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Abstract

Radiologists play a crucial role in trans-
lating medical images into actionable re-
ports. However, the field faces staffing short-
ages and increasing workloads. While auto-
mated approaches using vision-language mod-
els (VLMs) show promise as assistants, they
require exceptionally high accuracy. Most cur-
rent VLMs in radiology rely solely on super-
vised fine-tuning. Meanwhile, additional pref-
erence fine-tuning in the post-training pipeline
has become standard practice in the general do-
main. The challenge in radiology lies in the
prohibitive cost of obtaining radiologist feed-
back at scale. To address this challenge, we pro-
pose an automated pipeline for preference feed-
back, focusing on chest X-ray radiology report
generation (RRG). Specifically, our method
leverages publicly available datasets contain-
ing pairs of images and radiologist-written ref-
erence reports with reference-based metrics,
or Judges, eliminating the need for additional
radiologist feedback. We investigate reward
overoptimization via length exploitation in this
setting and introduce a length-controlled ver-
sion of the GREEN score. Our best-performing
setup achieves state-of-the-art CheXbert scores
on the MIMIC-CXR dataset for the RRG task
while on average maintaining robust perfor-
mance across six additional image perception
and reasoning tasks.

1 Introduction

X-rays are one of the most frequently collected
imaging studies in clinical practice, with the advan-
tages of wide availability, cost-effectiveness, and
low radiation dose. Chest X-rays (CXR) are used
for diverse purposes, with approximately 1.4 bil-
lion diagnostic X-ray examinations collected per
year in the world (PAHO, 2012; Organization et al.,
2016; Cid et al., 2024). The amount and signifi-
cance of CXRs can pose a burden for radiologists
and a potential negative impact for patients without

timely interpretation, especially for those contain-
ing critical lesions (Ruutiainen et al., 2013; Hanna
et al., 2017; Bruls and Kwee, 2020; Bhargavan
et al., 2002; Lyon et al., 2015; Rimmer, 2017).

Recent strides in generative vision-language
models (VLMs) hold promising implications for
this high-stakes and low-data field (Liu et al.,
2024a; Radford et al., 2021). Typically pre-trained
using image-text contrastive learning and sub-
sequently fine-tuned, recent VLMs have started
to demonstrate promising performance in CXR
interpretation and radiology report generation
(RRG) (Chen et al., 2024a; Bannur et al., 2024).
In high-stakes fields like radiology, where accu-
rate medical descriptions directly influence disease
diagnosis and treatment decisions, the generated
outputs must maintain high factual accuracy to en-
sure patient safety.

However, recent studies have shown that super-
vised fine-tuning (SFT) might be insufficient in the
post-training process. For example, Hong et al.
(2024) illustrate the limitation of SFT by training
on a preference dataset, containing “good” and
“bad” completions. By tracking the log probabil-
ities of each during the course of training, they
show that the log probabilities of the bad com-
pletions inadvertently increase alongside the good
completions. Preference fine-tuning methods, such
as reinforcement learning from human feedback
(RLHF) (Ziegler et al., 2020; Stiennon et al., 2020;
Ouyang et al., 2022), using Proximal Policy Op-
timization (PPO) (Schulman et al., 2017) or RE-
INFORCE (Williams, 1992), and direct alignment
algorithms (DAAs), such as Direct Preference Opti-
mization (DPO) (Rafailov et al., 2023), effectively
alleviate this problem by employing a negative
gradient to lower probabilities of “bad” comple-
tions (Tajwar et al., 2024). In fact, most recent large
language models (LLMs) (Ouyang et al., 2022; Bai
et al., 2022a; Touvron et al., 2023; Jiang et al.,
2024; Team et al., 2024) include some form of pref-
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Figure 1: Overview of the CheXalign pipeline. For a
given dataset containing CXRs and radiologist written
references (e.g., MIMIC-CXR), we obtain preference
pairs using some automated reference-based metric (e.g.,
GREEN or the BERTScore), and then optimize the pol-
icy using light-weight DAAs (e.g., DPO or KTO).

erence fine-tuning in their post-training pipeline.
Yet, this approach has not yet been investigated
within the medical vision-language domain.

Yet, this approach has been only sparsely inves-
tigated within the medical vision-language domain
(e.g., Xiao et al. (2024); Zhu et al. (2025)), concur-
rent to our work.

The primary challenge hindering the application
of preference fine-tuning in the post-training of
VLMs in radiology is the prohibitive cost of obtain-
ing radiologist preferences at scale. To overcome
this obstacle, we introduce CheXalign, an auto-
mated pipeline for generating preference data for
the crucial RRG task. Specifically, we leverage the
availability of reference reports written by radiolo-
gists in a clinical setting within large, publicly avail-
able, datasets such as MIMIC-CXR (Johnson et al.,
2019) and CheXpert Plus (Chambon et al., 2024).
This allows us to use reference-based, uni-modal,
metrics, such as GREEN (Ostmeier et al., 2024), a
recent state-of-the-art LLM-based metric for eval-
uating CXR reports, to annotate generated reports
in a factually grounded fashion. An overview of
our preference fine-tuning pipeline is available in
Fig. 1. Our approach enables us to obtain high-
quality preference datasets in a fully automated
and scalable manner. Using our proposed method,
we systematically study how DAAs can be used
to enhance the clinical efficacy of medical VLMs

without any additional radiologist feedback. Our
contributions are as follows:

1. We introduce an automated pipeline for pref-
erence pair generation in RRG models, cir-
cumventing the prohibitively expensive task
of obtaining preference feedback from radiol-
ogists at scale.

2. We systematically evaluate and benchmark the
proposed pipeline using different reference-
based metrics, DAAs, and RRG models. Our
findings indicate that the RRG performance
can be improved even when using inexpensive,
general domain, natural language generation
(NLG) metrics for preference pair generation.

3. Using our proposed pipeline, we obtain
new state-of-the-art CheXbert scores on the
MIMIC-CXR data for the RRG task.

4. We study reward overoptimization via length
exploitation, and introduce the length-
controlled GREEN score.

5. We benchmark our models post alignment on
set of diverse additional image perception and
reasoning tasks to assess whether there is an
alignment tax in this setting.

Code for this project is available in the
following repository: https://github.com/
StanfordMIMI/CheXalign.

2 Related Works

VLMs (Radford et al., 2021; Li et al., 2021, 2022,
2023a; Liu et al., 2024a) are a multi-modal exten-
sion to LLMs. In this setting, the prompt x contains
images and/or text. Typical tasks include Vision
Question Answering (VQA) and image caption-
ing (e.g., RRG in the field of radiology). There is
also a line of works to extend VLMs to the med-
ical domain (Thawkar et al., 2023; Hyland et al.,
2023; Chaves et al., 2024; Tu et al., 2024; Ban-
nur et al., 2024; Chen et al., 2024a,b; Lee et al.,
2024b; Jin et al., 2024) which mainly focus on
CXR interpretation and RRG due to the wide avail-
ability of public datasets (Johnson et al., 2019;
Chambon et al., 2024). However, even with strong
LLMs and vision-backbones, VLMs have been ob-
served to “hallucinate” and produce outputs that
are not factually grounded in the image (Zhou et al.,
2024). Such hallucinations represent a significant
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risk in high-stakes healthcare fields such as radi-
ology. Similar to Zhou et al. (2024), we pose the
problem of hallucinations as an alignment problem
and propose tackling it via preference fine-tuning.
As noted above, preference fine-tuning, although
now a standard part of the post-training pipeline for
general domain LLMs, remains largely unexplored
in the context of medical VLMs.

