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Abstract

Large language models have opened up a world
of possibilities for various NLP tasks, spark-
ing optimism for the future. Despite their po-
tential, LLMs have yet to be widely used as
agents on real mobile devices. The main chal-
lenge is the need for high-quality data sources.
Time constraints and labor intensity often hin-
der human annotation. On the other hand,
existing LLMs exhibit inadequate completion
rates and need a robust data filtration strat-
egy. Given these challenges, we develop a
framework called ANDROIDGEN to enhance
the capabilities of LLM-based agents under
data scarcity. In addition, we leverage AN-
DROIDGEN to collect trajectories given human
tasks and train open-source LLMs on these
trajectories to develop an open-source mobile
agent without manually labeled trajectories.
We extensively evaluate ANDROIDGEN with
AndroidWorld, AitW, and various popular ap-
plications, demonstrating its improvements and
revealing potential areas for future improve-
ment. Code, model, and data are available at
https://github.com/THUDM/AndroidGen.
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*LH, GJ and LX contributed equally.
†Work done while these authors interned at Zhipu AI.
‡Corresponding author.

1 Introduction

With the advancements in large language mod-
els (LLMs) (Achiam et al., 2023; Touvron et al.,
2023a,b; GLM et al., 2024; Zeng et al., 2022;
Zhang et al., 2022; Scao et al., 2022; Team et al.,
2023), the capabilities of AI have significantly ex-
panded, reshaping our understanding of it. These
developments have heightened expectations for
LLMs to act as intelligent agents and autonomously
handle various tasks. The emergence of mo-
bile agents, primarily through pervasive smart-
phones, symbolizes a significant shift, revolutioniz-
ing human-technology interactions and extending
the boundaries of machine-driven productivity (Xi
et al., 2023; Wang et al., 2023a; Liu et al., 2023b).

However, despite various attempts at mobile
agents have achieved considerable success (Baech-
ler et al., 2024; Chen and Li, 2024; Cheng et al.,
2024; Hong et al., 2023), practical applications
still face challenges. For instance, agents often fail
when encountering complex tasks or unfamiliar
scenarios. Additionally, collecting extensive data
on digital agents in real environments remains a
significant unresolved challenge. Unlike traditional
conversational datasets, data collection for digital
environments presents the following difficulties:
• Scenario Diversity: Different scenarios exhibit

substantial variability, posing significant chal-
lenges to LLMs’ generalization capabilities (Lai
et al., 2024). Consequently, the collection of
tasks must encompass a wide range of diverse
scenes and functionalities.

• Complex Task Data Collection: For complex
tasks involving multiple requirements, data col-
lection typically entails numerous steps, neces-
sitating robust planning abilities and precise ex-
ecution (Zhou et al., 2023; Rawles et al., 2024).
This process often leads to increased costs and
lower completion rates.

• Data Filtration: Effective data quality control
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type: 16597910719

type: Beauty is in ...

Task 2: Sent a text message using Simple SMS Messenger to 
+16597910719 with message: Beauty is in the eye of the beholder.

Task 3: Search for Cinemark Century Mountain View 16, get directions for 
driving and start navigation.

type: Cinemark . . .
type: LeBron James

Task 4: Search for the user Lebron James and follow him.

type: tesla

Task  1:  Search  for  the  channel  "tesla"  and  subscribe  to  the  channel..

Figure 2: Examples of ANDROIDGEN’s execution on four user tasks.

demands meticulously examining the environ-
ments and operations to ensure full compliance
with the task description. This process is both
challenging and time-consuming, thereby further
augmenting overall expenditures.

Currently, prevalent methods of manual and au-
tomated data collection (Wang et al., 2022; Hon-
ovich et al., 2022; Peng et al., 2023; Mukherjee
et al., 2023) face significant challenges. Manual
annotation requires considerable time and finan-
cial resources, making collecting large volumes of
high-quality trajectory data challenging. On the
other hand, utilizing advanced LLMs to accom-
plish tasks automatically is a potential method (Xu
et al., 2023; Luo et al., 2023; Meng et al., 2022;
Lai et al., 2024). However, even state-of-the-art
LLMs like GPT-4 (Achiam et al., 2023) and Gem-
ini (Team et al., 2023) still result in an unacceptably
low success rate. Moreover, no effective automated
solution selects high-quality, successful outcomes.

Inspired by these challenges, we build an agent
framework, ANDROIDGEN, designed to enhance
the agent capabilities of LLMs in Android envi-
ronments, particularly effective in scenarios where
high-quality training data is scarce. ANDROIDGEN

includes four modules: ExpSearch, ReflectPlan,
AutoCheck, and StepCritic.

• ExpSearch enables LLMs to perform in-context
learning through completed similar trajectories,
thereby improving agent capabilities and facili-
tating generalization from simpler tasks to more

complex ones through these samples.
• ReflectPlan enables self-reflection on the current

environment and updates the plan’s status, thus
enhancing the agent’s long-term reasoning capa-
bilities.

• AutoCheck proactively verifies the validity of
each agent’s operation, mitigating the risk of task
failure due to operation errors.

• StepCritic decomposes tasks into sub-goals and
provides step-by-step trajectories evaluation, of-
fering fine-grained labels for model optimization.

We leverage ANDROIDGEN and LLMs to con-
struct a robust Android agent under data scarcity.
It can also serve as a pipeline to generate extensive
browsing trajectories without human annotation.
Furthermore, we introduce a data algorithm uti-
lizing the fine-grained labels from StepCritic to
filter and augment the data, thus creating a high-
quality dataset for Android navigation agents. By
fine-tuning open-source LLMs with this dataset,
we develop a strong open-source Android agent
without manually labeled trajectories.

To validate its effectiveness, we test ANDROID-
GEN on various Android benchmarks, including
AndroidWorld (Rawles et al., 2024), AitW (Rawles
et al., 2023), and our popular Android app bench-
mark. The results demonstrate the design advan-
tages of ANDROIDGEN, particularly regarding rea-
soning capabilities, operational accuracy, and gen-
eralization ability. These findings underscore the
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potential of ANDROIDGEN as a versatile and effi-
cient tool in the mobile application.

