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Abstract

Prompt optimization for language models faces
challenges due to the large discrete search
space, the reliance on continuous gradient up-
dates, and the need to round continuous repre-
sentations into discrete prompts, which causes
inflexibility and instability. Existing methods
attempt to address these by constraining the
search space and adopting greedy, incremental
improvements, but they often fail to fully lever-
age historical gradient information. In this pa-
per, we model the prompt optimization problem
by the probability distribution of the prompt
and present a novel approach that integrates
greedy strategies into optimization with contin-
uous representations. This approach can exploit
historical gradient information to address the
instability caused by rounding in existing meth-
ods. Our study indicates that using continuous
representations can improve prompt optimiza-
tion performance on both text classification and
attack tasks, as well as models, including GPT-
2, OPT, Vicuna, and LLaMA-2, and also be
adaptable to models of different sizes.

1 Introduction

As the state-of-the-art large language models
(LLMs) (Achiam et al., 2023; Meta, 2024; An-
thropic, 2024) are all instruction-tuned and aligned,
prompting (Brown et al., 2020; Chung et al., 2024;
Wei et al., 2022) is arguably the most popular way
to leverage LLMs for downstream applications.
Specifically, LLMs can be efficiently applied to
a variety of tasks (Chen et al., 2021; Chung et al.,
2024) by inserting well-crafted text sequences (i.e.,
prompts) into the model’s input. How to find the
most effective prompt according to a (small) train-
ing set of the specific problem, a.k.a., prompt op-
timization, has been studied extensively in recent
literature. Note that this is a discrete optimization
problem with a huge search space, where classic
gradient-based optimization methods are not di-
rectly applicable.
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Traditional prompt optimization requires exten-
sive human effort in manually crafting the prompt
with trial-and-error attempts (Kojima et al., 2022).
This approach is not only labor-intensive, but
also lacks extensibility. As the growing demand
for more complicated applications, developing
machine-operated techniques to simplify in addi-
tion to enhance prompt optimization process has
become a key research field.

Recent advancements in prompt optimization
can be categorized into (1) discrete representation-
based greedy methods and (2) soft representation-
based gradient methods. These approaches aim to
leverage gradient information to accelerate prompt
optimization. In addition to these, reinforcement
learning (RL)-based methods (Deng et al., 2022)
and evolutionary algorithms (Agarwal et al., 2024;
Guo et al., 2023) have also been explored. How-
ever they are beyond the scope of the discussion as
they do not leverage gradient information. Instead,
these methods operate like white-box approaches
where the lack of gradient information significantly
reduce their efficiency when using random initial-
ization.

The first category employs discrete representa-
tions, using techniques such as token substitution
and projected gradient descent methods. For ex-
ample, AutoPrompt (Shin et al., 2020) adopts a
gradient-based token search strategy to efficiently
identify influential prompts. Greedy Coordinate
Gradient (GCG) (Zou et al., 2023) uses a more
effective greedy strategy to accelerate the optimiza-
tion. Projected gradient descent methods (Shi et al.,
2022) map the soft prompt to the nearest token
in the vocabulary at each step of regular gradient
descent. However, during optimization, all these
methods have to round the continuous representa-
tions to discrete ones, so they lack flexibility and
are unable to utilize historical gradient information.

Methods using continuous intermediate repre-
sentations provide a richer insight and greater flex-
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ibility into the optimization process. Specifically,
Gradient-Based Distributed Attack (GBDA) (Guo
et al., 2021) leverages the Gumbel-Softmax trick
to enable differentiable optimization, which allows
for a more nuanced prompt adjustments. However,
its non-greedy nature can often lead to a catas-
trophic increase in the loss during optimization,
thus requiring a more accurate approximation of
the objective function.

