
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 27044–27065
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

Exposing the Achilles’ Heel:
Evaluating LLMs Ability to Handle Mistakes in Mathematical Reasoning

Joykirat Singh Akshay Nambi Vibhav Vineet
Microsoft Research

{akshayn, vivineet}@microsoft.com

Abstract
Large Language Models (LLMs) have signifi-
cantly impacted the field of Math Word Prob-
lems (MWPs), transforming how these prob-
lems are approached and solved, particularly in
educational contexts. However, existing eval-
uations often focus on final accuracy, neglect-
ing the critical aspect of reasoning capabili-
ties. This work addresses that gap by evaluat-
ing LLMs’ abilities to detect and correct rea-
soning mistakes. We present a novel dataset,
MWP-MISTAKE, containing MWPs with both
correct and incorrect reasoning steps gener-
ated through rule-based methods and smaller
language models. Our comprehensive bench-
marking of state-of-the-art models such as GPT-
4o and GPT4 uncovers important insights into
their strengths and limitations. While GPT-4o
excels in mistake detection and rectification,
gaps remain, particularly in handling complex
datasets and novel problems. Additionally, we
identify concerns with data contamination and
memorization, which affect LLM reliability in
real-world applications. While OpenAI’ O1
model demonstrates 90% accuracy in reason-
ing and final answers on complex tasks, it re-
mains weak in mistake detection. Our find-
ings highlight the need for improved reasoning
evaluations and suggest ways to enhance LLM
generalization and robustness in math problem-
solving.

1 Introduction

Large Language Models (LLMs) have transformed
AI applications across diverse domains, includ-
ing healthcare, agriculture, and education (Ope-
nAI, b,a). Their prowess in natural language un-
derstanding, question answering, and mathemat-
ical problem-solving has shown potential to rev-
olutionize various human endeavors (Liu et al.,
2024b). Recent advancements have fueled exten-
sive research into applying LLMs to interpret and
solve a wide array of mathematical tasks, from ba-
sic arithmetic to complex algebraic equations and

calculus problems (Hendrycks et al., 2021; Zhang
et al., 2024a). Math Word Problems (MWPs) in-
volve interpreting narrative scenarios to extract
mathematical concepts and apply reasoning for so-
lutions (Srivatsa and Kochmar, 2024). Studies (Xu
et al., 2024; He-Yueya et al., 2023; Deb et al., 2023)
show LLMs can convert text into mathematical
expressions and generate accurate results, but a
critical element mathematical reasoning is often
underexplored.

Despite achieving remarkable accuracy rates ex-
ceeding 90% on datasets like GSM-8K (Grade
School Math dataset with linguistically diverse
word problems) (Cobbe et al., 2021a), foundational
LLMs such as Claude-3-Opus (Anthropic, 2024),
Gemini Ultra (Team et al., 2024), and OpenAI
GPT-4 (OpenAI et al., 2024) reveal a significant
gap in our understanding of their capabilities in
mathematical reasoning (Deb et al., 2023). Cur-
rent research predominantly focuses on evaluating
the final accuracy of MWPs (Luo et al., 2023; Yu
et al., 2024), neglecting the intricate reasoning pro-
cesses necessary to derive solutions. We argue
that the reasoning steps play a pivotal role, and it
is imperative to assess them to comprehensively
analyze the foundational capabilities of these mod-
els. This necessity is further underscored by the
increasing utilization of LLMs in domains such as
education (Gan et al., 2023), where they serve as
personalized tutors for students, aiding in teach-
ing concepts and solving mathematical problems.
Simply deriving the final answer is insufficient; the
ability to guide students through correct steps, iden-
tify errors in their reasoning, and provide corrective
guidance is paramount for such applications.

This paper addresses this gap by providing
a comprehensive benchmark and evaluation of
LLMs’ performance on math word problems, in-
cluding their capabilities in mistake detection and
correction within the reasoning steps (Figure 1).
Analyzing their error detection and rectification

27044

Question:
What is the product of the coordinates of the midpoint of a line segment with endpoints at
(1,1) and (-7,5)?

Reasoning Step:
The midpoint of a line segment is located at the point (h,k), where h = (x1 + x2)/2 and k =
(y1 + y2)/2. In this case, the endpoints of the line segment are (1,1) and (-7,5). So, we can
find the midpoint by calculating h = (1 + (-7))/2 = 6 and k = (1 + 5)/2 = 3.
Therefore, the product of the coordinates of the midpoint is hk = 6 * 3 = 18.

Reasoning chain Correct (Yes/No): No
Corrected reasoning chain or NA:
The midpoint of a line segment is located at the point (h,k), where h = (x1 + x2)/ 2 and k = (y1
+ y2)/2. In this case, the endpoints of the line segment are (1,1) and (-7,5).
So, we can find the midpoint by calculating:
h = (1 + (-7))/2 = -6/2 = -3
k = (1 + 5)/2 = 6/2 = 3
Therefore, the product of the coordinates of the midpoint is: hk = -3 * 3 = -9
Final answer (just the number): -9

Reasoning chain Correct (Yes/No): Yes

Correct Reasoning Chain or NA: NA

Final answer (just the number): 18

Model Input

Open AI Models

GPT-4o

GPT 3.5 Turbo

You are provided with a mathematical question and a step-by-step solution along with it.
The solution might have some mistakes. Identify if the solution is correct or incorrect. If
the solution is correct, output the final answer with the help of the solution provided. If the
solution is incorrect, correct the existing solution and determine the final answer with the
help of the corrected solution.

Figure 1: Model is prompted with a question along with incorrect reasoning steps to detect any mistake and correct
the reasoning step to get to the correct final answer. GPT-4o generates the correct output, while GPT-3.5Turbo fails
to identify any mistake in the reasoning step. (Task - T1).

provides insights into overall problem-solving abil-
ities. Our objectives are threefold: (1) evaluate
LLMs’ mathematical reasoning, emphasizing mis-
take detection and correction, (2) identify their
strengths and weaknesses in handling different
mathematical challenges, and (3) propose poten-
tial directions for enhancing their capabilities in
this domain. To achieve this comprehensive evalu-
ation, we have developed our own mistake dataset,
which includes errors in the reasoning steps. This
dataset allows the assessment of models’ profi-
ciency not only in providing correct solutions but
also in detecting and correcting mistakes within the
reasoning steps. We evaluate 12 different founda-
tional models, including large, small and fine-tuned
on math, language models on our curated dataset
MWP-MISTAKE. We are releasing this dataset for fur-
ther evaluation and benchmarking1.

Our analysis reveals several key insights into the
performance of LLMs on MWPs. Firstly, detecting
mistakes, even trivial ones, remains a significant
challenge for these models. Secondly, LLMs of-
ten derive correct answers despite this difficulty in
mistake detection. This can be attributed to data
memorization and potential contamination in train-
ing datasets, where models may have encountered
similar/same problems before. However, the ability
to recover from or correct errors in the reasoning
process is generally poor across most models. Our
contributions to this paper are as follows:

1. We collect and release to the research commu-
nity MWP-MISTAKE, a dataset containing MWPs
with both correct and incorrect reasoning ob-
tained from state-of-the-art MWP datasets such
as SVAMP (Patel et al., 2021), GSM-8K (Cobbe
et al., 2021b), MATH (Hendrycks et al.,

1Repository for source code and dataset: https://aka.
ms/MWP-MISTAKE

2021), MATHBENCH (Liu et al., 2024a), and
JEEBENCH (Arora et al., 2023). Incorrect rea-
soning is derived through meticulously crafted
rules to alter the reasoning steps and using
smaller models, leveraging their inherent limita-
tions in solving MWPs.

2. We provide benchmark results for our dataset
to evaluate the reasoning capabilities of LLMs
such as O1 (OpenAI, 2024) GPT-4o (Ope-
nAI, a), GPT-4 (OpenAI et al., 2024), GPT-
3.5Turbo (noa), Claude (Anthropic, 2024),
as well as smaller language models like
Llama (Touvron et al., 2023), Phi (Abdin et al.,
2024a), and Mixtral (Jiang et al., 2024) and also
models fine-tuned on Math datasets. Our analy-
sis demonstrates that all SOTA LLMs struggle
with mistake detection and correction.

3. Through meticulous evaluation and comparison
of different LLMs, we offer a detailed analysis
of their strengths and weaknesses in handling
mathematical reasoning tasks.

2 MWP-Mistake Dataset

Most Math Word Problem (MWP) datasets pro-
vide math problems with final answers, occasion-
ally including correct reasoning steps. To evaluate
LLMs’ ability to detect and correct errors, we cre-
ated the MWP-MISTAKE dataset using five sources:
SVAMP (Patel et al., 2021), GSM-8K (Cobbe
et al., 2021b), MATH (Hendrycks et al.,
2021), MATHBENCH (Liu et al., 2024a),
and JEEBENCH (Arora et al., 2023), with
MATHBENCH and JEEBENCH being more re-
cent. These five datasets form the basis of the
MWP-MISTAKE dataset, covering a wide range of
complexities from middle, high school to college
levels. While GSM-8K and MATH offer ground
truth corect reasoning steps, the others do not. For

27045

https://aka.ms/MWP-MISTAKE
https://aka.ms/MWP-MISTAKE

Table 1: MWP-MISTAKE Dataset details with the total
number of questions and reasoning steps.

