarity in the model’s token-

embedding space. Consequently, they reduce

variance in similarity without regard to the

underlying semantics of the texts.

To rigorously investigate this phenomenon, we

formally define “sticky tokens” and propose an

efficient detection approach, StickyTokenDetector

(STD), based on filtering both sentence pairs and

candidate tokens. We apply STD to 40 models

spanning 14 prominent model families and uncover

a total of 868 sticky tokens. Our results reveal

that sticky tokens frequently stem from special

or unused tokens, as well as subword fragments

in multiple languages; their prevalence does not

strictly correlate with model size or vocabulary

size. Furthermore, we show that inserting these

tokens causes notable performance degradation in

downstream tasks: for instance, retrieval accuracy

on NFCorpus can fall by over 50% for certain

models. A layer-wise attention analysis suggests

that sticky tokens disrupt normal attention patterns,

overshadowing other parts of the input sequence.

Our findings highlight a largely overlooked

tokenization issue in text embedding models. We

hope this work will spark future research on

designing robust tokenizers andmodel architectures

that mitigate the effects of sticky tokens, ultimately

leading to more reliable embedding-based NLP

systems.

2 Related work

Tokenization Tokenization is a crucial process

in modern NLP systems, yet it can also introduce

problematic behaviors (Phan et al., 2024; Wang

et al., 2024a; Singh and Strouse, 2024; Mielke et al.,

2021). Popular subword tokenization methods,

including Byte-Pair Encoding (BPE) (Sennrich

et al., 2016), WordPiece (Kudo and Richardson,

2018), and Unigram (Kudo, 2018), have been

widely adopted in large-scale text processing

pipelines. Despite their advantages in handling

vocabulary size and rare words, these methods can

still yield undesirable outcomes, such as splitting

meaningful terms into unintuitive fragments or

creating tokens that rarely occur in the training

data (Karpathy, 2024; Chai et al., 2024).

Anomalous Token Recent research on LLMs

has highlighted a variety of unexpected token-level

anomalies. For instance, Land and Bartolo (2024a)

identify “under-trained” tokens in LLMs, while

Li et al. (2024), Zhang et al. (2024), and Wu

et al. (2024) investigate so-called “glitch tokens”

that exhibit abnormal behaviors due to incomplete

or skewed pre-training coverage. These studies

explore detection methods and propose strategies

to mitigate the harmful effects of such tokens on

language model outputs. However, their primary

focus lies in LLMs, leaving the anomaly space of

text embedding models largely unexplored.

3 Problem Formulation

In this section, we first explore how certain

anomalous tokens differ from normal tokens by

observing their influence on sentence similarity.

Then, based on our findings, we formally define

these tokens.

3.1 Anomalous Behavior

Certain tokens have been identified in previous

work (Kaggle, 2024) as behaving unusually. For

example, </s> and lucrarea in the ST5-base

model were reported to increase pairwise sentence

similarity in some cases as shown in Figure 1.

However, beyond these observations, there has

been no detailed or systematic analysis of such

anomalous tokens.

Figure 2 shows a typical example of this

behavior in the ST5-base model. We randomly

sampled 1,000 sentences from Wikipedia and

computed pairwise cosine similarity. We then

selected sample pairs at intervals of 0.02 (from

the sorted similarity value list) and added either

a normal token (e.g., and; Figure 2a) or an

anomalous token (e.g., lucrarea; Figure 2b) to one

sentence in each pair, repeating the token multiple

times. Additionally, Figure 2c shows the density

distribution of sentence similarities in ST5-base’s

embedding space. Following previous work (Gao
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Figure 2: Sentence similarity trend curves and similarity distributions for various tokens and text embedding models.

(a) and (b) compare the impact of adding multiple occurrences of a normal token (and) vs. a sticky token (lucrarea)

to one sentence in each randomly selected sentence pair using the ST5-base model. We sample sentence pairs

from Wikipedia, compute their pairwise similarity, then plot how the similarity changes as we add more tokens.

The line plots show the relationship between the number of added tokens and sentence cosine similarity, while the

boxplots show the quartiles of the final similarity values. (c) displays the distribution of cosine similarity between

token/word-embeddings for different models. We use token embeddings as a surrogate for text embeddings since

both share the same embedding space. See Appendix A for more examples of other tokens and results on additional

models.

et al., 2019; Fuster Baggetto and Fresno, 2022),

we use token embeddings as a surrogate for text

embeddings since both share the same embedding

space.

Our results reveal that repeatedly adding the

anomalous token lucrarea consistently “pulls” the

pairwise similarity to a value near the median of

the distribution, which also aligns with the mean

pairwise similarity among token embeddings for

ST5-base (Figure 2c).1

On the other hand, adding a normal token

like and has a much smaller impact on sentence

similarity (Figure 2a). Interestingly, although

anomalous tokens can sometimes increase sentence

similarity (as noted in previous observations), this

does not always happen. Their influence does not

have to be strictly monotonic, and not all sentence

pairs are affected in the same way.

See Appendix C for our conjecture to explain

this anomalous behavior.

3.2 Formalization

Let E : S → Rd be a text embedding model

mapping a sentence s ∈ S to a d-dimensional
vector E(s). We can write S as Vm, where

V is the set of all tokens in the vocabulary.

We measure the similarity between embeddings

using cosine similarity, defined as: Sim(u,v) =
u>v/‖u‖‖v‖ (i.e. the dot product between `2
normalized u and v). Let Sim(s1, s2) denote

1In Figure 2b, the median of the sentence similarity curve
for ST5-base is about 0.8. This matches the mean pairwise
similarity of the model’s token embeddings (also around 0.8)
shown in Figure 2c.

the similarity between E(s1) and E(s2).
2 Higher

values of Sim(·, ·) indicate greater similarity.
Anomalous tokens are first noticed when inserted

into existing sentences (Kaggle, 2024). Inserting

a token t into a sentence s can happen in different
ways, including (1) repeatedly adding t at the
beginning (prefix), (2) repeatedly adding t at

the end (suffix), or (3) adding t at random

positions3. We denote these operations with I =
{Ipre, Isuf, Iran}. Each I ∈ I takes as input

(s, t, n) and produces a new sentence containing

n insertions of t at positions determined by the

specific insertion operation.

As shown in Figure 2b, anomalous tokens tend

to pull sentence similarity toward the mean of the

model’s token-similarity distribution if they are

inserted repeatedly. In other words, they reduce

the distance between the pairwise similarity of two

arbitrary sentences and this mean value, or they

decrease the variance of that similarity distribution.

We name these sticky tokens and formally define

them as follows:

Definition 1. Given a text embedding model E
and u, the mean pairwise similarity of its token

embeddings, a token t is called a sticky token if,

for all s1, s2 ∈ S and for all I ∈ I, we have:
∣∣Sim

(
s1, I(s2, t, n)

)
− u

∣∣ ≤ ε.

Here, n and ε are parameters chosen based

on how much change in sentence similarity

2For clarity, “sentence similarity” and “token similarity”
both refer to comparisons in the embedding space in this paper.

3See Appendix B for other insertion operations.
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Figure 3: The framework of STD to detect sticky tokens.

is considered significant by the model’s users.

Different values of ε or n will identify different

sets of sticky tokens. In practice, S should be large
and diverse, covering varied syntactic structures,

semantic meanings, and domain contexts to ensure

evaluation robustness.

4 Methodology

Based on the concept of sticky tokens in

Definition 1, we propose STD to detect these tokens

in a given text embedding model. As shown in

Figure 3, STD takes two inputs: the target text

embedding model and a set of sentences. It outputs

a list of sticky tokens from the model’s vocabulary.

A direct application of Definition 1 would

require checking pairwise-similarity changes for

every possible sentence pair and every token, which

can be very costly. However, the examples in

Figure 2 suggest that focusing on only part of the

sentence pairs is enough to distinguish sticky tokens

from normal ones. For instance, sticky tokens

usually pull sentence similarity towards the overall

mean of the model’s token-similarity distribution

(especially for sentence pairs with initial similarity

below that mean). Building on this insight, we

adopt a more efficient detection strategy with four

main steps:

1. Sentence Pair Filtering: Filter out sentence

pairs whose initial similarity is already above

the mean of the distribution.

2. Token Filtering: Remove tokens that are

undecodable, unreachable, or otherwise

invalid.

3. Shortlisting via Sticky Scoring: Compute a

“sticky score” for each candidate token to

create a shortlist.

4. Validation: Verify that the shortlisted tokens

truly satisfy the formal definition of a sticky

token (Definition 1).

4.1 Sentence Pair Filtering

Figure 2 shows that sticky tokens have a clear

impact on sentences whose initial similarity is

below the mean similarity (u) of the token

embedding space.4 To reduce the search space,

we only keep those pairs
(
s1, s2

)
in the set S s.t.

Sim
(
s1, s2

)
< u.

We call this filtered set Pf . By focusing on

sentence pairs with relatively lower similarity, we

can check whether a token consistently increases

their similarity, bringing it closer to u.

4.2 Token Filtering

Following previous work (Land and Bartolo,

2024b), we also remove certain tokens that

the model cannot decode or handle properly.

In particular, we categorize tokens in models’

vocabulary V into the following categories:

• Undecodable tokens: These contain invalid

characters or cannot be decoded into readable

text.

• Unreachable tokens: These cannot be

reproduced by decoding and re-encoding (the

token ID changes and is not mapped back to

the original ID).