To take advantages of both types of methods, we
present Soft Greedy Coordinate Gradient (SGCG)
framework in Section 3. We begin by defining a di-
rect optimization objective that operates on a single
sample from a distribution, which is reparameter-
ized using the Gumbel-Max trick for sampling from
a parameter-free distribution. The optimization pro-
cess then proceeds through a two-step procedure:
we first update the probability distribution that gov-
erns the sampling process, and then update the
Gumbel variables through sampling. To improve
the efficiency and effectiveness of our method, we
employ a sliding window technique, which selects
only the most promising candidate at each evalua-
tion step. In contrast to candidate set, this approach
eliminates the need to store a large number of in-
termediate representations.

We conduct extensive experiments on six popu-
lar datasets, covering two distinct tasks: text classi-
fication and text attacks. Text classification focuses
on training a classifier to predict labels for given
inputs, while text attack is a more challenging task
that aims to manipulate the model into generating
specific outputs that are against its intended behav-
ior. Experiments on various datasets demonstrated
SGCG’s superior performance on both classifica-
tion and text attack tasks, and an ablation study
validated the importance of greedy strategies. We
further conduct an ablation study to validate each
component of our approach, including greedy strat-
egy and choices of the surrogate gradient function.

Our contributions are summarized as follows.

* We analyze the two mainstream types of prompt
optimization methods and identify their respec-
tive advantages and weakness, finding they are
complementary to each other.

* We propose a direct prompt optimization method
with continuous representations. This method is
enhanced by incorporating a greedy strategy and
a sliding window technique to improve perfor-
mance.

» Extensive experiments demonstrated our method
outperforms various baselines on both classifica-

tion and text attack tasks.
Reproducibility. We will release the code before
the conference. !

2 Related Work

In the domain of prompt optimization, various
gradient-based and blackbox approaches have been
explored. This section reviews significant works
and positions our method in the context of existing
literature.

2.1 Whitebox Methods

2.1.1 Hard Representations Methods

Hard representation methods directly use discrete
optimization by using hard tokens as intermediate
as representations. However, these methods often
lose significant information during optimization.
Two notable approaches in this category include
AutoPrompt (Shin et al., 2020), Greedy Coordi-
nate Gradient (GCG) (Wallace et al., 2019), and
methods based on projected gradient descent such
as FluentPrompt (Shi et al., 2022) and PEZ (Wen
et al., 2024). AutoPrompt and GCG aim to find re-
placements for the current tokens using first-order
Taylor expansion of the objective function as the
approximation. GCG employs a more effective
greedy strategy, consistently outperforming Auto-
Prompt. On the other hand, projected gradient
descent methods optimize in the embedding space
directly. In each step, the soft representation is
projected onto hard tokens. However, these pro-
jections introduce significant approximations due
to the limited connection between soft prompt and
projected ones (Khashabi et al., 2021).

2.1.2 Soft Representation Methods

Soft representation methods allow for smoother
transitions and more nuanced optimizations.
GBDA (Guo et al., 2021), a method for text at-
tack tasks, use Gumbel Softmax to optimize hard
tokens through soft representations. We find that
using the Straight-Through (ST) estimator (Hin-
ton, 2012a; Bengio et al., 2013) can significantly
enhance the performance of GBDA during the op-
timization process. However, this approach is not
greedy, thus often making irrevocable bad deci-
sions, which damage the performance significantly.

2.2 Blackbox Methods

Blackbox methods fall into a different category and
are less relevant to our specific comparison. These

"https://github.com/AiRyunn/SGCG

2643


https://github.com/AiRyunn/SGCG

methods generally do not rely on gradient infor-
mation from the model and instead use strategies
like Bayesian optimization (Chen et al., 2023), and
reinforcement learning (Deng et al., 2022), Monte-
Carlo search (Zhou et al., 2022), self-evolving tech-
niques (Guo et al., 2023; Agarwal et al., 2024) to
generate adversarial examples. These methods typ-
ically require more computational resources and
may lack the efficiency and precision offered by
gradient-based approaches. Therefore, we focus
our comparison primarily on whitebox methods.