Dataset
Default reasoning Smaller model reasoning

Questions
with correct
reason (GT)

Questions
with incorrect
reason (Rules)

Questions
with incorrect reasoning

Total

Llama-2-7b-chat Mixtral-8x7B Phi-3-mini

SVAMP 154 924 60 20 20 1178
GSM-8K 93 558 100 100 100 951
MATH 150 900 150 150 150 1500
MATHBENCH 100 600 100 100 100 1000
JEEBENCH 38 228 12 19 35 332

those, we used GPT-4 to generate chain-of-thought
reasoning steps, which were then extensively man-
ually verified for correctness. The final dataset
includes MWP questions, correct reasoning steps,
and final answers from all five sources (see Ap-
pendix A for additional details). To create incorrect
reasoning steps, we propose two approaches: (i)
meticulously crafted rules, and (ii) using smaller
models as bad reasoners, which we describe next.

2.1 Rules to Programmatically Inject Errors

These rules are motivated and derived from com-
mon mistakes observed in educational settings, en-
suring the errors introduced are realistic and rep-
resentative of actual student errors. The six rules
are, (i) Shuffle numerical values: Swap numer-
ical values to test if the model correctly selects
relevant numbers from the question. (ii) Replace
numerical values: Replace numbers with random
values (0–100) to assess if the model correctly ex-
tracts numerical information. (iii) Shuffle oper-
ations: Swap mathematical operators to evaluate
the model’s ability to apply correct operations. (iv)
Insert random reasoning steps: Add an unrelated
reasoning step to check if the model detects incon-
sistencies. (v) Shuffle reasoning steps: Rearrange
steps to introduce ambiguity, testing the model’s
ability to recognize logical order. (vi) Delete rea-
soning steps: Remove a step in solutions to assess
if the model identifies missing reasoning.

These rules replicate real-world student behavior,
capturing common mistakes such as misordering
steps, skipping steps, misinterpreting numerical val-
ues, using incorrect numbers, applying the wrong
operations, and adding irrelevant steps. While rules
5 and 6 do not introduce explicit reasoning errors,
they are included to help models identify unclear
scenarios. Table 1 details the number of questions
selected from five datasets, with each question gen-
erating seven reasoning variations (one correct +
six incorrect). Real-world examples are provided
in Appendix A.1.

2.2 Smaller Models as Bad Reasoners

Recently, SLMs are gaining popularity with in-
creased performance, however, they still lack sev-
eral capabilities, including advanced mathemati-
cal reasoning, resulting in poorer performance on
MWPs. To curate incorrect reasoning steps, we use
SLMs to generate Chain-of-Thought (COT) rea-
soning and final answers for all dataset questions.
Questions with incorrect final answers, identified
by comparing them to the ground truth, are retained,
and their reasoning steps are classified as incorrect.
We then perform an extensive human validation of
the answer and reasoning steps using 5 independent
volunteers to make sure their is a mistake (as there
could few instances where the answer can be incor-
rect, but reasoning steps could be correct). Each
volunteer was provided with clear guidelines on
how to assess the correctness of reasoning chains.
The dataset was partitioned into five equal subsets,
and each volunteer was tasked with labeling each
reasoning chain as correct or incorrect. We employ
state-of-the-art SLMs, such as Llama-2-7b-chat,
Phi-3-mini, and Mixtral-8x7B, to generate COT
reasoning steps and Appendix D provides exam-
ples of such incorrect reasoning steps with final
wrong answer. Table 1 provides statistics for each
model across datasets. The entire dataset, including
reasoning steps, was exhaustively manually veri-
fied to eliminate errors.

Our dataset includes questions with original cor-
rect reasoning, rule-based incorrect reasoning, and
SLM-generated incorrect reasoning. For evalu-
ation, we split the data into two parts: (1) De-
fault, with correct reasoning and rule-based incor-
rect steps, and (2) SLM reason, featuring SLM-
generated incorrect reasoning. Table 1 provides
the complete details of the curated MWP-MISTAKE
dataset with the above two splits.

3 Experimental Setup

Task Details. Our aim is to assess the performance
of LLMs on MWPs, focusing on their ability to
detect and correct mistakes within the reasoning
steps. Below are two task variants to accomplish
this are: (i) Task-1 (T1): Given a question with
reasoning steps, the model must determine correct-
ness, rectify errors if present, and compute the final
answer (Figure 1).(ii) Task-2 (T2): The model only
identifies whether the reasoning steps are correct
or incorrect and provides the final answer, without
explicitly correcting errors. In essence, T1 evalu-

27046

ates the model’s ability to detect mistakes, rectify
them, and derive the correct answer, while T2 fo-
cuses solely on detecting mistakes-models must
identify errors but are not explicitly required to cor-
rect them before providing the final answer. Both
tasks operate under few-shot settings (prompt de-
tails - Appendix E).

Models. To evaluate LLMs’ mathematical rea-
soning capabilities, we utilize foundational LLMs,
SLMs and math-finetuned SLMs.

1. LLMs: We utilize 6 LLMs that have
shown great performance in MWPs
such as GPT-4o, GPT-4, GPT-3.5Turbo,
Claude-3-Opus, Llama-2-70b (Touvron et al.,
2023), Llama-3-70B (Dubey et al., 2024).

2. SLMs. Additionally, we evaluate six
popular SLMs—Phi-3-mini (Abdin et al.,
2024b), Mixtral-8x7B (Jiang et al.,
2024), Llama-2-7b-chat (Touvron et al.,
2023), Qwen2-7B (Yang et al., 2024),
Llama-3-8B (Dubey et al., 2024), and
Llama-3-8b-finetuned (Chen and Li, 2024)
trained on high-quality data to assess their
reasoning capabilities. Additional details of
models in Appendix G.

Metrics. For mistake detection, the model out-
puts either "yes" (indicating correct reasoning) or
"no" (indicating incorrect reasoning). The ground
truth labels are similarly "yes" for correct reasoning
and "no" for incorrect reasoning, and the model’s
predictions are compared against these labels to
calculate the F1 score. This F1 score measures
path-level detection performance for the complete
reasoning chain. For performance evaluation, the
generated final answer is compared to the ground
truth final answer to compute the accuracy.

4 Results and Analysis

4.1 OpenAI o1 model performance on
MWP-MISTAKE dataset?

OpenAI’s O1 model enhances reasoning capabil-
ities by allocating more processing time before
responding. Our analysis comparing O1 and GPT-
4O on GSM-8K, MATH, MATHBENCH, and
JEEBENCH reveals that O1 outperforms GPT-4O
in deriving correct final answers, demonstrating
superior reasoning across complex tasks (Table 2).
This focused comparison between O1 (a “thinking”
model) and GPT-4o (a “non-thinking” model) is to

Table 2: Performance of o1 vs GPT4o on questions from
MWP-MISTAKE

O1 GPT4o O1 GPT4o
Model Metric D D SLM SLM

GSM-8K Mistake Detection 0.70 0.85 0.84 0.86
Final Answer 0.96 0.98 0.86 0.84

MATH Mistake Detection 0.78 0.83 0.94 0.94
Final Answer 0.91 0.89 0.84 0.79

MATHBENCH Mistake Detection 0.72 0.80 0.98 0.99
Final Answer 0.45 0.87 0.38 0.62

JEEBENCH Mistake Detection 0.80 0.79 0.99 0.99
Final Answer 0.86 0.38 0.89 0.41

assess how enhanced reasoning time impacts mis-
take detection. For all other models, we maintained
consistency by benchmarking against GPT-4o.

Rule-based mistake identification. Both mod-
els perform similarly, with GPT-4O often matching
or surpassing O1 in final answer accuracy. How-
ever, O1 struggles more with mistake detection,
showing an average accuracy drop of 0.0675. No-
tably, O1 underperforms on MATHBENCH, scor-
ing only 0.45 accuracy compared to GPT-4O’s 0.87.
Despite this, O1’s advanced reasoning abilities are
evident in other datasets.

SLM-generated mistakes. Both models
achieve high mistake detection performance, es-
pecially in complex datasets like JEEBENCH and
MATHBENCH. While O1 excels in reasoning and
generalization, it struggles to derive the correct fi-
nal answer in MATHBENCH, falling behind GPT-
4O with accuracy of 0.38 and 0.62, respectively.

In summary, while both models perform simi-
larly in mistake identification, O1 excels in final
answer generation and rectification, especially for
SLM-based mistakes. These findings highlight
O1’s superior reasoning capabilities, making it
more effective for complex tasks. However, chal-
lenges like potential data contamination and ineffi-
ciencies in processing time and token usage require
further optimization.

4.2 Can LLMs Effectively Identify Mistakes
in Reasoning Steps?

We evaluate the ability of various models to detect
mistakes in the reasoning steps of MWPs, with F1
scores across five datasets, as shown in Table 3 for
both default (D) and smaller models (SLM).

GPT-4o Performance. GPT-4o outperforms
models like GPT-4, GPT-3.5Turbo, and smaller
counterparts, achieving an overall F1 score of 87%.
However, it struggles with consistent mistake detec-
tion, particularly on simpler datasets like SVAMP
and more complex ones like JEEBENCH, where
its F1 score drops by 6% compared to GSM-8K.