• Special tokens: These are tokens used by the

model for special purposes (e.g., [CLS], [SEP],

or </s>).

• Others: Tokens not in any of the other

categories, which constitute the vast majority.

4The way we compute u is discussed in Appendix D.1.
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We filter out undecodable and unreachable tokens

from our sticky token detection pipeline.5 We

denote the remaining valid token set as V∗, which
we use in the following steps.

4.3 Shortlisting Tokens with Sticky Scores

After filtering the sentence pairs and the vocabulary,

we need to identify which tokens in V∗ behave
like sticky tokens. A naive way to do this would

be to test each token on every pair in Pf , but that

can still be expensive. Instead, we work with a

smaller, randomly sampled subset of Pf to compute

a “sticky score” that helps us shortlist the most

likely sticky tokens.

Measuring Influence. Suppose we have k
sampled sentence pairs,

pj ∈ Pf , pj =
(
sj1, s

j
2

)
,

and let I be an insertion operation (e.g., prefix,

suffix, or random insertion). For each token t, we
insert it multiple times into one sentence of the pair(
sj1, s

j
2

)
. We then calculate

∆j
(t,I) = Sim

(
sj1, I(sj2, t, n)

)
− Sim

(
sj1, s

j
2

)
.

This value ∆j
(t,I) represents how much the

similarity changes when token t is inserted.

Sticky Score. We summarize these changes

across all sampled sentence pairs in two ways:

• M+
(t,I): the total amount of positive changes

in similarity.

• M−
(t,I): the total amount of negative changes

in similarity.

We also track the frequencies F+ and F−, which
are the percentages of pairs that show positive and

negative changes, respectively. Finally, we include

Sim(s1, t) to account for how semantically close

t is to the sentence (which might inflate similarity
artificially).

Putting these together, we define a sticky score:

SSI(t) =
M+

(t,I) + αF+
(t,I)

M−
(t,I) + β F−

(t,I) + Sim(s1, t) + γ
,

where α and β are small positive constants to

balance magnitude and frequency, and γ is a small

constant included for numerical stability. Then

5See Appendix D.2 for more details on these categories.

we aggregate across all insertion operations and

sampled pairs to get a final score:

SS(t) =
∑

I∈I

∑

p∈Pf

SSI(t).

Tokens that rank in the top 2% of SS(t) form our

shortlist of potential sticky tokens.

4.4 Validation of Shortlisted Tokens

Finally, we check each shortlisted token to confirm

it meets the formal definition of a sticky token

(Definition 1). Here, we use all sentence pairs

in Pf rather than just a small subset. As shown

in Algorithm 1, each candidate token is inserted

into many pairs in multiple ways (prefix, suffix, or

random). We then measure whether the distance to

u remains below a threshold ε, reflecting that the
token truly “pulls” similarity to that mean.

Since different embedding models have different

value ranges and distributions, we propose an

adaptive threshold in Algorithm 2 to pick ε. This
helps adjust to model-specific characteristics and

ensures that detected tokens really exhibit the

distinctive behavior of sticky tokens.

5 Evaluation

In this section, we apply STD (Section 4) to

find sticky tokens in well-known text embedding

models. We also examine how the presence of these

tokens affects downstream tasks and investigate

potential reasons for their anomalous behavior.

5.1 Evaluation Setup

Dataset. We use the Semantic Textual Similarity

(STS) datasets as our collection S, since they

naturally include sentence pairs. Specifically,

we take STS datasets from the Massive Text

Embedding Benchmark (MTEB) 6 (Muennighoff

et al., 2023), including STS12, STS13, STS14,

STS15, STS16, STS17, STS22, STSBenchmark,

BIOSSES, and SICK-R (Agirre et al., 2012, 2013,

2014, 2015, 2016).

Target Text Embedding Model. We evaluate

a diverse range of 12 text embedding model

families published between 2019 and 2025,

including Sentence-BERT (Reimers and Gurevych,

2019b), SimCSE (Gao et al., 2022), Sentence-

T5 (Ni et al., 2021a), GTR (Ni et al., 2021b),

Instructor (Su et al., 2023), E5 (Wang et al.,

6https://huggingface.co/mteb
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Model Model Size Vocab Size Filter Passed Candidate Validated Examples

all-MiniLM-L6-v2 23M 30522 23699 474 21 （, h₂o, [CLS], ₂,gambia
all-mpnet-base-v2 109M 30527 23700 474 24 00 ,た,「, т, ←

sup-simcse-bert-base-uncased 109M 30522 23699 474 22 203, ?, [SEP],ロ,り
sup-simcse-bert-large-uncased 335M 30522 23699 474 11 ’, ;, contestants, accidental, ɔ, ]
sup-simcse-roberta-base 125M 50265 49894 998 27 Ġthere, </s>, âĢĵâĢĵ, ĠâĢĶ, ĠÂŃ, .âĢĶ, ÂŃ, Ġï¿½, âĢİ

sup-simcse-roberta-large 355M 50265 49894 998 15 ĠâĢĭ, Ġ?, .-, Ġschematic, )].

sentence-t5-base 110M 32100 32097 642 21 </s>, lucrarea,<extra_id_18>,▁grains,▁photographed

sentence-t5-large 336M 32100 32097 642 30 </s>,▁»., <extra_id_27>,▁Comment,▁Ribbon

sentence-t5-xl 1242M 32100 32097 642 34 </s>, <extra_id_0>, <extra_id_27>,▁velvet,▁context

sentence-t5-xxl 4866M 32100 32097 642 22 </s>,▁consacré, <extra_id_27>,▁hashtag,▁hello

gtr-t5-base 110M 32100 32097 642 16 </s>, lucrarea,▁Someone, <extra_id_26>,▁happened

gtr-t5-large 336M 32100 32097 642 14 ▁»., </s>, <extra_id_27>, <extra_id_25>,▁supposed

gtr-t5-xl 1242M 32100 32097 642 15 </s>, <extra_id_0>, <extra_id_9>, <extra_id_27>,▁badly

gtr-t5-xxl 4866M 32100 32097 642 7 </s>,▁consacré,▁shortly, Pourtant,▁indeed

instructor-base 110M 32100 32097 642 12 </s>, lucrarea, <extra_id_26>,▁somewhere, <extra_id_19>

instructor-large 336M 32100 32097 642 32 </s>,▁»., <extra_id_27>,▁waiting,▁exhausted

instructor-xl 1242M 32100 32097 642 8 </s>, <extra_id_0>, <extra_id_9>, <extra_id_27>,▁newly

e5-small 33M 30522 23699 474 17 [SEP], exhibiting, occurring, pretended, behaved

e5-base 109M 30522 23699 474 21 generating, absorbing, heating, carpet, human

e5-large 335M 30522 23699 474 21 ⇄,扌, [SEP],∅,𤣩
e5-mistral-7b-instruct 7111M 32000 31747 635 31 ▁sont,▁peut,▁много, жду,▁испо

bge-small-en-v1.5 33M 30522 23699 474 18 [, m³, ð, [PAD], [SEP]

bge-base-en-v1.5 109M 30522 23699 474 20 neighbouring,？, witnessed, granting,。
bge-large-en-v1.5 335M 30522 23699 474 15 actively, intended, intercepted, intentional, uploaded

UAE-Large-V1 335M 30522 23699 474 14 [SEP], ɔ, ո, occurring, having

nomic-embed-text-v1 137M 30522 23699 474 12 [CLS], [MASK], ¦ , polling,勝
nomic-embed-text-v1.5 137M 30522 23699 474 9 [CLS], [MASK], [SEP], cerambycidae,～
gte-small 33M 30522 23699 474 15 [SEP], [CLS], treacherous, 2nd, peacefully

gte-base 109M 30522 23699 474 18 [SEP], [MASK], hotspur, [CLS], aroused

gte-large 335M 30522 23699 474 18 1,ٹ st, 30th, mcgrath, rendering

gte-base-en-v1.5 137M 30522 23699 474 20 [CLS],[PAD], ∞, ₃, ■,⊕,⇌,ᄌ, ℓ, ∩,𤣩,龸
gte-large-en-v1.5 434M 30522 23699 474 17 扌, multiplied, ː,∧, ʑ
gte-Qwen2-1.5B-instruct 1543M 151643 147848 2326 5 Ġthru, Ġgifted, Ġupfront, Ġportraying, Ġawkward

gte-Qwen2-7B-instruct 7069M 151643 147848 2957 103 Ġanon, Ġcommenting, Ġsolver, ĠChecking, ĠSteering

jina-embeddings-v3 572M 250002 249976 5000 40 </s>, <s>,╀, Ґ,嚟 ,今次,ㄓ,ㄔ,ㄙ
KaLM-instruct-v1 494M 151643 147848 2957 27 astically, ×©×ķ×ŀ×¨, piÄĻ, alty, czyÄĩ, ×ŀ×ij×ĺ

KaLM-instruct-v1.5 494M 151643 147848 2957 31 versible, ×Ļ×ĺ×ª, (bounds, afety, ×¢×ľ×Ķ, Ã¡p

GritLM-7B 7111M 32000 31747 635 17 ▁adventures,▁promoting,▁nine,▁folks,▁village

SFR-Embedding-2_R 7111M 32000 31716 444 2 zeichnet,▁scales

SFR-Embedding-Mistral 7111M 32000 31716 635 46 ▁которы,▁годи,▁Jahrhund,▁который,▁которых

Table 1: Statistics and validated sticky tokens of target models. The column Validated represents the number of

validated sticky tokens. Examples are manually chosen based on readability, similarity across the models, and also

representativeness. Note that some leading characters (e.g.,▁ or Ġ) are utilized by tokenizers to indicate spaces or

word boundaries.