In summary, our contributions are as follows:
• We develop ANDROIDGEN, a novel Android

agent framework, including ExpSearch, Reflect-
Plan, and AutoCheck to enhance the agent’s rea-
soning capabilities and operation accuracy and
empower it to generalize to complex tasks.

• We introduce StepCritic for mobile devices pro-
viding fine-grained agent trajectories evaluation.

• We employ ANDROIDGEN to generate extensive
trajectories and propose a data algorithm to con-
struct a high-quality dataset. We then train open-
source LLMs on this dataset to develop a robust
open-source Android language agent.

• We conduct evaluations of ANDROIDGEN

against several baselines across various Android
benchmarks, demonstrating the improvements of
ANDROIDGEN over existing systems and identi-
fying potential avenues for future research.

2 Related Work

Large Language Models. Large language mod-
els (LLMs), such as GPT-4 (Achiam et al., 2023),
Gemini (Team et al., 2023), Claude-2 (Anthropic,
2023), the Llama series (Touvron et al., 2023a), the
ChatGLM series (Zeng et al., 2022; Du et al., 2022),
OPT (Zhang et al., 2022), and BLOOM (Scao et al.,
2022), have demonstrated remarkable capabilities
in knowledge and language understanding, spark-
ing a lot of research interest.

In-Context Learning. LLMs have shown emer-
gent abilities such as in-context learning (Brown
et al., 2020; Schick and Schütze, 2020) when the
scale expands to a certain level. APE (Zhou et al.,
2022) introduces an iterative search methodology
to optimize prompts autonomously. EPR (Rubin
et al., 2022) retrieves relevant examples from a
fixed dataset and incorporates these examples into
the prompt to enhance response quality. These
approaches leverage manual or static searching to
perform in-context learning, restricting dynamic
self-improvement within interactive environments.

Mobile Agents. With LLMs continually surpass-
ing expectations, numerous efforts have integrated
them within digital environments (Nakano et al.,
2021; Liu et al., 2023a; Mei et al., 2024). Mo-
bile phones represent typical environments for in-
tegration, given their pervasive role in daily life.
AppAgent (Yang et al., 2023b) develops a multi-

modal framework allowing smartphones to learn
and perform complex tasks through human-like
interactions. Mobile-Agent (Wang et al., 2024)
autonomously navigates and operates within app
interfaces using visual perception, adapting across
various mobile environments without XML. See-
Act (Zheng et al., 2024) leverages GPT-4V to
act upon human instructions on websites, signif-
icantly surpassing text-only models when manu-
ally grounded. These agents rely on closed-source
LLMs, often overlooking crucial aspects such as
affordability, reproducibility, and transparency in
complex interactive tasks.

Machine Reasoning and Planning. To qualify
as a robust agent, one must possess strong reason-
ing capabilities. The dual-system theory (Daniel,
2017) shed light on the cognitive processes in hu-
man thinking. Chain-of-Thought (Wei et al., 2022)
enables LLMs to think, enhancing their reasoning
abilities. ReAct (Yao et al., 2022) leverages LLMs
to produce reasoning processes and actions, facil-
itating greater synergy. Several works (Yin et al.,
2024; Wang et al., 2023b; Xie et al., 2023) focus
on task decomposition through subgoal generation
with LLMs, improving the planning capabilities.
However, these planning techniques do not reflect
the plan’s progress based on the environment and
execution outcomes. Consequently, they may not
be well-suited for complex multi-round scenarios.

Benchmarks of Mobile Agents. The primary
Android benchmarking approach relies on An-
droid emulators, where agents attempt to com-
plete various daily user tasks. AITW (Xing
et al., 2024) provides a training dataset and of-
fline evaluation metrics, utilizing automated par-
tial match calculations to assess trajectory correct-
ness. AndroidArena (Xing et al., 2024), on the
other hand, offers an emulator-based evaluation
environment and employs the longest common sub-
sequence to measure task completion rates. An-
droidWorld (Rawles et al., 2024) provides auto-
mated evaluation metrics for each task, resulting in
a more precise task completion determination.

Autonomous Evaluation. Pan et al. (Pan et al.,
2024) and DigiRL (Bai et al., 2024) propose using
an LLM-based autonomous evaluator to assess task
completion. However, their evaluation methodol-
ogy is limited to binary outcomes and lacks adap-
tive fine-grained assessment of trajectories. They
potentially overlook valuable trajectories, particu-
larly in complex scenarios.
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Task: Record an audio clip using Audio 
Recorder app and save it.
Step:
[1] Locate and open the "Search" function 
on the home screen ...
[2] Search for the "Audio Recorder" app ...

     Action: {"operation": "do", "action": "Click", "kwargs": {"id": "16"}}
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START
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Figure 3: Overview of ANDROIDGEN framework designed to complete tasks in Android. Our process comprises
three stages: preliminary, task execution, and update. Preliminary (a): ExpSearch retrieve the top-1 similar tasks and
trajectories from the database and feed them into the agent. Task Execution (b): ReflectPlan assesses the progress
and updates the plan. Then, the agent generates operations based on the environment, plan, and retrieval example.
AutoCheck verifies these operations, executing them if successful or regenerating them if not. Update (c): StepCritic
evaluates the trajectories in fine-grand and updates the database accordingly.

3 ANDROIDGEN Framework

This section introduces the ANDROIDGEN frame-
work for integrating LLMs into Android devices.
It enables a language agent to complete user tasks
through predefined input-output interfaces. We also
introduce a modular agent architecture to enhance
the LLM’s capabilities.

3.1 Environment

The environment, which serves as the substrate for
agent interaction, is pivotal in determining the limit
of task completion capabilities. We introduce our
environment setup based on input and output.

3.1.1 Observation Space
Our observation space is designed to provide com-
prehensive and accurate inputs to our agents, en-
suring that the received information mirrors what
a human user would perceive. We employ the An-
droid XML as our environmental representation,
simplifying and adding attribute details to facilitate
element type determination. This structured rep-
resentation enhances the LLM’s understanding of
the environment, enabling it to grasp element at-
tributes and states. The XML format can be found
in Appendix D.