27047

Table 3: Mistake Detection Performance (F1 score) on MWP-MISTAKE dataset for Task T1. (D-Default reasoning
steps, SLM-Smaller model reasoning steps) (Bold: Best)

GSM8K MATH MATHBENCH JEEBENCH SVAMP AVERAGE
Model D SLM D SLM D SLM D SLM D SLM D SLM Overall
GPT-4o 0.85 0.86 0.83 0.94 0.80 0.99 0.79 0.99 0.74 0.92 0.80 0.94 0.87
GPT-4 0.72 0.72 0.78 0.90 0.51 0.90 0.81 0.87 0.61 0.89 0.69 0.86 0.77
GPT-3.5Turbo 0.80 0.70 0.80 0.60 0.50 0.34 0.54 0.46 0.75 0.69 0.68 0.56 0.62
Claude-3-Opus 0.79 0.89 0.73 0.90 0.68 0.92 0.69 0.88 0.77 0.93 0.73 0.90 0.82
Qwen2-7B 0.59 0.26 0.64 0.53 0.49 0.67 0.60 0.60 0.53 0.61 0.57 0.53 0.55
Phi-3-mini 0.70 NA 0.65 NA 0.54 NA 0.55 NA 0.70 NA 0.63 NA 0.63
Mixtral-8x7B 0.73 NA 0.79 NA 0.62 NA 0.70 NA 0.64 NA 0.70 NA 0.70
Llama-2-7b-chat 0.07 NA 0.16 NA 0.08 NA 0.36 NA 0.12 NA 0.16 NA 0.16
Llama-2-70b 0.63 0.73 0.77 0.61 0.81 0.98 0.54 0.75 0.71 0.45 0.69 0.70 0.70
Llama-3-8B 0.79 0.81 0.79 0.79 0.56 0.58 0.50 0.67 0.78 0.81 0.68 0.73 0.71
Llama-3-8b-finetuned 0.83 0.82 0.83 0.76 0.77 0.80 0.55 0.74 0.81 0.68 0.76 0.76 0.76
Llama-3-70B 0.79 0.74 0.76 0.78 0.55 0.76 0.59 0.61 0.70 0.82 0.68 0.74 0.71

This indicates that while GPT-4o excels in many
areas, its precision in mistake detection remains
inconsistent across different complexities.

Rule-based vs. SLM-generated Mistakes.
GPT-4o and other models detect SLM-generated
mistakes more accurately than rule-based ones,
achieving an F1 score of 94% versus 80%. This
disparity arises because SLM errors propagate
across multiple steps, forming identifiable patterns,
whereas rule-based errors are isolated to single
steps (e.g., number/operator shuffling), making
them harder to detect due to their lack of broader
contextual cues.

Performance of GPT-4 vs. GPT-3.5Turbo.
While GPT-3.5Turbo matches or surpasses GPT-4
on datasets like GSM-8K, it struggles with er-
rors from smaller models. In contrast, GPT-4
handles these mistakes more effectively, possibly
due to data contamination or overfitting. For in-
stance, GPT-4 achieves an F1 score of 86% on
smaller model-generated mistakes, compared to
GPT-3.5Turbo ’s 56%.

Smaller Models and Fine-tuning. Fine-tuned
smaller models like Llama-3-8b-finetuned perform
competitively, achieving an F1 score of 76%, ri-
valing GPT-4 (77%) in some cases. This under-
scores the impact of domain-specific fine-tuning,
particularly for mathematical tasks, where targeted
training enhances mistake detection accuracy.

Challenges with Newer Datasets. All mod-
els, including GPT-4o, struggle with newer
and more complex datasets like MATHBENCH
and JEEBENCH. For instance, GPT-4o ’s F1
score drops by 6% on JEEBENCH compared to
GSM-8K, highlighting a lack of generalization to
unseen problem types. While GPT-4o remains the
top performer, its limitations on these datasets em-
phasize the need for improved reasoning general-

ization. Appendix H provides a detailed F1 score
analysis across different models and rule-based rea-
soning mistakes.

4.3 Can LLMs Accurately Derive Correct
Answers Despite Mistakes?

We evaluate the models’ ability to generate correct
answers despite errors in reasoning steps. Table 4
reports the accuracy for Task 1, where models must
detect and correct mistakes to compute the final
answer.

GPT-4o Performance. GPT-4o achieves an
overall accuracy of 75%, demonstrating strong
answer derivation despite flawed reasoning. It
excels in correcting rule-based errors on sim-
pler datasets like GSM-8K (98%), MATH (89%),
and MATHBENCH (87%) but drops to 38% on
the more complex JEEBENCH dataset. A sim-
ilar pattern emerges with SLM-generated mis-
takes—despite detecting them with over 90% ac-
curacy, its correction ability remains inconsistent,
with accuracy ranging from 70–80%. This suggests
that while GPT-4o can handle simple rule-based er-
rors, often through correction or memorization, it
struggles with more intricate SLM-generated mis-
takes, highlighting limitations in its reasoning abil-
ities.

Performance of Other Models. Similar trends
emerge across other models. Claude-3-Opus and
GPT-4 rank second and third, respectively, while
SLMs like Phi, Llama, and Mixtral perform signifi-
cantly worse, with accuracy ranging from 40–60%.
This highlights the advantage of larger models like
GPT-4o in mistake rectification over smaller and
fine-tuned models.

Challenges with Complex Datasets. All mod-
els, including GPT-4o, struggle with complex
datasets like JEEBENCH, where answer deriva-

27048

Table 4: Performance in deriving correct answers (Accuracy) on MWP-MISTAKE dataset for Task T1. (D-Default
reasoning steps, SLM-Smaller model reasoning steps) (Bold: Best)

GSM8K MATH MATHBENCH JEEBENCH SVAMP AVERAGE
Model D SLM D SLM D SLM D SLM D SLM D SLM Overall
GPT-4o 0.98 0.84 0.89 0.79 0.87 0.62 0.38 0.41 1.00 0.77 0.82 0.69 0.75
GPT-4 0.96 0.73 0.77 0.63 0.87 0.40 0.28 0.23 0.97 0.72 0.77 0.54 0.66
GPT-3.5Turbo 0.85 0.40 0.62 0.20 0.72 0.19 0.18 0.11 0.94 0.35 0.66 0.25 0.46
Claude-3-Opus 0.97 0.86 0.85 0.90 0.90 0.50 0.42 0.32 0.96 0.80 0.82 0.68 0.74
Qwen2-7B-Instruct 0.90 0.44 0.76 0.33 0.82 0.25 0.39 0.17 0.85 0.29 0.75 0.29 0.52
Phi-3-mini 0.83 NA 0.40 NA 0.53 NA 0.16 NA 0.68 NA 0.52 NA 0.52
Mixtral-8x7b 0.82 NA 0.60 NA 0.66 NA 0.10 NA 0.86 NA 0.61 NA 0.61
Llama-2-7b-chat 0.72 NA 0.21 NA 0.32 NA 0.03 NA 0.57 NA 0.37 NA 0.37
Llama-2-70b 0.61 0.18 0.36 0.06 0.46 0.06 0.21 0.03 0.69 0.06 0.47 0.08 0.27
Llama-3-8b 0.89 0.34 0.43 0.10 0.74 0.14 0.35 0.09 0.93 0.17 0.67 0.17 0.42
Llama-3-8b-finetuned 0.89 0.34 0.43 0.10 0.74 0.14 0.35 0.09 0.93 0.17 0.67 0.17 0.42
Llama-3-70b 0.80 0.69 0.75 0.46 0.79 0.23 0.36 0.17 0.80 0.69 0.70 0.45 0.57

tion accuracy drops significantly. This highlights
a fundamental limitation of current LLMs—their
lack of robustness in handling deeper reasoning
tasks and intricate problem sets.

Model

F1
 S

co
re

0.
00

0.
25

0.
50

0.
75

1.
00

GPT-4O GPT4

GSM8K(SM) - T1 GSM8K(SM) - T2 MATH(SM) - T1
MATH(SM) - T2 MATHBENCH(SM) - T1 MATHBENCHSM) - T2

JEEBENCH(SM) - T1 JEEBENCH(SM) - T2

Figure 2: Performance in deriving final answer between
T1 and T2. A significant drop in performance occurs
when the model does not rectify the incorrect reasoning
steps.

Comparing Performance on Task 2: Identify-
ing Mistakes Without Correction.

In Task 2, models must identify the presence
of a mistake but are not explicitly required to cor-
rect it before providing the final answer. Figure 2
presents the performance of GPT-4o, GPT-4, and
GPT-3.5Turbo across all datasets for both Task 1
(detect and rectify mistakes) and Task 2 (identify
mistakes and compute the answer without rectifica-
tion), with detailed results in Appendix F.

GPT-4o’s Performance drops noticeably from
Task 1 to Task 2 across all datasets. In Task 1,
where it is prompted to detect and correct mistakes,
it achieves higher accuracy, especially on simpler
datasets. However, in Task 2, where it only iden-
tifies mistakes, its F1 score declines significantly.
This suggests that GPT-4o struggles to rectify er-
rors unless explicitly instructed, highlighting a key
weakness in its reasoning.

GPT-4 Performance. GPT-4 follows a similar
trend but with a smaller performance drop between

Task 1 and Task 2. While its overall accuracy is
lower than GPT-4o, it is more consistent in mistake
detection. However, like GPT-4o, it struggles to
correct errors without explicit prompting, reinforc-
ing its limitations in autonomous reasoning.

4.4 Exploring Data Contamination and
Memorization Effects in Math Reasoning
Tasks

In our analysis of LLMs’ mathematical reasoning
performance, we identify data contamination and
memorization as key challenges affecting their ef-
fectiveness. Data contamination is where test data
from downstream tasks appear in training, compro-
mises real-world performance evaluation. Memo-
rization is where models reproduce solutions with-
out understanding underlying principles, limit gen-
eralization to novel problems. Signs of contami-
nation emerge in unexpectedly high performance
on certain datasets. For instance, GPT-3.5Turbo
outperforms GPT-4 on GSM-8K suggests possible
biases in GPT-4’s training data. Similarly, the com-
parable performance of smaller and larger models
hints at memorization. These findings highlight
the need for rigorous evaluation to mitigate memo-
rization and ensure LLMs’ reliability in real-world
applications.