2024b,c), BGE (Xiao et al., 2024), AnglE (Li and

Li, 2024), Nomic (Nussbaum et al., 2025), GTE (Li

et al., 2023), jina (Sturua et al., 2024), KaLM (Hu

et al., 2025), GritLM (Muennighoff et al., 2024),

and SFR (Yavuz et al., 2024). A detailed overview

of each model is given in Appendix E.

Hyperparameter. From Definition 1 and

Section 4.3, we must choose (i) n, the number of
times each token is inserted, (ii) k, the number
of sentence-pair samples to obtain sticky score,

and (iii) ε, the threshold for verifying stickiness.
Through ablation studies7, we pick n = 8 and

k = 5. Specific threshold values ε for each model
are also provided in Table 7 in Appendix E.

7See Appendix E for detection experiment details.

5.2 Experimental Results

Table 1 lists each model’s size, along with the

number of detected sticky tokens and a few token

examples. We first discuss general trends, followed

by observations unique to specific model families.

5.2.1 General Observations

We discover a total of 868 sticky tokens across

40 model checkpoints. The number of verified

sticky tokens depends on both the model family

and the size of the tokenizer’s vocabulary. Overall,

the percentage of sticky tokens (among all short-

listed candidates) ranges from 0.4% to 5.3%,

corresponding to 0.006% to 1% of the total

vocabulary. This suggests that STD and shortlisting

steps are efficient.

We also find that the forms of these tokens vary

significantly among different model families:
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• Models from the same family often share sticky

tokens.

• There is no direct or consistent correlation

between model size/vocabulary size and the

number of sticky tokens.

• Unused or special tokens frequently appear in

the sticky token set.

Below are some more specific examples.

Special and Control Tokens. Many models

include special tokens for certain functionalities,

such as marking start/end of sequences or

separating segments. We observe that:

• About 7% (64 tokens) of the 868 sticky tokens

belong to this category, including </s>, [CLS],

[SEP], [MASK], [PAD].

• Some unused tokens8 (e.g., <extra_id_18>,

<extra_id_27>) also appear as sticky tokens.

• Certain tokens like </s> and <extra_id_27>

show up many times (12 and 8, respectively)

across multiple T5-based checkpoints.

These observations hint that special tokens might

unintentionally confuse the model’s embedding

space, although the reasons remain to be explored

in future work.

Multilingual and Non-ASCII Fragments.

About 22% (191 tokens) of detected sticky tokens

contain characters beyond the standard English

alphabet. Examples include:

• Cyrillic fragments (т, х, ра, ци),

• CJK tokens (う,治,水,ロ),

• Arabic subwords ( ٹ,ر ),

• combining diacritics (ˈ, ː, ᵒ),

• mathematical symbols (³, ∩, ∞).

In many cases, these tokens appear as single

characters or subword segments detached from their

usual context, likely due to multilingual training

data and Byte Pair Encoding (BPE). For instance,

▁ч (a Cyrillic prefix) and▁släktet (Swedish for

“the genus”) may lose important contexts. This

suggests sticky tokens may emerge from limited

non-English coverage during pre-training.

8Unused tokens are reserved tokens in pretrained models’
vocabularies that weren’t utilized during pretraining (Land
and Bartolo, 2024a).

5.2.2 Model-Specific Observations

This section presents model-specific observations

on sticky tokens. Our analysis reveals variations in

the prevalence and characteristics of sticky tokens

across various models, underscoring the influence

of tokenizer design and model scale.

T5-Based Models. The T5 family (sentence-

t5, gtr-t5, instructor) exhibits consistent patterns

associated with its SentencePiece tokenizer (Kudo

and Richardson, 2018) (vocab_size=32,100). All

variants include the end-of-sequence token </s> as

a sticky token. Larger T5 models show a non-linear

correlation between the number of parameters and

the frequency of sticky tokens（The spearman’s

correlation analysis is: ρ = 0.127, p-value = 0.706).
For instance, sentence-t5-xl (1.2B) contains 34

sticky tokens, the highest among T5 variants, while

sentence-t5-xxl (4.8B) reduces this to 22. Some

unused tokens (e.g., <extra_id_27> in 8 out of

11 T5-based models) and non-English fragments

(lucrarea, _consacré), appear frequently in sticky

token lists. These may be residuals from the

model’s pre-training phase. Notably, instructor-

xl (1.2B) shows the lowest sticky token count

(8 tokens), suggesting improved token robustness

after post-training adjustments.

BERT/RoBERTa Derivatives. Models using

BERT-style tokenizers (Devlin et al., 2018; Liu

et al., 2019) (vocab_size ≈ 30k–50k) exhibit

an inverse correlation between sticky token

counts and model parameter size. For example,

sup-simcse-bert-large-uncased (335M) contains

only 11 sticky tokens (e.g.,’,;,ɔ), while all-

mpnet-base-v2 (109M) has 24 sticky tokens.

RoBERTa models (Liu et al., 2019) display distinct

characteristic: sup-simcse-roberta-base (125M)

includes 27 sticky tokens, primarily consisting of

malformed subwords (e.g., âĢĵâĢĵ, ĠâĢĶ), while

its 355M-parameter counterpart includes only 15

sticky tokens, retaining punctuation-related tokens

such as Ġ?) and .).

LLM-based Models. Other LLM-based Models

with 7B parameters show notable variations on the

number of sticky tokens. For example, GritLM-

7B exhibits common sticky token counts (17,

e.g., _adventures, _young), while gte-Qwen2-7B-

instruct stands out with 103 sticky tokens, the

highest count observed, including frequent verb

participles (Ġcommenting, Ġfixing) and technical

terms (Ġsyncing, Ġtaxable). In contrast, SFR-
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Embedding-Mistral (7B) encounters significant

problems in processing non-English tokens. For

example, 46 sticky tokens of it are composed of

Cyrillic subwords (_которы). These observations

suggest that there is no consistent pattern between

the presence of sticky tokens and model scale or

vocabulary size.

Multilingual and Domain-tuned Models.

Multilingual models alwasys reveal cross-script

vulnerabilities. For example, E5-mistral-7B-

instruct contains 31 sticky tokens across 7 scripts

(e.g., Cyrillic ▁ст, Hebrew .(ץ Smaller models,

such as UAE-Large-V1 (335M), have problems

on script-specific partial tokens (e.g., і, ʊ, .(א
Domain-tuned models show task-specific issues.

For example, medical terms like Cerambycidae

appear as sticky tokens of nomic-embed-text-v1.5

while numerical ordinal tokens (e.g., 3a, 55th)

frequently appear in the sticky token list of

GTE-family models. These findings indicate that

multilingual capabilities and domain-specific

fine-tuning may lead to the emergence of sticky

tokens.

5.3 Impact on Downstream Tasks

This section we aim to investigate the impact of

sticky tokens on downstream tasks.

Method. We use a curated 15-task subset from

MTEB benchmark (Muennighoff et al., 2023) as

the datasets. For each model, we insert previously

verified sticky tokens (Section 5.2) or randomly

chosen normal tokens into sentences or paragraphs

within the datasets. We use the metrics from

MTEB (Muennighoff et al., 2023) for comparison.

See Appendix F for datasets and method details.

Results Table 2 shows the partial results9 of

our evaluation on clustering and retrieval tasks.

Compared with normal tokens, sticky tokens

demonstrate significantly higher destructiveness

(Paired t-test results: t = 2.23, p = 0.017; one-

tailed; mean difference (normal-sticky) = 2.23;

Cohen’s d = 0.41). This confirms their greater

destructiveness at p < 0.05. For instance, for the

ST5-base model, inserting normal tokens shows

minimal degradation (SciFact: 45.76→44.58,

Δ-2.6%; NFCorpus:28.64→28.48, Δ-0.56%),

while inserting sticky tokens cause a significant

degradation (SciFact: 45.76→26.76, Δ-41.5%;

NFCorpus: 28.64→13.65, Δ-52.3%). Furthermore,

9See Table 9 in Appendix F for the full downstream results.

Categories → Clustering Retrieval

Datasets →
Biorxiv

Clustering

Medrxiv

Clustering

TwentyNewsgroups

Clustering
SciFact ArguAna NFCorpus

sentence-t5-base 23.11 26.03 49.27 45.76 44.84 28.64

w/ normal token 20.04 25.06 37.17 44.58 45.41 28.48

w/ sticky token 15.02 20.41 35.38 26.76 42.14 13.65

instructor-base 26.40 28.38 52.77 57.88 51.18 30.76

w/ normal token 18.05 23.13 50.64 57.70 47.45 29.77

w/ sticky token 26.05 26.55 50.55 43.47 47.03 23.11

e5-base 29.92 27.67 43.75 71.88 53.03 37.09

w/ normal token 28.94 26.51 22.15 71.36 51.13 37.15

w/ sticky token 27.02 24.92 20.00 70.95 49.14 37.01

simcse-bert-base 25.70 25.85 31.67 33.89 39.56 13.49

w/ normal token 25.11 25.19 28.40 33.66 36.79 13.45

w/ sticky token 24.80 25.17 29.22 29.89 38.38 8.84

UAE-Large-V1 37.24 31.18 51.72 73.91 66.15 37.61

w/ normal token 35.79 30.96 40.48 74.51 63.67 37.70

w/ sticky token 35.98 30.94 47.20 72.63 63.48 37.79

Table 2: Results on Downstream Tasks. We present the

performance of four models, comparing their baseline

results with sticky tokens and normal tokens.

lightweight models suffer catastrophic degradation

from sticky tokens (sentence-t5-base on Biorxiv

clustering: 23.11→15.02, Δ-35.0%), while larger

models like UAE-Large-V1 maintain robustness

(SciFact retrieval: 73.91→72.63, Δ-1.7%). Our

experiments reveal that sticky tokens significantly

degrade performance across downstream tasks.