3.1.2 Action Space
The action space defines how the agent interacts
with the environment. Establishing a complete ac-
tion space is crucial for the agent to fulfill user

requests. We define our action space using Python
function calls, leveraging the familiarity of LLMs
with Python. Furthermore, we represent the action
space using Python docstrings for brevity. Based
on our empirical insights, we delineate a concise
yet extensive action space suitable for the Android
environment, which can be found in Appendix C.

3.2 Agent Architecture

After the environment construction, we design the
agent architecture tailored to the digital environ-
ment. We aim to increase the LLMs’ capabilities
under data-scarce conditions within the Android en-
vironment. The algorithmic workflow is illustrated
in Figure 3. Next, we will detail the implementa-
tion of the four modules: ExpSearch, ReflectPlan,
AutoCheck, and StepCritic.

3.2.1 ExpSearch
ExpSearch is a novel approach leveraging LLM’s
in-context learning ability to optimize the agent
iteratively by learning from its own trajectories.
Our implementation consists of two parts:

Trajectory Collection We gather trajectories
where the agent self-samples to collect extensive
data for the agent to learn from itself. However,
the challenge is ensuring these trajectories meet
the task requirements. We employ StepCritic (see
Section 3.2.4) to assess the trajectories based on
their content and the given task. We preserve all
the agent’s trajectories and the completion status
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assessed by StepCritic, which will be utilized to
construct our trajectory database (see Section 4.1
for the details of the data collection process).

Trajectory Retrieval Our next challenge is choos-
ing the most similar and informative trajectory for
the given task to let the agent learn from. We first
identify a collection within the same context, such
as a specific application. It is crucial as tasks, even
when identical, may vary significantly in execu-
tion across different contexts. We then utilize Con-
triever (Izacard et al., 2021) to encode instructions
and compute similarity scores with embeddings
from the database. The top-1 result is selected as
our learning example. In addition, each time the
agent completes a task, we use StepCritic to assess
the trajectory and log it to the database, which en-
ables our agent to self-improve iteratively, fostering
easy-to-hard generalization in deployment.

3.2.2 ReflectPlan

In real-world complex digital environments, previ-
ous planning strategies are often overly optimistic
about the execution results and prone to failure
due to a lack of proper assessment of the current
progress. Therefore, we develop ReflectPlan that
enables self-assessment of the progress of tasks
during execution. This approach empowers the
agent to enhance planning and reflecting capabili-
ties. ReflectPlan operates in two phases, as shown
in Figure 3 (b):

Plan Initialization. Before the first execution step,
the agent analyzes the task and the environment to
generate a step-by-step plan to guide the following
task execution.

Plan Reflection. From the second step onwards,
the agent will reflect on the current progress and
update the plan based on the task’s progress. The
agent can also revise and create new plans when
encountering a failed state or entering a loop, en-
hancing planning robustness.

3.2.3 AutoCheck

LLMs’ operations are not flawless, even when the
plan is correct. They are like humans who may
make typos or incorrect clicks. However, unlike hu-
mans, LLMs struggle to detect and correct simple
errors, which can lead to task failure. Therefore,
we design the AutoCheck module to mitigate the
weakness and enhance agent robustness. Upon
generating the operation, AutoCheck proactively
verifies the response’s validity. When detecting

Table 1: AutoCheck type for ANDROIDGEN

Function Check Type

open_app(app_name) If { app_name } exists in the device
quote(content) If { content } is empty

do(action,id,text,dir)
action type:
Click If element { id } is on the screen
Long Press If element { id } is on the screen
Input Text If element { id } is on the screen

If element { id } contains { text }
Navigate Home If return to the home screen
Scroll If direction { dir } is valid
Swipe If direction { dir } is valid

potential issues or non-compliant actions, the sub-
sequent execution is terminated, and feedback is
provided to the agent in the next round.

Our experiments show that self-checking opera-
tions cause inconsistent assessment standards, lead-
ing to false positives that can harm performance.
We adopt a more straightforward and effective strat-
egy: checking if each operation type achieves the
expected outcome, such as the existence of ele-
ment IDs, type compliance, and scroll completion.
Table 1 details the operation validation types.

3.2.4 StepCritic

To collect high-quality trajectories for ExpSearch
and training, we build StepCritic. StepCritic is
built on GPT-4o, can decompose tasks into various
sub-goals, and evaluate the trajectory step-by-step.
This approach enables a granular assessment of the
trajectories, maximizing the data’s learning value.

Due to context length constraints, identifying
critical information for evaluation is essential. As
shown in Figure 4, we input the complete operation
sequence, along with the final state of the device, to
enhance the trajectory’s information density under
the constraint of limited context length. Then, we
instruct StepCritic to assess whether each sub-goal
is achieved and the corresponding steps.

 Action History

Step [1]:
do(action="Type",text="Recoder",
element_id="0") #<element id="0" 
class="EditText" clickable> ...

Final State
<element id="{id}" 
{clickable}>
 {text} 
</element > 
              . . . . . .

Task
Record a voice memo 
using the Audio 
Recorder app and 
store it on your device.

Step [2]:
do(action="Click", element_id="8")
#<element id="8" class=...

Step [3]:
do(action="Click", element_id="2") 
#<element id="2"class="Image"...

. . . . . .

Goal 1

Goal 2

Goal 3

Open the "Audio Recorder" app.

Complete the audio recording.

Save the recording file.

do(action="Click",element_id=
"8") # Click Audio Recorder

do(action="Click",element_id=
"2") # Click stop buttonNew Task

Open the "Audio Recorder" 
and complete audio recording

Open the “Audio Recorder”

Complete audio recording

Step 5

Step 2

Figure 4: ANDROIDGEN data construction workflow.
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In addition to the environment input, we inte-
grate the information from each module in the ar-
chitecture to facilitate the agent’s operations. For
detailed prompt organization, refer to Appendix E.

4 Building An Open-Source Android
Language Agent

In Section 3, we develop ANDROIDGEN frame-
work, which integrates existing LLMs to serve
directly as Android agents without prior training.
Next, we will detail the data collection process
and our designed data algorithm for ExpSearch
and training. Additionally, we will discuss our
approach to model training on the synthesized An-
droid trajectories, thereby constructing a robust
open-source Android language agent without hu-
man annotation.