Investigating data contamination and memo-
rization poses challenges due to restricted pre-
training data access and computational limitations.
To tackle this, we employ an approach outlined
in (Golchin and Surdeanu, 2024), utilizing an LLM
to replicate individual instances of the dataset. This
involves guiding the LLM with instructions con-
taining unique identifiers from the source dataset,
like dataset name, partition (e.g., train, test, or val-
idation), and a fragment of the reference instance.
By instructing the LLM to complete these par-
tial instances, we can evaluate contamination and

27049

memorization. To detect contamination, a heuris-
tic is applied comparing the average overlap score
between generated completions and reference in-
stances using ROUGE-L (Lin, 2004). This compar-
ison is made between guided instructions (includ-
ing dataset and partition identifiers) and general
instructions (lacking such identifiers). If the over-
lap score is significantly larger with guided instruc-
tions, it suggests contamination. This method relies
on the premise that the only distinction between the
two instructions is the inclusion of dataset and par-
tition names in guided instructions, implying any
improvement can be attributed to contamination
(Appendix K for more details).

GPT-4o Performance. GPT-4o consistently
exhibits the highest ROUGE-L scores across
all datasets, suggesting significant contamination.
This aligns with its earlier results—excelling in
simpler tasks while struggling with more complex
ones—indicating a reliance on memorized data
rather than genuine reasoning capabilities.

Comparative Contamination Across Mod-
els. Both GPT-4 and GPT-3.5Turbo follow similar
trends, displaying progressively lower ROUGE-
L scores than GPT-4o, yet still indicating some
degree of contamination. This aligns with their
competitive performance, especially on datasets
like GSM-8K, where memorization may have con-
tributed to their high accuracy.

SLMs’ Minimal Contamination. SLMs like
Llama and Phi show negative ROUGE-L score dif-
ferences, suggesting minimal or no contamination.
These models appear to depend more on reason-
ing rather than memorization, as their performance
does not benefit from exposure to test data. How-
ever, their struggles with complex tasks highlight
their limitations in advanced reasoning capabilities
compared to larger models.

4.5 Can LLMs Correctly Rectify Mistakes in
Reasoning Steps?

In Task 1, the model not only detects mistakes but
also attempts to rectify them to arrive at the correct
answer. We evaluate the model’s ability to rectify
mistakes once detected by examining the number
of questions where mistakes were identified and
calculating how many times the model produced
the correct answer after rectification. The assump-
tion is that if the model reaches the correct final
answer after detecting a mistake, it has success-
fully rectified the incorrect reasoning step. For
instance, if the model identifies mistakes in 90 out

of 100 questions and rectifies them in 45 cases (re-
sulting in a final correct answer), the rectification
score would be 50% (45/90). Table 5 illustrates the
performance of different models in rectifying rea-
soning steps and producing the correct final answer
across various datasets.

GPT-4o demonstrates strong proficiency in mis-
take rectification, achieving a 78% rectification
score, 11% higher than GPT-4 and over 35% above
other models, including SLMs. It excels in cor-
recting rule-based reasoning errors but struggles
with more complex datasets like MATHBENCH
and JEEBENCH. On simpler datasets (GSM-8K,
MATH, SVAMP), its high rectification accuracy
may stem from data contamination or the simpler
nature of rule-based mistakes. As noted earlier,
Claude-3-Opus performs on par with GPT-4o in
mistake rectification, while other models lag with
scores between 30-50%. Notably, Llama-3-70B
matches GPT-4, demonstrating strong rectifica-
tion abilities. To analyze the rectification process,
we compute the percentage of cases where the
model corrected reasoning steps but still reached
incorrect answers. On the MWP-MISTAKE dataset,
GPT-4o failed in 17% of such cases, while GPT-4,
Llama-2-7b-chat, Mixtral-8x7B, and Phi-3-mini
had failure rates of 30%, 43.5%, 80.9%, 40.2%,
and 55.6%, respectively.

We also compared rectified reasoning steps
with ground-truth steps using NLP metrics like
BERTScore to assess alignment and effectiveness
(details in Appendix I and J). Additionally, we
leveraged ReasonEval (Xia et al., 2024), which
employs an LLM-based Validity Metric to check
for logical and calculation errors. Across all mod-
els, rectified reasoning steps scored higher than
mistake-detected steps, indicating improved accu-
racy post-rectification. GPT-4o achieved the high-
est validity score, showcasing its superior mistake
detection and correction abilities (Appendix M).
We found that, across all models, the rectified rea-
soning chains consistently achieve higher validity
metric scores compared to the mistake-detected
reasoning steps, indicating improved accuracy af-
ter rectification. GPT-4o demonstrates the highest
validity score, reflecting its ability to detect and
rectify mistakes effectively.

4.6 How does model performs on self
generated incorrect reasoning steps?

Most SOTA models struggle to detect errors in rea-
soning steps, but how well do they evaluate their

27050

Table 5: Ability to rectify mistakes and derive the correct final answer on MWP-MISTAKE dataset for Task T1.
(D-Default reasoning steps, SLM-Smaller model reasoning steps) (Bold: Best)

GSM8K MATH MATHBENCH JEEBENCH SVAMP AVERAGE
Model D SLM D SLM D SLM D SLM D SLM D SLM Overall
GPT-4o 0.98 0.91 0.87 0.84 0.90 0.64 0.42 0.42 1.00 0.86 0.83 0.73 0.78
GPT-4 0.96 0.88 0.72 0.70 0.83 0.45 0.10 0.24 0.94 0.77 0.71 0.61 0.66
GPT-3.5Turbo 0.81 0.56 0.54 0.34 0.62 0.34 0.16 0.05 0.93 0.57 0.61 0.37 0.49
Claude-3-Opus 0.97 0.94 0.84 0.89 0.87 0.57 0.27 0.33 0.96 0.85 0.78 0.72 0.75
Qwen2-7B-Instruct 0.83 0.51 0.77 0.47 0.69 0.29 0.29 0.21 0.78 0.50 0.67 0.40 0.53
Phi-3-mini 0.79 NA 0.37 NA 0.41 NA 0.03 NA 0.63 NA 0.45 NA 0.45
Mixtral-8x7b 0.77 NA 0.56 NA 0.57 NA 0.17 NA 0.83 NA 0.58 NA 0.58
Llama-2-7b-chat 0.73 NA 0.21 NA 0.11 NA 0.04 NA 0.52 NA 0.32 NA 0.32
Llama-2-70b 0.57 0.25 0.34 0.07 0.46 0.06 0.02 0.03 0.60 0.21 0.40 0.12 0.26
Llama-3-8b 0.77 0.51 0.39 0.24 0.58 0.08 0.49 0.06 0.65 0.39 0.58 0.26 0.42
Llama-3-8b-finetuned 0.85 0.41 0.33 0.10 0.69 0.18 0.25 0.13 0.91 0.26 0.60 0.21 0.41
Llama-3-70b 0.80 0.88 0.72 0.62 0.73 0.33 0.21 0.21 0.83 0.81 0.66 0.57 0.61

own reasoning? To investigate, we analyzed LLMs’
ability to detect and rectify mistakes in their self-
generated reasoning steps. We selected questions
where the corresponding model produced incorrect
final answers, using these faulty reasoning chains
to assess mistake detection, rectification, and cor-
rectness. Our findings show that while models
like GPT-4 and GPT-4o perform similarly in de-
tecting mistakes in both self-generated and SLM-
generated reasoning, their rectification ability drops
significantly for self-generated errors. For instance,
on the MATH dataset, GPT-4 maintains mistake
detection performance but rectification drops to
53% compared to 70% for SLM-generated mis-
takes. Further details are in Appendix L.

5 Related Work

Current research on large language models (LLMs)
for solving math word problems (MWPs) primarily
prioritizes answer accuracy over evaluating reason-
ing processes. Studies like MathPrompter (Imani
et al., 2023) and WizardMath (Luo et al., 2023)
demonstrate strong performance by generating
complex reasoning steps but focus mainly on cor-
rectness rather than verifying the validity and rel-
evance of each step. Similarly, works such as
(Liu et al., 2024b; Yuan et al., 2023; Schulman
et al., 2017) enhance LLMs’ accuracy but do not
assess whether their reasoning aligns with logical
problem-solving paths. Recent studies have begun
shifting focus toward reasoning quality, but their
scope remains limited. Works like (Sawada et al.,
2023) assess reasoning by comparing generated
and reference reasoning, while (Xia et al., 2024)
introduces metrics like validity and redundancy
to evaluate reasoning steps. ROSCOE(Golovneva
et al., 2023) expands on this by providing unsuper-
vised metrics for assessing semantic consistency
and logicality beyond just the final answer. How-
ever, these approaches often overlook the detection

and correction of specific reasoning mistakes in
MWPs, leaving a gap in understanding how well
LLMs handle flawed reasoning.

Another gap is limited exploration of LLMs’
core reasoning abilities, particularly in mistake
detection and rectification. While some studies
propose LLMs as verifiers of their own reason-
ing (Zhang et al., 2024b; Zheng et al., 2023), they
primarily assess correctness without addressing the
deeper challenge of identifying and correcting log-
ical mistakes. (Olausson et al., 2024) highlights
LLMs’ struggles in recognizing and fixing their
own reasoning errors, especially in code genera-
tion tasks. (Zeng et al., 2023) shifts evaluation
focus toward scoring solution correctness rather
than just question answering. Work like Alice
in Wonderland (Nezhurina et al., 2024) examines
LLM reasoning, showing that small variations in
common-sense tasks can drastically impact perfor-
mance. However, rigorous benchmarking for mis-
take detection and correction remains unexplored.