RLHF (Ziegler et al., 2020; Stiennon et al., 2020;
Ouyang et al., 2022) is a very effective technique
for aligning LLMs and VLMs with human prefer-
ences. It was instrumental in the development of
frontier models such as ChatGPT and Bard (Lee
et al., 2024a). RLHF involves two stages: reward
modeling, where a reward model is learned on the
preference data, and alignment, where reinforce-
ment learning (RL) algorithms are used to opti-
mized the proxy reward. While extremely effec-
tive, RLHF is very computationally heavy and can
be finicky for non-experts. Relatively recently, a
new class of algorithms called DAAs (Rafailov
et al., 2024) have become increasingly popular.1

This class of algorithms re-parameterize the reward
model via a change-of-variables using the closed-
formed solution to the RLHF objective, effectively
bypassing both the reward modeling and RL stages.
This yields alignment algorithms that remain per-
formant yet computationally more lightweight and
significantly easier to implement. DPO (Rafailov
et al., 2023) was the first in this category and re-
mains one of the most popular versions. After
the advent of DPO, a large variety of DAAs have
been suggested (Azar et al., 2023; Park et al., 2024;
Ethayarajh et al., 2024; Hong et al., 2024). A brief
introduction to RLHF and DAAs is available in
§A. Another dimension for improved efficiency is
reinforcement learning from AI feedback (RLAIF),
first introduced in Bai et al. (2022b). Replacing
humans with LLMs leads to significant reductions
in cost, making it much more scalable, while main-
taining high quality (Lee et al., 2024a). In this
work, we will leverage these advancements for scal-
able, fully automated, preference data generation
and computationally lightweight alignment.

Since the reward model in the RLHF objective
is learned, it is an imperfect proxy of the ground
truth reward. As this proxy is optimized, ground
truth performance might saturate or even deterio-
rate.2 This reward overoptimization, or hacking,

1Used more loosely than in Rafailov et al. (2024).
2As per Goodhart’s law: “When a measure becomes a

target, it ceases to be a good measure.” (Gao et al., 2023).

phenomena was first studied in Gao et al. (2023) for
RLHF. Despite not fitting an explicit reward model,
similar behavior has been observed empirically for
DAAs (Rafailov et al., 2024). In particular, length
exploitation, the tendency to learn to produce ex-
cessively verbose completions, is one common di-
mension of reward overoptimization, observed in
both RLHF and for DAAs. For instance, Park et al.
(2024) showed that DPO amplifies minor verbosity
bias embedded in the preference data. In this work,
we explore this phenomenon in the context of pref-
erence fine-tuning of RRG models.

3 Methodology

3.1 RRG Preference Fine-tuning without
Human Feedback

Expert human feedback from radiologists is the
gold standard for preference data generation and
evaluation for the RRG task. However, scaling is
impractical, if not unfeasible, due to the limited
availability of radiologists for large-scale annota-
tion tasks. In the general domain, it is common to
leverage LLMs for cost effective preference data
generation (Bai et al., 2022b; Dubois et al., 2023;
Lee et al., 2024a). Zheng et al. (2023) categorized
“LLM-as-a-Judge” evaluation methods into pair-
wise, single answer, and reference-guided grading.
Pairwise grading being the most common in the
general domain both for preference data genera-
tion (Dubois et al., 2023; Lee et al., 2024a) and
evaluation (Zheng et al., 2023; Dubois et al., 2024).

These existing methods, however, are tailored
for uni-modal, general-domain LLMs and do not
directly apply to our multi-modal setting, which
involves both visual and textual data. More-
over, factual grounding is essential in RRG to en-
sure clinical reliability. To overcome these chal-
lenges, we propose using reference-based grad-
ing, leveraging publicly available datasets that
contain paired prompts—including images—and
radiologist-written reference reports. This abun-
dance of high-quality references allows us to pro-
vide factually grounded annotations without the
need for a multi-modal metrics, or “Judge”, setting
our approach apart from prior studies of preference
alignment of VLMs, such as Sun et al. (2024). A
comparison of reference-free and reference-based
metrics, or “Judges”, in this setting is available in
Fig. 2. For a given Judge, we obtain preference
pairs by repeat sampling from the SFT baseline.
Canonical alignment algorithms, such as DPO, can
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then be used to preference fine-tune the model.

3.2 Evaluation
Since we have radiologist-written reference avail-
able, it is possible to employ standard, gen-
eral domain, NLG metrics such as BLEU (Pap-
ineni et al., 2002), ROUGE (Lin, 2004), and the
BERTScore (Zhang et al., 2019). However, these
NLG metrics may not be able to differentiate be-
tween subtle nuances that are clinically relevant.
Thus, we include two validated, radiology-specific,
and clinically relevant, metrics: GREEN (Ost-
meier et al., 2024) and CheXbert scores (Smit
et al., 2020). GREEN is a state-of-the-art metric
for radiology report evaluation, based on a single-
answer reference-guided LLM-as-a-Judge mech-
anism. CheXbert scores are a clinical efficacy
metrics based on extracting 14 labels3 using the
CheXbert labeler (Smit et al., 2020) from the can-
didate and reference reports.

Initial experimentation illustrated that reward
hacking via length exploitation might be a concern
in our setting when using the GREEN score as
Judge. To counteract this, we propose a simple
heuristic approach to explicitly control for length:

LC-GREEN := GREEN/max(rel_verbosity, 1),

where rel_verbosity denotes the relative verbosity
(length in words) of the candidate report compared
to the reference report. We call this metric length-
controlled GREEN (LC-GREEN).

4 Experimental Details

4.1 SFT Baselines
We adopt CheXagent (Chen et al., 2024a) (8B)
as a representative example of a state-of-the-art,
open source, English language, VLM for the RRG
task. It has been trained in a canonical way by first
adapting an LLM, Mistral-7B (Jiang et al., 2023),
to medical text by continued pre-training. Sec-
ond, a vision encoder, EVA-CLIP-g (Sun et al.,
2023), was adapted via vision pre-training, us-
ing contrastive learning on CXR image-text pairs.
Third, the two modalities were merged by training a
vision-language bridger, or adapter network, keep-
ing the LLM and vision encoder frozen. Finally, the
model was instruction-tuned for a range of tasks, in-
cluding RRG. Concurrent to this work, CheXagent

3Enlarged Cardiomediastinum, Cardiomegaly, Lung Opac-
ity, Lung Lesion, Edema, Consolidation, Pneumonia, Atelec-
tasis, Pleural Effusion, Pneumothorax, Pleural Other, Fracture,
Support Devices, No Finding.

has been greatly improved upon with CheXagent-
2 (Chen et al., 2024b) (3B). CheXagent-2 adopted
a fine-tuned SigLIP (Zhai et al., 2023) model4 as
the vision encoder and a fine-tuned Phi-2 (Li et al.,
2023b) model5 (2.7B) as the language decoder. For
the image-text connector, instead of using the at-
tention layer as in CheXagent, it uses LLaVA-style
MLP connector (Liu et al., 2024b). CheXagent-2
additionally use indications, which provide clinical
context to the patient being imaged, to aid in the
RRG task.

4.2 Datasets
We use the MIMIC-CXR (Johnson et al., 2019)
dataset for training, validation and testing. The
image-report pairs consist of one or two CXRs
and the corresponding free-text findings section.
CheXagent-2 additionally uses the indications. For
CheXagent, we randomly sample 80k examples
as our training data. For CheXagent-2, we opted
to use the full MIMIC-CXR training set6 (148k
examples). To test robustness for the RRG task,
we additionally include test data from the CheX-
pert Plus (Chambon et al., 2024) dataset. More-
over, to evaluate whether there is an alignment tax,
we additionally evaluate our aligned models on
six additional CXR tasks: view classification, bi-
nary image classification, single disease identifica-
tion, multi disease identification, VQA, and image-
text reasoning, using test data from five additional
datasets RSNA (Shih et al., 2019), SIIM (Ameri-
can College of Radiology, 2019), OpenI (Demner-
Fushman et al., 2016), SLAKE (Liu et al., 2021),
and Rad-Restruct (Pellegrini et al., 2023) datasets.
All datasets are in English.