4.1 Data Collection

We demonstrate how to set up a pipeline for data
construction with ANDROIDGEN, as shown in Fig-
ure 4. This pipeline can efficiently generate a lot of
high-quality Android browsing trajectories:

Task Formulation. We utilize GPT-4o to generate
about 300 task instructions drawing on the instruc-
tions in AndroidWorld. We ensure no reward sig-
nals or golden labels are employed during training
to prevent data leakage.

Agent Sampling. We then leverage ANDROIDGEN

with GPT-4o to sample a trajectory for each task.

Trajectory Recording. During the sampling pro-
cess, we build a recorder that records environmen-
tal and operational information at each step, which
is crucial for constructing a reproducible Android
navigation trajectory.

Trajectory Evaluation. Upon finishing each task,
we utilize StepCritic to assess the recorded trajecto-
ries. StepCritic lists each sub-goal of the task along
with the corresponding steps taken to achieve them
(where -1 indicates incomplete). If each sub-goal
is accomplished, the task is considered completed.

Trajectory Augmentation. For a task T and its
corresponding sequence S, T comprises multiple
sub-goals g1, g2, . . . , gn, each associated with com-
pletion steps p1, p2, . . . , pn (where pi = −1 if the
goal gi is not completed). Let gk be the first incom-
plete sub-goal (or gn if all sub-goals are completed).
We concatenate the sub-goals g1 + · · · + gi for i
ranging from 1 to k − 1, and considering the sub-
sequence {p1, . . . , pk−1} as the label, to formulate

new trajectories to augment our dataset. The algo-
rithm pseudocode is in Algorithm 1.

Algorithm 1: Data Augmentation Process
Data: Sequence of operations S for task T

with sub-goals g1, g2, . . . , gn and
completion steps p1, p2, . . . , pn

Result: Augmented dataset with new
trajectories

1 for each task T do
2 for each completion step pi do
3 if pi = −1 then
4 k ← i
5 break
6 end if
7 end for
8 if all sub-goals are completed then
9 k ← n

10 end if
11 new_trajectory← {}
12 for i← 1 to k − 1 do
13 concatenate gi to Tnew
14 add ( Tnew, { p1, . . . , pi } ) to

new_trajectory
15 end for
16 add new_trajectory to

augmented_dataset
17 end for
18 return augmented_dataset

We integrate the original and augmented tasks
from different sources to construct a dataset com-
prising more than 1000 trajectories.

4.2 Training

To develop a specialized open-source language
agent, we fine-tune GLM-4-9B and Llama-3-70B
on automatically constructed datasets. This ap-
proach enables the creation of a robust Android
agent without necessitating human annotation for
trajectories. We employ LoRA (Hu et al., 2021)
for LLM fine-tuning based on its advantages in
requiring a lighter training load and strong general-
ization, effectively mitigating overfitting. We train
the LLM with each step in the trajectories sepa-
rately. To enhance deployment efficiency, we mix
the planning and execution steps for fine-tuning,
equipping the LLM with capabilities for planning
and execution. The prompts for training are con-
sistent with Appendix E, facilitating seamless in-
tegration of the trained model into our framework.
Refer to Appendix B for training details.
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Table 2: Per-task performance on AndroidWorld. * indicates the model is fine-tuned.

Agent | SeeAct | M3A M3A M3A | ANDROIDGEN ANDROIDGEN ANDROIDGEN

Base Model | GPT-4o | Llama-3-70B Gemini-1.5-Pro GPT-4o | GLM-4-9B* Llama-3-70B* GPT-4o

AudioRecorder | 50.0 | 50.0 50.0 50.0 | 100.0 100.0 100.0
Calendar | 0.0 | 0.0 5.9 11.8 | 0.0 6.3 12.5
Camera | 50.0 | 50.0 50.0 50.0 | 50.0 100.0 100.0
Chrome | 33.3 | 0.0 0.0 0.0 | 0.0 0.0 0.0
Clock | 33.3 | 33.3 66.7 66.7 | 33.3 66.7 66.7
Contacts | 0.0 | 0.0 33.3 33.3 | 0.0 33.3 66.7
Expense | 22.2 | 0.0 11.1 22.2 | 33.3 33.3 37.5
Files | 50.0 | 0.0 0.0 50.0 | 50.0 50.0 50.0
Joplin | 25.0 | 0.0 25.0 50.0 | 75.0 50.0 100.0
Markor | 7.1 | 0.0 7.1 14.3 | 14.3 28.6 35.7
OpenTracks | 0.0 | 0.0 0.0 0.0 | 16.7 16.7 16.7
OsmAnd | 33.3 | 0.0 33.3 33.3 | 33.3 0.0 33.3
Recipe | 8.3 | 0.0 18.2 25.0 | 41.7 40.0 45.5
Retro | 0.0 | 0.0 0.0 25.0 | 0.0 25.0 50.0
Settings | 26.7 | 26.7 50.0 57.1 | 64.3 70.0 93.3
SMS | 16.7 | 33.3 33.3 33.3 | 57.1 66.7 57.1
Tasks | 16.7 | 16.7 16.7 33.3 | 0.0 0.0 16.7
Vlc | 50.0 | 0.0 0.0 0.0 | 0.0 0.0 50.0

Avg. | 15.9 | 8.8 19.8 27.7 | 29.2 35.3 46.8

5 Experiments

We conduct extensive experiments across various
scenarios to evaluate the performance of the AN-
DROIDGEN in executing a range of tasks within the
Android digital environment compared to common
baselines. To closely reflect the real user experi-
ence, we select benchmarks that utilize interactive
environments for evaluation. These benchmarks
include AndroidWorld, AitW, and the benchmark
we construct for popular applications.

5.1 AndroidWorld

We evaluate ANDROIDGEN on AndroidWorld
(Rawles et al., 2024), comparing our results with
M3A (Rawles et al., 2024) and SeeAct (Zheng
et al., 2024). To ensure a fair comparison, we stan-
dardize the action space and a11y tree (text) as
the environment input. We adapt SeeActchoice for
the Android environment by augmenting the action
space and applying heuristic filtering to modify the
environment input, following the approach utilized
in AndroidWorld. We use task success rate as the
evaluation metric. The results are in Table 2. In
addition, we perform a statistical analysis based
on AndroidWorld’s task difficulties to evaluate the
performance on different levels. The results are in
Appendix A.