Our work bridges this gap by introducing the
MWP-Mistake dataset, which systematically in-
corporates diverse reasoning mistakes in MWPs.
Unlike prior studies, our analysis evaluates not only
models’ ability to detect errors but also their capac-
ity to correct them and generate accurate solutions.
We present a comprehensive benchmark, compar-
ing SOTA models across both simple and com-
plex datasets. This work highlights current models’
limitations in handling reasoning mistakes and es-
tablishes a framework for assessing LLMs’ true
reasoning abilities beyond mere answer accuracy.

6 Conclusions

This study evaluates large language models (LLMs)
such as O1, GPT-4o, GPT-4, GPT-3.5Turbo,
alongside smaller models like Llama-2-7b-chat,
Mixtral-8x7B, and Phi-3-mini, on their ability to
detect and correct errors in mathematical reasoning.

27051

Using our MWP-MISTAKE dataset, which includes
incorrect reasoning steps generated through both
rule-based methods and smaller models, we com-
prehensively assess LLMs’ performance in error
detection and rectification. While GPT-4o outper-
forms other models, there remains a gap in its abil-
ity to consistently detect mistakes, as it struggles
with several simple problems and its performance
degrades on more complex tasks. We also uncover
issues of data contamination and overfitting, espe-
cially in GPT-4’s performance on GSM8K, and
observe a performance drop on newer datasets
like MATHBENCH and JEEBENCH, highlighting
generalization challenges. Addressing these limita-
tions, such as enhancing generalization and mini-
mizing data contamination, is essential for making
LLMs more reliable and applicable to real-world
mathematical problem-solving. Future research
should focus on refining training processes and
strengthening models’ reasoning abilities to meet
these challenges.

7 Limitations

While our study provides a comprehensive evalu-
ation of LLMs’ ability to detect and correct mis-
takes in mathematical reasoning, certain limitations
warrant further exploration. First, our evaluation
focuses on a curated dataset designed to system-
atically assess mistake detection and rectification.
Although this dataset is diverse, real-world problem
distributions may introduce additional complexities
not fully captured in our benchmark. Expanding
the dataset to cover a broader spectrum of reason-
ing errors across various mathematical domains is
a potential avenue for future work.

Second, our analysis primarily evaluates mod-
els under few-shot prompting settings. While this
aligns with practical deployment scenarios, alterna-
tive techniques such as fine-tuning or reinforcement
learning may further enhance model performance.
Investigating such methods is beyond the scope of
this study, but remains an important direction.

Finally, while we discuss potential issues related
to data contamination and memorization, precise
quantification of their impact remains an open chal-
lenge. A more detailed study into the extent of
memorization effects across different models and
training paradigms would provide deeper insights
into their reasoning capabilities.

Furthermore, our perturbation design was in-
formed by graduate-level educators, ensuring align-

ment with common student mistakes. However,
an LLM can exhibit more sophisticated errors.
Expanding our perturbation framework to cap-
ture higher-order reasoning failures and domain-
specific complexities is an important direction for
future research.

Despite these limitations, our findings offer criti-
cal insights into LLMs’ reasoning abilities, reveal-
ing fundamental challenges that must be addressed
to improve robustness in mathematical problem-
solving.

8 Ethical Considerations

Our study acknowledges the ethical considerations
associated with evaluating LLMs’ ability to detect
and correct mistakes in mathematical reasoning.

First, while our dataset is curated to systemati-
cally assess reasoning capabilities, there is a pos-
sibility that biases in data selection may influence
model performance. We have taken steps to en-
sure diversity in problem types and difficulty levels,
but future work should explore broader, real-world
datasets to mitigate potential biases.

Second, as LLMs are increasingly integrated
into educational tools, there is a risk that users
may over-rely on them without critically evaluating
their outputs. Our analysis highlights limitations
in mistake detection and correction, underscoring
the need for responsible deployment, where mod-
els are used as assistive tools rather than definitive
sources of truth. Finally, potential data contamina-
tion in LLM training poses concerns about fairness
and reproducibility. While we discuss these issues
and assess their impact, further transparency from
model providers regarding training data sources is
necessary to ensure ethical AI development.

References
OpenAI Platform.

Marah Abdin, Sam Ade Jacobs, Ammar Ahmad Awan,
Jyoti Aneja, Ahmed Awadallah, Hany Awadalla,
Nguyen Bach, Amit Bahree, Arash Bakhtiari, Jian-
min Bao, Harkirat Behl, Alon Benhaim, Misha
Bilenko, Johan Bjorck, Sébastien Bubeck, Qin Cai,
Martin Cai, Caio César Teodoro Mendes, Weizhu
Chen, Vishrav Chaudhary, Dong Chen, Dongdong
Chen, Yen-Chun Chen, Yi-Ling Chen, Parul Chopra,
Xiyang Dai, Allie Del Giorno, Gustavo de Rosa,
Matthew Dixon, Ronen Eldan, Victor Fragoso, Dan
Iter, Mei Gao, Min Gao, Jianfeng Gao, Amit Garg,
Abhishek Goswami, Suriya Gunasekar, Emman
Haider, Junheng Hao, Russell J. Hewett, Jamie

27052

https://platform.openai.com

Huynh, Mojan Javaheripi, Xin Jin, Piero Kauff-
mann, Nikos Karampatziakis, Dongwoo Kim, Ma-
houd Khademi, Lev Kurilenko, James R. Lee, Yin Tat
Lee, Yuanzhi Li, Yunsheng Li, Chen Liang, Lars Li-
den, Ce Liu, Mengchen Liu, Weishung Liu, Eric Lin,
Zeqi Lin, Chong Luo, Piyush Madan, Matt Mazzola,
Arindam Mitra, Hardik Modi, Anh Nguyen, Brandon
Norick, Barun Patra, Daniel Perez-Becker, Thomas
Portet, Reid Pryzant, Heyang Qin, Marko Radmi-
lac, Corby Rosset, Sambudha Roy, Olatunji Ruwase,
Olli Saarikivi, Amin Saied, Adil Salim, Michael San-
tacroce, Shital Shah, Ning Shang, Hiteshi Sharma,
Swadheen Shukla, Xia Song, Masahiro Tanaka, An-
drea Tupini, Xin Wang, Lijuan Wang, Chunyu Wang,
Yu Wang, Rachel Ward, Guanhua Wang, Philipp
Witte, Haiping Wu, Michael Wyatt, Bin Xiao, Can
Xu, Jiahang Xu, Weijian Xu, Sonali Yadav, Fan Yang,
Jianwei Yang, Ziyi Yang, Yifan Yang, Donghan Yu,
Lu Yuan, Chengruidong Zhang, Cyril Zhang, Jian-
wen Zhang, Li Lyna Zhang, Yi Zhang, Yue Zhang,
Yunan Zhang, and Xiren Zhou. 2024a. Phi-3 techni-
cal report: A highly capable language model locally
on your phone. Preprint, arXiv:2404.14219.

Marah Abdin, Sam Ade Jacobs, Ammar Ahmad Awan,
Jyoti Aneja, Ahmed Awadallah, Hany Awadalla,
Nguyen Bach, Amit Bahree, Arash Bakhtiari, Harki-
rat Behl, et al. 2024b. Phi-3 technical report: A
highly capable language model locally on your phone.
arXiv preprint arXiv:2404.14219.

Anthropic. 2024. Introducing the next generation of
Claude \ Anthropic.

Daman Arora, Himanshu Gaurav Singh, and Mausam.
2023. Have llms advanced enough? a challenging
problem solving benchmark for large language mod-
els. Preprint, arXiv:2305.15074.

Wei Chen and Zhiyuan Li. 2024. Octopus v4: Graph of
language models. arXiv preprint arXiv:2404.19296.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021a. Training verifiers to solve math word prob-
lems. Preprint, arXiv:2110.14168.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021b. Training Verifiers to Solve Math Word Prob-
lems. arXiv preprint. ArXiv:2110.14168 [cs].

Aniruddha Deb, Neeva Oza, Sarthak Singla, Dinesh
Khandelwal, Dinesh Garg, and Parag Singla. 2023.
Fill in the blank: Exploring and enhancing llm capa-
bilities for backward reasoning in math word prob-
lems. Preprint, arXiv:2310.01991.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela

Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Wensheng Gan, Zhenlian Qi, Jiayang Wu, and Jerry
Chun-Wei Lin. 2023. Large language models in
education: Vision and opportunities. Preprint,
arXiv:2311.13160.

Shahriar Golchin and Mihai Surdeanu. 2024. Time
travel in llms: Tracing data contamination in large
language models. Preprint, arXiv:2308.08493.

Olga Golovneva, Moya Chen, Spencer Poff, Martin
Corredor, Luke Zettlemoyer, Maryam Fazel-Zarandi,
and Asli Celikyilmaz. 2023. Roscoe: A suite of
metrics for scoring step-by-step reasoning. Preprint,
arXiv:2212.07919.

Joy He-Yueya, Gabriel Poesia, Rose E. Wang, and
Noah D. Goodman. 2023. Solving math word prob-
lems by combining language models with symbolic
solvers. Preprint, arXiv:2304.09102.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. 2021. Measuring mathematical
problem solving with the math dataset. Preprint,
arXiv:2103.03874.

Shima Imani, Liang Du, and Harsh Shrivastava. 2023.
Mathprompter: Mathematical reasoning using large
language models. Preprint, arXiv:2303.05398.