3 Methodology

Unlike the soft prompt optimization problem that
comes with abundant gradient information to en-
sure the decrease of the loss function, the hard
prompt optimization problem is much more chal-
lenging. Due to the discrete nature of the tokens,
it is not possible to modify the outcome of the lan-
guage model by making small changes in the token,
therefore, optimizing this problem requires some
compromises, such as using a first-order Taylor
expansion as an approximation of the loss func-
tion or adopting a more generalized optimization
objective.

There are two common optimization objec-
tives. The first approach attempts a straightforward,
parameter-free optimization across the entire space
of tokens. To address efficiency issues, they use
pruning methods to filter out tokens that are less
likely to be effective; however, this method sac-
rifices historical optimization information due to
the absence of parameters. The second approach
follows an optimization objective used in reinforce-
ment learning, which optimizes the expectation of
the objective function in terms of the distribution
of parameters, but this is not the desired optimiza-
tion target as our focus is on optimizing a single,
specific prompt. To address these issues, we intro-
duce a new optimization objective that makes the
problem parameterizable focuses solely on optimiz-
ing a single prompt. In this section, we provide a
detailed description of different optimization objec-
tives and then propose a new algorithm to tackle
the new optimization objective.

3.1 Preliminaries and Notations

Let x represent a sequence of tokens, where each
token z; originates from a discrete vocabulary V.
The function f(-) denotes the loss function for
the target task. The probability distribution of the
prompt is expressed as P(x; 0), which describes

the probability of the token sequence parameter-
ized by 6. With this distribution 7; indicates the
probability associated with the i-th token. We use
UJ0, 1] to denote the uniform distribution over the
interval from O to 1.

3.2 Formulation of Hard Prompt Tuning

3.2.1 Discrete Optimization

The most straightforward optimization objective
essentially aims to search for the optimal prompt
of combination of tokens, with the constraint that
each token lie within the vocabulary set V, and the
optimization objective

min f(x)

. ey
subjectto x; € V,

where © € V" represents a sequence of tokens
and f(-) denotes the cost function to minimize, typ-
ically the loss function for the target task. Due to
the discrete nature of x and the lack of continu-
ous search space, optimizing this objective requires
traversing the entire search space, which is appar-
ently infeasible. Some methods address this prob-
lem by employing the hot-flip technique (Ebrahimi
et al., 2017; Wallace et al., 2019; Shin et al., 2020),
which uses the first-order Taylor expansion to ap-
proximate the loss function to narrow down the
search space, and updating the prompt by evaluat-
ing the gradient of the loss function with respect
with each token and selecting the token that most
reduces the loss. These methods can be enhanced
by beam search, i.e., evaluating top-k candidates at
a time instead of a single one.

3.2.2 Expectation Minimization

To introduce a continuous parameterization, an-
other line of research considers minimizing the
expected value of the loss function under a proba-
bility distribution over prompts:

min E

0 xNP(a:;G)[f(m)]' (2)

This objective is commonly used in reinforce-
ment learning and is difficult to optimize due to
the complexity of its gradient. GBDA attempts to
apply the Gumbel-softmax trick to make it differ-
entiable.

However, this objective still remains suboptimal
as it targets all solutions over the entire distribution
P(x;0), rather than focusing on specific instances
of interest. Consequently, this broad target leads to
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Algorithm 1 SGCG

Algorithm 2 Greedy Coordinate Gradient

1: Input: P parameterized by 6, prompt length n,
surrogate gradient v, window size k, learning
rate o, temperature 7

2: Initialize () as an empty queue

3: Sample ¢; ~ UJ0, 1] for each ¢;

4: x < V[(log ™ — log(—loge))/T]

5: while not converged do

6: i < Uniform(1, n)

7: Sample ¢; ~ UJ0, 1]

8: x, 0+ x,0

9: él «—6; — a%éf)
10: Z; < V[(log 7; — log(—log(&)))/7]
11: Append f (&) to Q

12: if size of () > k then

13: Remove the oldest element from )
14: end if

15: if f() < min () then

16: 91',61' “— é@,gi

17: T; — T

18: end if

19: end while
20: Output: Optimized parameters 6, g

considerable inefficiencies when our focus is on a
particular sample in the solution space.