4.3 Preference Data
We evaluate two reference-based Judges:
GREEN (Ostmeier et al., 2024) and the
BERTScore (Zhang et al., 2019). We obtain
our preference data as follows: 1) for each
example in the training data, we prompt the SFT
baseline N = 4 times; 2) we get the score for
each of the generated reports, compared with the
corresponding singular reference; 3) we set the
chosen and rejected completions as the highest
and lowest scores, omitting the observation if all

4https://huggingface.co/StanfordAIMI/
XraySigLIP__vit-l-16-siglip-384__webli.

5https://huggingface.co/StanfordAIMI/RadPhi-2.
6As can be seen below, CheXagent-2 is a strong SFT

baseline and we hypothesized that a larger preference dataset
would be required to obtain significant performance gains.
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Figure 2: Illustration of preference pairs generation using a reference-free multi-modal Judge (left) and a reference-
based uni-modal Judge (right). Human (radiologist) feedback is multi-modal in nature but prohibitively expensive
at scale. On the other hand, using LLM, or metrics-based, Judges is highly scalable. However, a high-quality
multi-modal Judge is difficult to obtain. For the RRG task, we propose leveraging large publicly available datasets,
containing CXRs and radiologist written reference reports, as this enables scalable, factually grounded, preference
data generation using reference-based metrics.

Algorithm Objective Preference Reference Length Relative
pairs controlled wall-clock time

DPO − log σ
(
β log πθ(yc|x)

πref(yc|x) − β log πθ(yr|x)
πref(yr|x)

)
✓ ✓ × 1.0

LC-DPO − log σ
(
β log πθ(yc|x)

πref(yc|x) − β log πθ(yr|x)
πref(yr|x) + α(|yc| − |yr|)

)
, α > 0 ✓ ✓ ✓ 1.0

IPO
(
log πθ(yc|x)

πref(yc|x) − log πθ(yr|x)
πref(yr|x) −

1
2τ

)2
✓ ✓ × 1.0

KTO
−λcσ

(
β log πθ(yc|x)

πref(yc|x) − zref

)
+ λrσ

(
zref − β log πθ(yr|x)

πref(yr|x)

)
, × ✓ × 2.2

where zref = E(x,y)∼D[βDKL (πθ(y|x)||πref(y|x))]

ORPO
− log pθ(yc|x)− λ log σ

(
log pθ(yc|x)

1−pθ(yc|x) − log pθ(yr|x)
1−pθ(yr|x)

)
, ✓ × × 0.7

where pθ(y|x) = exp
(

1
|y| log πθ(y|x)

)

Table 1: Overview of the DAAs considered in this paper. Preference pairs indicates whether the method requires
paired data of chosen/rejected or only binary feedback indicating whether a completion is desirable/undesirable.
Reference indicates whether an additional reference model is loaded during training. Length controlled indicates
whether the objective directly controls for the length of the completions in order to mitigate reward hacking via
length exploitation. Relative wall-clock time is measured as the total time to train one epoch, relative to DPO.

N = 4 scores are equivalent. For CheXagent,
this rejection rule results in the rejection of 1,246
(1.6%) examples for GREEN and 31 (0.04%) ex-
amples for the BERTScore. This is similar for
CheXagent-2, with 3744 (2.53%) examples and
147 (0.10%) examples rejected for GREEN and
the BERTScore, respectively. Summary statistics
for the chosen and rejected subsets are available in
Table 8. We also report summary statistics of the
length (in words) of the generated reports. Notably,
the spread in average length of the chosen and
rejected subsets is slightly more pronounced for
GREEN than for the BERTScore, 6.9% compared
to 5.8% and much more significant overall for
CheXagent-2 with a difference of 19.3% and
17.1%, respectively. Examples from the chosen
and rejected subsets are available in Fig. 5 and 6.

4.4 Alignment Algorithms

We opt for a representative subset of available, of-
fline, DAAs. DPO is the original DAA and serves
as our baseline. In addition to DPO, we consider:
1) Length-controlled DPO (LC-DPO) (Park et al.,
2024), as an example of a DAA with explicit length

regularization. LC-DPO is an elegant extension of
DPO, with an additional hyperparameter α which
controls the strength of an additional length regu-
larization term. Setting α = 0 reverts the objective
to that in DPO. 2) Identity Preference Optimiza-
tion (IPO) (Azar et al., 2023) as an example of a
DAA with generalized preference, relaxing the as-
sumption of the Bradley-Terry model used in DPO.
The authors argue that this helps mitigate over-
fitting issues even when preferences are transitive.
Relatively recent work has shown that IPO indeed
seems to be less prone to reward overoptimiza-
tion (Rafailov et al., 2024). 3) Kahneman-Tversky
optimization (KTO) (Ethayarajh et al., 2024) as
an example of a DAA that does not require pref-
erence pairs, but instead only binary feedback on
whether a completion is desirable or undesirable.
This type of data is much more ubiquitous in prac-
tice. In addition, for any given dataset of pref-
erence pairs, KTO provides twice the number of
examples. 4) Odds-Ratio Preference Optimization
(ORPO) (Hong et al., 2024), almost outside of the
definition of DAAs, is not based on the RLHF ob-
jective but instead appends an additional penalty
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Figure 3: Average length against average GREEN and BERTScore for all aligned policies on the MIMIC-CXR
validation set using GREEN (left) and the BERTScore (right) as Judges.

directly to the negative log likelihood used in SFT.
This adds a “negative gradient”, using the terminol-
ogy in Tajwar et al. (2024), which will help reduce
the log probabilities of rejected completions.

An overview of all DAAs considered in this pa-
per is available in Table 1. More implementation
details are available in §B.2.7

5 Results and Analyses

5.1 Length Exploitation
We investigate the issue of length exploitation
by plotting the average GREEN and BERTScore
against average lengths of the resulting radiol-
ogy reports using GREEN and the BERTScore
as Judges for preference data generation. Results
for single runs on the MIMIC-CXR validation set,
including all configurations considered, are avail-
able in Fig. 3. Save for a IPO run in the lower
right corner, there seems to be a positive correla-
tion between average GREEN and average length
for CheXagent. In fact, for all DAAs, except for
ORPO, there is an indication for a trade-off be-
tween added verbosity and GREEN. In addition,
such a trade-off is not observed for the BERTScore,
shown to the right in Fig. 3. Except for a very
tight clustering around 0.87-0.88, there are no clear
trends.

To further emphasize this issue, we show the
best configurations according to GREEN, and LC-
GREEN, in Table 2. For CheXagent, using GREEN
to guide the hyperparameter search leads to sub-
stantially more verbose reports for DPO, LC-DPO
(α = 0.001), IPO, and KTO. Qualitative evalua-
tion of the resulting reports indicate that the added

7Due to compute constraints, we only include results for
the baseline alignment algorithm, DPO, for CheXagent-2.

GREEN LC-GREEN

Method Avg. length Rel. verbosity Avg. length Rel. verbosity

CheXagent 55.8 55.8
+DPO 140.2 2.51 68.7 1.23
+LC-DPO 111.5 2.00 53.5 0.96
+IPO 100.2 1.80 58.0 1.04
+KTO 71.3 1.28 55.9 1.00
+ORPO 63.1 1.13 63.1 1.13

CheXagent-2 46.8 46.8
+DPO 60.9 1.30 54.7 1.17

Reference 58.4 1.05 58.4 1.05

Table 2: Average length of reports on the MIMIC-CXR
validation set of best performing configurations accord-
ing to GREEN and GREEN-LC, respectively. Relative
verbosity is relative to the SFT baseline.

verbosity was mostly due to exact, semantically or
syntactically, repetitions. This is very likely a man-
ifestation of reward hacking via length exploitation.
To mitigate this issue, we use LC-GREEN instead
of GREEN to guide the hyperparameter search.8

As shown in Table 2, this leads to substantially
less added verbosity. For CheXagent-2, it is less
clear-cut whether length exploitation is present, as
the highest and lowest scores are obtained with
a similar verbosity. Note that this is in spite of
a much more significant spread in average length
of the reports in the chosen and rejected subsets.
One possible explanation is that the SFT baseline
produces substantially shorter reports than the refer-
ences, and the increase in verbosity actually pushes
the average closer to that of the references, effec-
tively closing the gap rather than extending it by
overshooting the average length of the references.