Albert Q Jiang, Alexandre Sablayrolles, Antoine
Roux, Arthur Mensch, Blanche Savary, Chris Bam-
ford, Devendra Singh Chaplot, Diego de las Casas,
Emma Bou Hanna, Florian Bressand, et al. 2024.
Mixtral of experts. arXiv preprint arXiv:2401.04088.

Rik Koncel-Kedziorski, Subhro Roy, Aida Amini, Nate
Kushman, and Hannaneh Hajishirzi. 2016. Mawps:
A math word problem repository. In Proceedings of
the 2016 conference of the north american chapter of
the association for computational linguistics: human
language technologies, pages 1152–1157.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Hongwei Liu, Zilong Zheng, Yuxuan Qiao, Haodong
Duan, Zhiwei Fei, Fengzhe Zhou, Wenwei Zhang,
Songyang Zhang, Dahua Lin, and Kai Chen. 2024a.
Mathbench: Evaluating the theory and application
proficiency of llms with a hierarchical mathematics
benchmark. Preprint, arXiv:2405.12209.

Wentao Liu, Hanglei Hu, Jie Zhou, Yuyang Ding,
Junsong Li, Jiayi Zeng, Mengliang He, Qin Chen,
Bo Jiang, Aimin Zhou, and Liang He. 2024b. Math-
ematical language models: A survey. Preprint,
arXiv:2312.07622.

27053

https://arxiv.org/abs/2404.14219
https://arxiv.org/abs/2404.14219
https://arxiv.org/abs/2404.14219
https://www.anthropic.com/news/claude-3-family
https://www.anthropic.com/news/claude-3-family
https://arxiv.org/abs/2305.15074
https://arxiv.org/abs/2305.15074
https://arxiv.org/abs/2305.15074
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://doi.org/10.48550/arXiv.2110.14168
https://doi.org/10.48550/arXiv.2110.14168
https://arxiv.org/abs/2310.01991
https://arxiv.org/abs/2310.01991
https://arxiv.org/abs/2310.01991
https://arxiv.org/abs/2311.13160
https://arxiv.org/abs/2311.13160
https://arxiv.org/abs/2308.08493
https://arxiv.org/abs/2308.08493
https://arxiv.org/abs/2308.08493
https://arxiv.org/abs/2212.07919
https://arxiv.org/abs/2212.07919
https://arxiv.org/abs/2304.09102
https://arxiv.org/abs/2304.09102
https://arxiv.org/abs/2304.09102
https://arxiv.org/abs/2103.03874
https://arxiv.org/abs/2103.03874
https://arxiv.org/abs/2303.05398
https://arxiv.org/abs/2303.05398
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://arxiv.org/abs/2405.12209
https://arxiv.org/abs/2405.12209
https://arxiv.org/abs/2405.12209
https://arxiv.org/abs/2312.07622
https://arxiv.org/abs/2312.07622

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jian-
guang Lou, Chongyang Tao, Xiubo Geng, Qingwei
Lin, Shifeng Chen, and Dongmei Zhang. 2023. Wiz-
ardMath: Empowering Mathematical Reasoning for
Large Language Models via Reinforced Evol-Instruct.
arXiv preprint. ArXiv:2308.09583 [cs].

Shen-yun Miao, Chao-Chun Liang, and Keh-Yih Su.
2020. A diverse corpus for evaluating and developing
english math word problem solvers. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 975–984.

Marianna Nezhurina, Lucia Cipolina-Kun, Mehdi
Cherti, and Jenia Jitsev. 2024. Alice in wonderland:
Simple tasks showing complete reasoning breakdown
in state-of-the-art large language models. Preprint,
arXiv:2406.02061.

Theo X. Olausson, Jeevana Priya Inala, Chenglong
Wang, Jianfeng Gao, and Armando Solar-Lezama.
2024. Is Self-Repair a Silver Bullet for Code Gener-
ation? arXiv preprint. ArXiv:2306.09896 [cs].

OpenAI. a. Hello GPT-4o.

OpenAI. b. Introducing ChatGPT.

OpenAI. 2024. Openai o1 system card. Preprint,
arXiv:2412.16720.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agar-
wal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, and
Sam Altman. 2024. Gpt-4 technical report. Preprint,
arXiv:2303.08774.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.
2021. Are nlp models really able to solve
simple math word problems? arXiv preprint
arXiv:2103.07191.

Tomohiro Sawada, Daniel Paleka, Alexander Havrilla,
Pranav Tadepalli, Paula Vidas, Alexander Kranias,
John J. Nay, Kshitij Gupta, and Aran Komat-
suzaki. 2023. ARB: Advanced Reasoning Bench-
mark for Large Language Models. arXiv preprint.
ArXiv:2307.13692 [cs].

John Schulman, Filip Wolski, Prafulla Dhariwal,
Alec Radford, and Oleg Klimov. 2017. Prox-
imal policy optimization algorithms. Preprint,
arXiv:1707.06347.

KV Aditya Srivatsa and Ekaterina Kochmar. 2024.
What makes math word problems challenging for
llms? Preprint, arXiv:2403.11369.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-
Baptiste Alayrac, and Jiahui Yu. 2024. Gemini:
A family of highly capable multimodal models.
Preprint, arXiv:2312.11805.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti

Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Shijie Xia, Xuefeng Li, Yixin Liu, Tongshuang Wu,
and Pengfei Liu. 2024. Evaluating mathemati-
cal reasoning beyond accuracy. arXiv preprint
arXiv:2404.05692.

Xin Xu, Tong Xiao, Zitong Chao, Zhenya Huang,
Can Yang, and Yang Wang. 2024. Can llms solve
longer math word problems better? Preprint,
arXiv:2405.14804.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan
Li, Dayiheng Liu, Fei Huang, et al. 2024. Qwen2
technical report. arXiv preprint arXiv:2407.10671.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu,
Zhengying Liu, Yu Zhang, James T. Kwok, Zhenguo
Li, Adrian Weller, and Weiyang Liu. 2024. Meta-
Math: Bootstrap Your Own Mathematical Ques-
tions for Large Language Models. arXiv preprint.
ArXiv:2309.12284 [cs].

Zheng Yuan, Hongyi Yuan, Chengpeng Li, Guanting
Dong, Keming Lu, Chuanqi Tan, Chang Zhou, and
Jingren Zhou. 2023. Scaling relationship on learning
mathematical reasoning with large language models.
Preprint, arXiv:2308.01825.

Zhongshen Zeng, Pengguang Chen, Shu Liu, Haiyun
Jiang, and Jiaya Jia. 2023. Mr-gsm8k: a metareason-
ing benchmark for large language model evaluation.
arXiv preprint arXiv:2312.17080.

Hugh Zhang, Jeff Da, Dean Lee, Vaughn Robinson,
Catherine Wu, Will Song, Tiffany Zhao, Pranav Raja,
Dylan Slack, Qin Lyu, Sean Hendryx, Russell Ka-
plan, Michele Lunati, and Summer Yue. 2024a. A
careful examination of large language model per-
formance on grade school arithmetic. Preprint,
arXiv:2405.00332.

Yunxiang Zhang, Muhammad Khalifa, Lajanugen Lo-
geswaran, Jaekyeom Kim, Moontae Lee, Honglak
Lee, and Lu Wang. 2024b. Small language mod-
els need strong verifiers to self-correct reasoning.
Preprint, arXiv:2404.17140.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang,
Joseph E. Gonzalez, and Ion Stoica. 2023. Judging
LLM-as-a-Judge with MT-Bench and Chatbot Arena.
arXiv preprint. ArXiv:2306.05685 [cs].

Appendix

The dataset and code to run all experiments are
provided in this repository.

27054

https://doi.org/10.48550/arXiv.2308.09583
https://doi.org/10.48550/arXiv.2308.09583
https://doi.org/10.48550/arXiv.2308.09583
https://arxiv.org/abs/2406.02061
https://arxiv.org/abs/2406.02061
https://arxiv.org/abs/2406.02061
https://doi.org/10.48550/arXiv.2306.09896
https://doi.org/10.48550/arXiv.2306.09896
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/chatgpt/
https://arxiv.org/abs/2412.16720
https://arxiv.org/abs/2303.08774
https://doi.org/10.48550/arXiv.2307.13692
https://doi.org/10.48550/arXiv.2307.13692
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/2403.11369
https://arxiv.org/abs/2403.11369
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2405.14804
https://arxiv.org/abs/2405.14804
http://arxiv.org/abs/2309.12284
http://arxiv.org/abs/2309.12284
http://arxiv.org/abs/2309.12284
https://arxiv.org/abs/2308.01825
https://arxiv.org/abs/2308.01825
https://arxiv.org/abs/2405.00332
https://arxiv.org/abs/2405.00332
https://arxiv.org/abs/2405.00332
https://arxiv.org/abs/2404.17140
https://arxiv.org/abs/2404.17140
https://doi.org/10.48550/arXiv.2306.05685
https://doi.org/10.48550/arXiv.2306.05685
https://aka.ms/MWP-MISTAKE

A MWP-MISTAKE Dataset

MWP-MISTAKE dataset is curated using 4 different
types of well-known datasets. Below are the details
of each of the datasets.

• SVAMP (Patel et al., 2021): SVAMP is a
MWP dataset created by applying a care-
fully chosen variation over examples sampled
from existing datasets, AsDiv-A (Miao et al.,
2020) and MAWPS (Koncel-Kedziorski et al.,
2016).

• GSM-8K (Cobbe et al., 2021b):GSM-8K is
a dataset of diverse grade school math word
problems created by human writers, involv-
ing basic arithmetic operations. Released in
November 2021.