5.2 Android in the Wild (AitW)

We also evaluate ANDROIDGEN on AitW (Xing
et al., 2024). To fairly compare DigiRL (Bai et al.,
2024), we follow its experiment setup and ran-
domly select 96 tasks from the test splits provided

Table 3: Performance on AitW. * indicates the model is
fine-tuned. Baselines are taken from DigiRL.

Method General Web Shopping

Set-of-Mark Gemini-1.5-Pro 13.5 8.3
GPT-4o 16.7 11.5

AppAgent Gemini-1.5-Pro 17.7 8.3
GPT-4o 16.7 8.3

SFT CogAgent* 25.0 38.5
AutoUI* 14.6 17.7

Off-to-On RL Filtered BC* 61.5 57.8
DigiRL* 71.9 67.2

ANDROIDGEN
GLM-4-9B* 65.6 59.4
Llama-3-70B* 74.0 79.2
GPT-4o 85.4 81.3

in DigiRL. For the environment, we utilize the
environment representation and action space de-
fined in Section 3.1 to evaluate ANDROIDGEN. We
leverage human experts for task assessments and
compute the task success rate. We compare AN-
DROIDGEN with baselines in DigiRL, including
prompting methods like Set-of-Mark (Yang et al.,
2023a) and AppAgent (Yang et al., 2023b), and
training methods like SFT and Offline-to-Online
RL (Bai et al., 2024). The results are in Table 3.

5.3 Popular Applications

In addition to the reproducible benchmark, we se-
lect eight globally popular mobile applications,
including Google Maps, X, YouTube, Spotify,
Chrome, etc., for evaluation. We preinstall the
applications on the simulator. For applications
requiring login, we use a unified, pre-registered
account to perform the login in advance. The envi-
ronment settings for ANDROIDGEN, SeeAct, and
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M3A follow the settings described in Section 5.1.
For AppAgent, we employ screenshots with identi-
fiers as input and its specific action space as output.
We construct five tasks for each application and
employ human experts to judge the results and cal-
culate the success rate. The results are in Table 4.

Table 4: Performance on popular applications. * indi-
cates the model is fine-tuned.

Agent Base Model SR Avg. Steps

SeeAct GPT-4o 22.5 7.9
M3A GPT-4o 40.0 7.3
AppAgent GPT-4o 57.5 6.7

ANDROIDGEN
GLM-4-9B* 35.0 7.2
Llama-3-70B* 52.5 7.4
GPT-4o 65.0 7.6

5.4 Evaluator Accuracy Comparison

To assess the performance of StepCritic, we em-
ploy trajectories generated by ANDROIDGEN as
the test set. We evaluate these trajectories using
StepCritic and the baselines (Pan et al., 2024). We
compare their prediction with environmental ora-
cle prediction and compute the accuracy for entire
trajectories to contrast the efficacy of StepCritic
with that of the baselines. Moreover, we also man-
ually evaluate StepCritic’s accuracy in predicting
whether each specific goal is achieved and the pre-
cision of the corresponding step prediction. The
results are in Table 5.

Table 5: Evaluator accuracy on AndroidWorld.

Model Sub-goal Acc. Overall Acc.

Completion Step

Captioner + Mixtral - - 82.4
Captioner + GPT-4 - - 84.6

StepCritic 92.8 82.3 87.9

5.5 Ablation Study

To assess the impact of different algorithms and
training data on agent performance, we conduct a
comprehensive ablation study in Table 6. We con-
duct experiments on AndroidWorld as our primary
performance indicator. To show the improvements
more straightforwardly, we present the accuracy
across different difficulty levels.

Algorithm Ablation. For algorithm ablation, we
validate the effectiveness of various algorithms
on GPT-4o. The result indicates a 56.5% overall
SR improvement with ReflectPlan and 149.2% for

Table 6: Ablation study.

Method Easy Medium Hard Avg.

Strategy Ablation (w/ GPT-4o)

Base Agent 35.0 5.9 0.0 20.7
+) ReflectPlan 51.7 14.7 0.0 32.4
+) AutoCheck 53.3 17.6 0.0 34.2
+) ExpSearch 65.0 32.4 11.8 46.8

Training Data Ablation (w/ Llama-3-70B)

Untrained 18.3 2.9 0.0 10.8
No Selection 28.3 2.9 0.0 16.2
Oracle-Selection 48.3 2.9 0.0 27.0
StepCritic 43.3 5.9 0.0 25.2
+) ExpSearch 55.8 12.5 5.9 35.3

medium-difficulty tasks. Additionally, incorporat-
ing AutoCheck reduces operational errors, increas-
ing overall SR by 5.6%. Lastly, ExpSearch enables
the agent to learn from simple tasks and generalize
to more challenging ones, resulting in substantial
improvements for both medium and hard tasks and
an overall SR increase of 36.8%.

Training Data Ablation. For the ablation of data
selection, we conduct experiments using Llama-
3-70B. We compare several scenarios: untrained,
no selection (i.e., all data), and data selection. For
selection methods, we choose StepCritic, environ-
mental feedback (oracle), and StepCritic with Ex-
pSearch. The result shows that data selection with
StepCritic significantly improves performance com-
pared to the untrained and no-selection scenarios,
approaching the efficacy of oracle selection. Inte-
grating ExpSearch enables our agent to generalize
from examples, achieving a substantial improve-
ment across diverse tasks.

5.6 Case Study and Error Analysis

We conduct case studies on Android devices to
explore potential optimizations. ANDROIDGEN

yields satisfactory results in most scenarios. How-
ever, our agent also has limitations. We identify
occasional errors during task execution, broadly
categorized into four types: vision, mathematical
counting, multiple app interactions, and memoriza-
tion. Table 7 summarizes the proportions of these
error types during evaluation. These errors high-
light areas for future improvement of our Android
agent. Detailed descriptions of specific good and
bad cases are in Appendix G.

5.7 Efficiency & Cost Analysis

Last, we calculate the efficiency and cost of AN-
DROIDGEN and M3A (Rawles et al., 2024) in data
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Table 7: Error distribution of ANDROIDGEN.