8We opt for this approach, in lieu of obtaining new prefer-
ence data and re-running the alignment due to computational
constraints.
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MIMIC-CXR CheXpert Plus

Model Judge GREEN (↑) LC-GREEN (↑) BERTScore(↑) GREEN (↑) LC-GREEN (↑) BERTScore(↑)
CheXagent 0.249 0.218 0.856 0.248 0.202 0.851

+DPO 0.325 (30.6) 0.263 (20.5) 0.862 (0.65) 0.322 (29.9) 0.222 (9.69) 0.859 (0.91)
+LC-DPO 0.320 (28.7) 0.288 (32.0) 0.864 (0.90) 0.330 (32.8) 0.268 (32.3) 0.861 (1.26)
+IPO GREEN 0.326 (30.9) 0.282 (29.3) 0.863 (0.84) 0.334 (34.6) 0.267 (31.9) 0.861 (1.15)
+KTO 0.328 (31.9) 0.293 (34.1) 0.867 (1.27) 0.341 (37.2) 0.266 (31.4) 0.863 (1.42)
+ORPO 0.322 (29.4) 0.275 (26.2) 0.862 (0.69) 0.326 (31.4) 0.232 (14.6) 0.856 (0.64)

+DPO 0.285 (14.4) 0.242 (11.0) 0.869 (1.56) 0.278 (12.0) 0.208 (2.84) 0.867 (1.89)
+LC-DPO 0.283 (13.5) 0.259 (18.7) 0.871 (1.75) 0.299 (20.3) 0.248 (22.5) 0.871 (2.34)
+IPO BERTScore 0.283 (13.6) 0.247 (13.1) 0.870 (1.62) 0.282 (13.6) 0.218 (7.88) 0.866 (1.75)
+KTO 0.304 (21.9) 0.279 (28.2) 0.872 (1.88) 0.308 (24.0) 0.249 (23.1) 0.869 (2.11)
+ORPO 0.291 (16.9) 0.265 (21.4) 0.869 (1.57) 0.298 (19.9) 0.240 (18.4) 0.870 (2.21)

CheXagent-2 0.326 0.297 0.888 0.349 0.304 0.892

+DPO GREEN 0.387 (18.9) 0.339 (14.1) 0.891 (0.30) 0.387 (10.9) 0.320 (5.34) 0.888 (-0.38)
+DPO BERTScore 0.352 (8.11) 0.326 (9.58) 0.896 (0.95) 0.359 (2.88) 0.310 (1.78) 0.893 (0.15)

Table 3: Results on the MIMIC-CXR and CheXpert Plus test sets (percentage change compared to SFT baseline in
brackets). Best results in bold, separate for CheXagent and CheXagent-2.

F1-14 F1-5

Model Judge Macro (↑) Micro (↑) Macro (↑) Micro (↑) Avg. (↑)
GPT-4V 20.4 35.5 19.6 25.8 25.3
MAIRA-1 38.6 55.7 47.7 56.0 49.5
MAIRA-2 41.6 58.1 50.4 59.1 52.3
Med-PaLM M (12B) 37.3 51.4 50.6 56.5 49.0
Med-PaLM M (84B) 39.8 53.6 51.6 57.9 50.7
Med-PaLM M (562B) 37.8 51.6 49.9 56.3 48.9
LLaVA-Rad 39.5 57.3 47.7 57.4 50.5

CheXagent 38.9 50.9 47.6 54.1 47.9

+DPO 41.5∗ (6.87) 54.1∗ (6.18) 51.8∗ (8.83) 58.3∗ (7.78) 51.4∗ (7.43)
+LC-DPO 37.6 (-3.32) 52.1 (2.20) 47.5 (-0.02) 55.2∗ (1.92) 48.1 (0.45)
+IPO GREEN 39.0 (0.39) 52.9∗ (3.87) 48.9 (2.88) 56.5∗ (4.36) 49.3 (3.06)
+KTO 40.7 (4.81) 55.0∗ (8.07) 51.6∗ (8.52) 59.3∗ (9.54) 51.7∗ (7.93)
+ORPO 41.4∗ (6.64) 55.0∗ (8.03) 51.5∗ (8.20) 58.3∗ (7.69) 51.5∗ (7.69)

+DPO 42.5∗ (9.37) 56.1∗ (10.1) 54.7∗ (15.0) 61.6∗ (13.8) 53.7∗ (12.2)
+LC-DPO 42.3∗ (8.75) 56.3∗ (10.6) 52.7∗ (10.8) 60.8∗ (12.4) 53.0∗ (10.8)
+IPO BERTScore 43.1∗ (10.8) 57.0∗ (11.9) 53.6∗ (12.6) 61.5∗ (13.6) 53.8∗ (12.4)
+KTO 44.0∗ (13.3) 58.0∗ (13.9) 54.0∗ (13.5) 62.3∗ (15.1) 54.6∗ (14.0)
+ORPO 42.4∗ (9.16) 56.7∗ (11.4) 52.5∗ (10.5) 60.7∗ (12.2) 53.1∗ (10.9)

CheXagent-2 44.6 57.8 55.5 62.4 55.1

+DPO GREEN 45.8 (2.6) 59.7∗ (3.3) 56.0 (0.8) 64.1 (2.7) 56.4 (2.4)
+DPO BERTScore 43.0 (-3.6) 59.7∗ (3.3) 53.5 (-3.6) 63.8 (2.3) 55.0 (-0.1)

Table 4: CheXbert scores on the MIMIC-CXR test set. Percentage change compared to SFT baseline in brackets.
Best results in bold. ∗statistically significantly different from SFT baseline at a 10% level based on confidence
intervals in Table 11.

5.2 Judge Optimization Results

Results, using single runs, for GREEN, LC-
GREEN, and the BERTScore on the MIMIC-CXR
and CheXpert Plus test sets are available in Table 3.
Additional results for ROUGE-L and BLEU-4 are
available in Table 10. As expected, using GREEN
as Judge results in the largest boost in GREEN,
and using the BERTScore in the BERTScore. In
particular, the top performing configuration on the
MIMIC-CXR test set for CheXagent according to
GREEN and LC-GREEN is KTO, using GREEN as
Judge, boosting these metrics by 31.9% and 34.1%
percent, respectively. For CheXagent, the top per-
forming configuration according to the BERTScore
is obtained by KTO, using the BERTScore as Judge.
We observe similar trends for CheXagent-2 with

DPO yielding an increase of 18.9% and 14.1% for
GREEN and LC-GREEN, respectively when us-
ing GREEN as Judge. We observed overall similar
trends for the CheXbert Plus, despite representing
two different distributions: MIMIC-CXR was col-
lected in an emergency department and CheXpert
Plus was collected from in- and out-patient centers.

5.3 Generalization to CheXbert Scores

Although GREEN is a high quality and clinically
relevant metric, the observed performance gains
might be inflated due to the fact that we used
GREEN as Judge for preference data generation.
Thus, we instead turn to the CheXbert scores to be
our silver-standard, a low-cost approximation of
expert human (radiologists) judgment. CheXbert
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Accuracy (↑)

Model Judge View Classification Binary Image Single Disease Multi Disease Visual Question Image-Text Avg.Classification Identification Identification Answering Reasoning

CheXagent 98.5 83.8 62.8 69.0 75.5 66.3 76.0

+DPO 98.5 84.0 63.2 68.7 75.5 66.1 76.0
+LC-DPO 98.5 83.7 62.2 68.3 75.5 65.3 75.6
+IPO GREEN 98.3 83.8 62.7 68.3 76.8 65.5 75.9
+KTO 98.3 83.8 63.2 68.7 74.6 65.0 75.6
+ORPO 98.2 83.5 63.5 68.6 74.3 64.2 75.4

+DPO 98.5 84.3 62.8 68.4 75.1 66.8 76.0
+LC-DPO 98.5 84.1 63.2 68.3 75.1 65.5 75.8
+IPO BERTScore 98.5 83.8 62.9 68.2 76.0 66.3 76.0
+KTO 98.5 84.2 63.2 68.5 76.3 66.3 76.2
+ORPO 98.3 84.1 62.7 68.8 73.9 66.3 75.7

CheXagent-2 99.0 83.0 65.5 83.9 83.2 78.7 82.2

+DPO GREEN 99.2 84.8 66.7 84.4 80.5 77.9 82.2
+DPO BERTScore 99.2 83.0 65.9 84.5 82.3 78.2 82.2

Table 5: Performance on six image perception and reasoning tasks different from RRG on the datasets listed in §4.2.

scores are ubiquitous in this setting and we in-
clude results from a representative sample of re-
cent state-of-the-art medical VLMs for the RRG
tasks: GPT-4V9, MAIRA-1 (Hyland et al., 2023),
MAIRA-2 (Bannur et al., 2024), Med-PaLM (Tu
et al., 2024), and LLaVA-Rad (Chaves et al., 2024).
We report macro and micro averaged F1-scores for
the full 14 categories as well as the 5 categories
subset. In addition, we provide the average across
these scores. Results for our method are averages
based on 1000 bootstrap samples, with confidence
intervals available in Table 11.