• MATH (Hendrycks et al., 2021): The MATH
dataset is divided into seven categories, each
with five difficulty levels. For our study, we
used levels 1, 2, and 3 from the algebra and
counting and probability categories. Released
in November 2021. We focused on Levels 1 to
3 because the problems in Levels 4 and 5 are
more complex, requiring specific notations,
symbols, and equations. Injecting reasoning
mistakes into such complex problems is non-
trivial and would require expert knowledge to
ensure accuracy in the reasoning chains.

• MATHBENCH (Liu et al., 2024a):
MATHBENCH is a recent dataset with
questions divided by educational stages,
from basic arithmetic to college levels.
For our experiment, we chose middle
and high-school-level single-choice and
multiple-choice questions. Released in May
2024.

• JEEBENCH (Arora et al., 2023):
JEEBENCH is a challenging benchmark
dataset for evaluating LLM problem-solving
abilities, containing 515 pre-engineering
math, physics, and chemistry problems
from the IIT JEE-Advanced Exam. For
our experiment, we chose mathematics
single-choice questions only. Released in
October 2023.

A.1 Rule based Examples
The rules we have applied are grounded in discus-
sion with grad-school educators or who provided
insights into common mathematical reasoning er-
rors made by students. Furthermore, prior research

systematically analyses student mistakes, revealing
key patterns such as data misinterpretation, logi-
cal fallacies, and incomplete proofs. Our heuris-
tics were carefully designed to replicate these real-
world errors, aligning with both expert knowledge
and empirical findings. While some rules may ap-
pear trivial at first glance, they capture authentic
patterns of human errors that arise during problem-
solving. Below, we provide examples to clarify the
real-world applicability of these rules:

• Shuffle Numerical Values: A student might
misread a problem or inadvertently swap num-
bers, such as treating "5 apples and 3 oranges"
as "3 apples and 5 oranges." This is a typi-
cal misstep when transcribing or interpreting
numerical data.

• Replace Numerical Values: This error mim-
ics cases where students substitute incorrect
values, e.g., replacing "radius = 7" with "ra-
dius = 5" when solving for the area of a circle.
This often occurs due to lapses in focus or
misreading.

• Shuffle Operations: A common reasoning
error is misunderstanding the order of oper-
ations, such as treating "2 + 3 × 4" as "(2 +
3) × 4." This reflects students’ struggles with
applying mathematical precedence correctly.

• Insert Random Reasoning: Students some-
times include irrelevant steps or overcompli-
cate their work, such as writing "Because the
train moves faster than the car, 2 × 5 = 10."
These distractions, while not inherently erro-
neous, disrupt logical flow and mirror over-
thinking.

• Shuffle Reasoning Steps: The sequence of
reasoning is critical in problem-solving. For
instance, solving for the area of a triangle by
calculating "base × height" before dividing by
2 is correct, but reversing this order introduces
confusion and can mislead students. Such
missteps highlight the importance of logical
step sequencing.

• Delete Reasoning Step: Omitting steps of-
ten reflects missed applications of formulas
or logical progression, e.g., skipping the ap-
plication of the Pythagorean theorem when
solving for the hypotenuse in a right triangle.
While this omission might not always lead

27055

to an incorrect answer, it risks undermining
clarity and correctness in reasoning.

These transformations do not solely aim to gen-
erate incorrect answers; they evaluate the model’s
robustness in navigating incomplete, shuffled, or
flawed reasoning to derive the correct solution.
Particularly, "shuffle reasoning" and "delete rea-
soning" mimic challenges faced by students, such
as disrupted clarity or skipped steps, emphasizing
the importance of logical step-by-step progression.
Thus, the rules are carefully designed to reflect gen-
uine reasoning errors while testing models’ ability
to detect, rectify, and reason coherently. Examples
of MWPs with correct, rule-based, incorrect and
smaller model-based incorrect reasoning steps are
present in Figure 3

A.2 Prompts to curate reasoning steps in
MWP-MISTAKE dataset

GSM-8K and MATH already contain MWP ques-
tions, a chain of thought reasoning steps and a final
answer. To curate a chain of thought reasoning step
for MATHBENCH and JEEBENCH, we made use
of GPT-4. While prompting GPT-4 we made sure
that reasoning steps did not contain the final an-
swer, so that the final answer is not picked directly
from the reasoning step. Listing 1 prompt is used
to curate the reasoning steps.

Listing 1: Prompt to curate reasoning chain without
answers.

S t r i c t l y f o l l o w t h e c o n d i t i o n s \
below .
1 . Outpu t f o r m a t : \ nReason ing \
Chain : \ n F i n a l Answer :
2 . Reason ing Chain s h o u l d be \
s e p a r a t e d by a new l i n e on ly .
3 . A r e a s o n i n g c h a i n c a n n o t have\

t h e f i n a l answer . (Rep lace t h e \
f i n a l answer i n t h e r e a s o n i n g \
c h a i n wi th i t s c a l c u l a t i o n o r \
####)
4 . Do n o t i n c l u d e any a d d i t i o n a l \

i n f o r m a t i o n i n t h e f i n a l answer \
(on ly t h e answer) .

Table 6 shows examples of default reasoning
steps from GSM-8K dataset.

B Mistake Detection Analysis with Simple
MWPs

We evaluated the models’ ability to detect reason-
ing mistakes using the SVAMP dataset, which con-
tains simple arithmetic word problems (up to a
4th-grade level) and variations testing question sen-
sitivity, reasoning ability, and structural invariance
(Appendix C for more details on the variations
included). Mistakes were introduced using both
rule-based methods and outputs from SLMs, with
human validation ensuring accuracy.

Table 7 shows presents the models’ mistake de-
tection performance across these variations. The
results show that none of the models consistently
detected mistakes, with F1 scores across all varia-
tions falling below 80%. The highest F1 score,
81%, was achieved by Llama-3-8b-finetuned, a
fine-tuned model specifically trained on 13 math-
related datasets, which outperformed even more
advanced models like GPT-4o and GPT-4. This
suggests that fine-tuning on domain-specific data
offers significant benefits for mathematical tasks.

Despite these improvements, even the fine-tuned
model showed significant sensitivity to problem
variations. When question sensitivity variations
were introduced, performance dropped by 0.08,
while reasoning ability and structural invariance
variations resulted in reductions of 0.06 and 0.02,
respectively. GPT-4o exhibited a similar perfor-
mance decline, suggesting that even the most ad-
vanced models are vulnerable to small variations
in problem structure (See Table 7, Appendix C).

These findings highlight a key gap: even on rel-
atively simple problems, models fail to generalize
when minor variations are introduced. This sug-
gests that fine-tuning, while beneficial, is insuf-
ficient to fully address the deeper issues in mis-
take detection across mathematical reasoning tasks.
More robust methods are needed to improve gener-
alization.

Comparison between JEEBENCH and
SVAMP: Comparing SVAMP with JEEBENCH,
mistake detection for SLM-generated errors in
JEEBENCH appears better because the incorrect
reasoning chains were generated by smaller models
that perform poorly on such complex tasks. These
low-quality chains are easier for advanced models
like GPT-4o to identify as flawed. On SVAMP,
however, the reasoning chains are of higher quality,
and errors tend to be localized and nuanced.
Detecting such subtle errors is more challenging,

27056

Question : The digits 1, 3 and 5 are each used once to form each of the possible three-digit positive integers.
 The three-digit integers are listed from greatest to least. Which integer is listed fifth?

Answer : 153
There are 3!=6 possible three-digit integers. So

the fifth number on the list will be the second
smallest. The two smallest integers have 1 as the
hundred digit. The smallest is 135; the second-

smallest is 153.
Final Answer : 153

Correct Reasoning Step

The three-digit integers using the digits 1, 3, and
5 are 513, 531, 315, 351, 135, 153. Notice that

there are 6 such numbers in total. We need to find
the fifth number in the given order: 531, 351, 513,

153, 135.
Final Answer : 135

There are 135!=1 possible three-digit integers.
So the fifth number on the list will be the second
smallest. The two smallest integers have 153 as
the hundreds digit. The smallest is 6; the second-

smallest is
Final Answer : 3

Incorrect reasoning step (smaller model) Incorrect reasoning step (rule)

Figure 3: Examples of MWPs with correct reasoning, rule-based incorrect and smaller model-based incorrect
reasoning from MATH.

Table 6: Example of rule-based incorrect reasoning step (GSM-8K dataset)

Question

Gerald spends $100 a month on baseball supplies.
His season is 4 months long.
He wants to use the months he’s not playing baseball
to save up by raking, shovelling, and mowing lawns.
He charges $10 for each. How many chores does he need to average a month
to save up for his supplies?