3.2.3 Sample Selection from the Distribution
After obtaining optimized distribution parameters
6" from the expectation minimization, we can ex-
tract specific samples that minimize the loss func-
tion. This can be formulated as:

" =arg min f(x). 3)

x~P(x;0")

Rather than solely relying on optimizing the ex-
pectation and then selecting a sample by maximiz-
ing likelihood—an approach prone to instability
due to the discrete nature of the objective func-
tion—this method samples directly from the opti-
mized distribution P(x;0") and selects the best-
performing instance. It addresses the inefficiencies
of expectation minimization and avoids the insta-
bilities of discrete optimization.

3.3 Direct Prompt Optimization

Instead of adopting a two-stage training process,
we propose to jointly train the distribution parame-
ters and identifies the optimal sample. Following
the optimization techniques of (2), we adopt a re-
laxation technique to handle the problem, which fa-

1: Input: Initial prompt z, candidate size K
2: while not converged do

3 fori < 1,--- ,ndo

4: X; « Top-k(—Ve, L(z))

5: end for

6 fork«< 1,--- ,Kdo

7 i < Uniform(1,n)

8 ¥

9: icgk) < Uniform(A%)

10 end for

11: x + &%) where k* = arg miny, f(z*))
12: end while

13: Output: Optimized prompt x

cilitates the handling of non-differentiability (Jang
et al., 2016; Maddison et al., 2016). This approach
ultimately leads to formulate a distinct algorithm.

Reparameterization with Gumbel-Max. To
efficiently sample the categorical variables from
the parameter-free distribution, we first use the
Gumbel-Max trick to parameterize the sampling of
X as

min f(x),
O “
x = arg max[log w — log(— log €)],

where ¢; is drawn from U[0, 1].

Smooth estimator for relaxation. Because
argmax is still a non-differentiable function, we use
a smooth estimator +y to approximate argmax and
optimize (4). An example of v could be softmax,
a smooth approximation of argmax, which con-
verges to the argmax function as the temperature
parameter 7 of softmax tends to zero. As (4) jointly
minimize the function f(z) with respect to both the
parameters 6 and e, it can be minimized iteratively
with the update rules in k-th iteration as

1. Update 6 via gradient descent with

of

(k+1) (k) _
0 «— 0 aaa(k),

&)

where o« denotes the learning rate.

2. The update of € is performed via stochastic
sampling by sampling from the uniform dis-
tribution. Specifically, € is updated by solving
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Table 1: Text classification accuracy results comparing GPT-2 large and OPT-350M. The overall performance of
SGCQG is the best compared with other methods. DBPedia and AGNews datasets are more challenging than those

sentiment analysis datasets.

Dataset GPT-2 Large OPT-350M
FluentPrompt* GS GCG SGCG FluentPrompt* GS GCG SGCG
SST-2 84.98 83.92 87.59 87.39 80.09 78.00 87.02 88.00
IMDB 79.93 77.67 81.57 81.85 74.75 7530 73.03 71.85
Amazon 83.30 79.39 8431 86.12 72.20 76.65 84.62 83.99
Yelp 87.08 85.02 87.88 88.29 83.35 82.76 8297 84.68
DBPedia 46.93 50.11 66.99 70.79 53.35 76.80 70.69 69.30
AGNews 54.34 56.21 75.87 76.39 73.10 7521 78.38 78.48

Table 2: Dataset statistics. The "ICI" column denotes
the number of classes for classification. Colomns
"|Trainl=IDevl" show the combined size of the training
and development sets, and "ITestl" denotes the sizes of
the test set.