Error Type Proportion

Vision 15%
Math Counting 23%
Multiple App 26%
Memorization 20%
Others 16%

construction and compare with human annotation
(compliant with local regulations) in Table 8. Us-
ing 1,000 samples as an example, without quality
control, ANDROIDGEN’s efficiency and cost are
slightly better than those of M3A. Besides, our cost
is 12.5% of human annotation, and its efficiency is
275%. For quality-controlled data generation (not
compared with M3A due to the lack of quality con-
trol), ANDROIDGEN achieves efficiency 5.85 times
greater with only 5% of the human annotation cost
after selection and augmentation by StepCritic.

Table 8: Efficiency and cost statistics for M3A, human
annotation, and ANDROIDGEN (for 1,000 trajectories).

Metrics M3A Human ANDROIDGEN

Average Time per Step (s) 4.8 18 5.6
Average Time per Task (s) 49.5 120 43.7
Cost per Task ($) 0.12 0.8 0.1

Without Quality Control:
Total Cost ($) 120 800 100
Total Time (hr) 13.75 33.3 12.1

Success Rate (%) 32 80 58.2
Evaluation Cost per Task ($) - 0.20 0.005
Evaluation Time per Task (s) - 30 3.5
Data Augmentation (Factor) - - 2.52

With Quality Control:
Total Cost ($) - 1,250 71.6
Total Time (hr) - 52.1 8.9

6 Limitations

Despite the robust performance of ANDROIDGEN

in practical applications, there remains significant
room for improvement. We are committed to refin-
ing these aspects in future work.

6.1 Performance

While ANDROIDGEN has demonstrated an excel-
lent task completion rate, there remains significant
room for optimization in its performance. As delin-
eated in Table 7, the language agent often struggles
with visual-related tasks, underscoring the impor-
tance of integrating vision models to enhance the
agent’s capabilities. Furthermore, the agent still
faces substantial challenges in handling complex

or super long turn interaction scenarios, such as
those involving cross-application tasks and count-
ing. Incorporating large-scale adaptive inference
search strategies during the reasoning process may
present a promising approach to further increasing
the agent’s complex planning abilities.

6.2 Efficiency
Although ANDROIDGEN can complete tasks that
users are willing to delegate to agents, the large
scale of the system and model leaves much room
for improvement in execution efficiency. We fo-
cus on enhancing the operational capabilities of
smaller models in GUI environments. The small
language models have demonstrated satisfactory
performance as executors since they only need to
follow the plan’s instructions to complete corre-
sponding operations. However, the planner re-
quires robust reasoning and generalization capa-
bilities, which typically necessitates a larger size.

6.3 Safety
Safety is a critical challenge for agents in real-
world deployment. As LLMs can now execute
tasks beyond text output—such as handling user
accounts and passwords, making statements, and
even conducting transactions—it is imperative to
safeguard against these high-risk operations in prac-
tical applications. We are currently working on
developing a more comprehensive auto-check mod-
ule. This module works as a classifier, aiming to
identify and prevent erroneous operations and vali-
date high-risk operations with user permission.

7 Conclusion

In this work, we present ANDROIDGEN, a lan-
guage agent framework for Android, including Ex-
pSearch, ReflectPlan, AutoCheck, and StepCritic,
significantly enhancing the agent’s ability to per-
form complex tasks under data scarcity. We employ
ANDROIDGEN as a pipeline to efficiently construct
training datasets and train a robust open-source
Android language agent without human-annotated
trajectories. Our findings show significant progress
in utilizing LLMs for the Android agent.
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A AndroidWorld with Difficulty Levels

Table 9 presents the performance of various agents
across different difficulty levels in AndroidWorld.

Table 9: Performance on various difficulty levels in
Androidworld. * indicates model is fine-tuned.

Agent Base Model Easy Medium Hard Avg.

SeeAct GPT-4o 28.3 2.9 0.0 15.9
M3A Llama-3-70B 15.0 2.9 0.0 8.8
M3A Gemini-1.5 Pro 33.3 5.9 0.0 19.8
M3A GPT-4o 45.9 8.8 0.0 27.7

ANDROIDGEN GLM-4-9B* 47.5 8.8 5.6 29.2
ANDROIDGEN Llama-3-70B* 55.8 12.5 5.9 35.3
ANDROIDGEN GPT-4o 65.0 32.4 11.8 46.8

B Training Details

During our LoRA fine-tuning of the GLM-4-9B
and Llama-3-70B model, we employ a single-node
eight-GPU A100-80B machine. The fine-tuned
parameters account for about 0.024% of the total
parameters. We set the maximum learning rate to
1e-4 and the sequence length to 8192 and use a
total batch size of 32, conducting the training over
3 epochs.

C Action Space

Our action space for ANDROIDGEN is shown in
Table 10.

Table 10: Action space for ANDROIDGEN

Function Description

open_app(app_name) Open the app with { app_name }
quote(content) Record { content } for memory
exit(message) End the task with { message }

do(action,id,text,dir) Do a single operation
action type:
Click Click on { id } element
Long Press Long press on { id } element
Input Text Input { text } to { id } element
Press Enter Press enter key
Navigate Home Return to the home screen
Navigate Back Return to the previous page
Scroll Scroll in { dir }
Swipe Swipe { id } element in { dir }
Wait Wait for a while

D Observation Space

We present the element format of the environment
in our observation space as follows:

<element id="{id}" class ="{ class}"
resource -name ="{ resource }" {
clickable/checkable/status ="on"|"off
"/ editable}> {text} </element >

E Agent Prompt

To enhance the model’s understanding of the tasks
and the environment, we design a set of model
prompts, which are categorized into the following
components:

Setup: In the setup, we articulate the objectives
of the task and the rules for interacting with the
environment. We utilize in-context learning to en-
able the LLM to act as an expert assistant within
Android, stimulating the model’s agent ability in
the environment.

Operation Definition: We define the interfaces
of interaction with the environment. We employ
Python docstrings to define operation types, which
are readily recognizable and understandable by
most LLMs. The code-based approach promotes
the model’s reasoning capabilities and operational
accuracy.

Example: The complete trajectory (omitting spe-
cific environment inputs) retrieved by ExpSearch
(in Section 3.2.1) will be used as a reference ex-
ample to facilitate one-shot learning for the model.
In addition, we include analysis and confirmation
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in the example to spur the model’s reasoning and
self-checking abilities.