For CheXagent, which is comparable to LLava-
Rad and MAIRA-1 prior to alignment, our method
boosts the average CheXbert scores by up to 7-8%
and 14% using GREEN and the BERTScore, re-
spectively. Very interestingly, and unexpectedly,
the top performing setup for CheXagent using
the BERTScore as Judge is better than that for
GREEN as Judge. One possible explanation for
this is reward overoptimziation, as this seems to be
a more prominent issue for GREEN than for the
BERTScore. For CheXagent-2, which is the overall
state-of-the-art prior to alignment and second only
to MAIRA-210 in terms of micro F1-14 scores, we
can see that it is possible to improve performance
even further using our proposed method. We note,
however, that only the micro F1-14 scores are statis-
tically significantly different from CheXbert-2, at
a 10% level, for both GREEN and the BERTScore
as Judge. Thus, we depict that it is possible to
improve upon the already very strong micro aver-
aged F1-scores, even when employing a general

9https://openai.com/index/gpt-4v-system-card/.
10Notably, MAIRA-2 use additional information at train

and test time, including the radiologist-written prior report,
when available.

domain NLG metric like the BERTScore. Granular
results, for each of the 14 categories, are available
in Table 12.

5.4 Alignment Tax Analysis

While RLHF is powerful, it has been observed
that it might lead to performance degradations
or, forgetting (Askell et al., 2021; Ouyang et al.,
2022). Ouyang et al. (2022) assessed such an align-
ment tax by evaluating the aligned policies on
several natural language processing (NLP) bench-
marks. Inspired by this, we benchmark the SFT
baseline and the aligned policies on six diverse im-
age perception and reasoning tasks using datasets
listed in §4.2. Although there are some minor vari-
ations, on average, the performance matches that of
the SFT baselines. Thus, our method substantially
improves the quality of generated reports without
compromising the quality of other image under-
standing tasks.

5.5 Qualitative Analysis

To further shed light on policy behavior pre
and post alignment, a qualitative study was con-
ducted by selecting three interesting cases from the
MIMIC-CXR test set, covering a range of positive
and negative findings and the presence and absence
of indications. A board-certified radiologist was
then asked to color-code candidate reports from
the SFT baselines and aligned policies. Results
for CheXagent-2 using GREEN as Judge for the
first example are available in Fig. 4. For this case,
despite being very strong, CheXagent-2 exhibited
two errors: 1) it incorrectly reported clear lungs
and 2) it failed to detect small bilateral pleural effu-
sions. Notably, the aligned version addressed both
of these errors. A similar conclusion is true for
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Figure 4: Color-coded candidate reports. Green and
red represent correct and incorrect. Orange highlights
references to a prior imaging study.

the other two cases. In addition, GREEN score as
Judge seems to be superior to BERTScore and we
observe exact, and semantically equivalent, repe-
titions in some cases. Full results, along with an
extensive discussion, are available in §C.4.

6 Conclusion

Our study highlights the significant potential of in-
cluding preference fine-tuning in the post-training
pipeline of medical VLMs. By developing an au-
tomated pipeline we effectively address the pro-
hibitive cost of obtaining radiologist preferences
at scale. Using our approach, we have shown
that DAAs can substantially improve AI-generated
radiology reports in clinically meaningful ways
without additional radiologist feedback. Our ap-
proach achieves state-of-the-art performance on the
MIMIC-CXR dataset while maintaining robust ca-
pabilities across diverse visual reasoning tasks. The
surprising effectiveness of, inexpensive, general-
domain NLG metrics for preference pair generation
suggests a promising path forward for computa-
tionally efficient exploration of online alignment
algorithms in this setting.

7 Limitations

Our work focuses on only two VLMs, CheXa-
gent (Chen et al., 2024a) and CheXagent-2 (Chen
et al., 2024b). While different in terms of under-
lying architecture, information used, and baseline
performance, it would be of interest to additionally
study VLMs from other families and sizes. In addi-
tion, our study of CheXagent-2 was more limited in
nature and should be considered more preliminary.

Moreover, we treat clinically relevant metrics
such as GREEN and CheXbert scores as the silver
standard. While these metrics are highly relevant,

a thorough evaluation involving clinical experts,
radiologists, should be conducted for this study to
be considered complete. Our qualitative analysis is
a first step in this direction. However, conducting
larger-scale reader studies remains an important
direction for future work. We acknowledge poten-
tial biases beyond verbosity, such as societal biases
related race, sex, or other demographic factors that
may be embedded either in the underlying data or
in the Judge. These potential biases warrant thor-
ough investigation and mitigation in future work.

In addition, our hyperparameter search is non-
exhaustive and it is possible that the relative rank-
ing of the methods considered would change with
a more extensive search.

Finally, we restrict ourselves to only offline
DAAs. This leaves out a range of very compet-
itive alignment algorithms, including on-policy RL
algorithms, as well as the online, or iterative, coun-
terparts to the DAAs considered. The recent suc-
cess of DeepSeek-R1 (DeepSeek-AI et al., 2025)
has led to a resurgence of interest in on-policy RL
alignment algorithms. In particular, developing
“verification functions” for the RRG task and em-
ploying reinforcement learning with verifiable re-
wards (RLVR) (Lambert et al., 2025) is an very
interesting avenue for future work.
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A RLHF and DAAs

RLHF (Ziegler et al., 2020; Stiennon et al., 2020; Ouyang et al., 2022) is based on the constrained reward
maximization objective

max
πθ

Ex∼D,y∼πθ(y|x)[Rψ(x, y)]− βDKL [πθ(y|x)||πref(y|x)] , (1)

where DKL is the Kullback-Leibler (KL) divergence and πref is the reference policy. Rψ is the proxy
reward model learned on a dataset of human preferences D = {x(n), y(n)c , y

(n)
r }Nn=1, where yc and yr

denote the chosen and rejected completions for the prompt x, such that yc ≻ yr|x.
Whilst extremely powerful, RLHF is computationally heavy, involves several steps, and can be tricky

to implement in practice. Relatively recently, a new class of algorithms called DAAs (Rafailov et al.,
2024) have become increasingly popular.11 This class of algorithms re-parameterize the reward model
via a change-of-variables using the closed-formed solution to the objective in (1), effectively bypassing
both the reward modeling and reinforcement learning (RL) stages. Resulting in algorithms that remain
performant yet computationally more light weight and easier to implement. DPO (Rafailov et al., 2023)
was the first in this category and remains one of the most popular versions.

