
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 27914–27961
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

AGENTGYM: Evaluating and Training Large Language Model-based
Agents across Diverse Environments

Zhiheng Xi1*, Yiwen Ding1∗, Wenxiang Chen1∗, Boyang Hong1, Honglin Guo1,
Junzhe Wang1, Xin Guo1, Dingwen Yang1, Chenyang Liao1, Wei He1,
Songyang Gao1, Lu Chen1, Rui Zheng1, Yicheng Zou1, Tao Gui2,3,4†,

Qi Zhang1,2, Xipeng Qiu1, Xuanjing Huang1,2, Zuxuan Wu1,2, Yu-Gang Jiang1,2

1School of Computer Science, Fudan University,
2Institute of Trustworthy Embodied Artificial Intelligence, Fudan University,

3Institute of Modern Languages and Linguistics, Fudan University, 4Pengcheng Laboratory
zhxi22@m.fudan.edu.cn, tgui@fudan.edu.cn

Abstract

Large language models (LLMs) have emerged
as a promising foundation to build generally-
capable agents (LLM-based agents) that can
handle multi-turn decision-making tasks across
various environments. However, the commu-
nity lacks a unified interactive framework that
covers diverse environments for comprehensive
evaluation of agents, and enables exploration
and learning for their self-improvement. To
address this, we propose AGENTGYM, a frame-
work featuring 7 real-world scenarios, 14 envi-
ronments, and 89 tasks for unified, real-time,
and concurrent agent interaction. We construct
expanded instruction set, high-quality trajecto-
ries, and comprehensive benchmarking suite
for developing LLM-based agents. Moreover,
AGENTGYM supports interactive exploration
and learning for agents through multi-turn in-
teractions and real-time feedback. Based on
AGENTGYM, we take the initial step to de-
velop LLM-based agents that can handle di-
verse tasks via methods like self-improvement
or reinforcement learning. Experimental re-
sults show that the trained agents can achieve
results comparable to commercial models. We
hope our work can help the community develop
more advanced LLM-based agents. We release
the code, dataset, benchmark, and checkpoints
at https://agentgym.github.io/.

1 Introduction

Developing agents capable of performing a wide
spectrum of tasks across various environments at
human-level has been a long-standing goal for AI
community (Wooldridge and Jennings, 1995; Silver
et al., 2017, 2018; Reed et al., 2022; Xi et al., 2025).
Recently, large language models (LLMs) are con-
sidered a promising foundation for constructing
such generalist agents due to their generalized abil-
ities (OpenAI, 2023; Anthropic, 2024; Anil et al.,

* Equal contribution.
† Corresponding authors.

Frameworks Env. Inter. Fra. Traj. Exploration

AgentBench (Liu et al., 2023a) 8 Eval No No
AgentBoard (Ma et al., 2024) 12 Eval No No
AgentOhana (Zhang et al., 2024) 10 No Yes No
Pangu-Agent (Christianos et al., 2023) 6 No Yes Single-Env
AGENTGYM (Ours) 14 Eval & Train Yes Multi-Env

Table 1: Comparison of AGENTGYM with other frame-
works in several aspects: the number of environments,
presence of an interactive framework and its usage, avail-
ability of trajectory sets, support for interactive explo-
ration and learning, and the corresponding mode.

2023), and many efforts have been made in this
realm to develop generally-capable LLM-based
agents (Xi et al., 2025; Wang et al., 2024).

Developing advanced generally-capable agents
requires diverse environments that provide real-
time feedback through a unified interface, facili-
tating comprehensive evaluation, extensive explo-
ration, and continuous self-improvement (Standish,
2003; Langdon, 2005; Taylor et al., 2016; Fan
et al., 2022). Additionally, high-quality trajectory
sets and a broad range of task instructions are es-
sential for training these agents (Fan et al., 2022;
Song et al., 2024). The former equips agents with
prior knowledge and initial interaction capabilities,
while the latter expands their exploration space.
However, the community currently lacks a unified
interactive framework that fulfills these require-
ments (Table 1). Existing frameworks mainly focus
on constructing benchmarks (Liu et al., 2023a; Ma
et al., 2024), while others collect expert trajecto-
ries for supervised fine-tuning (SFT) (Zhang et al.,
2024; Christianos et al., 2023). They are unable to
support continuous, real-time interactive evaluation
and training, and thus are insufficient to meet the
community’s needs (Xi et al., 2025).

To this end, we propose a new interactive frame-
work, AGENTGYM, to support the comprehen-
sive evaluation and training of LLM-based agents

27914

https://agentgym.github.io/

AGENTGYM

2. Behavioral Clone

4. Multi-task
Evaluation

3. Exploring &
Learning

Env Servers

Base

Tool Using

Movie Weather

TodoList Sheet

TextCraft
WebArena

WebShop BabyAI ALFWorld

ScienceWorld

BIRD-SQL

MAZE

Trajectory
Formats

Env Clients

Imitation

AgentSTaR

Performance

Single Task

Multi-Tasks

General Data

Reasoning and Acting

Instruction: Find me a
pillow with blue and…
Thought: I think I should
search for pillows…
Action: search[pillow]
Observation: Results:
[Sep] Item 1 [Sep] …

General Domain Chat

Instruction: Hello! Can
you translate this into
Chinese for me?
Response: Sure! Here's
the translation…

Evolve

Exploration

Feedback

Wordle

Web
WebShop
WebArena

Embodied
ALFWorld

ScienceWorld
BabyAI

Game
TextCraft

MAZE / Wordle

Tool
Weather / Todo

Academia
Movie / Sheet

Code
BIRD-SQL

HTTP

HTTP

HTTP

HTTP

HTTP

1. Data Prepare

Figure 1: Overview of the AGENTGYM framework. It covers fourteen environments spanning diverse scenarios. It
adopts a decoupled client-server architecture for unified and concurrent agent-environment interaction. AGENTGYM
also includes expanded instructions, a comprehensive benchmark suite AGENTEVAL, and the high-quality trajectory
set AGENTTRAJ (-L). We also investigate exploration-learning paradigms to explore the agent’s self-improvement
across various environments.

across diverse environments (See Figure 1). In this
framework, we include 7 real-world scenarios: web
navigation, text games, house-holding tasks, digital
games, embodied tasks, tool-using, and program-
ming. A total of 14 related environments and 89
relevant tasks are incorporated. To achieve uni-
fied, real-time, and concurrent agent interaction,
we standardize task specifications, environment set-
tings, and the observation/action spaces. Through
our architectural design, agents can interact with
different environments via a unified interface, re-
ceive feedback, and thus facilitate evaluation, data
collection, and agent exploration and learning.

Based on this framework, we construct instruc-
tions from various environments and tasks, ex-
panding them through rule-based strategies and
AI-based techniques such as self-instruct (Wang
et al., 2023) and instruction evolution (Xu et al.,
2023). Subsequently, we leverage several princi-
ples to construct a benchmark suite called AGEN-
TEVAL to comprehensively evaluate LLM-based
agents. Next, we use a gather-and-filter pipeline
to obtain a trajectory set called AGENTTRAJ, con-
taining 6,130 high-quality trajectories. This set
is used to train a base agent with basic capabili-
ties and prior knowledge, which then bootstraps
further agent exploration and learning. We also
collect a larger trajectory set, AGENTTRAJ-L, con-
taining 14,485 trajectories, with the same pipeline
for stronger SFT performance.

To develop stronger agents that perform well
across multiple tasks, we further investigate their
exploration and learning across diverse environ-
ments. We investigate self-improvement methods
based on the RL as Inference framework (Dayan
and Hinton, 1997) and demonstrate their effec-
tiveness through experiments, showing that agents
trained using open-source models can tackle a wide
range of tasks and achieve performance compara-
ble to commercial models. Additionally, we ex-
periment with online reinforcement learning (RL)
methods and show their limitations in developing
satisfactory generally-capable LLM-based agents.

In summary, our main contributions are:

1. We propose AgentGym, a new interactive
framework that includes diverse scenarios and
environments to comprehensively evaluate
LLM-based agents and develop agents that
perform well across multiple environments.

2. We construct a large dataset of task instruc-
tions and trajectories through various methods,
aiding the community in developing agents.
We also construct a comprehensive bench-
mark suite to evaluate LLM-based agents.

3. Based on AgentGym, we take the initial step
to investigate LLM-based agents’ exploration
and learning across multiple environments for
self-improvement. We carry out detailed ex-
periments to validate the effectiveness of our

27915

framework, dataset, and methods. We hope
our work can provide support and insights to
the LLM-based agents community.

2 Related Work

Frameworks for evaluating LLM-based agents.
With the development of LLMs (OpenAI, 2023;
Anil et al., 2023), developing agents based on them
has become an important research direction (Xi
et al., 2025; Wang et al., 2024). These agents are
typically designed to perform multi-turn decision-
making tasks (Yao et al., 2023; Aksitov et al., 2023;
Chen et al., 2023). To evaluate these agents, re-
searchers have proposed various benchmarks (Yao
et al., 2022; Ma et al., 2024) and frameworks (Liu
et al., 2023a; Zhou et al., 2023b; Ma et al., 2024).
In this work, we include AGENTEVAL that cov-
ers more diverse scenarios and environments for
providing a comprehensive evaluation.

Prompt-engineering and fine-tuning LLM-
based agents. Previous work leverage prompt-
engineering-based methods like ReAct (Yao et al.,
2023) and PlanAct (Liu et al., 2023b) to develop
agents. They prove effective on commercial models
like GPT-4, but perform pooly on open-source mod-
els (Liu et al., 2023a; Christianos et al., 2023). To
address this challenge, a series of work collects ex-
pert trajectories to train LLM-based agents through
SFT (Zeng et al., 2023; Chen et al., 2023, 2024;
Zhang et al., 2024). However, this is often costly
and hard to scale, and these methods lack sufficient
exploration of the agent in the environment (Yang
et al., 2024; Aksitov et al., 2023).

Exploration and learning for LLM-based agents.
Another line of work trains LLM-based agents
based on exploration and learning with environmen-
tal feedback (Zhou et al., 2024; Christianos et al.,
2023; Song et al., 2024; Abdulhai et al., 2023a).
As a representative method, RL has succeeded in
LLM alignment and reasoning (Askell et al., 2021;
Bai et al., 2022a; Ouyang et al., 2022; Luong et al.,
2024; Zhou et al., 2024), and has been introduced to
agent tasks (Zhou et al., 2024). However, due to is-
sues with reward consistency and training stability,
they are typically trained in a single environment,
making it difficult to train models that can handle
multiple tasks (Song et al., 2024; Cao et al., 2024).

Another line of work uses self-improvement,
where the model explores the environment to obtain
high-reward trajectories and fine-tunes itself based

on these trajectories, achieving promising perfor-
mance in reasoning, coding, and web tasks (Singh
et al., 2023; Zelikman et al., 2022; Aksitov et al.,
2023; Song et al., 2024; Tao et al., 2024; Tian et al.,
2024; Lai et al., 2024). However, like RL-based
methods, these works mainly explore training in
isolated environment. With AGENTGYM, our work
explores agent exploration and learning across mul-
tiple environments.

3 Preliminaries

We define the collection of environments as E . For
a specific e ∈ E , we formalize the agent task in the
environment as a partially observable Markov de-
cision process (POMDP) (U ,S,A,O, T , r)e with
instruction space U , state space S , action space A,
observation space O, deterministic state transition
function T : S × A → S, and reward function
r : S ×A → R.

Given a task instruction u in environment e, the
LLM-based agent parameterized by θ generates
an action a1 ∼ πθ(·|e, u) based on its policy πθ.
Then, the state space is transitioned to s1 ∈ S , and
the agent receives feedback o1 ∈ O. Subsequently,
the agent interacts with the environment until the
task ends or exceeds the maximum number of
steps. We adopt ReAct (Yao et al., 2023) to model
the outputs of agent, where the LLM-based agent
generates a reasoning thought before outputting
an action. Thus, at time step t, given the history
and current feedback, the agent generates the
thought ht+1 ∼ πθ(·|e, u, h1, a1, o1, ..., ht, at, ot)
first and the subsequent action at+1 ∼
πθ(·|e, u, h1, a1, o1, ..., ht, at, ot, ht+1). Hence,
the trajectory can be represented as:

τ = (h1, a1, o1, ..., oT−1, hT , aT) ∼ πθ(τ |e, u),

πθ(τ |e, u) =
T∏

t=1

πθ(ht, at|e, u, ct−1),

where T is the number of interaction rounds, and
ct−1 = (h1, a1, o1, ..., ht−1, at−1, ot−1) represents
the interactive history. The reward r(e, u, τ) ∈
[0, 1] is computed after the interaction ends or the
maximum interactive round number is met.

4 AGENTGYM: Framework Architecture,
Instruction Set, Benchmark Suite, and
Trajectory Set

AGENTGYM is a framework built for the com-
munity to facilitate the evaluation, interactive ex-
ploration and learning of generally-capable LLM-

27916

based agents. It features diverse interactive envi-
ronments and tasks with ReAct format (Yao et al.,
2023). The framework supports real-time feedback
and concurrency, and is easily scalable and extend-
able. AGENTGYM also incorporates a diverse set of
instructions across multiple environments and tasks.
Moreover, it includes a comprehensive benchmark
suite, AGENTEVAL, for evaluating agent perfor-
mance, and two trajectory datasets, AGENTTRAJ

and AGENTTRAJ-L, which equip agents with foun-
dational capabilities and prior knowledge.

4.1 Diverse Targeted Environments and Tasks
for LLM-based Agents

To ensure the comprehensiveness of the framework,
we identify 7 real-world scenarios, including web
navigating, text games, house-holding tasks, dig-
ital games, embodied tasks, tool-using, and pro-
gramming. These scenarios are represented by 14
environments and 89 tasks in our framework, as
shown in Table 2. More environments details are
presented in Appendix A.

Our selection of environments is based on the
definition of an LLM-based agent—an agent with
a decision-making core that extends its input and
actions (Wooldridge and Jennings, 1995; Xi et al.,
2025). The three key dimensions are:

Input Side. Agents must process diverse inputs,
(e.g., plain text, HTML, code). Our framework in-
tegrates textual (ALF, TC), web-based (WS, WA),
and coding (BD) environments to evaluate this ca-
pability.

Decision-making Side. LLM-based agents re-
quire core reasoning and planning capabilities.
AGENTGYM evaluates these through hierarchical
task designs. For example, WS demands informa-
tion extraction and planing when interacting with a
web page.

Action Side. Agent outputs can take various
forms, such as plain text, code, API calls and em-
bodied actions. We incorporate environments re-
quiring tool use (WT, MV), SQL generation (DB),
embodied actions (Baby, ALF), and natural lan-
guage responses (WD).

4.2 Framework Architecture of AGENTGYM

We adopt a hierarchical, decoupled architecture in
AGENTGYM to facilitate unified, real-time, and
concurrent agent-environment interactions, as illus-
trated in Figure 4 in Appendix B.

Specifically, at the core of this architecture is
the controller, which facilitates interactions be-

tween agents and environmental services, provid-
ing a unified and encapsulated interface for agents
to invoke environmental functions or operations.
Additionally, we have implemented user-friendly
components such as the evaluator, trainer, and
data collection pipeline to support further devel-
opment of the community. Clients communicate
with the servers via the HTTP protocol, which en-
ables real-time interactions. On the server side, we
have implemented 14 types of environments and
89 tasks. Researchers can easily develop new envi-
ronments and add them to AGENTGYM by encap-
sulating the aforementioned interfaces. These en-
vironments are implemented to offer standardized
and parallelizable functions, such as /createEnv
to create an environment, /observation to ob-
tain the current observation from the environ-
ment, /available_actions to retrieve the cur-
rently available actions, /step to perform an action,
and /reset to reset the environment. To accom-
modate the distinct dependencies across different
environments, AGENTGYM deploys separate ser-
vices for each environment, ensuring user-friendly
deployment and preventing conflicts.

4.3 Database and Benchmark Construction

Regarding database construction, we first gather
20, 494 instructions using rule-based and AI-based
generation. Then, we construct a benchmark suite
with a size of 1, 160 named AGENTEVAL to eval-
uate the capabilities of LLM-based agents. As
for the trajectory set, we use a gather-and-filter
pipeline to obtain 6, 130 high-quality trajectories
from 11 environments with various strategies. The
set AGENTTRAJ, is used to train a base agent with
preliminary abilities and prior knowledge. For a
fair comparison, we also perform the same pipeline
to get a larger trajectory set, AGENTTRAJ-L, which
represents the performance upper bound of SFT.