Note: Based on our deployment practices, we in-
clude reminders to help agents avoid typical com-
mon errors in the note section.

History: We present the operational history in a
conversational format involving the environmental
input as the user and the operation output as the as-
sistant, which is well-received by most LLMs. We
have obscured historical environmental input infor-
mation to reduce the context length significantly.

Current Status: Besides the environment states,
we also incorporate the current plan and feedback
from the last round (if available) as the current
context for our agent.

We assemble the components above into a sys-
tem prompt and model dialogue prompts, which
are then inputted to the agent. Below is our detailed
prompt organization for ANDROIDGEN:

# Setup
You are a professional agent assistant

that can fulfill user ’s high -level
instructions on android devices.
Given the current state of the
device , you should first read
carefully the plan that user provide
, then generate operations to
complete the todo goal in python -
style pseudo code using the
predefined functions.

# More details about the code
Your code should be readable , simple ,

and only **ONE -LINE -OF-CODE** at a
time , avoid using loop statement and
only use if-else control if

necessary.

# Predefined functions are as follow:
‘‘‘
def open_app(app_name):

""" Open the app on the android
device.

Args:
:param app_name: the

name of the app to
open.

Returns:
None. The app will be

opened.
"""

def do(action , element_id , text ,
direction):

"""A single operation on the
android device.

Args:
:param action: one of

the actions from ["

Click", "Long Press
", "Input Text", "
Press Enter", "
Navigate Home", "
Navigate Back", "
Scroll", "Swipe", "
Wait "]. "Swipe" is
the inverse of "
Scroll ".

:param element_id: optional.
Only for ["Click", "Long
Press", "Input Text", "Swipe
"].

:param text: optional.
Only for [" Input
Text"], indicating
the text to input.

:param direction: optional. Only
for [" Scroll", "Swipe"],

indicating the direction to
scroll , choose from ["up", "
down", "left", "right "].

Returns:
None. The device will be

updated after
executing the action
.

""

def quote(content):
""" Quoting information from the

current page for memory. Only
you can see the quoted content.

Args:
:param content: text summarized

or copied from the page for
later operation.

Returns:
None.

"""

def exit(message):
""" Ending the operation process

if the assistant think it
has fulfilled the goal.

Args:
:param message: optional

. If user ’s
instruction is a
question , return
assistant ’s answer
in the message based
on the operation

result.

Returns:
None.

"""
‘‘‘

# A reference example:
{example_from_expsearch}

# REMEMBER:
- Only **ONE -LINE -OF-CODE** at a time.
- You should follow the plan that user
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provide and do the operation step by
step.

- Confirm and Analysis at the beginning
of each round.

- You must ensure that the id of the
element you act for is in the
current page , or you shouldn ’t do
acitions on the nonexistent element.

- If your action includes an element id,
you should add a comment in the

code to explain the element id.
- "Input Text" action will delete the

original text in the input box and
input the new text. You should
concatenate the text if you want to
add text to the original text.

Below is our history and input prompt for AN-
DROIDGEN:

<|user|>
User Instruction: {user_instruction}

<|assistant|>
** Task Start **

<|user|>
** Environment State (Omitted) **

<|assistant|>
{round0_operation}

<|user|>
** Environment State (Omitted) **

<|assistant|>
{round1_operation}

<|user|>
** Environment State (Omitted) **

<|assistant|>
{round2_operation}

...

<|user|>
# Current State: {

current_environment_text}

# Plan: {current_plan}

# Last Round Error: {error_feedback}

F Evaluator Prompt

Below is the system prompt for our StepCritic:

You are an expert in evaluating the
performance of an android agent. The
agent is designed to help a human

user navigate on their device to
complete a task. Given the user ’s
intent , the agent ’s action history ,
the final state of the device , and
the agent ’s response to the user ,
your goal is to list the conditions
the task requires and their
respective completion step (or -1

for not completed). There are two
types of tasks:

1. Information seeking: The user wants
to obtain certain information from
the screen , such as information
about a product , reviews , map info ,
comparison of map routes , etc. The
bot ’s response must contain the
information the user wants or
explicitly state that the
information is not available.
Otherwise , e.g., if the bot
encounters an exception and responds
with the error content , the task is
considered a failure. Besides , be

careful about the sufficiency of the
agent ’s actions. For example , when

asked to list the top -searched items
in a shop , the agent should order

the items by the number of searches
and then return the top items. If
the ordering action is missing , the
task is likely to fail.

2. Application Operation: The user wants
to do operations in a specific

application , such as purchasing ,
modifying content or configuration ,
starting a project , etc. Carefully
examine the bot ’s action history and
the final state of the page to

determine whether the bot completes
the task. No need to consider the
bot ’s response.

*IMPORTANT* Your output should STRICTLY
follow the format below and DONOT
output other content:

‘‘‘
"condition1 ": "completion step1 (or -1

for not completed)"
"condition2 ": "completion step2 (or -1

for not completed)"
...
‘‘‘

For the input prompt, we provide the user’s task,
action history, and the final state of the screen. The
LLM then evaluates the trajectory based on the
information provided.

G Demonstration

This section demonstrates examples from diverse
applications, encompassing the first eight good
cases and the last three bad cases. These instances
embody distinct operational logic and require dif-
ferent functionalities to solve the challenges and
requirements encountered when engaging with var-
ious applications.

G.1 Audio Recorder
The targeted task to be executed is "Record an
audio clip using the Audio Recorder app and save
it." The actual execution steps can be summarized
as follows:
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• Step1: Click SearchBar

• Step2: Type SearchBar "Audio Recorder"

• Step3: Click "Audio Recorder"

• Step4: Click "Start Recording"

• Step5: Click "End Recording"

• Step6: Save the file

As Figure 5 shows, we end up with a recorded
audio on the screenshot. We recorded a 12s audio
recording, effectively completing the target task.

G.2 Phone Contact
The targeted task is "Create a new contact for Hugo
Pereira. Their number is +13920741751". The ac-
tual execution steps can be summarized as follows:

• Step1: Click "Phone" App

• Step2: Click "Contacts"

• Step3: Click the "Add" button

• Step4: Type contact information

• Step5: Save the contact

As Figure 6 shows, we end up on the screenshot
with a contact named Hugo Pereira. We add a con-
tact with his name and phone number, effectively
completing the target task.