DPO exploits the closed-formed solution to (1), π(y|x) ∝ πref(y|x) exp(R(x, y)/β) and the Bradley-
Terry (BT) model (Bradley and Terry, 1952) of human preferences p∗(y1 ≻ y2|x) = σ(exp(R∗(x, y1))−
exp(R∗(x, y2))), where R∗ is the latent reward model, exp is the exponential function, and σ is the logistic
function. The reward can be isolated and written as a function of the policy R(x, y) = β log π(y|x)

πref(y|x) .
This re-parametrization can be applied to the latent reward R∗ and substituted into the BT model,
p∗(y1 ≻ y1|x) = σ

(
β log π∗(y1|x)

πref(y1|x) − β log π∗(y2|x)
πref(y2|x)

)
, where π∗ is the optimal policy corresponding to

the latent reward. Crucially, the probability of human preferences is now in terms of the policy instead of
the reward model. A parameterized policy πθ can then be learned via a simple classification loss over the
preference data

LDPO(θ) = − log σ

(
β log

πθ (yc | x)
πref (yc | x)

− β log
πθ (yr | x)
πref (yr | x)

)
.

Hence, this change-of-variables has transformed a loss over rewards into a loss over policies.

B Implementation Details

B.1 Data Details
We use the official train, validation, and test splits for the MIMIC-CXR (Johnson et al., 2019) and
CheXpert Plus(Chambon et al., 2024) datasets. A key difference between CheXagent and CheXagent-2
is that CheXagent-2 additionally use indications, which provide clinical context, to aid in the RRG task.
This means that CheXagent-2 imposes a stricter data requirement (i.e. each image-report pair must have a
corresponding indication). Due to this, CheXagent-2 has slightly fewer examples than CheXagent for the
RRG task. The number of examples in each split is available in Table 6. For MIMIC-CXR, the difference
in test and validation is so small that it is negligible for the RRG task. On the other hand, for CheXpert
Plus the difference is quite substantial. However, this is immaterial for any conclusions in this paper as we
do not directly compare the models with each other on the CheXpert Plus data.

The view classification, binary image classification, single disease identification, multi disease identi-
fication, VQA, and image-text reasoning test data from the RSNA (Shih et al., 2019), SIIM (American
College of Radiology, 2019), OpenI (Demner-Fushman et al., 2016), SLAKE (Liu et al., 2021), and
Rad-Restruct (Pellegrini et al., 2023) datasets are processed as in Chen et al. (2024b).

B.2 Training Details
All models are trained using a machine with 4xA100, 4xA6000 or 8xH100 GPUs using learning rate
learning rate 10−6. We set global batch size to 32 for CheXagent (Chen et al., 2024a) and 64 for

11In this paper, we use this terminology more loosely than in Rafailov et al. (2024).
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CheXagent CheXagent-2

Dataset Train Validation Test Train Validation Test

MIMIC-CXR 148463 1164 2309 148090 1162 2300
CheXpert Plus 208 151

Table 6: Number of examples in each split of MIMIC-CXR and CheXpert plus for CheXagent and CheXagnet-2.

CheXagent-2 (Chen et al., 2024b). Each model is trained for one epoch. The image encoder is frozen
while we train the LLM. Due to compute constraints, we only tune hyperparameters that are specific of the
DAAs considered while keeping everything else fixed. An overview is given in Table 7, including optimal
configurations. This non-exhaustive search was based on previous work and our initial experiments. For
CheXagent, each λ ∈ [0.5, 1.0, 4.0, 5.0], ORPO resulted in a model which produced a special token at
odd places, leading to a crash of our evaluation pipeline. We address this by catching the error and set the
special token to the padding token. The same issue emerged for some λ for CheXagent-2.

Algorithm Objective Hyperparameters

DPO (Rafailov et al., 2023) − log σ
(
β log πθ(yc|x)

πref(yc|x) − β log πθ(yr|x)
πref(yr|x)

)
β ∈ [0.01, 0.05∗,†, 0.1]

LC-DPO (Park et al., 2024) − log σ
(
β log πθ(yc|x)

πref(yc|x) − β log πθ(yr|x)
πref(yr|x) + α(|yc| − |yr|)

)
β ∈ [0.01, 0.05∗,†, 0.1], α ∈ [0.001, 0.01∗,†]

IPO (Azar et al., 2023)
(
log πθ(yc|x)

πref(yc|x) − log πθ(yr|x)
πref(yr|x) −

1
2τ

)2
τ ∈ [0.1, 0.5, 1.0∗,†]

KTO (Ethayarajh et al., 2024) −λcσ
(
β log πθ(yc|x)

πref(yc|x) − zref

)
+ λrσ

(
zref − β log πθ(yr|x)

πref(yr|x)

)
β ∈ [0.01, 0.05∗, 0.1†], λc = λr

where zref = E(x,y)∼D[βDKL (πθ(y|x)||πref(y|x))]
ORPO (Hong et al., 2024) − log pθ(yc|x)− λ log σ

(
log pθ(yc|x)

1−pθ(yc|x) − log pθ(yr|x)
1−pθ(yr|x)

)
, λ ∈ [0.5, 1.0, 4.0†, 5.0∗]

where pθ(y|x) = exp
(

1
|y| log πθ(y|x)

)

Table 7: Hyperparameter search for all direct alignment algorithms (DAAs) considered in this paper. For CheXagent,
∗ and † denotes best for GREEN and the BERTScore as Judge, respectively. For CheXagent-2, β = 0.1 was found
optimal for both GREEN and the BERTScore.

B.3 Sampling Details

In this paper, we set up CheXagent to treat the cases where the two CXRs are a frontal and a lateral
image (i.e. from the same point in time) and a frontal and a prior frontal image (i.e. from two points
in time) as separate cases with a separate prompt. This is in contrast to CheXagent-2, which employs
the same prompt for both cases. Moreover, we employed stochastic sampling with temperature 1.0 for
CheXagent at test time, while CheXagent-2 is based on greedy sampling, both with beam size set to 1. For
preference pairs generation, both employ stochastic sampling with temperature 1.0 and beam size set to 1.
These differences will explain parts of the performance differences between CheXagent and CheXagent-2.
However, this is of minor concern to this study as we are mainly interested in the effect of preference
fine-tuning, comparing the same setup prior and post alignment.

B.4 Evaluation Details

GREEN (Ostmeier et al., 2024) and GREEN-LC are based on the official implementation12 using
StanfordAIMI/GREEN-radllama2-7b. The BERTScore (Zhang et al., 2019) used is from evaluate (v0.4.0)
with distilbert-base-uncased as BERT model. The F1 CheXbert (Smit et al., 2020) scores use f1chexbert
(v0.0.2) with default configurations. ROUGE (Lin, 2004) is from rouge-score (v0.1.2) using rougeL.
Finally, the BLEU (Papineni et al., 2002) is BLEU-4, based on a custom code, available in the code base
corresponding to this project.

CheXbert scores for GPT-4V13, MAIRA-1 (Hyland et al., 2023), Med-PaLM (Tu et al., 2024), and
LLaVA-Rad (Chaves et al., 2024) are borrowed directly from Supplementary Table 1 in Chaves et al.

12https://github.com/Stanford-AIMI/GREEN.
13https://openai.com/index/gpt-4v-system-card/.
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(2024). The CheXbert scores for MAIRA-2 (Bannur et al., 2024) are from Table D.1 in Bannur et al.
(2024).

C Additional results

C.1 Preference data
Summary statistics for the chosen and rejected subsets are available in Table 8. We also report summary
statistics of the length (in words) of the generated reports. Notably, the difference, or spread, in average
length of the chosen and rejected subsets is slightly more pronounced for GREEN than for the BERTScore,
6.9% compared to 5.8% and much more significant overall for CheXagent-2 with a difference of 19.3%
and 17.1%, respectively. To build further build intuition on the resulting chosen and rejected subsets we
report CheXbert scores in Table 9. Scores for CheXagent and CheXagent-2 are not directly comparable
since the training data is different. As expected, these scores indicate that the chosen subset is considerably
better than the rejected. The average CheXbert scores for the chosen subset are more or less the same for
GREEN and BERTScore as Judge. Similarly is true for the rejected subset, though now BERTScore as
Judge results in slightly lower scores–meaning that the spread is marginally larger. Finally, as a qualitative
study, we include a couple of examples of rejected and chosen candidates for CheXagent and CheXagent-2
is Fig. 5 and Fig. 6, respectively. We include the score assigned by the respective Judge in brackets.