Instruction collection and generation. We
gather 20, 494 instructions across the aforemen-
tioned environments using appropriate strategies.
(i) For environments whose original datasets con-
tain sufficient instructions, we use their original
instruction sets or subsets (WA, ALF, Sci, AM, ST,
BD). (ii) For certain environments, we generate
instructions using rule-based automated pipelines
(TC, WS, MZ, WD, Baby). For example, in TC, we
first construct rule trees for forging different items
and generate instructions of varying difficulty (lev-
els 1-4) based on these rules. For WS, we generate

27917

Env. Scenario Task Num. Eval. Metric Inst. Size Eval. Size Traj. Size Traj-L Size Rounds

WebArena (WA, Zhou et al. 2023a) Web Navigating 3 Success rate 812 20 0 0 −
WebShop (WS, Yao et al. 2022) Web Navigating 1 Success rate 6910 200 1000 3930 5.1
MAZE (MZ, Abdulhai et al. 2023b) Text Game 1 Success rate 240 25 100 215 4.3
Wordle (WD, Abdulhai et al. 2023b) Text Game 1 Success rate 980 25 500 955 4.3
ALFWorld (ALF, Shridhar et al. 2021) House-holding 6 Success rate 3827 200 500 2420 13.3
SciWorld (Sci, Wang et al. 2022) Embodied Tasks 30 Reward 2320 200 1000 2120 19.9
BabyAI (Baby, Chevalier-Boisvert et al. 2019) Embodied Tasks 40 Reward 900 90 400 810 5.7
TextCraft (TC, Prasad et al. 2023) Digital Game 1 Success rate 544 100 300 374 8.0
Tool-Weather (WT, Ma et al. 2024) Tool Use 1 Success rate 331 20 160 311 5.5
Tool-Movie (MV, Ma et al. 2024) Tool Use 1 Success rate 235 20 100 215 4.0
Tool-Academia (AM, Ma et al. 2024) Tool Use 1 Success rate 20 20 0 0 −
Tool-Sheet (ST, Ma et al. 2024) Tool Use 1 Reward 20 20 0 0 −
Tool-TODOList (TL, Ma et al. 2024) Tool Use 1 Success rate 155 20 70 135 5.6
BIRD (BD, Zheng et al. 2023a) Programming 1 Success rate 3200 200 2000 3000 1.0

Total − 89 − 20494 1160 6130 14485 −

Table 2: Statistics of AGENTGYM, including scenarios, count of task types, evaluation metric, instruction set size,
evaluation set size, trajectory set size (AGENTTRAJ and AGENTTRAJ-L), and the average interactive rounds of each
environment in AGENTTRAJ-L.

instructions based on available products by fixing
the random seed. For MZ, we randomly select
starting points in the maze and construct instruc-
tions accordingly. For WD, we fix the seed and
generate words for guessing. For Baby, we pass a
fixed seed to the generator provided by the environ-
ment to generate instructions. (iii) In environments
where instructions are relatively scarce and diffi-
cult to construct through rules, we use self-instruct
(Wang et al., 2023) and instruction evolution (Xu
et al., 2023) methods. These methods provide an
LLM (GPT-4-Turbo) with available actions and in-
struction examples, and query it to generate diverse
and challenging instructions that might be needed
in real-world scenarios (WT, MV, TL). Note that
we manually verify the instructions generated by
these AI-based techniques to ensure that they can
be successfully completed.

Benchmark construction. To evaluate the gen-
eral capability of LLM-based agents on diverse
tasks, we then construct a benchmark suite with a
size of 1160 named AGENTEVAL. Specifically, (i)
for environments that have different task categories
or varying difficulty levels, we either uniformly
sample test examples from different subsets or use
them all (ALF, Sci, Baby, TC); (ii) for remained
environments with existing test sets, we use the
original test sets or randomly sample from them
(WA, AM, ST, BD); (iii) for others, we randomly
sampled from the collected or augmented instruc-
tions (WS, MZ, WD, WT, MV, TL).

Trajectory collecting and filtering. To train a
base agent with preliminary abilities and prior
knowledge, we collect a training set AGENTTRAJ

containing 6130 trajectories from 11 environments

with different strategies. (i) For environments with
human annotated trajectories or where the correct
action sequences can be obtained using a rule-based
solver, we use GPT-4-Turbo to add thought step
by step for each action, thus forming outputs in
the ReAct-Style (MZ, WD, Sci, BD). (ii) For envi-
ronments where only instructions are provided and
the correct trajectories are neither available nor can
be derived through rules, we annotate the correct
trajectories with commercial models (e.g., GPT-4-
Turbo) and crowdsourcing. Then, we rigorously
filter the trajectories based on rewards and correct-
ness to ensure their quality (WS, ALF, Baby, TC,
WT, MV, TL). For a fair comparison, we perform
the same gather-and-filter pipeline on all instruc-
tions and get a larger training set AGENTTRAJ-L
to represent the performance upper bound of SFT.

5 Training Agents that can Handle
Diverse Tasks via Exploration and
Learning

Here, we introduce exploration & learning meth-
ods to train LLM-based agents across environments
within AGENTGYM, aiming to provide a solid foun-
dation for further research. We include SFT for
initialize a base agent self-improvement-based and
RL-based methods.

5.1 Supervised Fine-tuning with Collected
Trajectories

Learning everything from scratch through trial and
error is inefficient for LLM-based agents (Fan et al.,
2022; Song et al., 2024). Hence, we employ the
SFT method to train a base agent using AGENT-
TRAJ. Specifically, the agent learns the basic inter-
action capability and prior knowledge by imitating

27918

Method WS ALF TC Sci Baby MZ WD WT MV TL BD

Closed-sourced Models & Agents
DeepSeek-Chat 11.00 51.00 23.00 16.80 45.67 4.00 24.00 70.00 70.00 75.00 13.50
Claude-3-Haiku 5.50 0.00 0.00 0.83 1.93 4.00 16.00 55.00 50.00 65.00 13.50
Claude-3-Sonnet 1.50 13.00 38.00 2.78 79.25 0.00 36.00 65.00 80.00 80.00 17.00
GPT-3.5-Turbo 12.50 26.00 47.00 7.64 71.36 4.00 20.00 25.00 70.00 40.00 12.50
GPT-4-Turbo 15.50 67.50 77.00 14.38 72.83 68.00 88.00 80.00 95.00 95.00 16.00

Open-source Models & Agents
Llama2-Chat-7B 0.50 2.00 0.00 0.83 0.23 0.00 0.00 0.00 0.00 0.00 1.50
Llama2-Chat-13B 1.00 3.50 0.00 0.83 0.10 0.00 0.00 0.00 0.00 0.00 1.50
AgentLM-7B 36.50 71.00 4.00 1.63 0.49 12.00 4.00 0.00 5.00 15.00 5.00
AgentLM-13B 39.50 73.00 0.00 2.75 0.45 8.00 0.00 10.00 5.00 5.00 3.00
AgentLM-70B 49.50 67.00 4.00 10.68 0.66 8.00 4.00 0.00 0.00 40.00 7.50

Ours (Based on Llama2-Chat-7B)
AGENTTRAJ-SFT 66.50 77.50 44.00 26.42 69.31 12.00 12.00 25.00 5.00 45.00 8.00
AGENTTRAJ-L-SFT 73.50 83.00 60.00 74.47 74.19 12.00 36.00 45.00 5.00 65.00 8.50
AGENTSTAR 76.50 88.00 64.00 38.00 82.70 12.00 12.00 25.00 60.00 70.00 9.00

Table 3: Evaluating results on diverse tasks. AGENTTRAJ-SFT provides a base agent with basic ability and prior
knowledge. AGENTTRAJ-L-SFT represents the performance upper limit of SFT in this paper. AGENTSTAR is
conducted based on the model after AGENTTRAJ-SFT. The best performance of each part is highlighted in bold.

the collected trajectories step-by-step. We maxi-
mize the following objective:

JSFT(θ) = E(e,u,τ)∼DSFT

[
log πθ(τ |e, u)

]
.

Note that the dataset DSFT include AGENTTRAJ

and a general domain dataset Dgeneral as in Zeng
et al. (2023) to maintain the agent’s ability in lan-
guage generation. And the resulting agent πθbase

serves as a starting point for later exploration and
learning across diverse environments.

5.2 Interative Exploration and Learning
Here, we focus on online RL-based (Schulman
et al., 2017) and self-improvement-based (Gülçehre
et al., 2023; Zelikman et al., 2022) methods through
iterative policy optimization.

Online RL for LLM-based agents in isolated
environment. In online RL, the objective is to
find an optimal policy that maximizes the cumula-
tive reward through interactions with environments
(Sutton and Barto, 2018). We apply policy gradi-
ent and use the proximal policy optimization (PPO)
(Sutton and Barto, 2018) as our basic algorithm as it
has proved effective in the area of RLHF for LLMs
(Ouyang et al., 2022; Bai et al., 2022b; Zheng et al.,
2023b). The general form of the policy gradient is:

JRL(θ) = E(e,u,τ)∼DRL [r(e, u, τ) log πθ(τ |e, u)].

where DRL is the dataset for RL. However, our
preliminary experiments show that performing RL
across multiple environments often leads to train-
ing instability and complicates credit assignment.

Therefore, we primarily conduct RL in isolated
environments in subsequent experiments.

Self-improvement for LLM-based agents across
diverse environments. Due to the limitations of
online RL methods, we were inspired by the RL
as Inference framework (Dayan and Hinton, 1997)
and adopted a self-improvement-based approach
(Gülçehre et al., 2023; Zelikman et al., 2022) to
enable LLM-based agents to explore and learn in
diverse environments, which we call AGENTSTAR.
In AGENTSTAR, the process comprises two steps
of loop iteration: Exploration step and Learning
step like Singh et al. (2023).

In the m-th exploring iteration, for each envi-
ronment e, the current policy agent πθm interacts
with the environment, generating a collection of
interaction trajectories De

m = {(e, uj , τ j) |uj ∼
Qe, τ

j ∼ πθm(τ |e, uj)}|D
e
m|

j=1 , where Qe is an in-
struction set. Then, the environment returns the
reward r(e, u, τ) for each trajectory and we filter
out the trajectories with rewards less than 1. Subse-
quently, we merge the remained dataset from each
environment and the original trajectory set in Sec-
tion 5.1, resulting in Dm =

(⋃
e∈E De

m

)⋃DSFT.

In the m-th learning iteration, we use the dataset
Dm to optimize πθm+1 via SFT. The objective is:

Jlearn(θ) = E(e,u,τ)∼Dm

[
log πθ(τ |e, u)

]
.

We optimize the initial agent πθ at each iteration,
aiming to minimize overfitting and prevent drift
from the base agent. In this learning step, the agent

27919

WS ALF Baby0

20

40

60

80
Pe

rfo
rm

an
ce

15.5

67.5
72.8

18.9

68.5

82.5

73.5

83.0

74.2

68.0

83.5

69.8

76.5

88.0
82.7

GPT-4-Turbo GPT-4-Turbo + LLM-Planner AgentTraj-L-SFT PPO AgentSTaR

Figure 2: Comparison with exploration-based baselines.

is improved, similar to previous works on LLM rea-
soning (Zelikman et al., 2022; Singh et al., 2023).

6 Experiments and Discussion

In this section, we perform experiments with
AGENTGYM to comprehensively evaluate LLM-
based agents. We also leverage our constructed
database and the exploration & learning methods
for training agents that can handle diverse tasks.

6.1 Experimental Setup

Environments and Tasks. We evaluate the per-
formance of LLM-based agents with the AGENT-
GYM framework. Main experiments cover the fol-
lowing environments: WS, ALF, Sci, Baby, TC,
BD, MZ, WD, TL, WT, and MV.

Baselines. We include commercial models like
GPT-3.5-Turbo (Ouyang et al., 2022), GPT-4-
Turbo (OpenAI, 2023), Claude 3 (Anthropic, 2024),
and DeepSeek-Chat (DeepSeek-AI, 2024). We
also include open-source models like Llama-2-Chat
(Touvron et al., 2023), and agents trained on expert
trajectories, i.e., AgentLM (Zeng et al., 2023).

Implementation Details. Experiments are con-
ducted with eight A100-80GB GPUs. Our main
backbone model is Llama-2-Chat-7B. Different en-
vironment services are deployed on different ports
of the same server. We set the iteration number
M to 4. Each instruction is sampled once dur-
ing the self-improvement process for efficiency.
Note that some environments provide dense re-
wards r ∈ [0, 1], while others give only binary
feedback r ∈ {0, 1}. For simplicity and consis-
tency, we follow previous work (Singh et al., 2023)
and use binary rewards. We set r = 0 for trajec-
tories where r < 1, while for those with r = 1,
we keep it unchanged. See Appendix D for more

implementation details. Prompts for each environ-
ment are in Appendix F.

6.2 Main Results

Even commercial models fail to achieve satis-
factory performance on all tasks. Experiment
results in Table 3 demonstrate that, overall, closed-
source commercial models can outperform open-
source models. However, even strong closed-
source models fail to achieve satisfactory perfor-
mance on all tasks. For example, GPT-4-Turbo
performs only 15.50% and 14.38% on WebShop
(Yao et al., 2022) and SciWorld (Wang et al., 2022),
respectively. This highlights the effectiveness of
AGENTEVAL and the need for developing more
generally-capable agents.

Agents fine-tuned on AGENTTRAJ-L can
achieve performance comparable to commer-
cial models. Models trained on agent trajectories,
like AgentLM (Zeng et al., 2023), can perform
on par with GPT-4-Turbo on many tasks, particu-
larly the 70B version. However, they do not match
performance on tasks like TextCraft (Prasad et al.,
2023) or SciWorld (Wang et al., 2022), which can
be attributed to the quality and coverage of data. In-
stead, the agent trained on AGENTTRAJ-L achieves
excellent performance, matching or even surpass-
ing commercial models. This further validates the
quality and coverage of our constructed database.

Through exploration and learning with
AGENTSTAR, open-source models can handle
diverse tasks and surpass SFT on most tasks.
Although AGENTSTAR is initialized with limited
trajectories, i.e., AGENTTRAJ, it is able to handle
diverse tasks and achieve better performance
than AGENTTRAJ-L-SFT by continuously ex-
ploring, receiving feedback, and learning in the
environment. Moreover, it also performs on par
with commercial models. For instance, agents
with AGENTSTAR outperform GPT-4-Turbo and
AGENTTRAJ-L-SFT by 61.00 and 3.00 points on
WebShop (Yao et al., 2022), 20.50 and 5.00 points
on ALFWorld (Shridhar et al., 2021), and 9.87
and 8.51 points on BabyAI (Chevalier-Boisvert
et al., 2019). This validates the superiority and
promise of the exploration and learning paradigm
in developing agents (Zelikman et al., 2022).

Moreover, we report the number of interactive
rounds required to solve the task, demonstrating the
efficiency of AGENTSTAR (Appendix E.1). We

27920

0 4000 8000 12000 16000
Step

0.2

0.4

0.6

0.8

1.0

Re
wa

rd

Webshop

(a) Webshop

0 1500 3000 4500 6000
Step

0.2

0.4

0.6

0.8

1.0

Re
wa

rd

Aflworld

(b) Alfworld

0 400 800 1200 1600
Step

0.2

0.4

0.6

0.8

1.0

Re
wa

rd

BabyAI

(c) BabyAI

Figure 3: Mean training reward during online RL process with PPO.

Method ALF-OOD Baby-OOD AM ST

Llama2-Chat-7B 0.0 2.2 0.0 0.0
AgentLM-7B 57.7 4.4 10.0 14.3
AGENTTRAJ-SFT 60.8 6.2 20.0 24.3
AGENTTRAJ-L-SFT 64.9 6.1 20.0 25.2
AGENTSTAR 67.5 6.2 25.0 26.2

Table 4: Evaluating results on out-of-domain tasks.

also perform qualitative analysis and case study in
Appendix E.4).

6.3 Discussion & Analysis

AGENTSTAR can handle more tasks and
perform better than online RL and other
exploration-based methods. In Section 5, we
note that online RL is a fundamental exploration-
based learning method. Therefore, we evaluate its
performance. We employ PPO algorithm (Schul-
man et al., 2017) that is widely used in the LLM
and run it in each isolated environment, as it tends
to experience training instability and exhibit poor
performance across multiple environments. More-
over, we introduce LLM-Planner (Song et al., 2023)
as a prompt-based exploration-based baseline.

Results in Figure 2 show that: (1) LLM-Planner
outperforms GPT-4-Turbo but doesn’t surpass
AGENTSTAR. This suggests that prompt-based
methods has limitations in handling all tasks. (2)
PPO performs well but lags behind AGENTSTAR
by a significant margin. This indicates that online
RL, in addition to being limited to exploration and
learning in isolated environments, also performs
worse than the training paradigm of AGENTSTAR.
We provide a detailed analysis of PPO training dy-
namics in Figure 3, where we find that the PPO fails
to effectively optimize the reward signals across
all tasks. Therefore, further research is needed to
address this challenge.

Models after exploration and learning demon-
strates strong generalization to Out-of-Domain

Model WS ALF TC Baby MZ WD

Qwen2.5-Max 35.00 16.00 34.00 74.20 68.00 60.00
GPT-4o 21.00 32.00 85.00 80.33 60.00 72.00
DeepSeek-R1 5.00 8.00 70.00 89.17 88.00 100.00

Table 5: Performance comparison of State-of-the-Art
models.

tasks. To evaluate the generalization of trained
agents, we conduct experiments on tasks and en-
vironments that were not encountered during the
exploration and learning phases. Specifically, the
used tasks in ALF and Baby are unseen by the
agent during training, and the AM and ST envi-
ronments are completely new for the agent. As
shown in Table 4, AGENTSTAR outperforms other
baselines on OOD tasks. We find the model can
effectively explore unseen tasks and instructions
and learn from new experiences, significantly en-
hancing its generalization capabilities.