5.4 Explainability of Causes

We conduct a preliminary analysis to explore the

underlying causes of the sticky token phenomenon.

We compare the observed attention patterns and

analyze layer-wise divergence between sticky

tokens and normal tokens. Experiments are

conducted on 1k Wikipedia sentences appended

with either sticky tokens (e.g., </s>) or normal

tokens (random selected). Here, we present the

results obtained with the ST5-base model.

Attention Pattern Disparity. For each sequence

and attention head, the attention weights at the

position of the added token are extracted from the

corresponding column vector of the attention score

matrix10. This reflects how the token is attended

to by the others in the sequence. As illustrated in

Figure 4 left, when sticky tokens are appended to

sentences, their attention weights in intermediate

layers concentrate disproportionately in high-

value ranges (e.g., weights>0.4), whereas normal
tokens follow a smoother, more Gaussian/Normal

distribution. This suggests that sticky tokens

dominate the model’s attention and disrupt the

balanced contextual representation of input texts.

Layer-Wise Amplification of Anomalies. The

Wasserstein distance (Vaserstein, 1969) between

the attention patterns of sticky and normal tokens

(Figure 4 right) further elucidates how anomalies

propagate across layers. In early layers (1–6),

10See Appendix G for details to obtain attention pattern.
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(left) and Wasserstein distance of the probability

distributions between sticky tokens and normal tokens in

different intermediate layers of ST5-base model (right).

Sticky tokens (red) exhibit higher frequency in high-

attention regions (>0.4) compared to normal tokens

(blue).

the divergence remains moderate, indicating

that shallow processing retains some robustness.

However, from mid to late layers (6–12), the

distance increases, peaking at the final layers. This

reflects a compounding effect: minor irregularities

in early layers are progressively amplified as deeper

layers integrate higher-order semantic features.

For text embedding models, the amplification

disrupts the hierarchical abstraction of semantics.

The anomalous intermediate results caused by

sticky tokens are not uniformly distributed across

all layers of the model but are concentrated and

amplified in specific key layers.

6 Conclusion

In summary, STD successfully detects 868

sticky tokens in 40 text embedding models and

demonstrates that these tokens can significantly

degrade downstream performance on tasks such as

clustering and retrieval. Through comprehensive

experiments, we show that sticky tokens often

stem from special or unused tokens and subword

fragments from multiple languages, suggesting

that tokenizer design and pre-training coverage

both play important roles. We further provide

evidence of how these tokens cause anomalies in the

attention layers, amplifying small irregularities into

major distortions of final sentence representations.

Our findings encourage future work on designing

more robust tokenization schemes and model

architectures to mitigate the effect of sticky tokens.

Limitations

Although our definition of sticky tokens is as

detailed as possible, and our pipelines for detecting

sticky tokens on different models are also effective,

they still have some significant limitations.

Most notably, we assume that sticky tokens

uniformly ”pull” similarity toward the token

embedding mean. However, models with non-

Gaussian token similarity distributions(Model with

isotropic embedding space 11) (Li et al., 2020; Su

et al., 2021) or task-specific embeddings might

require tailored detection criteria. It remains

unclear whether these models exhibit abnormal

features akin to sticky token properties. Future

research on model interpretability could refine our

deeper understanding of model embedding space

and sticky token phenomenon, and lead to more

effective detection methods.

Secondly, while we identify the anomalous

phenomenon and its downstream impacts, we

do not propose concrete solutions to mitigate

sticky tokens (e.g., tokenizer retraining, embedding

space regularization). Our experiments involve

inserting tokens at fixed positions (prefix, suffix,

or random) with a predefined repetition count.

While we also examined why alternative insertion

methods, such as deletion or replacement, were

not incorporated（Appendix B）, our analysis

did not extend to more complex adversarial

scenarios. These scenarios could include advanced

strategies like interleaving tokens or context-aware

placement, which were not evaluated in our study.

Finally, the scope of detection of our work is

limited to focusing on open source text embedding

models, which often use byte-pair encoding based

tokenization. However, the detection results

may differ for certain closed-source models, such

as OpenAI’s text-embedding series or Google’s

gemini-embedding series, as well as models

using Unigram-based tokenization. Additionally,

obtaining the vocabulary for these closed-source

models presents a significant challenge.
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A Symptom Across Models

The examples shown in Figure 2 in Section 3.1

were drawn from extensive empirical testing. Due

to space constraints, only a few representative

cases were included in the main text. Additional

examples are available in our repository.

Similar to the issue of anomalous tokens

observed in the ST5-base model with lucrarea,

we provide further random examples of these

anomalous tokens across various models to

illustrate the prevalence of this phenomenon across

different models. The experimental setup remains

consistent with Section 3.1: we randomly sampled

1,000 sentences from Wikipedia and computed

pairwise cosine similarity. We then selected

sample pairs at intervals of 0.02 (from the sorted

similarity list) and added anomalous token to

one sentence in each pair, repeating the token

multiple times. We found that repeatedly adding the

anomalous token consistently “pulls” the pairwise

similarity to a value near the median of the

distribution, which also aligns with the mean

pairwise similarity among token embeddings for

corresponding model(Figure 10).

Figure 5: gte-base-en-v1.5 + token: 龸

Figure 6: bge-base-en-v1.5 + token: www

Figure 7: instructor-base + token: lucrarea

Figure 8: sup-simcse-bert-base-uncased + token: [SEP]

Figure 9: UAE-Large-V1 + token: [SEP]

Figure 10: Similarity distribution for different text

embedding models’ vocabulary tokens. We use token

embeddings as a surrogate for text embeddings since

both share the same embedding space.

The results of the phenomenon are shown in

Figure 6, 5, 8, 9, and 7, and for more examples,

please refer to our repository.

B Alternative Insertion Operations:

Deletion or Replacement

We first explain the insertion operations in

Section 3.2 in detail. As illustrated in Figure 11,

inserting a token t into a sentence s can happen
in different ways, including (1) repeatedly adding

t at the beginning (prefix), (2) repeatedly adding
t at the end (suffix), or (3) adding t at random
positions. Real-world scenarios might involve

more sophisticated insertion strategies. Here we

discuss why deletion or replacement operations are

not considered in our work.
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Today is a sunny day.

NLP is so fascinating.

(a) prefix

(b) suffix

(c) random

Today is a sunny day.

<sticky>Today is a sunny day.

<sticky><sticky>Today is a sunny day.

Today is a sunny day.

Today is a sunny day.<sticky>

Today is a sunny day.<sticky><sticky>

Today is a sunny day.

Today<sticky> is a sunny day.

Today<sticky> is a<sticky> sunny day.

NLP is so fascinating.
fixed

[0.742, 0.764, 0.785]

[0.742, 0.775, 0.796]

[0.742, 0.732, 0.744]sticky token t = <sticky>

add num n = 2

Semantic Distance
𝑠1

𝑠2

Figure 11: Inserting operations of token into sentence.

Deletion Deletion is the inverse operation of

addition. Deleting a token in a sentence is the

reverse process of adding a token to a sentence.

Since sticky tokens are relatively rare, it is

challenging to gather a sufficient number of

sentences that naturally contain them.

Replacement Replacing a token in a sentence

can be viewed as first deleting the original token

and then inserting a new one, which modifies

the sentence’s semantic in two steps. As shown

in Figure 12, the experimental setup remains

consistent with Section 3.1. When tokens are

introduced through replacement, the shift in

sentence similarity appears less gradual compared

to the smoother pattern observed in Figure 2b. This

suggests that, unlike addition, replacement leads to

larger and less granular semantic changes, making

it unsuitable as the most basic unit of semantic

changes.

For simplicity in modeling and broader

applicability, we exclude deletion and replacement

operations from the definition of the insertion

operations I in Section 3.2.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Inserted number of sticky token

0.5
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Figure 12: Effect of token replacement operation on

sentence similarity. This figure illustrates the impact

of replacing tokens in sentences with the sticky token

lucrarea on sentence similarity, as measured using the

ST5-base model. Sentence pairs were randomly selected

fromWikipedia, and their similarity was calculated both

before and after the replacement of multiple lucrarea

tokens.

C Conjecture of Explanation:

Anisotropic Embedding Space Makes

Sticky Token Possible

We first provide partial background knowledge

about the spatial properties of context embedding

space, and then propose a conjecture for the

potential reason why the sticky token exists in text

embedding models.