Dataset ICl I[Trainl=IDevl [Testl
SST-2 2 16 x |C| 1.8k
IMDB 2 16 x |C| 38k
Amazon 2 16 x |C| 50k
Yelp 2 16 x |C] 50k
DBPedia 14 16 x |C] 70k
AGNews 10 16 x |C| 60k
the optimization problem:

(k1)

+ argmin f(vy(logm — log(—log€))),

€cé
where £ C {e|e € U[0,1]"}
6)

It is worth noting that (6) is greedy if we let
e®) ¢ & while (5) is not. Since the gradient is
merely an approximation with the smooth estima-
tor, relying exclusively on the gradient can make
the optimization unstable. (This will also be veri-
fied in later sections.) Therefore, we use a greedy
approach skin to that used in AutoPrompt. In each
updating step in (5), we only perform the update
if f decreases. It is crucial to elucidate that this
algorithm does not merely search for a single sam-
ple from the optimization process defined in (2).
Instead, the update step in (6) also informs and
guides the subsequent update in (5).

As we are only interested in smoothing the back-
ward pass while preserving straightforward com-
putation in the forward pass, the straight-through
estimator can also be used. Specifically, during
the forward pass, the non-differentiable function

~v = arg max is used for discrete decisions. Con-
versely, for the backward pass where differentiation
is necessary, we use a differentiable function 4 as
the surrogate gradient. While common choices for
4 often include the softmax function, we find the
identity function (i.e., y(x) = x) serves a better sur-
rogate function. This idea is ubiquitous in training
forward with discrete training networks and allows
for the practice of gradient-based optimization in
backward passe, such as those described by Hinton
(2012b) and in BinaryConnect (Courbariaux et al.,
2015). Therefore, in this paper follows these ideas
and use the straight-through identity function as
the surrogate gradient.

Sliding window for candidate selection. Un-
like AutoPrompt, which selects the best candidate
from a set, our approach uses a sliding window
during optimization. Specifically, in each step, we
compute the loss improvement for each candidate
and determine if it is the best over the history of
the last K replacements. This method allows us
to avoid storing all the gradient information for /K
candidates, making the process more efficient and
less likely to miss a good candidate.

4 Experiments

We conducted extensive experiments on text classi-
fication and attack tasks and compared them with
several baseline methods to evaluate the effective-
ness of our proposed method.

4.1 Experimental Setup

We evaluated the performance of our method on a

range of datasets specific to sentiment analysis and

topic classification. The datasets include:

¢ SST-2 (Stanford Sentiment Treebank): This
dataset is a corpus with fully labeled parse trees
that allows for a complete analysis of the compo-
sitional effects of sentiment in language (Socher
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Figure 1: Evaluation loss vs. training steps for GCG and SGCG on two relatively challenging datasets. On DBPedia,
SGCG achieves lower training and evaluation losses than GCG, indicating not only better performance but also
faster convergence. On AGNews, both SGCG and GCG end up with similar evaluation losses, but SGCG shows a
more consistent and steady decline in training loss over steps. Results are based on GPT-2 Large.

etal., 2013).

* IMDB: A large movie review dataset for binary
classification (Maas et al., 2011).

* Amazon: Comprises product reviews across var-
ious categories, utilized for sentiment analysis
(Ni et al., 2019).

* Yelp: This dataset is composed of reviews from
the Yelp review platform, categorized into dif-
ferent sentiment classes, and is used to analyze
user opinions on restaurants and services (Zhang
et al., 2015).

e DBPedia: A large-scale, multilingual knowledge
base extracted from Wikipedia, used for topic
classification. It helps in categorizing text into
predefined categories based on content (Zhang
et al., 2015).

* AGNews: Consists of news articles from the
AG’s corpus. With multiple categories, it serves
as a benchmark for evaluating the performance of
topic classification models (Zhang et al., 2015).