Performance analysis of State-of-the-Art mod-
els. To further evaluate the capabilities of ad-
vanced models, we conduct experiments with
Qwen2.5-Max (Team, 2024), GPT-4o (OpenAI,
2024), and DeepSeek-R1 (DeepSeek-AI et al.,
2025). As shown in Table 5, DeepSeek-R1 ex-
cels in tasks requiring long-term reasoning, such
as text-based games (MZ/WD) and embodied tasks
(Baby). However, it exhibits notable performance
gaps compared to GPT-4o and Qwen2.5-Max on
tasks involving complex input processing and pre-
cise instruction following. Through further experi-
ments, we find that although DeepSeek-R1 demon-
strates strong capabilities in long thinking, its out-
puts often fail to follow the expected ReAct format
and tend to overthink by inaccurately simulating
environmental observations. These issues lead to
suboptimal performance in structured agent tasks.

Effectiveness on different models with AGENT-
GYM. To demonstrate the effectiveness of

27921

Model Method WS ALF Baby TC

DeepSeek-Coder-1.3B
AGENTTRAJ-SFT 54.0 33.0 68.9 31.0
AGENTTRAJ-L-SFT 65.0 62.5 73.8 37.0
AGENTSTAR 67.5 54.5 77.3 38.0

Llama2-Chat-13B
AGENTTRAJ-SFT 65.5 81.5 76.6 59.0
AGENTTRAJ-L-SFT 74.0 85.0 81.1 61.0
AGENTSTAR 78.5 89.5 86.8 71.0

Table 6: Evaluating results on different models.

AGENTGYM in supporting diverse backbone mod-
els, we conduct experiments on Llama-2-13B (Tou-
vron et al., 2023) and DeepSeek-Coder-1.3B (Guo
et al., 2024). The experimental results in Table 6
show the same trends as in Section 6.2. This high-
lights that AGENTGYM facilitates model training,
and its support for real-time, interactive exploration
and learning enables consistent improvements re-
gardless of the model architecture.

We include additional ablation and analysis ex-
periments in Appendix E.

7 Conclusion

In this work, we present a new interative frame-
work named AGENTGYM that encompasses 14 en-
vironments and 89 tasks, covering 7 key scenarios
for agent evaluation and development. We include
a rich database with a high-coverage instruction
set, a comprehensive benchmark suite, and a high-
quality trajectory set. We take the initial step to
investigate training LLM-based agents that can han-
dle various tasks through exploration and learning
within diverse environments. We perform extensive
evaluation, training, and analysis to show the effec-
tiveness of our AGENTGYM framework, database
and the training pipelines. We hope our work can
help the AI community develop more advanced
generally-capable LLM-based agents.

Limitations

This paper proposes a new framework named
AGENTGYM for comprehensively evaluating and
developing LLM-based agents. It includes an in-
teractive platform with diverse environments and
tasks, a high-coverage instruction set, a bench-
mark suite, and two collections of high-quality
trajectories. Additionally, we explore the self-
improvement of generally-capable LLM-based
agents. Despite the contributions and the fact that
our method performs well, our work still has some
limitations. Firstly, although we have evaluated
a wide range of models, we aim to include more
open-source and closed-source models in future
work to provide better references for the com-

munity. Secondly, while we have demonstrated
that models can master diverse tasks through ex-
ploration and learning, we hope to develop more
advanced algorithms in the future to further opti-
mize performance. Thirdly, although we validate
the effectiveness of AGENTSTAR on three differ-
ent models (Llama2-Chat-7B, Llama-2-Chat-13B,
and DeepSeek-Coder-1.3B), we aim to verify it
on stronger base models in the future to explore
the potential for building more generally-capable
agents.

Acknowledgements

The authors wish to thank the anonymous re-
viewers for their helpful comments. This
work was partially funded by the Major Key
Project of PCL under Grant PCL2024A06, Na-
tional Natural Science Foundation of China (No.
62476061,62206057,62076069), Shanghai Rising-
Star Program (23QA1400200), Natural Science
Foundation of Shanghai (23ZR1403500), Program
of Shanghai Academic Research Leader under
grant 22XD1401100.

References
Marwa Abdulhai, Isadora White, Charlie Snell, Charles

Sun, Joey Hong, Yuexiang Zhai, Kelvin Xu, and
Sergey Levine. 2023a. LMRL gym: Benchmarks
for multi-turn reinforcement learning with language
models. CoRR, abs/2311.18232.

Marwa Abdulhai, Isadora White, Charlie Snell, Charles
Sun, Joey Hong, Yuexiang Zhai, Kelvin Xu, and
Sergey Levine. 2023b. Lmrl gym: Benchmarks
for multi-turn reinforcement learning with language
models. Preprint, arXiv:2311.18232.

Renat Aksitov, Sobhan Miryoosefi, Zonglin Li, Daliang
Li, Sheila Babayan, Kavya Kopparapu, Zachary
Fisher, Ruiqi Guo, Sushant Prakash, Pranesh Srini-
vasan, Manzil Zaheer, Felix X. Yu, and Sanjiv Kumar.
2023. Rest meets react: Self-improvement for multi-
step reasoning LLM agent. CoRR, abs/2312.10003.

Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-
Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan
Schalkwyk, Andrew M. Dai, Anja Hauth, Katie Mil-
lican, David Silver, Slav Petrov, Melvin Johnson,
Ioannis Antonoglou, Julian Schrittwieser, Amelia
Glaese, Jilin Chen, Emily Pitler, Timothy P. Lilli-
crap, Angeliki Lazaridou, Orhan Firat, James Molloy,
Michael Isard, Paul Ronald Barham, Tom Henni-
gan, Benjamin Lee, Fabio Viola, Malcolm Reynolds,
Yuanzhong Xu, Ryan Doherty, Eli Collins, Clemens
Meyer, Eliza Rutherford, Erica Moreira, Kareem
Ayoub, Megha Goel, George Tucker, Enrique Pi-
queras, Maxim Krikun, Iain Barr, Nikolay Savinov,

27922

https://doi.org/10.48550/ARXIV.2311.18232
https://doi.org/10.48550/ARXIV.2311.18232
https://doi.org/10.48550/ARXIV.2311.18232
https://arxiv.org/abs/2311.18232
https://arxiv.org/abs/2311.18232
https://arxiv.org/abs/2311.18232
https://doi.org/10.48550/ARXIV.2312.10003
https://doi.org/10.48550/ARXIV.2312.10003

Ivo Danihelka, Becca Roelofs, Anaïs White, Anders
Andreassen, Tamara von Glehn, Lakshman Yagati,
Mehran Kazemi, Lucas Gonzalez, Misha Khalman,
Jakub Sygnowski, and et al. 2023. Gemini: A fam-
ily of highly capable multimodal models. CoRR,
abs/2312.11805.

Anthropic. 2024. The claude 3 model family: Opus,
sonnet, haiku. https://www-cdn.anthropic.com/
de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/
Model_Card_Claude_3.pdf.

Amanda Askell, Yuntao Bai, Anna Chen, Dawn Drain,
Deep Ganguli, Tom Henighan, Andy Jones, Nicholas
Joseph, Benjamin Mann, Nova DasSarma, Nelson
Elhage, Zac Hatfield-Dodds, Danny Hernandez, Jack-
son Kernion, Kamal Ndousse, Catherine Olsson,
Dario Amodei, Tom B. Brown, Jack Clark, Sam Mc-
Candlish, Chris Olah, and Jared Kaplan. 2021. A
general language assistant as a laboratory for align-
ment. CoRR, abs/2112.00861.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda
Askell, Anna Chen, Nova DasSarma, Dawn Drain,
Stanislav Fort, Deep Ganguli, Tom Henighan,
Nicholas Joseph, Saurav Kadavath, Jackson Kernion,
Tom Conerly, Sheer El Showk, Nelson Elhage, Zac
Hatfield-Dodds, Danny Hernandez, Tristan Hume,
Scott Johnston, Shauna Kravec, Liane Lovitt, Neel
Nanda, Catherine Olsson, Dario Amodei, Tom B.
Brown, Jack Clark, Sam McCandlish, Chris Olah,
Benjamin Mann, and Jared Kaplan. 2022a. Train-
ing a helpful and harmless assistant with rein-
forcement learning from human feedback. CoRR,
abs/2204.05862.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu,
Amanda Askell, Jackson Kernion, Andy Jones,
Anna Chen, Anna Goldie, Azalia Mirhoseini,
Cameron McKinnon, et al. 2022b. Constitutional
ai: Harmlessness from ai feedback. arXiv preprint
arXiv:2212.08073.

Meng Cao, Lei Shu, Lei Yu, Yun Zhu, Nevan Wichers,
Yinxiao Liu, and Lei Meng. 2024. DRLC: reinforce-
ment learning with dense rewards from LLM critic.
CoRR, abs/2401.07382.

Baian Chen, Chang Shu, Ehsan Shareghi, Nigel Col-
lier, Karthik Narasimhan, and Shunyu Yao. 2023.
Fireact: Toward language agent fine-tuning. CoRR,
abs/2310.05915.

Zehui Chen, Kuikun Liu, Qiuchen Wang, Wenwei
Zhang, Jiangning Liu, Dahua Lin, Kai Chen, and
Feng Zhao. 2024. Agent-flan: Designing data and
methods of effective agent tuning for large language
models. CoRR, abs/2403.12881.

Maxime Chevalier-Boisvert, Dzmitry Bahdanau, Salem
Lahlou, Lucas Willems, Chitwan Saharia, Thien Huu
Nguyen, and Yoshua Bengio. 2019. Babyai: A plat-
form to study the sample efficiency of grounded lan-
guage learning. In 7th International Conference on
Learning Representations, ICLR 2019, New Orleans,
LA, USA, May 6-9, 2019. OpenReview.net.

Filippos Christianos, Georgios Papoudakis, Matthieu
Zimmer, Thomas Coste, Zhihao Wu, Jingxuan Chen,
Khyati Khandelwal, James Doran, Xidong Feng, Ji-
acheng Liu, Zheng Xiong, Yicheng Luo, Jianye Hao,
Kun Shao, Haitham Bou-Ammar, and Jun Wang.
2023. Pangu-agent: A fine-tunable generalist agent
with structured reasoning. CoRR, abs/2312.14878.

Peter Dayan and Geoffrey E Hinton. 1997. Using
expectation-maximization for reinforcement learn-
ing. Neural Computation, 9(2):271–278.

DeepSeek-AI. 2024. Deepseek-v2: A strong, economi-
cal, and efficient mixture-of-experts language model.
Preprint, arXiv:2405.04434.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang,
Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang,
Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhi-
hong Shao, Zhuoshu Li, Ziyi Gao, and 181 others.
2025. Deepseek-r1: Incentivizing reasoning capa-
bility in llms via reinforcement learning. Preprint,
arXiv:2501.12948.

Linxi Fan, Guanzhi Wang, Yunfan Jiang, Ajay Man-
dlekar, Yuncong Yang, Haoyi Zhu, Andrew Tang,
De-An Huang, Yuke Zhu, and Anima Anandkumar.
2022. Minedojo: Building open-ended embodied
agents with internet-scale knowledge. In Advances
in Neural Information Processing Systems 35: An-
nual Conference on Neural Information Processing
Systems 2022, NeurIPS 2022, New Orleans, LA, USA,
November 28 - December 9, 2022.

Çaglar Gülçehre, Tom Le Paine, Srivatsan Srini-
vasan, Ksenia Konyushkova, Lotte Weerts, Abhishek
Sharma, Aditya Siddhant, Alex Ahern, Miaosen
Wang, Chenjie Gu, Wolfgang Macherey, Arnaud
Doucet, Orhan Firat, and Nando de Freitas. 2023.
Reinforced self-training (rest) for language modeling.
CoRR, abs/2308.08998.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai
Dong, Wentao Zhang, Guanting Chen, Xiao Bi,
Y Wu, YK Li, et al. 2024. Deepseek-coder: When the
large language model meets programming–the rise of
code intelligence. arXiv preprint arXiv:2401.14196.

Hanyu Lai, Xiao Liu, Iat Long Iong, Shuntian Yao, Yux-
uan Chen, Pengbo Shen, Hao Yu, Hanchen Zhang,
Xiaohan Zhang, Yuxiao Dong, and Jie Tang. 2024.
Autowebglm: Bootstrap and reinforce A large lan-
guage model-based web navigating agent. CoRR,
abs/2404.03648.

WB Langdon. 2005. Pfeiffer–a distributed open-ended
evolutionary system. In AISB, volume 5, pages 7–13.
Citeseer.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xu-
anyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding,
Kaiwen Men, Kejuan Yang, Shudan Zhang, Xiang
Deng, Aohan Zeng, Zhengxiao Du, Chenhui Zhang,
Sheng Shen, Tianjun Zhang, Yu Su, Huan Sun,
Minlie Huang, Yuxiao Dong, and Jie Tang. 2023a.

27923

https://doi.org/10.48550/ARXIV.2312.11805
https://doi.org/10.48550/ARXIV.2312.11805
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://arxiv.org/abs/2112.00861
https://arxiv.org/abs/2112.00861
https://arxiv.org/abs/2112.00861
https://doi.org/10.48550/ARXIV.2204.05862
https://doi.org/10.48550/ARXIV.2204.05862
https://doi.org/10.48550/ARXIV.2204.05862
https://doi.org/10.48550/ARXIV.2401.07382
https://doi.org/10.48550/ARXIV.2401.07382
https://doi.org/10.48550/ARXIV.2310.05915
https://doi.org/10.48550/ARXIV.2403.12881
https://doi.org/10.48550/ARXIV.2403.12881
https://doi.org/10.48550/ARXIV.2403.12881
https://openreview.net/forum?id=rJeXCo0cYX
https://openreview.net/forum?id=rJeXCo0cYX
https://openreview.net/forum?id=rJeXCo0cYX
https://doi.org/10.48550/ARXIV.2312.14878
https://doi.org/10.48550/ARXIV.2312.14878
https://arxiv.org/abs/2405.04434
https://arxiv.org/abs/2405.04434
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
http://papers.nips.cc/paper_files/paper/2022/hash/74a67268c5cc5910f64938cac4526a90-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2022/hash/74a67268c5cc5910f64938cac4526a90-Abstract-Datasets_and_Benchmarks.html
https://doi.org/10.48550/ARXIV.2308.08998
https://doi.org/10.48550/ARXIV.2404.03648
https://doi.org/10.48550/ARXIV.2404.03648

Agentbench: Evaluating llms as agents. CoRR,
abs/2308.03688.

Zhiwei Liu, Weiran Yao, Jianguo Zhang, Le Xue,
Shelby Heinecke, Rithesh Murthy, Yihao Feng,
Zeyuan Chen, Juan Carlos Niebles, Devansh Arpit,
Ran Xu, Phil Mui, Huan Wang, Caiming Xiong, and
Silvio Savarese. 2023b. BOLAA: benchmarking
and orchestrating llm-augmented autonomous agents.
CoRR, abs/2308.05960.

Trung Quoc Luong, Xinbo Zhang, Zhanming Jie,
Peng Sun, Xiaoran Jin, and Hang Li. 2024. Reft:
Reasoning with reinforced fine-tuning. Preprint,
arXiv:2401.08967.

Chang Ma, Junlei Zhang, Zhihao Zhu, Cheng Yang,
Yujiu Yang, Yaohui Jin, Zhenzhong Lan, Lingpeng
Kong, and Junxian He. 2024. Agentboard: An an-
alytical evaluation board of multi-turn LLM agents.
CoRR, abs/2401.13178.

OpenAI. 2023. GPT-4 technical report. CoRR,
abs/2303.08774.

OpenAI. 2024. Gpt-4o system card. CoRR,
abs/2410.21276.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray,
John Schulman, Jacob Hilton, Fraser Kelton, Luke
Miller, Maddie Simens, Amanda Askell, Peter Welin-
der, Paul F. Christiano, Jan Leike, and Ryan Lowe.
2022. Training language models to follow instruc-
tions with human feedback. In Advances in Neural
Information Processing Systems 35: Annual Confer-
ence on Neural Information Processing Systems 2022,
NeurIPS 2022, New Orleans, LA, USA, November 28
- December 9, 2022.

Jan Peters and Stefan Schaal. 2007. Reinforcement
learning by reward-weighted regression for opera-
tional space control. In Machine Learning, Proceed-
ings of the Twenty-Fourth International Conference
(ICML 2007), Corvallis, Oregon, USA, June 20-24,
2007, volume 227 of ACM International Conference
Proceeding Series, pages 745–750. ACM.

Archiki Prasad, Alexander Koller, Mareike Hartmann,
Peter Clark, Ashish Sabharwal, Mohit Bansal, and
Tushar Khot. 2023. Adapt: As-needed decompo-
sition and planning with language models. CoRR,
abs/2311.05772.

Scott E. Reed, Konrad Zolna, Emilio Parisotto,
Sergio Gómez Colmenarejo, Alexander Novikov,
Gabriel Barth-Maron, Mai Gimenez, Yury Sulsky,
Jackie Kay, Jost Tobias Springenberg, Tom Eccles,
Jake Bruce, Ali Razavi, Ashley Edwards, Nicolas
Heess, Yutian Chen, Raia Hadsell, Oriol Vinyals,
Mahyar Bordbar, and Nando de Freitas. 2022. A
generalist agent. Trans. Mach. Learn. Res., 2022.

John Schulman, Filip Wolski, Prafulla Dhariwal,
Alec Radford, and Oleg Klimov. 2017. Proxi-
mal policy optimization algorithms. arXiv preprint
arXiv:1707.06347.

Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Côté,
Yonatan Bisk, Adam Trischler, and Matthew J.
Hausknecht. 2021. Alfworld: Aligning text and em-
bodied environments for interactive learning. In 9th
International Conference on Learning Representa-
tions, ICLR 2021, Virtual Event, Austria, May 3-7,
2021. OpenReview.net.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioan-
nis Antonoglou, Matthew Lai, Arthur Guez, Marc
Lanctot, Laurent Sifre, Dharshan Kumaran, Thore
Graepel, et al. 2018. A general reinforcement learn-
ing algorithm that masters chess, shogi, and go
through self-play. Science, 362(6419):1140–1144.

David Silver, Julian Schrittwieser, Karen Simonyan,
Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian
Bolton, Yutian Chen, Timothy P. Lillicrap, Fan Hui,
Laurent Sifre, George van den Driessche, Thore
Graepel, and Demis Hassabis. 2017. Mastering
the game of go without human knowledge. Nat.,
550(7676):354–359.

Avi Singh, John D. Co-Reyes, Rishabh Agarwal,
Ankesh Anand, Piyush Patil, Xavier Garcia, Pe-
ter J. Liu, James Harrison, Jaehoon Lee, Kelvin
Xu, Aaron Parisi, Abhishek Kumar, Alex Alemi,
Alex Rizkowsky, Azade Nova, Ben Adlam, Bernd
Bohnet, Gamaleldin F. Elsayed, Hanie Sedghi, Igor
Mordatch, Isabelle Simpson, Izzeddin Gur, Jasper
Snoek, Jeffrey Pennington, Jiri Hron, Kathleen Ke-
nealy, Kevin Swersky, Kshiteej Mahajan, Laura
Culp, Lechao Xiao, Maxwell L. Bileschi, Noah Con-
stant, Roman Novak, Rosanne Liu, Tris Warkentin,
Yundi Qian, Yamini Bansal, Ethan Dyer, Behnam
Neyshabur, Jascha Sohl-Dickstein, and Noah Fiedel.
2023. Beyond human data: Scaling self-training
for problem-solving with language models. CoRR,
abs/2312.06585.

Chan Hee Song, Jiaman Wu, Clayton Washington,
Brian M Sadler, Wei-Lun Chao, and Yu Su. 2023.
Llm-planner: Few-shot grounded planning for em-
bodied agents with large language models. In Pro-
ceedings of the IEEE/CVF International Conference
on Computer Vision, pages 2998–3009.

Yifan Song, Da Yin, Xiang Yue, Jie Huang, Sujian
Li, and Bill Yuchen Lin. 2024. Trial and error:
Exploration-based trajectory optimization for LLM
agents. CoRR, abs/2403.02502.

Russell K Standish. 2003. Open-ended artificial evolu-
tion. International Journal of Computational Intelli-
gence and Applications, 3(02):167–175.

Richard S Sutton and Andrew G Barto. 2018. Reinforce-
ment learning: An introduction. MIT press.

27924

https://doi.org/10.48550/ARXIV.2308.03688
https://doi.org/10.48550/ARXIV.2308.05960
https://doi.org/10.48550/ARXIV.2308.05960
https://arxiv.org/abs/2401.08967
https://arxiv.org/abs/2401.08967
https://doi.org/10.48550/ARXIV.2401.13178
https://doi.org/10.48550/ARXIV.2401.13178
https://doi.org/10.48550/ARXIV.2303.08774
https://doi.org/10.48550/ARXIV.2410.21276
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
https://doi.org/10.1145/1273496.1273590
https://doi.org/10.1145/1273496.1273590
https://doi.org/10.1145/1273496.1273590
https://doi.org/10.48550/ARXIV.2311.05772
https://doi.org/10.48550/ARXIV.2311.05772
https://openreview.net/forum?id=1ikK0kHjvj
https://openreview.net/forum?id=1ikK0kHjvj
https://openreview.net/forum?id=0IOX0YcCdTn
https://openreview.net/forum?id=0IOX0YcCdTn
https://doi.org/10.1038/NATURE24270
https://doi.org/10.1038/NATURE24270
https://doi.org/10.48550/ARXIV.2312.06585
https://doi.org/10.48550/ARXIV.2312.06585
https://doi.org/10.48550/ARXIV.2403.02502
https://doi.org/10.48550/ARXIV.2403.02502
https://doi.org/10.48550/ARXIV.2403.02502

Zhengwei Tao, Ting-En Lin, Xiancai Chen, Hangyu
Li, Yuchuan Wu, Yongbin Li, Zhi Jin, Fei Huang,
Dacheng Tao, and Jingren Zhou. 2024. A survey
on self-evolution of large language models. arXiv
preprint arXiv:2404.14387.

Tim Taylor, Mark A. Bedau, Alastair Channon, David H.
Ackley, Wolfgang Banzhaf, Guillaume Beslon,
Emily L. Dolson, Tom Froese, Simon J. Hickin-
botham, Takashi Ikegami, Barry McMullin, Nor-
man H. Packard, Steen Rasmussen, Nathaniel Virgo,
Eran Agmon, Edward Clark, Simon McGregor,
Charles Ofria, Glen E. P. Ropella, Lee Spector, Ken-
neth O. Stanley, Adam Stanton, Christopher Steven
Timperley, Anya E. Vostinar, and Michael J. Wiser.
2016. Open-ended evolution: Perspectives from the
OEE workshop in york. Artif. Life, 22(3):408–423.

Qwen Team. 2024. Qwen2.5 technical report. arXiv
preprint arXiv:2412.15115.

Ye Tian, Baolin Peng, Linfeng Song, Lifeng Jin, Dian
Yu, Haitao Mi, and Dong Yu. 2024. Toward self-
improvement of llms via imagination, searching, and
criticizing. arXiv preprint arXiv:2404.12253.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao
Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai Tang,
Xu Chen, Yankai Lin, Wayne Xin Zhao, Zhewei Wei,
and Jirong Wen. 2024. A survey on large language
model based autonomous agents. Frontiers Comput.
Sci., 18(6):186345.

Ruoyao Wang, Peter A. Jansen, Marc-Alexandre Côté,
and Prithviraj Ammanabrolu. 2022. Scienceworld: Is
your agent smarter than a 5th grader? In Proceedings
of the 2022 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2022, Abu
Dhabi, United Arab Emirates, December 7-11, 2022,
pages 11279–11298. Association for Computational
Linguistics.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa
Liu, Noah A. Smith, Daniel Khashabi, and Hannaneh
Hajishirzi. 2023. Self-instruct: Aligning language
models with self-generated instructions. In Proceed-
ings of the 61st Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), ACL 2023, Toronto, Canada, July 9-14, 2023,
pages 13484–13508. Association for Computational
Linguistics.

Michael J. Wooldridge and Nicholas R. Jennings. 1995.
Intelligent agents: theory and practice. Knowl. Eng.
Rev., 10(2):115–152.

Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen
Ding, Boyang Hong, Ming Zhang, Junzhe Wang,
Senjie Jin, Enyu Zhou, Rui Zheng, Xiaoran Fan,

Xiao Wang, Limao Xiong, Yuhao Zhou, Weiran
Wang, Changhao Jiang, Yicheng Zou, Xiangyang
Liu, Zhangyue Yin, Shihan Dou, Rongxiang Weng,
Wenjuan Qin, Yongyan Zheng, Xipeng Qiu, Xuanjing
Huang, Qi Zhang, and Tao Gui. 2025. The rise and
potential of large language model based agents: A
survey. Science China Information Sciences, 68(2).

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng,
Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin
Jiang. 2023. Wizardlm: Empowering large lan-
guage models to follow complex instructions. CoRR,
abs/2304.12244.

Zonghan Yang, Peng Li, Ming Yan, Ji Zhang, Fei Huang,
and Yang Liu. 2024. React meets actre: When lan-
guage agents enjoy training data autonomy. CoRR,
abs/2403.14589.

Shunyu Yao, Howard Chen, John Yang, and Karthik
Narasimhan. 2022. Webshop: Towards scalable real-
world web interaction with grounded language agents.
In Advances in Neural Information Processing Sys-
tems 35: Annual Conference on Neural Information
Processing Systems 2022, NeurIPS 2022, New Or-
leans, LA, USA, November 28 - December 9, 2022.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik R. Narasimhan, and Yuan Cao. 2023.
React: Synergizing reasoning and acting in language
models. In The Eleventh International Conference
on Learning Representations, ICLR 2023, Kigali,
Rwanda, May 1-5, 2023. OpenReview.net.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah D.
Goodman. 2022. Star: Bootstrapping reasoning with
reasoning. In Advances in Neural Information Pro-
cessing Systems 35: Annual Conference on Neural
Information Processing Systems 2022, NeurIPS 2022,
New Orleans, LA, USA, November 28 - December 9,
2022.

Aohan Zeng, Mingdao Liu, Rui Lu, Bowen Wang, Xiao
Liu, Yuxiao Dong, and Jie Tang. 2023. Agenttuning:
Enabling generalized agent abilities for llms. CoRR,
abs/2310.12823.

Jianguo Zhang, Tian Lan, Rithesh Murthy, Zhiwei Liu,
Weiran Yao, Juntao Tan, Thai Hoang, Liangwei Yang,
Yihao Feng, Zuxin Liu, et al. 2024. Agentohana:
Design unified data and training pipeline for effective
agent learning. arXiv preprint arXiv:2402.15506.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang,
Joseph E. Gonzalez, and Ion Stoica. 2023a. Judging
llm-as-a-judge with mt-bench and chatbot arena. In
Advances in Neural Information Processing Systems
36: Annual Conference on Neural Information Pro-
cessing Systems 2023, NeurIPS 2023, New Orleans,
LA, USA, December 10 - 16, 2023.

Rui Zheng, Shihan Dou, Songyang Gao, Yuan Hua, Wei
Shen, Binghai Wang, Yan Liu, Senjie Jin, Qin Liu,
Yuhao Zhou, Limao Xiong, Lu Chen, Zhiheng Xi,

27925

https://doi.org/10.1162/ARTL_A_00210
https://doi.org/10.1162/ARTL_A_00210
https://doi.org/10.1007/S11704-024-40231-1
https://doi.org/10.1007/S11704-024-40231-1
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.775
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.775
https://doi.org/10.18653/V1/2023.ACL-LONG.754
https://doi.org/10.18653/V1/2023.ACL-LONG.754
https://doi.org/10.1017/S0269888900008122
https://doi.org/10.1007/s11432-024-4222-0
https://doi.org/10.1007/s11432-024-4222-0
https://doi.org/10.1007/s11432-024-4222-0
https://doi.org/10.48550/ARXIV.2304.12244
https://doi.org/10.48550/ARXIV.2304.12244
https://doi.org/10.48550/ARXIV.2403.14589
https://doi.org/10.48550/ARXIV.2403.14589
http://papers.nips.cc/paper_files/paper/2022/hash/82ad13ec01f9fe44c01cb91814fd7b8c-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/82ad13ec01f9fe44c01cb91814fd7b8c-Abstract-Conference.html
https://openreview.net/pdf?id=WE_vluYUL-X
https://openreview.net/pdf?id=WE_vluYUL-X
http://papers.nips.cc/paper_files/paper/2022/hash/639a9a172c044fbb64175b5fad42e9a5-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/639a9a172c044fbb64175b5fad42e9a5-Abstract-Conference.html
https://doi.org/10.48550/ARXIV.2310.12823
https://doi.org/10.48550/ARXIV.2310.12823
http://papers.nips.cc/paper_files/paper/2023/hash/91f18a1287b398d378ef22505bf41832-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/91f18a1287b398d378ef22505bf41832-Abstract-Datasets_and_Benchmarks.html

Nuo Xu, Wenbin Lai, Minghao Zhu, Cheng Chang,
Zhangyue Yin, Rongxiang Weng, Wensen Cheng,
Haoran Huang, Tianxiang Sun, Hang Yan, Tao Gui,
Qi Zhang, Xipeng Qiu, and Xuanjing Huang. 2023b.
Secrets of RLHF in large language models part I:
PPO. CoRR, abs/2307.04964.

Shuyan Zhou, Frank F. Xu, Hao Zhu, Xuhui Zhou,
Robert Lo, Abishek Sridhar, Xianyi Cheng, Yonatan
Bisk, Daniel Fried, Uri Alon, and Graham Neubig.
2023a. Webarena: A realistic web environment for
building autonomous agents. CoRR, abs/2307.13854.

Xuhui Zhou, Hao Zhu, Leena Mathur, Ruohong Zhang,
Haofei Yu, Zhengyang Qi, Louis-Philippe Morency,
Yonatan Bisk, Daniel Fried, Graham Neubig, and
Maarten Sap. 2023b. SOTOPIA: interactive evalua-
tion for social intelligence in language agents. CoRR,
abs/2310.11667.

Yifei Zhou, Andrea Zanette, Jiayi Pan, Sergey Levine,
and Aviral Kumar. 2024. Archer: Training language
model agents via hierarchical multi-turn RL. CoRR,
abs/2402.19446.

A Details of Environments in
AGENTGYM

WebShop (WS) (Yao et al., 2022). WebShop is
an interactive web environment for web shopping.
The agents are given instructions, and need to buy a
product that matches the specifications. The agents
can click a button on the webpage or search for
something by the search engine. WebShop con-
tains 12k instructions and provides over one mil-
lion real products from amazon.com. We select
6910 instructions. For AGENTTRAJ, we collect
1000 trajectories with commercial models (700)
and human annotations (300). For AGENTTRAJ-L,
we collect 3930 trajectories with commercial mod-
els (3430) and human annotations (500). We take
the success rate as the evaluation metric and set the
maximum round to 10.1

WebArena (WA) (Zhou et al., 2023a). We-
bArena is a realistic and reproducible web envi-
ronment. It contains four categories: E-commerce
platforms, social forum platforms, collaborative
development platforms, and content management
systems. It supports 12 different web browsing ac-
tions. The observation space consists of a web page
URL, the opened tabs, and the web page content.
Completing tasks in this highly realistic environ-
ment requires the agent to possess strong memory,
high-level planning, common sense, and reason-
ing abilities. The reward from the environment

1https://github.com/princeton-
nlp/WebShop/blob/master/LICENSE.md

is consistent with the original paper. We filter 20
evaluating test instances from the original dataset
for three main sub-tasks: Information-seeking, Site
Navigation, and Content & configuration operation.
We take the success rate as the evaluation metric
and set the maximum round to 25.2

MAZE (MZ) (Abdulhai et al., 2023b). MAZE
is a word game. Agents, acting as players, can
know their own position, the goal position, and
the directions where there are walls around them.
Agents decide to move one square in one of four
directions (up, down, left, or right) each time, re-
ceiving a reward of -1 for every move until they
reach the goal position. We use GPT-4-Turbo to
add thoughts to the trajectories sampled by LMRL-
Gym and create our dataset. For AGENTTRAJ, we
include 100 trajectories. For AGENTTRAJ-L, we
include 215 trajectories. We take the success rate as
the evaluation metric and set the maximum round
to 15.3

Wordle (WD) (Abdulhai et al., 2023b). Wordle
is a word-guessing game that tests agents’ ability
to reason at the level of individual letters. Agents
guess the target word from a given vocabulary con-
taining some five-letter words. After each guess,
agents are told whether each letter in the guessed
word is in the target word and whether its position
is correct and receive a reward of -1 for each step
until they guess the target word or run out of at-
tempts. We take the success rate as the evaluation
metric and set the maximum round to 8. We also
use GPT-4-Turbo to add thoughts to the trajectories
sampled by LMRL-Gym. For AGENTTRAJ, we
include 500 trajectories. For AGENTTRAJ-L, we
include 955 trajectories.