Anisotropic text embedding space Isotropy

refers to the property that embeddings are

uniformly distributed around the origin. Previous

studies (Wang et al., 2019; Arora et al., 2017;

Fuster Baggetto and Fresno, 2022) demonstrate

that Transformer-based models typically produce

anisotropic embedding spaces. The geometric

interpretation of anisotropy is that the word

representations all occupy a narrow cone in the

vector space rather than being uniform in all

directions; the greater the anisotropy, the narrower

this cone (Mimno and Thompson, 2017; Ethayarajh,

2019). This phenomenon has been empirically

observed in pre-trained Transformers like BERT

and GPT-2 (Machina and Mercer, 2024).

We also construct a simple empirical experiment

to demonstrate the anisotropic context embedding

space of mainstream text embedding models. we

use word embeddings as a surrogate since words

and contexts share the same embedding space (Gao

et al., 2019; Fuster Baggetto and Fresno, 2022).

If the word embeddings exhibits some misleading

properties, the context embeddings will also be

problematic, and vice versa.

We first extract the vocabulary of the model,

then take each token in the dictionary as a

separate sentence and gets its embeddings. More

Model Mean Std

all-MiniLM-L6-v2 0.1998 0.1068

all-mpnet-base-v2 0.1876 0.0885

bge-base-en-v1.5 0.5254 0.0673

bge-large-en-v1.5 0.5716 0.0482

bge-small-en-v1.5 0.5694 0.0602

e5-base 0.7430 0.0403

e5-large 0.7311 0.0351

e5-mistral-7b-instruct 0.7354 0.0579

e5-small 0.8306 0.0392

GritLM-7B 0.6271 0.1838

gte-base 0.7647 0.0256

gte-base-en-v1.5 0.3730 0.0892

gte-large 0.7788 0.0218

gte-large-en-v1.5 0.5390 0.0651

gte-Qwen2-1.5B-instruct 0.3510 0.2746

gte-Qwen2-7B-instruct 0.2594 0.2477

gte-small 0.7874 0.0225

gtr-t5-base 0.5155 0.0548

gtr-t5-large 0.5577 0.0451

Model Mean Std

gtr-t5-xl 0.4824 0.0562

gtr-t5-xxl 0.4774 0.0543

instructor-base 0.8373 0.0234

instructor-large 0.8144 0.0229

instructor-xl 0.5544 0.0488

nomic-embed-text-v1 0.3360 0.0630

nomic-embed-text-v1.5 0.4167 0.0610

sentence-t5-base 0.7959 0.0261

sentence-t5-large 0.7634 0.0281

sentence-t5-xl 0.7167 0.0341

sentence-t5-xxl 0.7362 0.0310

SFR-Embedding-2_R 0.7264 0.0638

SFR-Embedding-Mistral 0.6806 0.0598

sup-simcse-bert-base-uncased 0.5866 0.1110

sup-simcse-bert-large-uncased 0.4512 0.1081

sup-simcse-roberta-base 0.8783 0.0361

sup-simcse-roberta-large 0.4995 0.1039

UAE-Large-V1 0.5052 0.0523

jina-embeddings-v3 0.5281 0.06095

KaLM-v1 0.8565 0.0389

KaLM-v1.5 0.8523 0.0360

Table 3: The average cosine similarity values (Mean)

and their standard deviations (Std) for token embeddings

(of vocabulary) across various models.
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Sent A

Sent B

Sent A

Sent B

Isotropic Anisotropic

vs.

√×

Our Conjecture

(1) far (2) close

Sent 1

Sent 2 + sticky

Sent 2 Sent 2 + sticky

Sent 2

Sent 1

Figure 13: Our conjecture about sticky tokens, based on

the anisotropy of the embedding space.

specifically, the embeddings for tokens are

computed after they have passed through all

transformer layers (i.e., using the final layer’s

output). Finally we compute the pairwise similarity

between embeddings, and the results are presented

in Figure 10. For more models, the mean values

and standard deviations of cosine similarity across

vocabulary embeddings are presented in Table 3.

Previous research has demonstrated that if word

representations are isotropic (i.e., directionally

uniform), then the average cosine similarity

between words would be 0 (Arora et al., 2017;

Ethayarajh, 2019). The closer this average is

to 1, the more anisotropic the representations.

As illustrated in Figure 10, we observe that

the similarity distributions for most models

follow a Gaussian distribution with a non-

zero mean, indicating that these models exhibit

anisotropic embedding spaces. Additionally, it is

noteworthy that the mean of the ST5-Base model’s

similarity distribution is very close to the sentences

similarities’ median value of 0.8, as depicted in

Figure 2b in Section 3.1. This suggests that the

sticky token is likely pulling sentence pairs toward a

dominant direction in the embedding space. Based

on the above observations, we propose a conjecture

to explain the existence of sticky tokens.

Conjecture As illustrated in Figure 13, the

anisotropy of the model embedding space,

indicating that word representations occupy narrow

cone-shaped regions in vector space. Sticky tokens

tend to pull a sentence toward a specific focal point

in the embedding space, potentially the origin. (1)

If the sentences are sufficiently far apart, the new

distance (yellow) is more likely to be shorter than

the original distance (green). (2) However, if the

sentences are already very close to each other, this

may negatively impact performance.

Please note that these are merely some of

our conjectures, and rigorous validation will be

required in the future.

D Methodology Details

Based on Definition 1 in Section 3.2, we provide a

detailed description of our proposed method, STD,

which is designed to effectively detect sticky tokens

in text embedding models. As shown in Figure 3,

our method takes a target text embedding model

and a string dataset as inputs, then reports its sticky

tokens of its vocabulary.

Motivation For the detection, Definition 1

suggests to track sentence pairwise-similarity

changes across any pairs for any tokens in

a vocabulary, which can be computationally

expensive. Figure 2 suggests that actually the

influence on just a portion of sentence pairs may

be sufficient to differentiate sticky tokens from

normal ones. For instance, they obviously and

efficiently increase similarity of sentence pairs

towards the mean of token pairwise-similarity

distribution (whose similarity initially is below that

mean). From this, we employ an efficient detection

procedure which first filter sentences to track and

then shortlist candidate tokens. Specifically:

1. Sentence pair filter, filter out sentence pairs

with initial similarity above the mean of the

distribution 1.

2. Token filter, filter out those undecodable or

unreachable tokens.

3. Shortlisting, shortlist tokens via sticky

scoring.

4. Validation, validate whether the shortlisted

tokens are indeed sticky ones based on

Definition 1.

D.1 Sentence Pair Filtering

We observed in Figure 2 that compared with normal

ones, sticky tokens tend to obviously bring closer

those sentences whose initial similarity is below the

mean u of the initial pairwise-similarity distribution
of tokens.
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Formally, given a model E, the mean of the

pairwise semantic distance between (embeddings

of) its tokens can be computed as:

u =
2

|V|(|V| − 1)

|V|−1∑

i=1

|V|∑

j=i+1

Sim(ti, tj)

where V denotes the model’s vocabulary, and

ti, tj ∈ V represent distinct tokens.
We can choose such sentence pairs from S to

check whether the influence of a token aligns with

that of sticky tokens via multiple insertion. We

denote the set formed by filtered sentence pairs as:

Pf = {(s1, s2) | Sim(s1, s2) < u, s1, s2 ∈ S}

D.2 Token Filtering

The overall process of our token filtering stage

is shown in Table 4. The core idea of the token

filter module is to classify each token by decoding

and then re-encoding it, ensuring it meets specific

classification criteria. Specifically, if a tokenizer

for one model adds spaces to the start of tokens

or applies default reprocessing, we prepend a

special prefix “«” to each token to ensure consistent

encoding and decoding. Then, we filter out tokens

based on the following categories:

• Undecodable: Tokens that cannot be decoded,

usually containing illegal characters. These

tokens are usually the result of partial UTF-

8 sequences, where a sequence of bytes

cannot be properly converted into a Unicode

character, due to containing only part of a UTF

encoding for a character. This is typical for

“fallback byte” tokens in the 0x80-0xFF range,

can also include tokens with other partial

Unicode characters.

• Unreachable: Tokens that cannot be restored

to their original token ID through the decoding

and re-encoding process, which means they

are never the result of tokenizing text. Such

tokens are typically the result of tokenizer

configuration errors or conflicts between

trained and manually added vocabulary. Since

this test does not work when tokens can not be

decoded to a string, we exclude undecodable

tokens from this category.

• Special: Tokens that are manually predefined

symbols used to represent specific meanings

or control themodel’s behavior, such as [CLS],

Classification Criteria

Let D : N→ Σ∗ be the tokenizer’s decoding
function and E : Σ∗ → N its encoding function,

where Σ is the Unicode character set.

For a token ID x, :

Undecodeable

x ∈ U ⇐⇒ D(x) throws decoding error
Where illegal UTF-8 sequences satisfy:

∃bi ∈ bytes(D(x)) s.t. ¬ValidUTF-8(b1:n)
Unreachable

x ∈ R ⇐⇒ D(x) succeeds ∧ E(D(x)) 6= x

Special Tokens

x ∈ S ⇐⇒ D(x) matches patterns 〈...〉 or [...]

Token Filtering Pipeline

V alidTokens V∗ = {x | x /∈ (U ∪R)}

Table 4: Formalizing token classification criteria and

token filtering pipeline.

[SEP], </s>, etc. We identify special tokens

using the patterns <...> and [...] and list them

separately from unreachable tokens.

• Tokens not in any of the other categories,

which constitute the vast majority.