The detailed statistics of the datasets in shown in
Table 2. We adopted few-shot settings, specifically
using 16 training examples for each dataset. The
models used for these experiments were GPT-2-
large (Radford et al., 2019), OPT-350M (Zhang
et al., 2022), Vicuna-7B (Chiang et al., 2023), and
LLaMA-2 (Touvron et al., 2023). We chose these
models to explore the impact of varying model
sizes and architectures on the task performance, en-
suring a diverse range of computational capabilities
are tested. Each method was tested for its ability to

optimize prompts to achieve better classification ac-
curacy. Each experiment was conducted five times,
and the results were averaged to ensure reliability
and to mitigate the effects of any outliers or random
variance in the performance measurements.

Our hyperparameters closely follow those of
GCQG, with the exception of several components
unique to our method. Specifically, we apply a
weight decay of 1073 to the optimizer. The tem-
perature parameter 7 is initialized at 1 and decays
exponentially to 0.1 over the course of training. Ad-
ditionally, the window size for historical gradient
aggregation is set equal to the prompt length.

4.2 Compared Methods

Our baselines contain the following models.

* FluentPrompt (Shi et al., 2022) is an approach
that uses project gradient descent to directly op-
timize the soft prompt in the embedding space,
projecting the soft embeddings into discrete to-
kens at each step. Since FluentPrompt also aims
to optimize the fluency of the prompts, here we
remove the fluency loss to serve as a baseline, re-
ferred to as FluentPrompt*. This modification
aligns with our specific objectives-to solely op-
timize the target function rather than enhancing
the fluency of the prompt.

¢ Gumbel-Softmax (GS) (Jang et al., 2016) is a
reparameterization method used by GBDA (Wen
et al., 2024) that converts relax the discrete
choices into continuous approximations.

* Greedy Coordinate Gradient (GCG) (Zou et al.,
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Table 3: Ablation study results. We main explore the
effect of the Greedy part in SGCG. The results show this
part contribute very significantly to the final accuracy.

Dataset SGCG SGCG nongreedy
SST-2 88.00 75.29
IMDB 71.85 74.39
Amazon  83.99 68.06
Yelp 84.68 81.72

2023) is an approach that selects the best candi-

date from a set using a improved strategy than

AutoPrompt. In our experiments we found it to

be a strictly stronger baseline compared to Auto-

Prompt both in terms of efficiency and effective-

ness. In light of this, we choose not to include

AutoPrompt’s results in our reporting.

We denote our method as SGCG. In addition,
for the purposes of this study, we define an ablation
version of our method, referred to as SGCG non-
greedy, where we no longer ensure that (5) always
results in a reduction of the loss.

4.3 Text Classification

We focus on two types of text classification tasks:
(1) sentiment analysis and (2) topic classification.
Table 1 presents the text classification accuracy
results of our proposed method, SGCG, compared
to GCG, GS, and FluentPrompt* on GPT-2 large
and OPT-350M.

The results demonstrate that SGCG achieves
competitive or superior performance compared to
other methods on both models and most datasets.
Notably, in the GPT-2 large configuration, SGCG
performs best on datasets such as IMDB, Ama-
zon, and Yelp, demonstrating its effectiveness in
sentiment analysis tasks. It also performs well on
the challenging DBPedia and AGNews datasets,
highlighting its robustness in topic classification.

Interestingly, for the OPT-350M model on the
IMDB dataset, we observe a tendency towards over-
fitting, where simpler models appear to perform
better. This could be due to the fact that movie
reviews tend to have a more straightforward struc-
ture and less technical jargon compared to other
types of text, making it easier to learn. This can be
confirmed in our later experiments by varying the
number of tokens to learn, where IMDB is also an
outlier dataset. Therefore, we would like to argue
that the result on the IMDB dataset shall be viewed
less important than the results on the other datasets.