ALFWorld (ALF) (Shridhar et al., 2021). ALF-
World is a household environment based on
TextWorld, where agents need to explore rooms
and use common sense reasoning to execute tasks.
The action space of ALFWorld includes picking
up and placing items, observing surroundings, us-
ing furniture, and more. The environment provides
feedback on the execution of actions based on pre-
defined logic. We take the success rate as the eval-
uation metric and set the maximum round to 30.
ALFWorld has six types of tasks. We get 3827

2https://github.com/web-arena-
x/webarena/blob/main/LICENSE

3https://github.com/abdulhaim/LMRL-
Gym/blob/main/LICENSE

27926

https://doi.org/10.48550/ARXIV.2307.04964
https://doi.org/10.48550/ARXIV.2307.04964
https://doi.org/10.48550/ARXIV.2307.13854
https://doi.org/10.48550/ARXIV.2307.13854
https://doi.org/10.48550/ARXIV.2310.11667
https://doi.org/10.48550/ARXIV.2310.11667
https://doi.org/10.48550/ARXIV.2402.19446
https://doi.org/10.48550/ARXIV.2402.19446

instructions from the original work. For AGENT-
TRAJ, we collect 500 trajectories with commercial
models(400) and human annotations (100). For
AGENTTRAJ-L, we collect 2420 trajectories with
commercial models(1920) and human annotations
(500). 4

SciWorld (Sci) (Wang et al., 2022). Science-
World is a benchmark for testing agents’ scien-
tific reasoning abilities in a new interactive text
environment at the standard elementary science
curriculum level. ScienceWorld includes 30 types
of tasks, such as using measurement instruments
and conducting mechanics experiments. Its action
space is task-related, with the environment sim-
ulator providing the effects of actions. Because
the ScienceWorld repository provides golden paths
and existing models cannot achieve high perfor-
mance, we use GPT-4-Turbo to generate thoughts
for golden paths of 22 types of interactions that
are not too long. For AGENTTRAJ, we include
1000 trajectories. For AGENTTRAJ-L, we include
2120 trajectories. We take reward as the evaluation
metric and set the maximum round to 30.5

BabyAI (Baby) (Chevalier-Boisvert et al., 2019).
The BabyAI platform is an interactive grid world
simulator with 40 instruction-following tasks
where the agent is asked to interact with objects.
The agent has a limited 7x7 sight of view and can
only operate objects in front. The original imple-
mentation of BabyAI presents observations in the
form of images and low-level actions like "move
forward" and "turn left". The implementation from
AgentBoard converts graphic observations into tex-
tual instructions and expands the action space with
high-level actions like "pickup green key 1" and“go
through blue locked door 2". The agent receives
a non-zero reward discounted by the number of
steps when reaching the goal, and 0 otherwise. For
AGENTTRAJ, we annotate 400 trajectories of 18
out of all 40 tasks with commercial models. For
AGENTTRAJ-L, we annotate 810 trajectories with
commercial models. We take reward as the evalua-
tion metric and set the maximum round to 20.6

TextCraft (TC) (Prasad et al., 2023). Similar
to WordCraft, TextCraft is a text-only environment
for crafting Minecraft items. This environment

4https://github.com/alfworld/alfworld/blob/master/LICENSE
5https://github.com/allenai/ScienceWorld/blob/main/LICENSE
6https://github.com/mila-

iqia/babyai/blob/master/LICENSE

constructs a crafting tree based on Minecraft’s
crafting recipes, comprising 544 nodes, each rep-
resenting a target item. In TextCraft, each task
provides a specific target item alongside a list of
crafting commands generated by the tree. These
tasks are structured compositionally, incorporat-
ing crafting recipes of varying complexity ranging
from 1 to 4 steps. The environment supports three
valid actions: craft <item> using <ingredients>,
get <item>, and inventory. Each round, the en-
vironment checks the agent’s actions and returns
the execution state. Apart from craftable items
and their ingredients, all other items are obtainable
from the environment. Agents can get a reward of
1 only upon successfully crafting the target item.
We select 100 tasks for the test set and use the re-
maining tasks for training. For AGENTTRAJ, we
annotate 300 trajectories with commercial models
(254) and human annotation (46), with every action
in the trajectories verified by the environment. For
AGENTTRAJ-L, we annotate 374 trajectories with
commercial models (299) and human annotation
(75). We take the success rate as the evaluation
metric and set the maximum round to 20.7

Weather (WT) (Ma et al., 2024). The Weather
Environment allows LLM agents to utilize a
weather tool to access data on temperature, pre-
cipitation, and air quality for various locations and
time periods. It includes 18 different actions that
agents can use to achieve weather-related objec-
tives. This environment leverages Python code to
integrate the Open-Meteo API and implement the
necessary functions. If the agent’s final answer
matches the reference answer, it receives a reward
of 1; otherwise, it receives a reward of 0. We ex-
pand the original dataset of 20 queries to a total
of 331 queries by using GPT-3.5-Turbo and GPT-
4-Turbo for augmentation using self-instruct and
instruction evolution. Finally, we select 20 ques-
tions as the evaluating set, leaving the remaining
questions as the training set. For AGENTTRAJ, we
annotate 160 trajectories with commercial models
(140) and human annotators (20). We also refine
the annotations with human review to ensure accu-
racy. For AGENTTRAJ-L, we annotate 311 trajec-
tories with commercial models (230) and human
annotators (81). We take the success rate as the
evaluation metric and set the maximum round to

7https://github.com/archiki/ADaPT/blob/main/LICENSE

27927

10.8

Movie (MV) (Ma et al., 2024). The Movie En-
vironment grants LLM agents to utilize the movie
tool for accessing cinematic data, including film
details, personnel, and production companies. It
offers 16 distinct actions that agents can use to
achieve various movie-related objectives. This
tool integrates the API and data from The Movie
Database, implementing the necessary functions
to establish its capabilities. If the agent’s final an-
swer matches the reference answer, it receives a
reward of 1; otherwise, it receives a reward of 0.
To enhance the dataset, we expand the original 20
questions to 235 by using GPT-3.5-Turbo and GPT-
4-Turbo for query augmentation. GPT-4-Turbo is
employed to annotate 100 trajectories in AGENT-
TRAJ, and the annotations are further corrected
through human annotations to ensure accuracy. We
also use GPT-4-Turbo to annotate 215 trajectories
for AGENTTRAJ-L. We select 20 questions for the
evaluating set, with the remaining questions des-
ignated as the training set. We take the success
rate as the evaluation metric and set the maximum
round to 12.

Academia (AM) (Ma et al., 2024). The
Academia Environment equips LLM agents with
the academic tools to query information related to
computer science research, including academic pa-
pers and author details. It offers 7 different actions
for achieving various academic research objectives.
During its development, it utilizes data from the
Citation Network Dataset, crafts the necessary func-
tions, and subsequently constructs the Academia
tool. If the agent’s final answer matches the refer-
ence answer, it receives a reward of 1; otherwise, it
receives a reward of 0. The original 20 questions
are used as the evaluating set. We take the success
rate as the evaluation metric and set the maximum
round to 12.

TODOList (TL) (Ma et al., 2024). The TodoEn-
vironment enables LLM agents to query and amend
personal agenda data through the todo tool, offering
11 different actions. This tool is implemented based
on the TodoList API. If the agent’s final answer or
operations matches the reference ones, it receives
a reward of 1; otherwise, it receives a reward of 0.
To enhance the dataset, we expand the original 20

8https://github.com/hkust-nlp/AgentBoard. The codebase
is licensed under an Apache-2.0 License and the dataset is
licensed under a GNU General Public License, version 2.

questions to 155 using GPT-3.5-Turbo and GPT-
4-Turbo for data augmentation. For AGENTTRAJ,
we annotate 70 trajectories with GPT-4-Turbo. For
AGENTTRAJ-L, we annotate the queries to get 135
trajectories with GPT-4-Turbo (96) and human an-
notators (39). The annotations are further refined
by human review to ensure accuracy. Finally, we
select 20 questions for the evaluating set, with the
remaining questions designated as the training set.
We take the success rate as the evaluation metric
and set the maximum round to 15.

Sheet (ST) (Ma et al., 2024). The Sheet Environ-
ment allows LLM agents to use the sheet tool to
access and modify spreadsheet data, providing 20
different actions for operating on an Excel sheet.
This tool is built upon the Google Sheets API. The
reward returned by the environment is based on
the similarity between the table manipulated by the
agent and the reference table, with a value range
of [0, 1]. The original 20 questions are used as the
evaluating set. We take reward as the evaluation
metric and set the maximum round to 15.

BIRD (BD) (Zheng et al., 2023a). Code abil-
ity is a crucial aspect of capability for LLM-based
agents. In this environment, we focus on database
management ability. We wrap the BIRD-SQL
dataset and provide a unified API for agents to
interact with. BIRD-SQL is a bench for large-
scale database-grounded text-to-SQL evaluation.
It requires the agent to query a database using a
SELECT statement to get the correct answer. It
contains 9428 unique problems with a golden an-
swer for training. We select 3200 of them as the
instruction set. For AGENTTRAJ, we employ GPT-
4-Turbo to add thoughts for 2000 of the training set
problems. For AGENTTRAJ-L, we employ GPT-4-
Turbo to add thoughts for 3000 of the training set
problems. We take success rate as the evaluation
metric and the maximum round is 1 as BD is a
single-round programming task.9

B Platform Architecture of AGENTGYM

The architectural framework of AGENTGYM is il-
lustrated in Figure 4.

9https://github.com/AlibabaResearch/DAMO-
ConvAI/tree/main/bird. The bench is under a CC BY-NC 4.0
License.

27928

Figure 4: An illustration of the architecture of AGENTGYM.

C Algorithm

The algorithm of AGENTSTAR is summarized in
Algorithm 1.
D More Implementation Details

SFT. We train the model for 3 epochs with a
learning rate of 1× 10−5. The batch size is set to
2, and gradient accumulation is performed over 2
steps. We do not employ weight decay or learning
rate warmup.

AGENTSTAR. First, we train a base agent on the
AGENTTRAJ set, running SFT for 3 epochs with
a learning rate of 1 × 10−5. Then, we perform
the self-improvement phase. In Learning Step, we
run 1 epoch per iteration. In Exploration Step, we
set the temperature to 0.7 to sample trajectories

across environments. We perform a total of M=4
iterations. All other parameters remain the same
as in SFT. All experiments are conducted on eight
A100-80GB GPUs.

LLM-Planner. LLM-Planner is a prompt-based
baseline. In our experiments, we enhance the initial
System Prompt with exploration-based guidance.
We directly prompt the agent to generate a high-
level plan in the first turn, mapping the instruction
into subgoals, and let it interact with the environ-
ment in a ReAct-style during subsequent turns.

PPO. We use full parameter fine-tuning instead
of LoRA tuning. We load three models: the actor
model, the reference model, and the critic model.
We do not use a reward model, as our environment

27929

Algorithm 1: AGENTSTAR
Input: Initialized policy LLM-based agent πθ, environment set E , trajectory subset Ds, full

instruction set Q, reward function r.
Procedure Supervised fine-tuning:

Maximize objective JSFT(θ) = E(e,u,τ)∼DSFT

[
log πθ(τ |e, u)

]
to get πθbase ;

Procedure Evolution :
πθ1 ← πθbase ;
for iteration m = 1 to M do

// Perform Exploration Step
Dm =

⋃
e∈E De

m, where De
m = {(e, uj , τ j) |uj ∼ Qe, τ

j ∼ πθm(τ |e, uj)}|D
e
m|

j=1 ;
Compute reward for Dm with r;
Dm ← Dm ∪ DSFT;
// Perform Learning Step
Maximize objective Jlearn(θ) = E(e,u,τ)∼Dm

[log πθ(τ |e, u)] to get πθm+1 ;
end

automatically assigns rewards to the agent based on
interaction results. We follow the implementation
from the TRL library 10, where the actor and critic
models share the same backbone. On top of this, we
add a trainable value head as the output for the critic
model. The learning rate is set to 5 × 10−7, with
a batch size of 1 and gradient accumulation steps
of 2. We do not use weight decay or learning rate
warmup. We adhere to OpenAI’s implementation
of the PPO algorithm (Ouyang et al., 2022), where
KL_coef = 0.01, gamma = 1.0, lambda = 0.95,
and ppo_epoch = 2 . For all environments, we
first perform SFT for 1∼2 epochs as a warm-up,
followed by PPO training for 5∼10 epochs. To
alleviate memory constraints, we employ gradient
checkpointing and flash-attention 2 techniques.

DPO. We also use full parameter fine-tuning.
During the data sampling phase, we perform two
rounds of sampling on the base model to construct
DPO training data pairs. Responses with a re-
ward exceeding the expert threshold are labeled
as “chosen responses”. Responses with a reward
gap greater than that of the “chosen responses” are
labeled as “rejected responses”, and these form the
data pairs. In our experiments, the expert threshold
is set to 0.9, and the reward gap is set to 0.1. We
train for 3 epochs with a learning rate of 5× 10−7,
a batch size of 2, gradient accumulation steps of
4, weight decay of 0.1, and a warmup ratio of 0.1.
Additionally, we include a SFT objective to sta-
bilize the training procedure, following previous
work (Lai et al., 2024). Both the DPO and SFT

10https://github.com/huggingface/trl

objectives are assigned equal weights.

Evaluation. We set do_sample = False during
evaluation. When evaluating models that have not
been fine-tuned on expert trajectories, we use a
few-shot approach; when evaluating models that
have been trained on expert trajectories, we use a
zero-shot approach.

E More Experiments

E.1 Interactive Rounds in Main Experiments

Interactive rounds reflect the efficiency of an agent
in solving tasks. Table 7 shows the interactive
rounds of each model/agent across tasks. We also
present the evaluation performance in Table 7 for
better and clearer illustration. We find that agents
trained with AGENTTRAJ-L and AGENTSTAR
both demonstrate high efficiency, indicating that
they can complete tasks in a small number of
rounds. Additionally, we observe a trend: agents
that require fewer interactive rounds to complete
the same task generally perform better. This may
be because underperforming agents often struggle
to find the optimal path to achieve the final goal
or exceed the maximum number of rounds. For
example, in ALFWorld and BabyAI, AGENTSTAR
achieves the best performance as well as the fewest
interactive rounds.

E.2 More Ablation Studies

Ablation on sample number K. In the explo-
ration step, we perform sampling on each instruc-
tion once per iteration. Here, we conduct ablation
on sample number K with four tasks. The results in

27930

Method WS ALF TC Sci Baby MZ WD WT MV TL BD

Closed-source Models & Agents
DeepSeek-Chat 11.00 51.00 23.00 16.80 45.67 4.00 24.00 70.00 70.00 75.00 13.50

6.9 20.4 15.1 20.7 11.7 14.5 5.2 6.1 5.9 4.4 1.0
Claude-3-Haiku 5.50 0.00 0.00 0.83 1.93 4.00 16.00 55.00 50.00 65.00 13.50

8.0 30.0 20.0 29.8 19.9 14.4 5.7 7.3 6.0 4.0 1.0
Claude-3-Sonnet 1.50 13.00 38.00 2.78 79.25 0.00 36.00 65.00 80.00 80.00 17.00

9.5 27.9 14.6 28.7 6.6 15.0 5.2 6.9 5.1 4.5 1.0
GPT-3.5-Turbo 12.50 26.00 47.00 7.64 71.36 4.00 20.00 25.00 70.00 40.00 12.50

4.9 25.2 13.1 16.5 8.4 14.4 5.3 6.6 4.6 3.4 1.0
GPT-4-Turbo 15.50 67.50 77.00 14.38 72.93 68.00 88.00 80.00 95.00 95.00 16.00

8.2 18.3 9.9 18.1 9.1 9.0 4.0 6.0 4.5 4.0 1.0

Open-source Models & Agents
Llama2-Chat-7B 0.50 2.00 0.00 0.83 0.23 0.00 0.00 0.00 0.00 0.00 1.50

6.4 22.6 14.5 27.5 9.5 15.0 6.0 9.9 12.0 15.0 1.0
Llama2-Chat-13B 1.00 3.50 0.00 0.83 0.10 0.00 0.00 0.00 0.00 0.00 1.50

8.1 19.6 16.5 21.3 10.9 13.4 6.0 10.0 12.0 15.0 1.0
AgentLM-7B 36.50 71.00 4.00 1.63 0.49 12.00 4.00 0.00 5.00 15.00 5.00

4.7 17.7 19.4 28.5 7.5 13.9 2.0 8.3 11.7 10.6 1.0
AgentLM-13B 39.50 73.00 0.00 2.75 0.45 8.00 0.00 10.00 5.00 5.00 3.00

4.8 17.8 19.4 28.5 7.6 13.9 6.0 6.6 10.7 8.4 1.0
AgentLM-70B 49.50 67.00 4.00 10.68 0.66 8.00 4.00 0.00 0.00 40.00 7.50

4.9 18.5 18.8 28.2 6.3 13.9 5.2 6.6 11.6 6.7 1.0

Ours
AGENTTRAJ-SFT 66.50 77.50 44.00 26.42 69.31 12.00 12.00 25.00 5.00 45.00 8.00

5.6 16.4 13.7 21.3 6.7 14.3 5.9 6.2 10.8 5.4 1.0
AGENTTRAJ-L-SFT 73.50 83.00 60.00 74.47 74.19 12.00 36.00 45.00 5.00 65.00 8.50

5.5 16.1 14.3 29.3 6.2 14.3 5.7 6.4 10.2 5.0 1.0
AGENTSTAR 76.50 88.00 64.00 38.00 82.70 12.00 12.00 25.00 60.00 70.00 9.00

5.1 14.0 11.8 18.9 4.3 13.8 5.7 5.9 3.2 5.1 1.0

Table 7: Evaluating performance and interactive rounds on diverse tasks. The first row of each method indicates
performance, while the second row of each method shows the number of interaction rounds between the model/agent
and the environment.

Table 8 show no significant performance increases
with higher K. So we select K = 1 for computa-
tional efficiency.

Method WS ALF Baby TC

AGENTTRAJ-SFT 66.5 77.5 69.3 44.0
AGENTSTAR

-w K = 1 77.0 88.0 82.9 65.0
-w K = 2 76.0 88.0 83.1 67.0
-w K = 3 78.5 89.0 83.6 68.0
-w Limited Scope for Exploration 70.0 80.5 70.7 49.0

Table 8: Ablation study on sample number K and the
exploration scope with four tasks.

Ablation on exploration scope. In our experi-
ment, we first train a base agent using DSFT and
then let it explore a wider range of instructions and
tasks. We conduct an ablation study on four tasks
to see how well the agent evolves with limited in-
structions as in the SFT phase. Table 8 shows that
even in a limited scope, the base agent’s perfor-
mance improves, which may be attributed to more

diverse trajectories sampled from the agent. How-
ever, the improvement is not significant, indicating
that effective evolution needs a more extensive en-
vironment.

Ablation on base model selection. In our ex-
periments, we optimize the initial agent at each
iteration rather than continuing training from the
last iteration’s agent. To explore this further, we
conduct an ablation study to compare these two
training strategies. As shown in Figure 5, contin-
uous fine-tuning provides short-term performance
gains but often results in performance degradation
in later iterations, likely due to overfitting. In con-
trast, training from the initial agent ensures more
consistent and stable performance.