During the classification process, we first decode

each token ID to string. If decoding fails, the token

is classified as undecodable. Next, we encode the

decoded string and check if it can be restored to the

original token ID. If it cannot, the token is classified

as unreachable. If it meets the characteristics of a

special token, it is classified as special. We filter

out undecodable and unreachable tokens from our

sticky token detection pipeline.

The valid UTF-8 characters in Table 4 can be

summarized as follows:

• 1-byte: b1 ∈ [0x00, 0x7F ]

• 2-byte: b1 ∈ [0xC2, 0xDF ], b2 ∈ [0x80,
0xBF ]

• 3-byte: b1 ∈ [0xE0, 0xEF ], b2:3 ∈ [0x80,
0xBF ]

• 4-byte: b1 ∈ [0xF0, 0xF4], b2:4 ∈ [0x80,
0xBF ]

Undecodable tokens violate these byte

constraints.
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D.3 Shortlisting with Sticky Scoring

The previous two steps help us reduce the searching

cost of sticky tokens to some extent. Faced with the

filtered tokens and sentence pairs, a straightforward

way to judge which ones in V∗ are sticky is to

track their influence on arbitrary sentence pairs

in Pf . This can still be time-consuming and we

opt to track on some sparsely sampled pairs first,

to shortlist tokens. The core consideration is how

to measure whether the influence a token brings

via insertion to the sampled sentence pairs aligns

with our expectation12. Below we introduce sticky

score.

Denote the k sampled sentence pairs as: pj ∈
Sf , pj = (sj1, s

j
2). Let ∆

j
t,I,p = Sim(sj1, s

j′
2 ) −

Sim(sj1, s
j
2) denote the change in similarity

between sj1, s
j
2 after inserting t . For each pair,

one of the sentence gets inserted13 with token t via
operation I. For example, for sj1, sj2, let ∆j

t,I,p =

Sim(sj1, s
j′
2 ) − Sim(sj1, s

j
2) denote the change in

their similarity. For all the pairs, denote the change

as Lt,f,p =
[
∆1

t,f,p,∆
2
t,f,p, . . . ,∆

k
t,f,p

]
∈ Rk.

We measure the influence of token insertion

from two key aspects: the magnitude

and frequency of changes in directional

similarity. Let M+
(t,f,p) =

∑k
i=1max(∆

j , 0)

(M−
(t,f,p) =

∑k
j=1 |min(∆i, 0)|) denote the

cumulative amount of similarity increase

(decrease), and F+
(t,f,p) = 1

k

∑k
j=1 I(∆(i)>0)

(F−
(t,f,p) = 1

k

∑k
j=1 I(∆(j)<0)) denote the

frequency of observing similarity increase

(decrease) in L(t, f, p). I(·) is an indicator

function which takes 1 if (·) is true.
By integrating the above influence measure, we

propose sticky score:

SSI,p(t) =
M+ + αF++

M− + βF− + γ + Sim(s1, t)

where M+ + αF+ rewards positive values

(i.e., increasing similarity) in L, andM− + βF−

penalizes negative values. Sim(s1, t) is used to
penalizes any semantic proximity between token t
and the target sentence s1, preventing artificially
inflated anomaly scores when their meanings are

closely aligned. γ > 0 is a small constant (e.g., γ =
10−8) to ensure numerical stability. Parameters α

12Recall for (s1, s2) ∈ Pf , Sim(s1, s2) < u, and a sticky
token should make |Sim(s1, I(s2, t, k))− u| smaller.

13As s1/s2 is randomly chosen from Sf , their order does
not matter and w.lo.g the insertion is for s2.

Algorithm 1: Token Validation

Input: C: the set of candidate tokens,
Pf : the set of filtered sentence pairs,

I: the set of insertion operations,
E: embedding model, n: insertion number,
u: mean similarity of vocab token
embeddings, ε: threshold
Output: Ω: validated sticky tokens

1 Ω← ∅
2 forall t ∈ C do
3 is_sticky ← True;

4 forall (s1, s2) ∈ Pf do

5 for I ∈ I do
6 s∗2 ← I(s2, t, n); e1 ← E(s1),

e∗2 ← E(s∗2);
7 if |Sim(e1, e

∗
2)− u| > ε then

8 is_sticky ← False;

9 break

10 if ¬is_sticky then
11 break;

12 if is_sticky then
13 Ω← Ω ∪ {t}

14 return Ω;

and β are tuning factors that allow the detection

to balance the consideration of magnitude and

frequency factors.

By aggregating the influence introduced by all

types of insert operations, across all the filter

sentence pairs, we obtain an overall sticky metric

for token t:

SS(t) =
∑

I∈I

∑

p∈P
SSI,p(t)

SS(t) measures how well (the influence of)

token t fits our expectation or what characterizes
sticky tokens. The higher the value of SS(t), the
more likely t is a sticky token. Given an embedding
model, we rank all its tokens based on their values

of SS(t) and shortlist those ranked top 2% to

obtain our candidate token set C. Note that only a
sampled set of sentence pairs are used in calculating

SS(t) and we need to further validate whether the
shortlisted tokens in C are indeed sticky ones.

D.4 Validation

We validate whether the previously shortlisted

tokens are indeed sticky ones by determining
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Algorithm 2: Adaptive Threshold

Input: E: target embedding model,
GE : the set of GE(t) values for all tokens
t ∈ C, α: the hyperparameter (default: 1.5)
Output: ε: the threshold for model E

1 ε← ∅;
2 Calculate quartiles:

Q1E ← quantile(GE , 0.25);
Q3E ← quantile(GE , 0.75);
IQRE ← Q3E −Q1E ;

3 Compute threshold:

εE ← Q3E + α× IQRE ;

4 return ε;

whether it adheres to the definition of a sticky token

(Definition 1). At this stage, we use all the samples

in the set of sentence pairs Pf from Section D.1.

The overall process of validation stage is shown in

Algorithm 1.

D.4.1 Adaptive Threshold

As mentioned above, for the tokens in the candidate

token set: t ∈ C, we need to calculate

|Sim(s1, I(s2, t, k))−u| according to Definition 1,
and for clarity we denote this value as GE(t) for
token t and model E:

GE(t) = |Sim(s1, I(s2, t, k))− u|,

GE = {GE(t) | t ∈ C}

where GE represents the set of GE(t) values
for all tokens t in the candidate token set C of

the model E. As detailed in Algorithm 2, we

present an adaptive thresholding algorithm inspired

by statistical anomaly detection theory. This

approach leverages the interquartile range (IQR)

to dynamically identify outliers without being

constrained by distributional differences between

models (Grubbs, 1969).

E Detection Experiment Details

Dateset As mentioned in Section 4.1, the

detection of sticky tokens needs sentences to feed

into embeddingmodels and computing the semantic

similarity between embeddings. TheNLP taskmost

closely related to this process is Semantic Textual

Similarity (STS). For our analysis, we utilize the

STS datasets included in the widely recognized

Massive Text Embedding Benchmark (MTEB)

(Muennighoff et al., 2023), which includes STS12,

STS13, STS14, STS15, STS16, STS17, STS22,

STSBenchmark, BIOSSES, SICK-R 14 (Agirre

et al., 2012, 2013, 2014, 2015, 2016). We used

the test sets of these datasets, each containing

between 1k and 20k sentences. Most datasets are

monolingual English, and for multilingual datasets,

we only used their English subsets.

Target Text Embedding Models As illustrated

in Table 5, we evaluated STD using models

from 14 different model families. For embedding

models that support Matryoshka Representation

Learning (Kusupati et al., 2024), we utilize

the highest-dimensional vectors with default

parameters. For models that require prompts, we

employ the default prompts as specified in the

original papers.

Ablation Study Following Definition 1 and

Section 4.3, we need to choose values for n (the

number of insertions), k (the number of sampled
sentence-pairs), and the threshold ε for model

validation. We conducted some ablation studies

to balance between computational efficiency and

detection effectiveness.

First of all, we need to establish a certain

understanding of the running time of text

embedding models. Our code has implemented

the batch data parallelism. For a 7B embedding

model, when n = 10, sentence pair k = 10, and
the number of sentence pairs |S| = 200, it will
take 25 hours for the detection pipline to detecting

the all vocabulary, so it is impractical to exceed

this configured parameter number. Therefore, we

define this set of parameters as the upper bound,

and the results obtained under this configuration

serve as the ground truth for sticky token detection.

Additionally, we conducted an ablation study on

the ST5-base model, with the results presented in

Table 6. To balance computational efficiency and

detection effectiveness, we selected n = 8 and

k = 5.

The corresponding thresholds used in our work

for each model are provided in Table 7. We obtain

this set of parameters by using Algorithm 2. Please

note that threshold values in Table 7 are computed

for arbitrary sentence pairs, and values such as

0.19 are expected given the varying similarity

distributions across different embedding models.