4.4 Loss Analysis

Figures 1(a) and 1(b) illustrate the evaluation loss
versus steps for GCG and SGCG on the two rela-
tively challenging datasets of DBPedia and AG-
News, respectively. On the DBPedia dataset,
SGCG achieves lower training and evaluation
losses than GCG. This indicates not only better
performance but also faster convergence. On the
AGNews dataset, both SGCG and GCG end up
with similar evaluation losses, but SGCG shows a
more consistent and steady decline in training loss
over steps.

Notably, GCG has difficulty identifying benefi-
cial token substitutions and almost stops optimizing
after about 400 steps. This suggests a plateau in
GCG’s performance, where further steps do not
significantly reduce loss, indicating a slower con-
vergence rate. In contrast, SGCG shows the ability
to consistently search for good substitutions, sug-
gesting a more efficient convergence. This contin-
uous improvement in search efficacy likely con-
tributes to SGCG’s ability to maintain a steady rate
of optimization and avoid early plateaus common
in methods like GCG.

4.4.1 Ablation Studies

In our ablation studies, we compared the perfor-
mance of our greedy model against a non-greedy
model on the text classification task. In the non-
greedy version, we remove the greedy constraint
of (5) as discussed before, allows for updates that
may not immediately minimize the loss.

The results presented in Table 3 highlight the
varying performance of greedy and non-greedy
models across different datasets. Specifically, the
greedy model demonstrates superior performance
on datasets such as SST-2, Amazon, and Yelp, sug-
gesting that these datasets may contain some pat-
terns that the greedy model can effectively exploit.
In contrast, the non-greedy model shows a distinct
advantage on the IMDB dataset, where the greedy
approach appears to overfit to the training data.
The non-greedy model, by introducing an element
of randomness into its decision-making process,
can explore a wider range of potential solutions
rather than committing to the most immediate loss-
reducing path. This randomness helps the model
avoid overfitting and better generalize to new data,
particularly beneficial for the IMDB dataset.
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Table 4: Text classification accuracy results on OPT-350M with different token lengths.

5 Tokens

10 Tokens 20 Tokens

Dataset | —=—G6G SGCG | GS

GCG SGCG | GS GCG SGCG

SST-2 73.60 82.00 83.76 | 79.11
IMDB 72.66 74.55 73.770 | 75.47
Amazon | 73.06 78.02 79.79 | 75.16
Yelp 7777 8140 82.48 | 79.72
DBPedia | 44.58 50.67 50.69 | 52.08
AGNews | 58.44 75.07 74.04 | 67.76

8539 86.47 | 80.14 87.02 88.00
72776 71.21 | 73.99 73.03 71.85
80.62 82.66 | 76.36 84.62 83.99
83.55 84.47 | 81.67 8297 84.68
65.16  69.23 | 54.58 70.69 69.30
75.59 7685 | 71.99 78.38 78.48

Table 5: Comparison of loss (with accuracy in brackets) for FluentPrompt*, GCG, and SGCG on attack scenarios

using Vicuna and Llama-2.

Setting Vicuna Llama-2

FluentPrompt* GCG SGCG FluentPrompt* GCG SGCG
Single 0.9870 (80) 0.3096 (100) 0.0220 (100) 4.0849 (0) 0.0405 (100) 0.0428 (100)
Multiple  6.8223 (15.28)  3.1140 (45.83) 2.6582 (52.22) 6.3373 (19.44)  3.3311(45.83) 2.8590 (47.22)
Fluent 1.9088 (63.07)  0.8966 (76.92)  0.7179 (80.77) 2.1582(50.77)  1.1307 (72.31)  0.7456 (80.77)

4.5 Experiments Varying the Number of
Tokens

We evaluated the performance of different mod-
els on the OPT-350M architecture across various
datasets using configurations with 5, 10, and 20
tokens. The results shown in Table 4 illustrate how
increasing the number of tokens impacts model ac-
curacy. A clear trend observed across all datasets
is that the accuracy generally increases with the
number of tokens used in the classification task.
This suggests that a larger token set provides more
contextual information, which helps the model un-
derstand the nuances and subtleties of the text. This
is particularly beneficial in complex classification
tasks where context plays a crucial role in deter-
mining the correct label.