E.3 Analysis on RL and other
exploration-based methods

We have conducted a detailed comparison
of AGENTSTAR with other RL methods and

27931

M = 1 M = 2 M = 3 M = 4 M = 5
Iteration Number (M)

20

30

40

50

60

70

80

90
Pe

rfo
rm

an
ce

Strategy 1: Evolving based on the initial agent
Strategy 2: Evolving based on the last iteration's agent

AlfWorld
BabyAI

TextCraft
Sciworld

Figure 5: Ablation study regarding the choice of the
base model.

exploration-based methods as an additional discus-
sion.

Selection of baselines. Our evaluation is com-
prehensive and sufficient, including Prompt-based,
SFT, offline-RL, and online-RL methods. Ex-
perimental results demonstrate that AGENTSTAR
achieves superior performance across various tasks
when compared with representative algorithms.

Training cost. As shown in Table 9, the training
costs for AGENTTRAJ-L-SFT, Reward Weighted
Regression (RWR) (Peters and Schaal, 2007), and
AGENTSTAR are set as baselines, as they all opti-
mize the policy with SFT loss. In contrast, DPO
and PPO methods have significantly higher training
costs. DPO requires loading both the actor and ref-
erence models and computing probability distribu-
tions for chosen and rejected responses. PPO, being
an online RL method, involves sampling and pol-
icy optimization simultaneously, leading to more
intensive training times.

Method Type
Avg.

Training Cost
Accuracy

WS ALF Baby

LLM-Planner prompt-based / 18.9 68.5 82.5

AGENTTRAJ-L-SFT supervised fine-tuning 1× 73.5 83.0 74.2

RWR offline-RL 1× 68.0 76.5 82.1

DPO offline-RL 4.3× 75.0 86.5 78.3

PPO online-RL 15× 68.0 83.5 69.8

AGENTSTAR offline-RL 1× 76.5 88.0 82.7

Table 9: Comparison between AGENTSTAR and other
RL / exploration-based methods

Learning stability. For consistency, we set the
smallest unit of the x-axis for training time as an
epoch. As shown in Figure 6, it is clear that al-
gorithms optimized with SFT objectives are more
stable in performance improvements, leading to
faster convergence. While DPO shows significant
improvement in the early stages, overfitting occurs
quickly as training progresses. PPO, on the other

hand, exhibits noticeable instability throughout the
training process, with no clear learning trend dur-
ing the same number of epochs.

Training Reward Curves. Additionally, we
provide the mean training reward curves in Figure
3. We also observe that PPO encounters instability
and fluctuations in training rewards. This could be
due to the standard PPO algorithm, which only uses
outcome-based rewards and struggles with optimiz-
ing sparse, long-term, and multi-turn trajectories,
limiting the model’s exploration and learning.

E.4 Case Study
Here, we select three cases to demonstrate the
performance comparison before and after the
agent evolution, illustrating the effectiveness of
AGENTSTAR.

The first case is shown in Figure 7. In this case,
the user’s instruction is “Find me slim fit, straight
leg men’s pants with elastic waist, long sleeve, re-
laxed fit for everyday wear with color: black, and
size: large, and price lower than 50.00 dollars.” Be-
fore evolution, the agent can not effectively utilize
specific information from the environment’s feed-
back and directly chooses an item that exceeds the
target price, resulting in task failure. However, af-
ter evolution, the agent is able to engage in multiple
rounds of interaction with the environment, accu-
rately parse the details of the items returned by the
environment, and select a product with the correct
color, size, and price attributes.

The second case comes from the BabyAI envi-
ronment, as shown in Figure 8. In this environ-
ment, the agent’s task is to pick up the green box
in a room. The agent before evolution cannot ef-
fectively understand spatial relationships and fails
to perceive that the target object is right in front of
it, leading to incorrect decisions. After receiving
the positional information returned by the environ-
ment, it repeatedly moves forward until it reaches
the interaction limit. After evolution, the agent
can accurately determine its position and directly
execute the correct “pickup green box 1” action.

To compare AGENTSTAR with other baselines,
we analyze the third case shown in Figure 9. The
task is to find a long-lasting, lead-free soy candle
within a price range. RWR and DPO baselines
fail by selecting the first item without considering
the price, while PPO fails by aimlessly clicking
“Next Page”. In contrast, the agent after evolution
accurately parses product details and successfully
identifies a suitable item.

27932

1 2 3 4 5
Epoch

55

60

65

70

75

80
Pe

rfo
rm

an
ce

BClarge

DPO
PPO
AgentSTaR

(a) Webshop

1 2 3 4 5
Epoch

50
55
60
65
70
75
80
85
90

Pe
rfo

rm
an

ce

BClarge

DPO
PPO
AgentSTaR

(b) Alfworld

1 2 3 4 5
Epoch

50
55
60
65
70
75
80
85
90

Pe
rfo

rm
an

ce

BClarge

DPO
PPO
AgentSTaR

(c) BabyAI

Figure 6: Learning stability of AGENTSTAR and other exploration-based methods

F Prompt Details

The prompt for each environment and task com-
prises two components: the system prompt and the
instruction. The system prompt provides the initial
scenario for each task. The instruction provides
specific queries for each task. For consistency, the
same prompt template is utilized for human an-
notation, AI-based annotation of trajectories, and
evaluation across all tasks. The prompt details
for the WebShop are shown in Table 10. Table
11 presents the specifications for ALFWorld. The
TextCraft’s prompt details are outlined in Table
12. The prompt details for the SciWorld are shown
in Table 13. The prompt details for the BabyAI
are shown in Table 14. The prompt details for the
MAZE are shown in Table 15. The prompt details
for the Wordle are shown in Table 16. The prompt
details for the BIRD are shown in Table 17. Table
18 and 19 show the prompt details for WebArena.
The prompt details for the Weather are shown in
Table 20, 21, 22, 23. The prompt details for the
TODOList are shown in Table 24, 25, 26. The
prompt details for the Movie are shown in Table
27, 28, 29. The prompt details for the Academia
are shown in Table 30, 31. The prompt details for
the Sheet are shown in Table 32, 33, 34, 35.

27933

System Prompt:
You are web shopping. I will give you instructions about what to do. You have to follow the
instructions. Every round I will give you an observation and a list of available actions, you have
to respond to an action based on the state and instruction. You can use search action if the search
is available. You can click one of the buttons in clickables. An action should be of the following
structure: search[keywords] click[value]. If the action is not valid, perform nothing. Keywords in
search are up to you, but the value in click must be a value in the list of available actions. Remember
that your keywords in search should be carefully designed. Your response should use the following
format:

Thought: I think ...
Action: click[something]

Instruction:
WebShop [SEP] Instruction: [SEP] Find me machine wash women’s swimsuits & cover-ups with
drawstring closure, elastic waistband, tummy control with color: black, and size: medium, and price
lower than 30.00 dollars [SEP] Search

Table 10: Prompt details for WebShop.

27934

Instruction: Find me slim fit, straight leg men's pants with elastic waist, long sleeve, relaxed fit for everyday

wear with color: black, and size: large, and price lower than 50.00 dollars

Thought 1:

I think I should use the search bar to look for the

pants as per the given specifics.
Action 1:

search[slim fit straight leg men's pants elastic waist

long sleeve relaxed fit everyday wear black large

price < 50.00]
Observation 1:

<searching results>

Thought 2:

I think I should click on the 'B099231V35' option

as it seems to be a pair of men's pants that could

potentially meet the requirements.
Action 2:

click[B099231V35]
Observation 2:

<product details>: … Mens Casual Cargo Pants Hi

Vis Viz Reflective Overalls High Visibility Safe

Work Pants Outdoor Hiking Trousers Big and Tall

[SEP] Price: $16.79 …

Thought 3:

I think I should click on the 'black' option to select

the color I need.
Action 3:

click[black]
Observation 3:

<product details>

Thought 4:

I think I should click on the 'large' option to select

the size I need.
Action 4:

click[large]
Observation 4:

<product details>

Thought 5:

I think I should click on the 'Buy Now' button to

purchase the pants.
Action 5:

click[Buy Now]

Reward: 1.0

Thought 1:

I think I should use the search bar to look for the

pants as per the given specifics.
Action 1:

search[slim fit straight leg men's pants elastic waist

long sleeve relaxed fit everyday wear black large

price < 50.00]
Observation 1:

<searching results>: … B01MSP2B0I [SEP]

Wrangler Men's Retro Slim Fit Straight Leg Jean,

Black, 42W x 32L [SEP] $63.05 …

Thought 2:

I think I should click on the 'B01MSP2B0I' option

as it seems to be a men's pants that fits the

description.
Action 2:

click[B01MSP2B0I]
Observation 2:

<product details>: … Wrangler Men's Retro Slim

Fit Straight Leg Jean, Black, 42W x 32L [SEP]

Price: $63.05 …

Thought 3:

I think I should click on the 'Buy Now' button to

purchase the pants.
Action 3:

click[Buy Now]

Reward: 0.0

Before Evolution After Evolution

Figure 7: Case study of WebShop. Before evolution, the agent can not effectively utilize specific information from
the environment’s feedback and directly chooses an item that exceeds the target price, resulting in task failure. After
the evolution, the agent is able to engage in multiple rounds of interaction with the environment, accurately parse
the details of the items returned by the environment, and select a product with the correct color, size, and price
attributes.

27935

Thought 1:

I need to find the green box to pick it up. I should

check my surroundings to locate it.
Action 1:

check available actions
Observation 1:

You can take the following actions: turn left, turn

right, check available actions. Available actions:

["turn left", "turn right", "check available actions"]

Thought 2:

I need to find the green box to pick it up. I should

turn left to explore a different direction.
Action 2:

turn left
Observation 2:

<room details>: …In front of you in this room, you

can see several objects: There is a green box 1 3

steps in front of you…

Thought 3:

I need to pick up the green box to complete my

goal. I should move forward to reach it.
Action 3:

move forward
Observation 3:

<room details>

Thought 4:

I need to pick up the green box to complete my

goal. I should move forward to reach it.
Action 4:

move forward
Observation 4:

<room details>

…(more interactions)

Thought 20:
I need to pick up the green box to complete my

goal. I should move forward to reach it.

Action 20:
move forward

…(reach max_interaction_rounds)

Reward: 0.0

Thought 1:

I need to find the green box in this room.
Action 1:

check available actions
Observation 1:

You can take the following actions: turn left, turn

right, check available actions. Available actions:

["turn left", "turn right", "check available actions"]

Thought 2:

I need to turn left to explore the room further and

find the green box.
Action 2:

turn left
Observation 2:

In front of you in this room, you can see several

objects: There is a red key 1 0 steps in front of you

and 1 steps to your left. There is a green box 1 3

steps in front of you and 1 steps to your left. There

is a purple key 1 3 steps in front of you and 3 steps

to your left. The room has walls around you. You

are facing a wall 5 steps away. You are not carrying

anything. Available actions: ["turn left", "turn right",

"move forward", "pickup red key 1", "pickup green

box 1", "pickup purple key 1", "go to red key 1",

"go to green box 1", \go to purple key 1", "check

available actions"]

Thought 3:

I need to pick up the green box to complete my goal.
Action 3:

pickup green box 1

Reward: 1.0

Instruction: Your goal: pick up the green box. In front of you in this room, you can see several objects: The

room has walls around you. You are facing a wall 1 steps away. You are not carrying anything. Available

actions: ["turn left", "turn right", "check available actions"]

Before Evolution After Evolution

Figure 8: Case study of BabyAI. The agent before evolution cannot effectively understand spatial relationships
and fails to perceive that the target object is right in front of it, leading to incorrect decisions. After receiving the
positional information returned by the environment, it repeatedly moves forward until it reaches the interaction limit.
After evolution, the agent can accurately determine its position and directly execute the correct "pickup green box
1" action.

27936

Thought 1:

I think I should use the search bar to

look for the long lasting, lead free, soy

wax candles I need.

Action 1:

search[long lasting soy wax candles

lead free price < 50.00]

Thought 2:

I think I should click on the

'B07BKXMCNB' option as it seems to

be a long lasting, lead free, soy wax

candle within my price range.
Action 2:

click[B07BKXMCNB]

Observation 2:
<product details>

Thought 3:

I think I should click on the 'Buy Now'

button to purchase the long lasting,

lead free, soy wax candle.
Action 3:

click[Buy Now]

Reward: 0.0

RWR DPO

AgentEvol

Instruction: Find me long lasting, lead free candles with soy wax, and price lower than 50.00 dollars.

Thought 1:

I think I should use the search bar to

look for the long lasting, lead free

candles with soy wax that are priced

under $50.

Action 1:

search[long lasting lead free candles

soy wax price < 50.00]

Thought 2:

I think I should click on the 'Next >'

button to view more results.
Action 2:

click[Next >]
Observation 2:

<next page searching results>

Thought 3:

I think I should click on the 'Next >'

button to view more results.
Action 3:

click[Next >]

...(more interactions)

Action 10:
click[Next >]

...(reach max_interaction_rounds)

Reward: 0.0

PPO

Observation 1:

<searching results>: … B07BKXMCNB [SEP] Bungalow Glow, Candle Pikake Lei Wood 6 Ounce [SEP] $57.93

[SEP] B08JQ5TLQV [SEP] Scented Candles Gift Set for Women, Aromatherapy Candles Gifts for Women, 4x3.5oz

Long Lasting Candles for Home Scented Bath Yoga, 100% Natural Soy Candles, Unique Mothers Day Gifts for Mom

Birthday [SEP] $11.99…

Thought 1:

I think I should use the search bar to look

for the candles I need.

Action 1:

search[long lasting lead free candles soy

wax price < 50.00]

Thought 2:

I think I should click on the

'B07BKXMCNB' option as it seems to be

a long lasting, lead free candle with soy

wax and a price within my budget.
Action 2:

click[B07BKXMCNB]

Observation 2:
<product details>

Thought 3:

I think I should click on the 'Buy Now'

button to purchase the candle.
Action 3:

click[Buy Now]

Reward: 0.0

Thought 2:
I think I should click on the 'B08JQ5TLQV' option as it seems to be a long-lasting, lead-free candle with soy

wax and a price lower than 50.00 dollars.

Action 2:
click[B08JQ5TLQV]

Observation 2:
<product details>

Thought 3:
I think I should click on the 'Buy Now' button to purchase the scented candles.

Action 3:
click[Buy Now]

Reward: 1.0

Figure 9: Case study of WebShop. The RWR and DPO baselines lead to the selection of the first item without
considering the price constraint, resulting in task failure. In comparison, the PPO baseline continuously clicks “Next
Page” without effectively extracting relevant information from the environment, also failing to find a suitable item.
After evolution, the agent demonstrates improved capabilities by accurately parsing product details, conducting
effective multi-round interactions, and successfully identifying a long-lasting, lead-free soy candle within the price
range.

27937

System Prompt:
Interact with a household to solve a task. Imagine you are an intelligent agent in a household
environment and your target is to perform actions to complete the task goal. At the beginning of
your interactions, you will be given a detailed description of the current environment and your goal
to accomplish. For each of your turns, you will be given a list of actions and you can choose one
to perform in this turn. You should choose from two actions: “THOUGHT” or “ACTION”. If you
choose “THOUGHT”, you should first think about the current condition and plan for your future
actions, and then output your action in this turn. Your output must strictly follow this format:

Thought: your thoughts.
Action: your next action.

If you choose “ACTION”, you should directly output the action in this turn. Your output must
strictly follow this format: “Action: your next action”. After each turn, the environment will give
you immediate feedback based on which you plan your next few steps. If the environment outputs
“Nothing happened”, that means the previous action is invalid and you should try more options.
Reminder: the action must be chosen from the given available actions. Any actions except provided
available actions will be regarded as illegal. Think when necessary, try to act directly more in the
process.

Instruction:
You are in the middle of a room. Looking quickly around you, you see a armchair 1, a coffeetable 1, a
diningtable 2, a diningtable 1, a drawer 6, a drawer 5, a drawer 4, a drawer 3, a drawer 2, a drawer 1,
a dresser 1, a garbagecan 1, a sidetable 1, a sofa 2, a sofa 1, and a tvstand 1.

Your task is to: find two tissuebox and put them in coffeetable.

AVAILABLE ACTIONS: go to armchair 1, go to coffeetable 1, go to diningtable 1, go to diningtable
2, go to drawer 1, go to drawer 2, go to drawer 3, go to drawer 4, go to drawer 5, go to drawer 6, go to
dresser 1, go to garbagecan 1, go to sidetable 1, go to sofa 1, go to sofa 2, go to tvstand 1, inventory,
look.

Table 11: Prompt details for ALFWorld.

27938

System Prompt:
You are given a few useful crafting recipes to craft items in Minecraft. Crafting commands are of the
format “craft [target object] using [input ingredients]”. Every round I will give you an observation, you
have to respond to an action based on the state and instruction. You can “get” an object (ingredients)
from the inventory or the environment, look up the game “inventory” by inventory, or “craft” (target)
using any of the crafting commands. You can use ONLY these crafting commands provided, do not
use your own crafting commands. However, if the crafting command uses a generic ingredient like
“planks”, you can use special types of the same ingredient e.g. dark oak “planks” in the command
instead. Your response should use the following format:

Thought: ...
Action: ...

Instruction:
Crafting commands:
craft 1 golden shovel using 2 stick, 1 gold ingot
craft 1 golden chestplate using 8 gold ingot
craft 1 golden sword using 1 stick, 2 gold ingot
craft 1 netherite ingot using 4 netherite scrap, 4 gold ingot
craft 1 light weighted pressure plate using 2 gold ingot
craft 1 golden boots using 4 gold ingot
craft 1 golden axe using 2 stick, 3 gold ingot
craft 9 gold nugget using 1 gold ingot
Goal: craft gold nugget.