GREEN BERTScore

Metric Report Length Metric Report Length

CheXagent Mean Median Std. Mean Median Std. Mean Median Std. Mean Median Std.

Chosen 0.63 0.60 0.24 56.3 54.0 20.2 0.90 0.90 0.03 55.1 53.0 20.2
Rejected 0.26 0.22 0.19 52.7 51.0 24.9 0.85 0.86 0.04 52.1 50.0 25.3

CheXagent-2 Mean Median Std. Mean Median Std. Mean Median Std. Mean Median Std.

Chosen 0.57 0.50 0.25 54.4 52.0 19.3 0.91 0.90 0.03 52.7 51.0 18.6
Rejected 0.24 0.20 0.20 45.6 44.0 22.8 0.85 0.86 0.05 45.0 43.0 23.8

Table 8: Summary statistics of reference-based metric and report length in the chosen and rejected subsets using
GREEN and the BERTScore as Judges.

Chosen Rejected

F1-14 F1-5 F1-14 F1-5

Model Judge Macro (↑) Micro (↑) Macro (↑) Micro (↑) Avg. (↑) Macro (↑) Micro (↑) Macro (↑) Micro (↑) Avg. (↑)

CheXagent
GREEN 0.574 0.668 0.649 0.700 0.648 0.411 0.506 0.455 0.507 0.463

BERTScore 0.582 0.680 0.647 0.700 0.652 0.395 0.488 0.444 0.493 0.419

CheXagent-2
GREEN 0.488 0.587 0.550 0.621 0.561 0.336 0.416 0.365 0.415 0.373

BERTScore 0.488 0.594 0.541 0.615 0.560 0.316 0.394 0.346 0.393 0.362

Table 9: CheXbert scores on the MIMIC-CXR on the chosen and rejected subsets.
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Figure 5: First two examples of chosen and rejected candidates for CheXagent in the MIMIC-CXR train set. Number
in brackets is assigned score (GREEN or BERTScore).
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Figure 6: First two examples of chosen and rejected candidates for CheXagent-2 in the MIMIC-CXR train set.
Number in brackets is assigned score (GREEN or BERTScore).
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C.2 Judge Optimization Results

MIMIC-CXR

Model Judge GREEN (↑) GREEN-LC (↑) BERTScore(↑) BLEU-4 (↑) ROUGE-L (↑)
CheXagent 0.249 0.218 0.856 0.041 0.274

+DPO 0.325 (30.6) 0.263 (20.5) 0.862 (0.65) 0.057 (39.9) 0.293 (6.94)
+LC-DPO 0.320 (28.7) 0.288 (32.0) 0.864 (0.90) 0.056 (38.4) 0.302 (10.4)
+IPO GREEN 0.326 (30.9) 0.282 (29.3) 0.863 (0.84) 0.059 (45.0) 0.297 (8.57)
+KTO 0.328 (31.9) 0.293 (34.1) 0.867 (1.27) 0.056 (38.8) 0.305 (11.4)
+ORPO 0.322 (29.4) 0.275 (26.2) 0.862 (0.69) 0.053 (29.5) 0.290 (6.08)

+DPO 0.285 (14.4) 0.242 (11.0) 0.869 (1.56) 0.059 (44.2) 0.309 (12.9)
+LC-DPO 0.283 (13.5) 0.259 (18.7) 0.871 (1.75) 0.057 (41.2) 0.315 (15.1)
+IPO BERTScore 0.283 (13.6) 0.247 (13.1) 0.870 (1.62) 0.060 (47.2) 0.309 (12.9)
+KTO 0.304 (21.9) 0.279 (28.2) 0.872 (1.88) 0.056 (37.7) 0.310 (13.4)
+ORPO 0.291 (16.9) 0.265 (21.4) 0.869 (1.57) 0.054 (33.8) 0.307 (12.0)

CheXagent-2 0.326 0.297 0.888 0.136 0.350

+DPO GREEN 0.387 (18.9) 0.339 (14.1) 0.891 (0.301) 0.150 (10.3) 0.357 (1.93)
+DPO BERTScore 0.352 (8.11) 0.326 (9.58) 0.896 (0.949) 0.153 (12.5) 0.372 (6.37)

CheXpert Plus

Model Judge GREEN (↑) GREEN-LC (↑) BERTScore(↑) BLEU-4 (↑) ROUGE-L (↑)
CheXagent 0.248 0.202 0.851 0.038 0.274

+DPO 0.322 (29.9) 0.222 (9.69) 0.859 (0.91) 0.053 (40.2) 0.289 (5.25)
+LC-DPO 0.330 (32.8) 0.268 (32.3) 0.861 (1.26) 0.049 (30.2) 0.305 (10.6)
+IPO GREEN 0.334 (34.6) 0.267 (31.9) 0.861 (1.15) 0.052 (39.1) 0.295 (7.22)
+KTO 0.341 (37.2) 0.266 (31.4) 0.863 (1.42) 0.052 (36.9) 0.305 (10.9)
+ORPO 0.326 (31.4) 0.232 (14.6) 0.856 (0.64) 0.046 (21.9) 0.287 (4.63)

+DPO 0.278 (12.0) 0.208 (2.84) 0.867 (1.89) 0.054 (43.6) 0.307 (11.3)
+LC-DPO 0.299 (20.3) 0.248 (22.5) 0.871 (2.34) 0.056 (47.6) 0.318 (15.1)
+IPO BERTScore 0.282 (13.6) 0.218 (7.88) 0.866 (1.75) 0.052 (37.6) 0.309 (12.0)
+KTO 0.308 (24.0) 0.249 (23.1) 0.869 (2.11) 0.054 (43.8) 0.316 (14.6)
+ORPO 0.298 (19.9) 0.240 (18.4) 0.870 (2.21) 0.049 (30.8) 0.314 (14.0)

CheXagent-2-3b 0.349 0.304 0.892 0.123 0.361

+DPO GREEN 0.387 (10.89) 0.320 (5.34) 0.888 (-0.37) 0.126 (2.74) 0.356 (-1.30)
+DPO BERTScore 0.359 (2.88) 0.310 (1.78) 0.893 (0.15) 0.130 (2.86) 0.357 (-0.91)

Table 10: Results on the MIMIC-CXR and CheXpert Plus test sets (percentage change compared to SFT baseline in
brackets). Best results in bold, separate for CheXagent and CheXagent-2.
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C.3 Generalization to CheXbert Scores

F1-14 F1-5

Model Judge Macro (↑) Micro (↑) Macro(↑) Micro (↑) Avg. (↑)
GPT-4V 20.4 35.5 19.6 25.8 25.3
MAIRA-1 38.6 55.7 47.7 56.0 49.5
MAIRA-2 41.6 58.1 50.4 59.1 52.3
Med-PaLM M (12B) 37.3 51.4 50.6 56.5 49.0
Med-PaLM M(84B) 39.8 53.6 51.6 57.9 50.7
Med-PaLM M (562B) 37.8 51.6 49.9 56.3 48.9
LLaVA-Rad 39.5 57.3 47.7 57.4 50.5

CheXagent 38.9[37.8,40.0] 50.9[50.0,51.8] 47.6[46.3,48.8] 54.1[52.9,55.3] 47.9[46.9,48.8]

+DPO 41.5[40.2,42.9] 54.1[53.2,54.9] 51.8[50.4,53.1] 58.3[57.1,59.5] 51.4[50.4,52.4]
+LC-DPO 37.6[36.3,38.9] 52.1[51.1,53.1] 47.5[46.1,49.0] 55.2[53.9,56.4] 48.1[47.1,49.2]
+IPO 39.0[37.7,40.3] 52.9[52.0,53.8] 48.9[47.5,50.4] 56.5[55.3,57.7] 49.3[48.3,50.3]
+KTO 40.7[39.5,41.9] 55.0[54.1,55.9] 51.6[50.3,52.9] 59.3[58.1,60.4] 51.7[50.7,52.6]
+ORPO 41.4[40.1,42.7] 55.0[54.2,55.9] 51.5[50.1,52.8] 58.3[57.1,59.5] 51.5[50.6,52.5]