G.3 Delete File
The targeted task to be executed is "Delete the file
banana.mp3 from the Android filesystem located
in the Notifications folder within the sdkgphone
storage area". The actual execution steps can be
summarized as follows:

• Step1: Open "Files" App

• Step2: Click "Show roots"

• Step3: Click "sdkgphone"

• Step4: Click "Notifications"

• Step5: Scroll Down

• Step6: Long Press "banana.mp3"

• Step7: Click "Delete"

• Step8: Click "OK"

As Figure 7 shows, we end up on the screenshot
in the Notifications folder. We delete the file ba-
nana.mp3, effectively completing the target task.

G.4 Marking Map

The targeted task is "Add a favorite location marker
for 47.1303814, 9.5930117 in the OsmAnd maps
app". The actual execution steps can be summa-
rized as follows:

• Step1: Open app "OsmAnd" App

• Step2: Click the "Search" button

• Step3: Type "47.1303814, 9.5930117"

• Step4: Click "Show on map"

• Step5: Long Press

• Step6: Click the "Add" button

• Step7: Click the "Add Favorite" button

• Step8: Click the "Save" button

As Figure 8 shows, we end up on the OsmAnd
maps app with a location marker. We add a favorite
location marker, effectively completing the target
task.

G.5 Create Music Playlist

The targeted task to be executed is "Create a playlist
in Retro Music titled "Hip Hop Bangers 270" with
the following songs, in order: Golden Days." The
actual execution steps can be summarized as fol-
lows:

• Step1: Open app "Retro Music" App

• Step2: Click "Playlist"

• Step3: Click "More Options"

• Step4: Click "New Playlist"

• Step5: Type "Hip Hop Bangers 270"

• Step6: Click "Create"

• Step7: Click "Songs"

• Step8: Long Press "Golden Days"

• Step9: Click "Add to playlist"

• Step10: Click "Hip Hop Bangers 270"

As Figure 9 shows, we end up on the "Retro Music"
playlist. We add "Golden Days" to the playlist,
effectively completing the target task.
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G.6 Turn Bluetooth Off
The targeted task to be executed is "Turn Bluetooth
off." The actual execution steps can be summarized
as follows:

• Step1: Open "Settings" App

• Step2: Click "Connected devices"

• Step3: Click "Connection preferences"

• Step4: Click "Bluetooth"

• Step5: Click "Bluetooth switch"

As Figure 10 shows, we end up on the screenshot
with the Bluetooth. We turn Bluetooth off, effec-
tively completing the target task.

G.7 Play Music Playlist
The targeted task is "Search for the artist Eric Clap-
ton, enter his artist page, and play his playlist."
The actual execution steps can be summarized as
follows:

• Step1: Open "Spotify" App

• Step2: Click "Search"

• Step3: Click SearchBar

• Step4: Type "Eric Clapton"

• Step5: Click "Play"

As Figure 11 shows, we end up on the screenshot
with the playlist. We play Eric Clapton’s playlist,
effectively completing the target task.

G.8 Join a community
The targeted task is "Enter a community page and
ask to join." The actual execution steps can be sum-
marized as follows:

• Step1: Open "Twitter" App

• Step2: Click "communities"

• Step3: Click a community

• Step4: Click "Join"

• Step5: Click "Agree and join"

As Figure 12 shows, we end up on the screenshot
with a community. We join the large language
model community, effectively completing the target
task.

G.9 Math Counting Error
The targeted task to be executed is "Create a playlist
in Retro Music titled "Reggae Rhythms 51" with
a duration between 45 and 50 minutes using the
provided songs". The actual execution steps can be
summarized as follows:

• Step1: Open app "Retro Music" App

• Step2: Click "Playlist"

• Step3: Click "More Options"

• Step4: Click "New Playlist"

• Step5: Type "Reggae Rhythms 51"

• Step6: Click "Create"

• Step7: Click "Songs"

• Step8: Long Press "Golden Days"

• Step9: Click "Add to playlist"

• Step10: Click "Reggae Rhythms 51"

• Step11: Long Press "Beyond the Horizon"

• Step12: Click "Add to playlist"

• Step13: Click "Reggae Rhythms 51"

• Step14: Long Press "Chasing Shadows"

• Step15: . . .

As Figure 13 shows, since the model cannot cal-
culate the song’s duration, it will consider that the
task has not been completed and continue adding
songs, resulting in task failure.

G.10 Memorization Error
The targeted task is "Add the recipes from
recipes.txt in Markor to the Broccoli recipe app."
The actual execution steps can be summarized as
follows:

• Step1: Open "Markor" App

• Step2: Click "recipes.txt"

• Step3: Quote the content

• Step4: Navigate Home

• Step5: Open "Broccolirecipe" APP

• Step6: Click "Add"
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• Step7: Type Title content

• Step8: Type Description content

• Step9: Type Serving content

• Step10: Type Time content

• Step11: Type Ingredients content

• Step12: Type "Save"

• Step13: Click "Add"

• Step14: Type Title content

• Step15: Fail

As Figure 14 shows, we end up on the screenshot
with Pages that have not been filled out. This is
because the number of steps of the task exceeds the
maximum number of steps the model can carry.

G.11 Vision Error
The targeted task to be executed is "Open the file
task.html in Downloads in the file manager; when
prompted, open it with Chrome. Then create a
drawing using the three colors shown at the top
and hit submit". The actual execution steps can be
summarized as follows:

• Step1: Open "Files" App

• Step2: Click "task.html"

• Step3: Click "Open with Chrome"

• Step4: Click "Colors"

• Step5: Fail

As Figure 15 shows, we end up with an empty
drawing on the screenshot. This is because the
model has no visual information, cannot obtain
specific color information, and fails to perform the
task of selecting colors.
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Figure 5: Audio Recorder

Figure 6: Phone Contact
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Figure 7: Delete File

Figure 8: Marking Map
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Figure 9: Create Music Playlist

Figure 10: Turn Bluetooth Off
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Figure 11: Play Music Playlist

Figure 12: Join a community
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Figure 13: Math Counting Error

Figure 14: Memorization Error

2748



Figure 15: Vision Error
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