Table 12: Prompt details for TextCraft.

27939

System Prompt:
You are an agent for the science world. Every round I will give you an observation, you have to
respond with an action based on the observation to finish the given task.
Here are the actions you may take:
{“action”: “open/close OBJ”, “description”: “open/close a container”,}
{“action”: “de/activate OBJ”, “description”: “activate/deactivate a device”,}
{“action”: “connect OBJ to OBJ”, “description”: “connect electrical components”, }
{“action”: “disconnect OBJ”, “description”: “disconnect electrical components”,}
{“action”: “use OBJ [on OBJ]”, “description”: “use a device/item”,}
{“action”: “look around”, “description”: “describe the current room”,}
{“action”: “look at OBJ”, “description”: “describe an object in detail”,}
{“action”: “look in OBJ”, “description”: “describe a container’s contents”,}
{“action”: “read OBJ”, “description”: “read a note or book”,}
{“action”: “move OBJ to OBJ”, “description”: “move an object to a container”, }
{“action”: “pick up OBJ”, “description”: “move an object to the inventory”, }
{“action”: “put down OBJ”, “description”: “drop an inventory item”,}
{“action”: “pour OBJ into OBJ”, “description”: “pour a liquid into a container”, }
{“action”: “dunk OBJ into OBJ”, “description”: “dunk a container into a liquid”, }
{“action”: “mix OBJ”, “description”: “chemically mix a container”,}
{“action”: “go to LOC”, “description”: “move to a new location”,}
{“action”: “eat OBJ”, “description”: “eat a food”,}
{“action”: “flush OBJ”, “description”: “flush a toilet”,}
{“action”: “focus on OBJ”, “description”: “signal intent on a task object”,}
{“action”: “wait”, “description”: “take no action for 10 iterations”,}
{“action”: “wait1”, “description”: “take no action for 1 iteration”, }
{“action”: “task”, “description”: “describe current task”,}
{“action”: “inventory”, “description”: “list your inventory”}

Your response should use the following format:

Thought: your thoughts.
Action: your next action.

Instruction:
Your task is to find a(n) non-living thing. First, focus on the thing. Then, move it to the orange box in
the living room. This room is called the bedroom. In it, you see: the agent, a substance called air, a
bed. On the bed is: a mattress. On the mattress is: a white pillow. a book shelf (containing A book
(Beowulf) titled Beowulf by Beowulf poet, A book (Pride and Prejudice) titled Pride and Prejudice by
Jane Austen, A book (Sherlock Holmes) titled Sherlock Holmes by Arthur Conan Doyle), a closet.
The closet door is closed. a finger painting, a table. On the table is: nothing. You also see: A door to
the hallway (that is closed)

Table 13: Prompt details for SciWorld.

27940

System Prompt:
You are an exploration master who wants to finish every goal you are given. Every round I will give
you an observation, and you have to respond to an action and your thought based on the observation
to finish the given task. You are placed in a room and you need to accomplish the given goal with
actions. You can use the following actions:
- turn right
- turn left
- move forward
- go to <obj> <id>
- pick up <obj> <id>
- go through <door> <id>: <door> must be an open door.
- toggle and go through <door> <id>: <door> can be a closed door or a locked door. If you want
to open a locked door, you need to carry a key that is of the same color as the locked door.
- toggle: there is a closed or locked door right in front of you and you can toggle it.

Your response should use the following format:

Thought: <Your Thought>
Action: <Your Action>

Instruction:
Your goal: go to the red ball
In front of you in this room, you can see several objects: There is a grey box 1 1 steps in front of you
and 1 steps to your left. There is a grey ball 1 1 steps in front of you and 2 steps to your right. There
is a grey key 1 1 steps in front of you and 3 steps to your right. The room has walls around you. You
are facing a wall 3 steps away. You are not carrying anything.
Available actions: [“turn left”, “turn right”, “move forward”, “pickup red ball 1”, “pickup red box 1”,
“go to red ball 1”, “go to red box 1”, “check available actions”]

Table 14: Prompt details for BabyAI.

System Prompt:
You are an expert maze solver. Your objective is to reach the goal in as few steps as possible. At
each step you will be given information about where the goal is, your current position, and the walls
that surround you. When you move right you increase your y position by 1, when you move down
you increase your x position by 1. Your possible actions are “move up”, “move down”, “move left”,
“move right”. Formally, your return should be in this format:

Thought: <Your Thought>
Action: <Your Action>

Instruction:
Now let’s start a new game. Return your action and your thought in the format above strictly. Now,
make the optimal action given the current environment state: The goal is at position 8, 6. Your current
position is at position 1, 1. There are walls to your left, above you, below you.

Table 15: Prompt details for MAZE.

27941

System Prompt:
You are an expert wordle player. Welcome to the game of Wordle. Your objective is to guess a hidden
5 letter word. You have 6 attempts to guess it correctly and you should try to guess it in as few
attempts as possible. When guessing the word, you should format your word as a space separated
sequence of letters, like “s h i r e” for example. After guessing the word, you will receive feedback
from the game environment in the form of a sequence of 5 space separated letters like “b y g g b”,
where each letter indicates some information about the hidden word. The environment will return one
of three letters - “b”, “g”, or “y” – for each letter in the word you guessed. We describe the meaning
of each letter below:
“b”: If the environment returns a “b”, it means that the letter at that position in your guessed word is
not in the hidden word.
“y”: If the environment returns a “y”, it means that the letter at that position in your guessed word is in
the hidden word but is not in the correct position.
“g”: If the environment returns a “g”, it means that the letter at that position in your guessed word is in
the hidden word and is in the correct position.
As a note, if you guess an invalid word (e.g. not a 5 letter word or a word not in the vocabulary), the
environment will respond with an “invalid word” message. In general though, you should use this
information returned by the environment to update your belief about what the hidden word might be
and adjust your next guess accordingly.

Instruction:
Now let’s start a new game. Remember, the word you guess should be strictly in the vocabulary. You
should return your thought and your word strictly in the formation mentioned above.

Table 16: Prompt details for Wordle.

27942

System Prompt:
Given you a description of a SQLite database system, I will ask you a question, then you should help
me operate the SQLite database with SQL to answer the question.
You have to explain the problem and your solution to me and write down your thoughts. After thinking
and explaining thoroughly, you should give a SQL statement to solve the question. Your response
should be like this:

Thought: Your thought here.
Action: SELECT * FROM table WHERE condition;

You MUST put SQL in markdown format without any other comments. Your SQL should be in one
line. Every time you can only execute one SQL statement.

Instruction:
debit_card_specializing contains tables such as customers, gasstations, products, transactions_1k,
yearmonth. Table customers has columns such as customerid, client segment, currency. customerid
is the primary key. Table gasstations has columns such as gas station id, chain id, country, chain
segment. gas station id is the primary key. Table products has columns such as product id, description.
product id is the primary key. Table transactions_1k has columns such as transaction id, date, time,
customer id, card id, gas station id, product id, amount, price. transaction id is the primary key. Table
yearmonth has columns such as customer id, date, consumption. is the primary key. The date of
yearmonth is the foreign key of client segment of customers.

Among the transactions made in the gas stations in the Czech Republic, how many of them are taken
place after 2012/1/1?

Table 17: Prompt details for BIRD.

27943

System Prompt:
You are an autonomous intelligent agent tasked with navigating a web browser. You will be given
web-based tasks. These tasks will be accomplished through the use of specific actions you can issue.

Here’s the information you’ll have:
The user’s objective: This is the task you’re trying to complete.
The current web page’s accessibility tree: This is a simplified representation of the webpage, providing
key information.
The current web page’s URL: This is the page you’re currently navigating.
The open tabs: These are the tabs you have open.
The previous action: This is the action you just performed. It may be helpful to track your progress.

The actions you can perform fall into several categories:

Page Operation Actions:
click [id]: This action clicks on an element with a specific id on the webpage.
type [id] [content] [press_enter_after=0|1]: Use this to type the content into the field with id. By
default, the “Enter” key is pressed after typing unless press_enter_after is set to 0.
hover [id]: Hover over an element with id.
press [key_comb]: Simulates the pressing of a key combination on the keyboard (e.g., Ctrl+v).
scroll [direction=down|up]: Scroll the page up or down.

Tab Management Actions:
new_tab: Open a new, empty browser tab.
tab_focus [tab_index]: Switch the browser’s focus to a specific tab using its index.
close_tab: Close the currently active tab.

URL Navigation Actions:
goto [url]: Navigate to a specific URL.
go_back: Navigate to the previously viewed page.
go_forward: Navigate to the next page (if a previous ’go_back’ action was performed).

Completion Action:
stop [answer]: Issue this action when you believe the task is complete. If the objective is to find a
text-based answer, provide the answer in the bracket. If you believe the task is impossible to complete,
provide the answer as “N/A” in the bracket.

Homepage:
If you want to visit other websites, check out the homepage at http://homepage.com. It has a list of
websites you can visit.
http://homepage.com/password.html lists all the account name and password for the websites. You
can use them to log in to the websites.

Table 18: Prompt details for WebArena (Part 1/2).

27944

To be successful, it is very important to follow the following rules:
1. You should only issue an action that is valid given the current observation.
2. You should only issue one action at a time.
3. You should follow the examples to reason step by step and then issue the next action.
4. Generate the action in the correct format. Start with a “In summary, the next action I will perform
is” phrase, followed by action inside. For example, “In summary, the next action I will perform is
click [1234]”.
5. Issue stop action when you think you have achieved the objective. Don’t generate anything after
stop.

Instruction:
Observation:
Tab 0 (current): Projects · Dashboard · GitLab

[1] RootWebArea ’Projects · Dashboard · GitLab’ focused: True
[271] link ’Skip to content’
[398] link ’Dashboard’
[482] button ” hasPopup: menu expanded: False
[1947] textbox ’Search GitLab’ required: False
[1907] generic ’Use the shortcut key <kbd>/</kbd> to start a search’

...
URL: http://gitlab.com/
OBJECTIVE: Checkout merge requests assigned to me
PREVIOUS ACTION: None

Table 19: Prompt details for WebArena (Part 2/2).

27945

System Prompt:
You are an autonomous intelligent agent. You can use actions to help people solve problems. We
detail name, description, input(parameters) and output(returns) of each action as follows:
Name: get_user_current_date()
Description: Get the user’s current date.
Returns:
The current date in ‘YYYY-MM-DD’ format.

Name: get_user_current_location()
Description: Get the user’s current city.
Returns:
The user’s current city.

Name: get_historical_temp(latitude, longitude, start_date, end_date)
Description: Get historical temperature data for a specified location and date range.
Parameters:
- latitude (Type: number): The latitude of the location.
- longitude (Type: number): The longitude of the location.
- start_date (Type: string): The start date of the historical data (YYYY-MM-DD).
- end_date (Type: string): The end date of the historical data (YYYY-MM-DD).
Returns:
Historical temperature data.

Name: get_historical_rain(latitude, longitude, start_date, end_date)
Description: Get historical rainfall data for a specified location and date range.
Parameters:
- latitude (Type: number): The latitude of the location.
- longitude (Type: number): The longitude of the location.
- start_date (Type: string): The start date of the historical data (YYYY-MM-DD).
- end_date (Type: string): The end date of the historical data (YYYY-MM-DD).
Returns:
Historical rainfall data.

Name: get_historical_snow(latitude, longitude, start_date, end_date)
Description: Get historical snowfall data for a specified location and date range.
Parameters:
- latitude (Type: number): The latitude of the location.
- longitude (Type: number): The longitude of the location.
- start_date (Type: string): The start date of the historical data (YYYY-MM-DD).
- end_date (Type: string): The end date of the historical data (YYYY-MM-DD).
Returns:
Historical snowfall data.

Table 20: Prompt details for Weather (Part 1/4).

27946

Name: get_snow_forecast(latitude, longitude, start_date, end_date)
Description: Get snowfall forecast data for a specified location and date range.
Parameters:
- latitude (Type: number): The latitude of the location.
- longitude (Type: number): The longitude of the location.
- start_date (Type: string): The start date of the forecast (YYYY-MM-DD).
- end_date (Type: string): The end date of the forecast (YYYY-MM-DD).
Returns:
Snowfall forecast data.

Name: get_current_snow(latitude, longitude, current_date)
Description: Get current snowfall data for a specified location and date.
Parameters:
- latitude (Type: number): The latitude of the location.
- longitude (Type: number): The longitude of the location.
- current_date (Type: string): The current date to retrieve snowfall data (YYYY-MM-DD).
Returns:
Current snowfall data.

Name: get_current_temp(latitude, longitude, current_date)
Description: Get current temperature data for a specified location and date.
Parameters:
- latitude (Type: number): The latitude of the location.
- longitude (Type: number): The longitude of the location.
- current_date (Type: string): The current date to retrieve temperature data (YYYY-MM-DD).
Returns:
Current temperature data.

Name: get_latitude_longitude(name)
Description: Get latitude and longitude information for a specified location name.
Parameters:
- name (Type: string): The name of the location. (e.g., city name)
Returns:
latitude and longitude information for the specified location.

Name: get_elevation(latitude, longitude)
Description: Get elevation data for a specified location.
Parameters:
- latitude (Type: number): The latitude of the location.
- longitude (Type: number): The longitude of the location.
Returns:
Elevation data for the specified location.

Table 21: Prompt details for Weather (Part 2/4).

27947

Name: get_temp_forecast(latitude, longitude, start_date, end_date)
Description: Get temperature forecast data for a specified location and date range.
Parameters:
- latitude (Type: number): The latitude of the location.
- longitude (Type: number): The longitude of the location.
- start_date (Type: string): The start date of the forecast (YYYY-MM-DD).
- end_date (Type: string): The end date of the forecast (YYYY-MM-DD).
Returns:
Temperature forecast data.

Name: get_rain_forecast(latitude, longitude, start_date, end_date)
Description: Get rainfall forecast data for a specified location and date range.
Parameters:
- latitude (Type: number): The latitude of the location.
- longitude (Type: number): The longitude of the location.
- start_date (Type: string): The start date of the forecast (YYYY-MM-DD).
- end_date (Type: string): The end date of the forecast (YYYY-MM-DD).
Returns:
Rainfall forecast data.

Name: get_current_rain(latitude, longitude, current_date)
Description: Get current rainfall data for a specified location and date.
Parameters:
- latitude (Type: number): The latitude of the location.
- longitude (Type: number): The longitude of the location.
- current_date (Type: string): The current date to retrieve rainfall data (YYYY-MM-DD).
Returns:
Current rainfall data.

Name: get_distance(latitude1, longitude1, latitude2, longitude2)
Description: Calculate the distance between two sets of latitude and longitude coordinates.
Parameters:
- latitude1 (Type: number): The latitude of the first location.
- longitude1 (Type: number): The longitude of the first location.
- latitude2 (Type: number): The latitude of the second location.
- longitude2 (Type: number): The longitude of the second location.
Returns:
The distance between the two sets of coordinates in kilometers.

Name: get_historical_air_quality_index(latitude, longitude, start_date, end_date)
Description: Get historical air quality index data for a specified location and date range.
Parameters:
- latitude (Type: number): The latitude of the location.
- longitude (Type: number): The longitude of the location.
- start_date (Type: string): The start date of the historical data (YYYY-MM-DD).
- end_date (Type: string): The end date of the historical data (YYYY-MM-DD).
Returns:
Historical air quality index (PM2.5) data.

Table 22: Prompt details for Weather (Part 3/4).

27948

Name: get_current_air_quality_index(latitude, longitude, current_date)
Description: Get current air quality index data for a specified location and date.
Parameters:
- latitude (Type: number): The latitude of the location.
- longitude (Type: number): The longitude of the location.
- current_date (Type: string): The current date to retrieve air quality index data (YYYY-MM-DD).
Returns:
Current air quality index (PM2.5) data.

Name: get_air_quality_level(air_quality_index)
Description: Determine the air quality level based on the air quality index (AQI).
Parameters:
- air_quality_index (Type: number): The air quality index (AQI) value.
Returns:
The air quality level, which can be ‘good’, ‘fair’, ‘moderate’, ‘poor’, ‘very poor’, or ‘extremely poor’.

Name: check_valid_actions()
Description: Get supported actions for current tool.
Returns:
- actions (Type: array): Supported actions for current tool.

Name: finish(answer)
Description: Return an answer and finish the task
Parameters:
- answer (Type: [‘string’, ‘number’, ‘array’]): The answer to be returned
If you want to get the latitude and longitude information of a city, you must call
“get_latitude_longitude”, do not generate it by yourself which maybe wrong.
If you are finished, you will call “finish” action
Please refer to the format of examples below to solve the requested goal. Your response must be in
the format of “Action: [your action] with Action Input: [your action input]”

Instruction:
Now new trial starts. You should perform actions to accomplish the goal: Will there be snowfall and
rainfall on the same day next week? Tell me Yes or No. Give me one action.

Table 23: Prompt details for Weather (Part 4/4).

27949

System Prompt:
You are an autonomous intelligent agent. You can use actions to help people solve problems. We
detail name, description, input(parameters) and output(returns) of each action as follows:
Name: get_user_current_date()
Description: Get the user’s current date.
Returns:
The current date in ‘YYYY-MM-DD’ format.