However, the IMDB dataset presents an interest-
ing anomaly. The nature of movie reviews, which
often contain subjective opinions and varied ex-
pressions, might mean that a smaller token set is
sufficient to capture the core sentiment without
being bogged down by extraneous details. Addi-
tionally, using fewer tokens can help prevent over-
fitting, where the model becomes too tailored to the
training data and performs poorly on unseen data.

Overall, while a larger token set generally en-
hances model performance by providing more con-
text, the specific characteristics of the dataset and
the nature of the text should be considered to de-
termine the optimal number of tokens for a given
classification task.

4.6 Text Attack

Text attack is a more challenging task that manipu-
lates the language model’s output through prompt.
This attack forces the model to generate specific
tokens with the same prompt as the classification
task, varying only the label to predict and the loss
function which takes all tokens in the vocabulary
into account. We structured the task into three set-
tings: (1) Single: introducing one random token,
(2) Multiple: introducing three random tokens, and
(3) Fluent: using a syntactically fluent but contex-
tually irrelevant sentence.

Since labels are not required for this task, we
select the SST-2 dataset to focus solely on the mod-
els’ ability to adapt to manipulated prompts with-
out being influenced by label accuracy. The results
are shown in Table 5. It can be seen that SGCG
outperforms GCG in most cases. FluentPrompt*
performs poorly due to the task’s complexity and
the non-greedy algorithm’s limitations.

4.7 Qualitative Analysis of Final Prompts

We present representative final prompts generated
by FluentPrompt, GCG, and SGCG from a single
run to highlight the qualitative behavior of each
optimization method. Although the outputs consist
of discrete tokens and are not easily interpretable,
they exhibit consistent structural patterns and token
selection behaviors. These observations shed light
on the convergence dynamics and the nature of the
solutions identified in the discrete prompt space.
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5 Conclusion and Future Work

In this paper, we introduced the Soft Greedy Co-
ordinate Gradient (SGCG) framework, a novel ap-
proach to prompt optimization using continuous
intermediate representations from a direct optimiza-
tion objective. Our two-step process—updating the
probability distribution and sampling the Gumbel
variables—allows effective optimization. Experi-
ments on various popular datasets demonstrated
SGCG’s superior performance, and an ablation
study validated each component’s contributions.
SGCG successfully integrates the strengths of exist-
ing methods and offers a powerful tool for prompt
optimization tasks.

Future work could extend SGCG to other do-
mains and explore the transferability of the repre-
sentations. One can also focus on addressing some
limitations of the SGCG framework to enhance its
practical applicability. For example, further investi-
gation is needed on mitigating instability that might
be caused by the introduction of Gumbel variables.
A more comprehensive evaluation across diverse
applications will also help the community better
understand the direct prompt optimization.

Limitation

While the Soft Greedy Coordinate Gradient
(SGCG) framework has shown promising results,
several limitations must be acknowledged. The
integration of Gumbel variables introduces stochas-
ticity that may introduce variance, and sensitiv-
ity to hyperparameter settings requires careful tun-
ing. Furthermore, SGCG’s adaptability to other
domains or tasks outside our experiments remains
uncertain. Addressing these limitations through
evaluations is crucial for enhancing the practical
applicability of the SGCG framework.

It is worth noting that gradient-based prompt op-
timization, including SGCG, requires white-box ac-
cess to LMs. However, this is not a major limitation.
Our method is easily applicable to open-source
LLMs, and companies with proprietary models can
also implement it using their internal access. A key
open question is the cross-model transferability of
prompts optimized on open-source LMs to closed-
source, commercial models, which merits further
studies.
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