14https://huggingface.co/mteb?search_datasets=st
s#:~:text=2-,Datasets,-13
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Model Family Model Names

Sentence-BERT (Reimers and Gurevych, 2019b) all-MiniLM-L6-v2,all-mpnet-base-v2

SimCSE (Gao et al., 2022) sup-simcse-bert-base-uncased, sup-simcse-bert-large-uncased, sup-

simcse-roberta-base, sup-simcse-roberta-large

Sentence-T5 (Ni et al., 2021a) sentence-t5-base, sentence-t5-large, sentence-t5-xl, sentence-t5-xxl

GTR (Ni et al., 2021b) gtr-t5-base, gtr-t5-large, gtr-t5-xl, gtr-t5-xxl

Instructor (Su et al., 2023) instructor-base, instructor-large, instructor-xl

E5 (Wang et al., 2024b,c) e5-small, e5-base, e5-large , e5-mistral-7b-instruct

BGE (Xiao et al., 2024) bge-small-en-v1.5, bge-base-en-v1.5, bge-large-en-v1.5

AnglE (Li and Li, 2024) UAE-Large-V1

Nomic (Nussbaum et al., 2025) nomic-embed-text-v1, nomic-embed-text-v1.5

GTE (Li et al., 2023) gte-small, gte-base, gte-large, gte-base-en-v1.5, gte-large-en-v1.5, gte-

Qwen2-1.5B-instruct, gte-Qwen2-7B-instruct

jina (Sturua et al., 2024) jina-embeddings-v3

KaLM (Hu et al., 2025) KaLM-embedding-multilingual-mini-instruct-v1 (abbreviated as

KaLM-instruct-v1), KaLM-embedding-multilingual-mini-instruct-

v1.5（abbreviated as KaLM-instruct-v1.5）
GritLM (Muennighoff et al., 2024) GritLM-7B

SFR (Yavuz et al., 2024) SFR-Embedding-2_R, SFR-Embedding-Mistral

Table 5: Target text embedding models used in the experiments.

Set(n, k) Runtime (h) Accuracy (%) F1-Score

(5, 3) 1.1 83.7 0.812

(6, 4) 1.8 88.4 0.862

(7, 5) 2.1 90.6 0.891

(8, 5) 2.5 92.1 0.907

(9, 6) 3.3 93.8 0.923

(10, 10) 4.9 100.0 1.000

(8, 6) 2.7 91.2 0.896

(7, 4) 1.9 89.1 0.878

Table 6: Ablation study on parameter selection for sticky

token detection

Model Threshold

all-MiniLM-L6-v2 0.0865

all-mpnet-base-v2 0.0742

bge-base-en-v1.5 0.1649

bge-large-en-v1.5 0.1686

bge-small-en-v1.5 0.1596

e5-base 0.0819

e5-large 0.0796

e5-mistral-7b-instruct 0.1254

e5-small 0.0777

GritLM-7B 0.2089

gte-base 0.0546

gte-base-en-v1.5 0.0892

gte-large 0.0652

gte-large-en-v1.5 0.0651

gte-Qwen2-1.5B-instruct 0.1841

gte-Qwen2-7B-instruct 0.1542

gte-small 0.0542

gtr-t5-base 0.0548

UAE-Large-V1 0.1721

Model Threshold

gtr-t5-large 0.0451

gtr-t5-xl 0.0562

gtr-t5-xxl 0.0543

instructor-base 0.0690

instructor-large 0.0706

instructor-xl 0.1165

nomic-embed-text-v1 0.0362

nomic-embed-text-v1.5 0.0254

sentence-t5-base 0.1106

sentence-t5-large 0.1153

sentence-t5-xl 0.1303

sentence-t5-xxl 0.1233

SFR-Embedding-2_R 0.1243

SFR-Embedding-Mistral 0.0568

sup-simcse-bert-base-uncased 0.1832

sup-simcse-bert-large-uncased 0.1952

sup-simcse-roberta-base 0.1523

sup-simcse-roberta-large 0.1644

jina-embeddings-v3 0.1281

KaLM-v1 0.0764

KaLM-v1.5 0.0925

Table 7: Threshold to validate sticky token . We obtain

this set of parameters by using Algorithm 2. Note that

these values are derived from the standard deviation,

not the variance, between sentence similarities.

Category Task

Retrieval

SciFact

ArguAna

NFCorpus

Reranking
SciDocsRR

StackOverflowDupQuestions

Clustering

BiorxivClusteringS2S

MedrxivClusteringS2S

TwentyNewsgroupsClustering

Pair Classification SprintDuplicateQuestions

Classification

Banking77Classification

EmotionClassification

MassiveIntentClassification

STS

STS16

SICK-R

STSBenchmark

Summarization SummEval

Table 8: The subset of MTEB evaluation benchmark

used in downstream impact studies.

F Downstream task detail

We assess how sticky tokens degrade contextual

representations through sequence-level evaluation

on text embedding tasks.

Set up we evaluate on the Massive Text

Embedding Benchmark (MTEB) (Muennighoff

et al., 2023), a collection of 7 diverse embedding

task categories. MTEB consists of diverse small

and large embedding tasks. To speed up the

evaluation, we consider a representative subset of

16 tasks from MTEB for our analyses, presented
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Categories → Classification Clustering Pair Classification Reranking Retrieval STS Summarization

Datasets → Banking77 Emotion MassiveIntent Biorxiv Medrxiv
TwentyNews

groups

SprintDuplicate

Questions

StackOverflow

DupQuestions
SciDocsRR SciFact ArguAna NFCorpus SICK-R STS16

STS

Benchmark
SummEval

sentence-t5-base 76.60 51.34 69.70 23.11 26.03 49.27 91.23 48.46 73.96 45.76 44.84 28.64 80.18 84.03 85.52 31.39

w/ normal token 75.73 51.30 66.57 20.04 25.06 37.17 87.86 44.85 72.05 44.58 45.41 28.48 76.72 79.69 81.32 30.32

w/ sticky oken 75.20 50.20 66.83 15.02 20.41 35.38 88.39 45.16 71.17 26.76 42.14 13.65 76.32 79.26 81.24 30.84

gte-base-en-v1.5 86.72 46.34 77.67 37.39 32.31 48.66 95.03 52.18 85.16 76.79 63.65 35.85 79.38 85.02 86.06 31.35

w/ normal oken 85.87 46.10 74.92 36.31 32.01 44.68 94.19 50.00 84.67 73.36 62.14 35.22 77.36 81.75 83.65 31.87

w/ sticky token 84.44 44.26 70.36 36.11 31.03 45.20 89.97 46.16 83.77 75.41 61.58 35.77 74.85 76.96 78.49 30.46

bge-base-en-v1.5 83.99 54.61 72.64 36.62 31.68 50.75 96.37 54.62 87.49 73.76 63.62 36.81 80.30 85.47 86.42 31.04

w/ normal token 82.57 52.70 66.98 36.20 30.74 44.27 95.18 50.94 86.59 72.91 60.63 37.15 76.10 80.97 82.02 29.97

w/ sticky oken 82.31 51.98 67.62 35.93 31.06 43.36 94.95 50.99 86.61 73.70 61.31 37.05 77.80 80.11 81.72 30.31

instructor-base 76.92 48.48 66.00 26.40 28.38 52.77 92.06 50.66 79.36 57.88 51.18 30.76 80.02 84.78 85.85 30.57

w/ normal token 75.07 45.79 62.38 18.05 23.13 50.64 88.39 47.66 77.92 57.70 47.45 29.77 75.48 77.97 79.99 30.37

w/ sticky oken 76.37 47.66 64.62 26.05 26.55 50.55 91.30 49.67 76.63 43.47 47.03 23.11 78.86 81.96 84.21 29.17

e5-base 76.27 51.85 66.65 29.92 27.67 43.75 94.19 48.18 81.01 71.88 53.03 37.09 80.66 84.49 86.35 31.04

w/ normal token 74.85 49.91 63.00 28.94 26.51 22.15 91.37 44.11 79.85 71.36 51.13 37.15 76.01 78.17 79.42 30.76

w/ sticky oken 75.13 49.30 61.91 27.02 24.92 20.00 91.53 44.80 80.03 70.95 49.14 37.01 77.17 77.68 80.19 29.99

simcse-bert-base 75.49 45.69 67.21 25.70 25.85 31.67 81.74 40.32 71.14 33.89 39.56 13.49 80.62 80.71 82.69 31.17

w/ normal token 71.42 43.49 60.38 25.11 25.19 28.40 76.54 37.34 70.02 33.66 36.79 13.45 77.53 75.82 78.32 30.76

w/ sticky oken 72.40 43.34 61.03 24.80 25.17 29.22 76.51 38.31 70.25 29.89 38.38 8.84 77.74 77.05 79.53 30.18

all-mpnet-base-v2 81.7 42.23 69.76 34.82 33.42 50.07 90.15 51.98 88.65 65.57 46.52 33.29 80.59 80.03 83.42 27.49

w/ normal token 79.7 40.01 64.1 33.93 32.55 39.2 86.24 47.33 87.77 65.14 44.25 33.2 77.8 68.13 74.11 28.3

w/ sticky oken 79.64 40.65 65.02 34.05 32.16 39.28 85.87 47.79 87.77 64.81 43.98 33.16 78.04 68.2 73.19 26.17