Name: get_user_current_location()
Description: Get the user’s current city.
Returns:
The user’s current city.

Name: get_projects()
Description: Get all projects in the TodoList account
Returns:
- Array of objects with properties:
- id (Type: string)
- name (Type: string)
- order (Type: integer)
- color (Type: string)
- is_favorite (Type: boolean)

Name: update_project(project_id, is_favorite)
Description: Update a project
Parameters:
- project_id (Type: string)
- is_favorite (Type: string, Enum: [True, False])
Returns:
Information of the updated project

Name: get_tasks(project_id)
Description: Get all tasks for a given project
Parameters:
- project_id (Type: string)
Returns:
- Array of objects with properties:
- id (Type: string)
- project_id (Type: string)
- order (Type: integer)
- content (Type: string): Name of the task.
- is_completed (Type: boolean)
- priority (Type: integer): Task priority from 1 (normal) to 4 (urgent).
- due_date (Type: string): The due date of the task.

Table 24: Prompt details for TODOList (Part 1/3).

27950

Name: get_task_description(task_id)
Description: Get the description of a specific task in the TodoList account.
Parameters:
- task_id (Type: string)
Returns:
- id (Type: string): Unique identifier of the task.
- content (Type: string): Name of the task.
- description (Type: string): Description of the task. Including the Place, Tips, etc.

Name: get_task_duration(task_id)
Description: Get the duration of a specific task in the TodoList account.
Parameters:
- task_id (Type: string)
Returns:
- id (Type: string)
- content (Type: string): Name of the task.
- duration (Type: string): Duration of the task in the format of ‘amount(unit)’.

Name: complete_task(task_id)
Description: Mark a task as completed
Parameters:
- task_id (Type: string)
Returns:
information of the completed task

Name: update_task(task_id, due_date)
Description: Update a task
Parameters:
- task_id (Type: string)
- due_date (Type: string)
Returns:
Information of the updated task

Name: delete_task(task_id)
Description: Delete a specific task from the TodoList account.
Parameters:
- task_id (Type: string): Unique identifier of the task to delete.
Returns:
Information of the deleted task.

Name: check_valid_actions()
Description: Get supported actions for current tool.
Returns:
Supported actions for current tool.

Table 25: Prompt details for TODOList (Part 2/3).

27951

Name: finish(answer)
Description: Call this action, when find the answer for the current task or complete essential opera-
tions.
Parameters:
- answer (Type: [‘string’, ‘number’, ‘array’]): If the task is a question answering task, this is the
answer to be returned. If the task is an operation task, the answer in ‘done’

If you are finished, you will call “finish” action
Please refer to the format of examples below to solve the requested goal. Your response must be in
the format of “Action: [your action] with Action Input: [your action input]”

Instruction:
Now new trial starts. You should perform actions to accomplish the goal: Could you provide the
due date for the task ‘Tidy up the living room’ in the Household Chores project? Please answer in
‘YYYY-MM-DD’ format. Give me one action.

Table 26: Prompt details for TODOList (Part 3/3).

27952

System Prompt:
You are an autonomous intelligent agent. You can use actions to help people solve problems. We
detail name, description, input(parameters) and output(returns) of each action as follows:
Name: get_search_movie(movie_name)
Description: Search for a movie by name and return basic details
Parameters:
- movie_name (Type: string): The name of the movie to search for.
Returns:
- id : The ID of the found movie.
- overview : The overview description of the movie.
- title : The title of the movie.

Name: get_movie_details(movie_id)
Description: Get detailed information about a movie by ID
Parameters:
- movie_id (Type: string): The ID of the movie.
Returns:
- budget : The budget of the movie.
- genres : The genres of the movie.
- revenue : The revenue of the movie.
- vote_average : The average vote score of the movie.
- release_date : The release date of the movie.

Name: get_movie_production_companies(movie_id)
Description: Get the production companies of a movie by its ID
Parameters:
- movie_id (Type: string): The ID of the movie.
Returns:
- production_companies : The production companies of the movie.

Name: get_movie_production_countries(movie_id) Description: Get the production countries of a
movie by its ID
Parameters:
- movie_id (Type: string): The ID of the movie.
Returns:
- production_countries : The production countries of the movie.

Name: get_movie_cast(movie_id)
Description: Retrieve the list of the top 10 cast members from a movie by its ID.
Parameters:
- movie_id (Type: string): The ID of the movie.
Returns:
- cast : List of the top 10 cast members.

Table 27: Prompt details for Movie (Part 1/3).

27953

Name: get_movie_crew(movie_id)
Description: Retrieve the list of crew members (limited to 10) from a movie by its ID. The list
primarily includes Director, Producer, and Writer roles.
Parameters:
- movie_id (Type: string): The ID of the movie.
Returns:
- crew : List of the top 10 of crew members

Name: get_movie_keywords(movie_id)
Description: Get the keywords associated with a movie by ID
Parameters:
- movie_id (Type: string): The ID of the movie.
Returns:
- keywords : The keywords associated with the movie.

Name: get_search_person(person_name)
Description: Search for a person by name.
Parameters:
- person_name (Type: string): The name of the person to search for.
Returns:
- id : The ID of the found person.
- name : The name of the person.

Name: get_person_details(person_id)
Description: Get detailed information about a person by ID
Parameters:
- person_id (Type: string): The ID of the person.
Returns:
- biography : The biography of the person.
- birthday : The birthday of the person.
- place_of_birth : The place of birth of the person.

Name: get_person_cast(person_id)
Description: Retrieve the top 10 movie cast roles of a person by their ID
Parameters:
- person_id (Type: string): The ID of the person.
Returns:
- cast : A list of movies where the person has acted, limited to top 10

Name: get_person_crew(person_id)
Description: Retrieve the top 10 movie crew roles of a person by their ID
Parameters:
- person_id (Type: string): The ID of the person.
Returns:
- crew : A list of movies where the person has participated as crew, limited to top 10

Table 28: Prompt details for Movie (Part 2/3).

27954

Name: get_person_external_ids(person_id)
Description: Get the external ids for a person by ID
Parameters:
- person_id (Type: string): The ID of the person.
Returns:
- imdb_id : The IMDB id of the person.
- facebook_id : The Facebook id of the person.
- instagram_id : The Instagram id of the person.
- twitter_id : The Twitter id of the person.

Name: get_movie_alternative_titles(movie_id)
Description: Get the alternative titles for a movie by ID
Parameters:
- movie_id (Type: string): The ID of the movie.
Returns:
- titles : The alternative titles of the movie.
- id : The ID of the movie.
Name: get_movie_translation(movie_id)
Description: Get the description translation for a movie by ID
Parameters:
- movie_id (Type: string): The ID of the movie.
Returns:
- translations : The description translation of the movie.
- id : The ID of the movie.
Name: check_valid_actions()
Description: Get supported actions for current tool.
Returns:
- actions (Type: array): Supported actions for current tool.

Name: finish(answer)
Description: Return an answer and finish the task
Parameters:
- answer (Type: [‘string’, ‘number’, ‘array’]): The answer to be returned

If you are finished, you will call “finish" action
Please refer to the format of examples below to solve the requested goal. Your response must be in
the format of “Action: [your action] with Action Input: [your action input]"

Instruction:
Now new trial starts. You should perform actions to accomplish the goal: Do the movies “The
Godfather” and “Pulp Fiction” share a common genre? Please answer me with Yes or No. Give me
one action.

Table 29: Prompt details for Movie (Part 3/3).

27955

System Prompt: You are an autonomous intelligent agent. You can use actions to help people
solve problems. We detail name, description, input(parameters) and output(returns) of each action as
follows:
Name: loadPaperNet()
Description: Load PaperNet. In this net, nodes are papers and edges are citation relationships between
papers.

Name: loadAuthorNet()
Description: Load AuthorNet. In this net, nodes are authors and edges are collaboration relationships
between authors.

Name: neighbourCheck(graph, node)
Description: List the first-order neighbors connect to the node. In paperNet, neigbours are cited
papers of the paper. In authorNet, neigbours are collaborators of the author.
Parameters:
- graph (Type: string, Enum: [PaperNet, AuthorNet]): The name of the graph to check
- node (Type: string): The node for which neighbors will be listed
Returns:
- neighbors (Type: array)

Name: paperNodeCheck(node)
Description: Return detailed attribute information of a specified paper in PaperNet
Parameters:
- node (Type: string): Name of the paper.
Returns:
- authors : The authors of the paper
- year : The puslished year of the paper
- venue : The published venue of the paper
- n_citation : The number of citations of the paper
- keywords : The keywords of the paper
- doc_type : The document type of the paper

Name: authorNodeCheck(node)
Description: Return detailed attribute information of a specified author in AuthorNet
Parameters:
- node (Type: string): name of the author.
Returns:
- name : The name of the author
- org : The organization of the author

Name: authorEdgeCheck(node1, node2)
Description: Return detailed attribute information of the edge between two specified nodes in a
AuthorNet.
Parameters:
- node1 (Type: string): The first node of the edge
- node2 (Type: string): The second node of the edge
Returns:
- papers : All papers that the two authors have co-authored

Table 30: Prompt details for Academia (Part 1/2).

27956

Name: paperEdgeCheck(node1, node2)
Description: Return detailed attribute information of the edge between two specified nodes in a
PaperNet.
Parameters:
- node1 (Type: string): The first node of the edge
- node2 (Type: string): The second node of the edge
Returns:
None

Name: check_valid_actions()
Description: Get supported actions for current tool.
Returns:
- actions (Type: array): Supported actions for current tool.

Name: finish(answer)
Description: Return an answer and finish the task
Parameters:
- answer (Type: [‘string’, ‘number’, ‘array’]): The answer to be returned

If you are finished, you will call “finish” action
Please refer to the format of examples below to solve the requested goal. Your response must be in
the format of “Action: [your action] with Action Input: [your action input]”

Instruction:
Now new trial starts. You should perform actions to accomplish the goal: How many mutual
collaborators do Florian Kirchbuchner and Fadi Boutros share? Please give me a numerical value as
an answer. Give me one action.

Table 31: Prompt details for Academia (Part 2/2).

27957

System Prompt:
You are an autonomous intelligent agent. You can use actions to help people solve problems. We detail
name, description, input(parameters) and output(returns) of each action as follows:
Name: open_sheet(name)
Description: Open a sheet by name
Parameters:
- name (Type: string): The name of the sheet to open.
Returns:
- result (Type: object): The opened worksheet object or an error message.

Name: del_sheet(name)
Description: Deletes the specified sheet.
Parameters:
- name (Type: string): The name of the sheet to be deleted.
Returns:
- result (Type: object): Whether the operation was successful.

Name: freeze_data(dimension, num)
Description: Freeze rows and/or columns on the worksheet
Parameters:
- dimension (Type: string): The dimension to freeze, either ‘rows’ or ‘columns’
- num (Type: integer): Number of rows/cols to freeze.
Returns:
- result (Type: object): Whether the operation was successful.

Name: get_A1_annotation(row, col)
Description: Translate the cell position (row,col) into A1 annotation
Parameters:
- row (Type: integer): Row index.
- col (Type: integer): Column index.
Returns:
- result (Type: string): The A1 notation of the cell or an error message.

Name: insert_cols(values_list, col_idx)
Description: Insert columns into sheet at specified column index
Parameters:
- values_list (Type: array[array[string]]): A list of lists, each list containing one column’s values, which
can be expressions
- col_idx (Type: integer): Start column to update. Defaults to 1.
Returns:
- result (Type: object): The updated worksheet data or an error message.

Name: insert_rows(values_list, row_idx)
Description: Insert rows into sheet at specified row index
Parameters:
- values_list (Type: array[array[string]]): A list of lists, each list containing one row’s values, which can
be expressions
- row_idx (Type: integer): Start row to update. Defaults to 1.
Returns:
- result (Type: object): The updated worksheet data or an error message.

Table 32: Prompt details for Sheet (Part 1/4).

27958

Name: delete_batch_data(dimension, index_list)
Description: Delete a batch of data in the sheet
Parameters:
- dimension (Type: string): The dimension to delete, either ‘row’ or ‘col’.
- index_list (Type: array[integer]): List of the indexes of rows/cols for deletion.
Returns:
- result (Type: object): The updated worksheet data or an error message.

Name: update_cell(position, value)
Description: Update the value of the cell
Parameters:
- position (Type: string): A1 notation of the cell position.
- value: The value to set.
Returns:
- result (Type: object): The updated worksheet data or an error message.

Name: update_cell_by_formula(start_position, end_position, position_list, result_position, operator)
Description: Update the value of the target cell by applying formulas on some specified cells. Note:
Either specify position_list or start_position and end_position.
Parameters:
- start_position (Type: string): The starting position of the range. Default: ‘B1’.
- end_position (Type: string): The ending position of the range. Default: ‘D2’.
- position_list (Type: array[string]): A list of cell positions in A1 notation.
- result_position (Type: string): The position of the cell where the result of the formula will be stored
in. Default: ‘G2’.
- operator (Type: string): The operator to be applied on selected cells. Choose one from [‘SUM’,
‘AVERAGE’, ‘COUNT’, ‘MAX’, ‘MIN’, ‘MINUS’, ‘PRODUCT’].
Returns:
- result (Type: object): The updated worksheet data or an error message.

Name: update_range(start_position, end_position, values_list)
Description: Update a range of the cells from a list
Parameters:
- start_position (Type: string): A1 notation of the start cell.
- end_position (Type: string): A1 notation of the end cell.
- values_list (Type: array[array[Any]]): List of values to be inserted, which can be expressions
Returns:
- result (Type: object): The updated worksheet data or an error message.

Name: sort_sheet_by_col(col_num, order)
Description: Sorts the current sheet using given sort orders
Parameters:
- col_num (Type: integer): The index of the sort column.
- order (Type: string): The sort order. Possible values are ‘asc’ or ‘des’.
Returns:
- result (Type: object): The updated worksheet data or an error message.

Table 33: Prompt details for Sheet (Part 2/4).

27959

Name: merge_cells(start_position, end_position)
Description: Merge cells in sheet
Parameters:
- start_position (Type: string): Starting cell position(top left) in A1 annotation.
- end_position (Type: string): Ending cell position(bottom right) in A1 annotation.
Returns:
- result (Type: object): The updated worksheet data or an error message.

Name: update_note(position, content)
Description: Update a note in a certain cell
Parameters:
- position (Type: string): cell position in A1 annotation.
- content (Type: string): The text note to insert.
Returns:
- result (Type: string): The updated note or an error message.

Name: get_all_values()
Description: Display all cell values in current sheet
Returns:
- result (Type: array[array[Any]]): Return all cell values or an error message.

Name: get_range_values(start_position, end_position)
Description: Returns a list of cell data from a specified range.
Parameters:
- start_position (Type: string): Starting cell position in A1 annotation.
- end_position (Type: string): Ending cell position in A1 annotation.
Returns:
- result (Type: array[array[Any]]): List of cell data from the specified range or an error message.

Name: get_cell_value(position)
Description: Get the value of a specific cell
Parameters:
- position (Type: string): Cell position in A1 annotation.
Returns:
- result : Cell value or an error message.

Name: get_value_by_formula(start_position, end_position, position_list, operator)
Description: Calculate a value applying formulas on specified cells. Note: Either specify
position_list or start_position and end_position.
Parameters:
- start_position (Type: string): The starting position of the range. Default: ‘B1’.
- end_position (Type: string): The ending position of the range. Default: ‘D2’.
- position_list (Type: array[string]): A list of cell positions in A1 notation.
- operator (Type: string): The operator to be applied on selected cells. Choose one from [‘SUM’,
‘AVERAGE’, ‘COUNT’, ‘MAX’, ‘MIN’, ‘MINUS’, ‘PRODUCT’].
Returns:
- result (Type: string): Calculated result or an error message.

Table 34: Prompt details for Sheet (Part 3/4).

27960

Name: filter_cells(query, in_row, in_column)
Description: Find all cells matching the query, return all cells’ position.
Parameters:
- query (Type: [‘string’, ‘re.RegexObject’]): A string to match or compiled regular expression.
- in_row (Type: [‘integer’, ‘None’]): Row number to scope the search. Default is all rows
- in_column (Type: [‘integer’, ‘None’]): Column number to scope the search. Default is all columns
Returns:
- result (Type: array[string]): List of cell addresses that match the query or an error message.

Name: get_note(position)
Description: Get the note at the certain cell, or return empty string if the cell does not have a note.
Parameters:
- position (Type: string): Cell position in A1 annotation.
Returns:
- result (Type: string): Note content or an error message.
Name: finish()
Description: Return an answer and finish the task
Returns:
- result (Type: array[array[Any]]): Return all cell values or an error message.

Instruction:
Now new trial starts. You should perform actions to accomplish the goal: Product Update: The table
in “Sheet1” contains the product inventory information, and [[‘Product’, ‘Today Sold’], [‘beef’, ‘5’],
[‘pork’, ‘2’], [‘chicken’, ‘8’], [‘lamb’, ‘12’], [‘duck’, ‘3’], [‘fish’, ‘23’], [‘shrimp’, ‘21’], [‘salmon’,
‘12’], [‘apple’, ‘100’], [‘banana’, ‘287’], [‘orange’, ‘234’], [‘carrot’, ‘12’]] is today’s sales data. Please
update the product information in “Sheet1” in time and then sort by “Quantity” in descending order.
Give me one action.

Table 35: Prompt details for Sheet (Part 4/4).

27961