+DPO 42.5[41.4,43.7] 56.1[55.2,56.9] 54.7[53.5,55.9] 61.6[60.5,62.6] 53.7[52.8,54.6]
+LC-DPO 42.3[41.0,43.4] 56.3[55.5,57.2] 52.7[51.3,54.0] 60.8[59.6,61.9] 53.0[52.1,54.0]
+IPO 43.1[41.9,44.2] 57.0[56.2,57.8] 53.6[52.3,54.8] 61.5[60.4,62.5] 53.8[52.9,54.6]
+KTO 44.0[42.9,45.3] 58.0[57.2,58.9] 54.0[52.8,55.2] 62.3[61.2,63.4] 54.6[53.7,55.5]
+ORPO 42.4[41.2,43.7] 56.7[55.9,57.6] 52.5[51.3,53.6] 60.7[59.7,61.7] 53.1[52.2,53.9]

CheXagent-2 44.6[43.3,45.9] 57.8[56.9,58.7] 55.5[54.2,57.1] 62.4[61.2,63.6] 55.1[54.1,56.1]

+DPO 45.8[44.5,47.1] 59.7[58.9,60.6] 56.0[54.6,57.5] 64.1[63.0,65.3] 56.4[55.4,57.4]
+DPO 43.0[41.7,44.4] 59.7[58.8,60.6] 53.5[52.1,54.9] 63.8[62.6,65.0] 55.0[54.1,56.0]

Table 11: CheXbert scores on the MIMIC-CXR test set. 90% confidence interval obtained by 1000 bootstrap
samples in subscripts. Best results in bold.

F1-scores (↑)

Model Judge ECm. Cmgl. LOpac. LLes. Edema Cnsl. Pna. Atel. PEff. Pmtx. POth. Frac. SuDev. NoF.

CheXagent 0.347 0.620 0.461 0.171 0.493 0.158 0.227 0.453 0.655 0.444 0.092 0.240 0.787 0.304

+DPO 0.372 0.675 0.444 0.186 0.525 0.226 0.231 0.452 0.710 0.416 0.178 0.217 0.822 0.365
+LC-DPO 0.385 0.666 0.380 0.178 0.430 0.211 0.158 0.404 0.665 0.407 0.083 0.129 0.835 0.339
+IPO GREEN 0.402 0.686 0.395 0.160 0.472 0.222 0.206 0.405 0.661 0.483 0.090 0.138 0.822 0.321
+KTO 0.388 0.682 0.422 0.202 0.542 0.192 0.180 0.444 0.721 0.552 0.074 0.118 0.841 0.349
+ORPO 0.348 0.684 0.479 0.201 0.492 0.224 0.247 0.475 0.698 0.511 0.072 0.177 0.835 0.365

+DPO 0.373 0.688 0.467 0.192 0.580 0.236 0.141 0.503 0.728 0.483 0.157 0.239 0.831 0.336
+LC-DPO 0.301 0.692 0.506 0.208 0.567 0.175 0.107 0.471 0.731 0.567 0.167 0.225 0.832 0.376
+IPO BERTScore 0.386 0.690 0.500 0.218 0.559 0.190 0.111 0.500 0.739 0.550 0.195 0.220 0.836 0.342
+KTO 0.430 0.701 0.487 0.217 0.577 0.172 0.201 0.514 0.735 0.584 0.166 0.197 0.830 0.360
+ORPO 0.377 0.690 0.491 0.148 0.562 0.157 0.231 0.481 0.736 0.497 0.116 0.218 0.826 0.418

CheXagent-2 0.324 0.672 0.539 0.244 0.606 0.235 0.284 0.543 0.720 0.527 0.085 0.330 0.815 0.333

+DPO 0.450 0.696 0.493 0.218 0.606 0.214 0.325 0.545 0.738 0.526 0.157 0.255 0.856 0.343
+DPO 0.358 0.703 0.547 0.166 0.622 0.127 0.066 0.478 0.749 0.550 0.143 0.271 0.853 0.396

Table 12: F1 scores on the MIMIC-CXR test set using 14 categories from the CheXbert labeler (Smit et al., 2020):
Enlarged Cardiomediastinum (ECm.), Cardiomegaly (Cmgl.), Lung Opacity (LOpac.), Lung Lesion (LLes.), Edema,
Consolidation (Cnsl.), Pneumonia (Pna.), Atelectasis (Atel.), Pleural Effusion (PEff.), Pneumothorax (Pmtx.),
Pleural Other (POth.), Fracture (Frac.), Support Devices (SuDev.), no Findings (NoF.). Best results in bold, separate
for CheXagent and CheXagent-2.
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C.4 Qualitative Analysis
To build some further intuition of behavior pre and post alignment, we conduct a qualitative study in which
a board-certified radiologist was asked to color-code candidate reports from CheXagent, CheXagent-2,
as well as their top performing aligned versions for GREEN and BERTScore as Judge, respectively, in
terms of cheXbert scores in Table 4. We selected three interesting, and representative, examples from
MIMIC-CXR test set, including examples with positive and negative findings, only negative findings, and
with and without indications. These were subsequently given to a radiologist to color-code, using the
reference reports as well as the CXRs in png format (i.e. exact measurements are not possible). Three
cases with six reports each, resulted in a total of 18 reports to be processed. The reports are color-coded as
green (correct), red (incorrect), and orange to indicate where an reference to prior report is made though
none was presented at the time of inference. For instance, the statement that something is “stable” may or
may not be true, depending on the prior imaging study.

Example 1 and 2 are available in Fig. 7. For example 1, CheXagent-2, despite being a very strong
model, contains two errors. First, it incorrectly states that lungs are elsewhere clear—marked in red.
Secondly, comparing with the reference report, the detection of small bilateral pleural effusions is missing.
None of these errors are made by the aligned versions, using both GREEN and BERTScore as Judge.
Moreover, for CheXagent with both GREEN and BERTScore as Judge, there are repetitions. For GREEN
“no overt edema” is mentioned twice. For BERTScore as Judge, “no pneumothorax” is repeated. These
types of exact repetitions may be due to verbosity bias.

Moving on to example 2, we can see that there are exact repetition for CheXagent-2 aligned with DPO.
“There is no pneumothorax” and “There is no pleural effusion” are bot repeated as “There is no evidence
of ...”. Interestingly, such repetition are not present for BERTScore as Judge, nor for the results from
CheXagent. Notably, however, both for CheXagent-2 and CheXagent there are errors in the candidate
report using BERTScore as Judge for this case. “Support devices have been removed” from CheXagent
cannot cannot be supported nor refuted definitively.

Finally, consider example 3 in Fig. 8. This case includes a lot of details, with a reference report
significantly longer than the previous two cases. One thing that is very interesting about this case is that
the reference report includes a quantitative measurement: the distance between where the endotracheal
tube terminates and the carina, expressed in centimeters. Quantitative results are given in some of the
candidate reports. However, due to the set up of this reader study (i.e. that we used CXRs in png
format) it is not feasible for the radiologist to make measurements and determine distance definitively.
To capture this additional feature, we introduce the additional color blue. Takeaways are similar as to
the previous two cases. Errors are made by CheXagent-2 and CheXagent, as well as the aligned versions
using BERTScore as Judge. For GREEN as Judge, the performance remains strong, with no direct errors.
Moreover, cheXagent makes a partial mistake not capture by our color coding scheme in this case as it
states that there is “A small right pleural effusion,” where it is actually bilateral.
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Figure 7: Color-coded candidate reports: Examples 1 and 2. Green and red represent correct and incorrect. Orange
refers to prior imaging study.
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Figure 8: Color-coded candidate reports: Example 3. Green and red represent correct and incorrect. Orange refers
to prior imaging study. Blue indicates measurements that have not been verified.
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