UAE-Large-V1 87.73 51.72 76.24 37.24 31.18 51.72 97.24 55.32 87.49 73.91 66.15 37.61 82.62 86.61 89.06 32.03

w/ normal token 86.09 48.16 72.13 35.79 30.96 40.48 96.23 50.44 86.75 74.51 63.67 37.70 80.72 80.43 84.23 31.99

w/ sticky oken 86.56 50.43 72.79 35.98 30.94 47.20 96.52 52.44 86.94 72.63 63.48 37.79 81.53 83.13 86.00 30.84

e5-mistral-7b-instruct 78.60 48.41 71.15 34.47 32.29 47.31 89.88 46.56 82.09 75.18 53.88 33.26 80.76 84.83 84.59 31.07

w/ benign token 77.56 46.93 68.73 31.85 30.32 44.84 89.10 45.15 80.77 74.71 54.18 34.57 79.13 79.30 81.27 30.15

w/ sticky oken 74.95 40.16 65.32 28.92 28.37 40.78 80.57 41.01 79.07 72.21 55.30 33.17 74.85 74.08 67.46 27.15

gte-Qwen2-7B-instruct 84.00 55.28 77.46 39.16 33.34 52.34 93.13 52.87 86.25 79.55 64.71 40.33 78.06 82.82 81.61 30.46

w/ benign token 82.89 54.43 74.06 38.05 32.67 48.35 93.08 49.39 85.66 79.68 63.66 40.59 71.79 74.24 72.30 29.95

w/ sticky oken 81.48 53.22 72.84 32.77 29.64 47.50 86.69 43.40 81.49 72.61 55.03 34.45 62.75 71.69 66.81 28.38

GritLM-7B 70.44 36.03 62.90 23.67 24.13 19.57 58.58 35.56 60.05 44.57 37.33 6.99 58.07 57.60 48.32 24.11

w/ benign token 62.05 35.13 56.75 14.75 18.80 10.94 44.45 29.86 53.90 39.52 33.61 6.25 27.69 32.07 27.29 25.80

w/ sticky oken 56.42 34.91 49.36 19.41 15.82 10.04 40.73 26.18 48.93 36.41 29.73 6.19 26.64 41.04 23.69 22.81

Table 9: Results on downstream tasks. We compared the performance of 11 models, comparing their baseline

results with perturbation of sticky tokens and normal tokens.

in Table 815. To make sure that our analyses are

not biased towards one specific category or task,

this subset includes tasks from each category with

almost the same proportion compared to the full

MTEB.

For each model under investigation, we have

previously identified its associated list of sticky

tokens, as delineated in Section 5.2. To establish

a balanced comparison, an equivalent number of

tokens were randomly sampled from the model’s

vocabulary to serve as normal tokens. The seven

tasks under consideration can be stratified into two

primary types: Sentence-to-Sentence (S2S) and

Sentence-to-Paragraph (S2P) tasks. For S2S tasks,

sticky or normal tokens were inserted either at the

start or end of a sentence. For S2P tasks, these

tokens were inserted either at the beginning or

the end of a paragraph. The quantity of tokens

added was strategically set to constitute 10% of the

original sentence or paragraph’s token length.

Results Table 9 shows the results of our

evaluation on 16 tasks of 7 categories. Compared

with normal tokens, sticky tokens demonstrate

higher destructiveness.

G Explainability of Causes details

In this section, we attempt to investigate the

underlying causes of the sticky token phenomenon.

To systematically explain this phenomenon, we

compare the intermediate results extracted from

model layers and analyze the observed attention

15Evaluating Mistral-7B on the full MTEB benchmark
requires over 40 hours using 8x A100 GPUs.

patterns and layer-wise divergence between sticky

tokens and normal tokens.

Setup We experimented with the ST5-base

model by creating a dataset of 1,000 sentences

sampled from English Wikipedia. These sentences

cover various topics to ensure generalizability.

For analysis, we utilized the validated sticky

tokens from Section 5.2. To establish a balanced

comparison, an equivalent number of tokens were

randomly sampled from the model’s vocabulary to

serve as normal tokens.

For each sentence, we generated two variants:

1) Sticky Token Variant: The original sentence

inserted with a sticky tokens validated in

Section 5.2 (e.g., </s>, lucrarca). 2) Normal token

Variant: The original sentence inserted with a

normal tokens randomly selected from the model’s

vocabulary.

We select a key feature to represent the model’s

internal state, i.e., attention patterns. The attention

patterns capture the relative importance and

relationships between tokens, providing insights

on how the model synthesizes and modulates new

representations within the attention head.

Attention Pattern Disparity Self-attention

mechanisms in Transformer-based models

dynamically allocate weights to tokens based on

their contextual relevance.

Given an input sequence X ∈ Rn×d, where

n is the sequence length and d is the embedding
dimension, self-attention linearly projects X into

query, key, and value representations, i.e., Q, K,

and V . The attention scores matrix A is then
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Figure 14: A diagram of how to calculate the attention

patterns of sticky and normal tokens.

computed by taking the dot product between the

query and key matrices, followed by a softmax

normalization. The attention output is obtained

by multiplying the attention scores with the value

matrix.

A = softmax

(
QK>
√
d

)

Attention(Q,K, V ) = A · V

To analyze the behavior of Transformer-based

models during sequence processing, we introduce

the concept of attention patterns, which can be

extracted from the corresponding column A[: , n]
of the attention scores matrixA. For a bidirectional
encoder like ST5-base, the attention scores are

computed across all tokens in the input sequence

without masking.

As illustrated in Figure 14, for each sentence

and attention head, we extract the values along
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Figure 15: The example distribution of attention patterns.

Sticky tokens (red) exhibit higher frequency in high-

attention regions (>0.4) compared to normal tokens

(blue).
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Figure 16: Wasserstein distance and KL divergence of

the probability distributions between sticky tokens and

normal tokens in different intermediate layers of ST5-

base model.

the destination dimension of the attention score

matrix at the position of the added token. Next,

a comprehensive statistical analysis is performed

to discern the patterns between sticky tokens and

normal tokens.

Our analysis of attention scores reveals that

sticky tokens exhibit distinct attention patterns

compared to normal tokens. As shown in Figure 15,

when sticky tokens are inserted to sentences,

their attention weights in intermediate layers

concentrate disproportionately in high-value ranges

(e.g., weights > 0.4), whereas normal tokens follow

a smoother, more Gaussian/Normal distribution.

This suggests that sticky tokens dominate the

model’s focus and disrupt the balanced contextual

representation of input texts.

Layer-Wise Amplification of Anomalies To

illustrate the anomalies across different layers,
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we employ the Wasserstein distance (Vaserstein,

1969) to quantify the differences in the outputs

of intermediate layers generated by normal and

sticky tokens. This approach helps uncover the

variations in the model’s internal mechanisms when

processing these two types of tokens. In this

study, a largerWasserstein distance signifies amore

significant divergence in distributions.

The Wasserstein distance (Vaserstein, 1969)

between the attention patterns of sticky and

normal tokens (Figure 16) further elucidates how

anomalies propagate across layers.(We also plotted

the graph of KL divergence, which is similar to

the Wasserstein distance, as shown in Figure 16.)

In early layers (1–6), the divergence remains

moderate, indicating that shallow processing retains

some robustness. However, from mid to late layers

(6–12), the distance increases sharply, peaking at

the final layers. This reflects a compounding effect:

minor irregularities in early layers are progressively

amplified as deeper layers integrate higher-order

semantic features.

For text embedding models, the amplification

disrupts the hierarchical abstraction of semantics.

The anomalous intermediate results caused by

sticky tokens are not uniformly distributed across

all layers of the model but are concentrated and

amplified in specific key layers.

H Practical Implications and Mitigation

H.1 Implication: Adversarial Attacks on

LLM RAG Systems

A promising direction is leveraging sticky tokens

for adversarial attacks in Retrieval-Augmented

Generation (RAG) systems. RAG operates by:

• Retrieving documents semantically similar to

a query using text embeddings.

• Generating answers conditioned on the

retrieved documents.

Assuming that LLMs implicitly trust the

embedding model’s outputs, sticky tokens could

be exploited to manipulate retrieval results. For

instance, by injecting sticky tokens (e.g., lucrarea)

into documents with toxic content, those documents

may abnormally cluster near benign queries due

to a mean-pulling effect. Consequently, toxic

documents might dominate the retrieval results for

otherwise innocuous queries (e.g., “how to improve

mental health?”), potentially creating the risk of

poisoning the LLM’s output.

H.2 Mitigation: Potential Strategies

We propose twomitigation strategies for addressing

sticky tokens, and more strategies can be explored

in future work.

Tokenizer Sanitization Most embedding models

are fine-tuned from pre-trained foundation models

(e.g., T5 (Raffel et al., 2020), BERT (Devlin

et al., 2018)), inheriting their tokenizers. During

fine-tuning, these tokenizers may include

problematic tokens (e.g., unused tokens) that

become sticky. A proactive measure could

involve vocabulary pruning-removing tokens

with abnormal frequencies (e.g., unused tokens,

infrequent multilingual tokens, or non-ASCII

characters) prior to fine-tuning the embedding

model. However, the impact of adjusting the

corresponding token embedding layer parameters

due to modifications in the model’s vocabulary

remains to be explored in future work.

Runtime Detection For deployed models,

a lightweight detector could flag input texts

containing suspected sticky tokens (e.g., tokens

with extreme frequency or abnormal positional

distributions). Once detected, these tokens could

be masked or re-embedded through context-aware

recalibration.

I Compute Statement

Most experiments presented in this paper were

conducted on a computing cluster (PowerEdge

XE9680 server) equipped with 8 NVIDIA A100

GPUs (80GB memory) running Ubuntu 22.04.

We implement our framework in Python and use

downloaded model checkpoints from Hugging

Face. For all models, we employed 32-bit floating-

point precision (fp32/float32) with standard default

configurations.
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