Final Answer 5

Gold Reasoning step

He needs to save up $400 because 4 x 100 = 400
He has 8 months to earn this money because 12 - 4 = 8
He needs to earn $50 a month because 400 / 8 = 50
He needs to do 5 tasks a month because 50 / 10 = 5

Shuffle the reasoning step

He needs to earn $50 a month because 400 / 8 = 50
He needs to save up $400 because 4 x 100 = 400
He needs to do 5 tasks a month because 50 / 10 = 5
He has 8 months to earn this money because 12 - 4 = 8

Delete the reasoning step
He needs to save up $400 because 4 x 100 = 400
He needs to earn $50 a month because 400 / 8 = 50
He needs to do 5 tasks a month because 50 / 10 = 5

Shuffle numerical values

He needs to save up $400 because 4 x 100 = 400
He has 50 months to earn this money because 8 - 8 = 4
He needs to earn $12 a month because 400 / 8 = 50
He needs to do 5 tasks a month because 50 / 10 = 5

Replace numerical values

He needs to save up $400 because 4 x 100 = 400
He has 8 months to earn this money because 12 - 4 = 8
He needs to earn $6 a month because 32 / 8 = 50
He needs to do 76 tasks a month because 50 / 10 = 5

Shuffle Operations

He needs to save up $400 because 4 x 100 = 400
He has 8 months to earn this money because 12 * 4 = 8
He needs to earn $50 a month because 400 - 8 = 50
He needs to do 5 tasks a month because 50 / 10 = 5

Insert Random Reasoning step

He needs to save up $400 because 4 x 100 = 400
Therefore, Faye has $60 - $30 = $30 left.
He has 8 months to earn this money because 12 - 4 = 8
He needs to earn $50 a month because 400 / 8 = 50
He needs to do 5 tasks a month because 50 / 10 = 5

Table 7: Mistake Detection Performance (F1 score) on SVAMP dataset with all variations

Question Sensitivity Reasoning Ability Structural invariance

Model Same Object,
Different Structure

Different Object,
Same Structure

Different Object,
Different Structure

Add relevant
information

Change
Information

Invert
Operation

Change order
of objects

Change order
of phrases

Add irrelevant
information

GPT-4o 0.78 0.70 0.77 0.74 0.78 0.72 0.74 0.75 0.76
GPT-4 0.65 0.58 0.64 0.62 0.66 0.55 0.62 0.60 0.64
GPT-3.5Turbo 0.76 0.77 0.71 0.75 0.77 0.74 0.78 0.72 0.75
Llama-2-7b-chat 0.14 0.09 0.13 0.10 0.17 0.08 0.13 0.15 0.13
Phi-3-mini 0.77 0.64 0.68 0.72 0.73 0.67 0.69 0.68 0.69
Qwen2-7B-Instruct 0.57 0.42 0.62 0.54 0.59 0.46 0.61 0.51 0.59
Llama-3-8b 0.80 0.79 0.79 0.82 0.79 0.75 0.81 0.75 0.78
Llama-3-70b 0.73 0.69 0.73 0.70 0.73 0.69 0.70 0.70 0.73
Llama-3-8b-finetuned 0.82 0.79 0.76 0.81 0.83 0.81 0.79 0.79 0.86

leading to reduced mistake detection performance
despite the dataset’s simpler nature. Moreover, due
to the complexity of JEEBENCH models exhibit
a high rate of false positives, flagging reasoning
chains as incorrect even when they are accurate.
For example, GPT-4o frequently misidentifies
correct reasoning chains as flawed in JEEBENCH.
This tendency inflates error detection rates on
JEEBENCH but reflects the model’s limited ability
to accurately discern reasoning quality rather than
genuine improvement in mistake detection.

C SVAMP Variations

Figure 4 shows the 9 different types of carefully
curated variations sampled from existing datasets,
AsDiv-A (Miao et al., 2020) and MAWPS (Koncel-
Kedziorski et al., 2016). Across each cate-

gory, we evaluated the mistake detection per-
formance of each model. Table 7 shows that
Llama-3-8b-finetuned performed the best due to
this preexisting knowledge on solving MWPs,
achieving the highest average F1 score of 81%
across the variations. We also evaluated the
model’s sensitivity to variations, table 8 shows
the max performance change across different mod-
els. GPT-4o performance significantly dropped by
0.08, 0.06, and 0.02 when exposed to variations re-
lated to question sensitivity, reasoning ability, and
structural invariance, respectively. Examples of
variations are as follows:

• Reasoning ability - Change Information: This
involves changing entities, e.g., replacing
"Jack" with "Dorothy."

27057

• Reasoning ability - Invert Operation: Here,
operations or calculations are altered while
keeping the rest of the structure the same.

• Structural Invariance - Change Order of Ob-
jects: This variation reverses the order of
entities, such as changing "8 marbles and 3
stones" to "3 stones and 8 marbles.

Across all these simple variations, we observed a
performance drop of 10% in GPT-4 and around
6% in GPT-4o, highlighting the sensitivity of
these models. Interestingly, fine-tuned models like
Llama-3-8B-Finetuned demonstrated greater ro-
bustness, with just a 2% performance drop.

D SLMs reasoning steps

SLMs were used to generate a chain of thought
(COT) reasoning step and final answers for all
dataset questions. Each model Llama-2-7b-chat,
Mixtral-8x7B, Phi-3-mini where prompted using
Listing 1 to curate the reasoning step without an
answer. If the final answer was incorrect, we fil-
tered out the reasoning steps as incorrect. Table 9
shows examples of SLM incorrect reasoning steps
from GSM-8K dataset.

E Task T1 and T2

Task T1 evaluates the model’s ability to detect mis-
takes, rectify them and derive the correct answer.
Listing 2 was used in a few-shot setting for task
T1.

Listing 2: Prompt for Task T1

You a r e a m a t h e m a t i c s e d u c a t o r \
w i th a deep u n d e r s t a n d i n g of \
e l e m e n t a r y and midd le s c h o o l \
m a t h e m a t i c s . You a r e e x p e r i e n c e d \

i n t e a c h i n g m u l t i − s t e p problem −\
s o l v i n g t e c h n i q u e s and have a \
knack f o r b r e a k i n g down complex \
p rob lems i n t o manageable s t e p s . \
Your e x p e r t i s e l i e s i n b a s i c \
a r i t h m e t i c o p e r a t i o n s such as \
a d d i t i o n , s u b t r a c t i o n , \
m u l t i p l i c a t i o n , and d i v i s i o n . \
You can p r o v i d e c l e a r , s t e p −by−\
s t e p s o l u t i o n s t o m a t h e m a t i c a l \
p rob lems t h a t r e q u i r e m u l t i − s t e p \

r e a s o n i n g .

You a r e p r o v i d e d wi th a \
m a t h e m a t i c a l q u e s t i o n and a s t e p \
−by− s t e p s o l u t i o n a l o n g wi th i t . \

The s o l u t i o n might have some \
m i s t a k e s . I d e n t i f y i f t h e \
s o l u t i o n i s c o r r e c t o r i n c o r r e c t \
. I f t h e s o l u t i o n i s c o r r e c t , \
o u t p u t t h e f i n a l answer w i th t h e \

h e l p o f t h e s o l u t i o n p r o v i d e d . \
I f t h e s o l u t i o n i s i n c o r r e c t , \
c o r r e c t t h e e x i s t i n g s o l u t i o n \
and d e t e r m i n e t h e f i n a l answer \
w i th t h e h e l p o f t h e c o r r e c t e d \
s o l u t i o n .
Reason ing c h a i n C o r r e c t (Yes / No) \
:
C o r r e c t e d r e a s o n i n g c h a i n o r NA:
F i n a l answer (j u s t t h e number) :

Task T2 evaluates the model’s ability to detect mis-
takes and solve MWP based on the provided reason-
ing step. Listing 3 was used in a few-shot setting
for task T2. Here, we ensure that the final answer
is generated with the help of the reasoning steps
provided, which may or may not be correct.

Listing 3: Prompt for Task T2

You a r e a m a t h e m a t i c s e d u c a t o r \
w i th a deep u n d e r s t a n d i n g of \
e l e m e n t a r y and midd le s c h o o l \
m a t h e m a t i c s . You a r e e x p e r i e n c e d \

i n t e a c h i n g m u l t i − s t e p problem −\
s o l v i n g t e c h n i q u e s and have a \
knack f o r b r e a k i n g down complex \
p rob lems i n t o manageable s t e p s . \
Your e x p e r t i s e l i e s i n b a s i c \
a r i t h m e t i c o p e r a t i o n s such as \
a d d i t i o n , s u b t r a c t i o n , \
m u l t i p l i c a t i o n , and d i v i s i o n . \
You can p r o v i d e c l e a r , s t e p −by−\
s t e p s o l u t i o n s t o m a t h e m a t i c a l \
p rob lems t h a t r e q u i r e m u l t i − s t e p \

r e a s o n i n g .

You a r e p r o v i d e d wi th a \
m a t h e m a t i c a l q u e s t i o n and a s t e p \
−by− s t e p s o l u t i o n a l o n g wi th i t . \

The s o l u t i o n might have some \
m i s t a k e s . I d e n t i f y i f t h e \
s o l u t i o n i s c o r r e c t o r i n c o r r e c t \

and o u t p u t t h e f i n a l answer \
based on t h e p r o v i d e d s o l u t i o n .

27058

Figure 4: Variations in SVAMP dataset on simple Math Problems (Patel et al., 2021)
Table 8: Max Performance change with introduction of variations on SVAMP dataset.)

Model Question Sensitivity Reasoning Ability Structural invariance
GPT-4o 0.08 0.06 0.02
GPT-4 0.07 0.04 0.04
GPT-3.5Turbo 0.06 0.03 0.06
Llama-2-7b-chat 0.05 0.09 0.02
Phi-3-mini 0.09 0.06 0.01
Qwen2-7B-Instruct 0.20 0.13 0.1
Llama-3-8b 0.01 0.07 0.06
Llama-3-70b 0.04 0.04 0.03
Llama-3-8b-finetuned 0.06 0.02 0.07

Reason ing c h a i n C o r r e c t (Yes / No) \
:
F i n a l answer (j u s t t h e number) :

F T2 Results

Table 10 provides the results for Task T2 (Perfor-
mance in deriving the correct final answer)

G Model Used

Below are brief details of the models we have used
for benchmarking our MWP-MISTAKE dataset.

1. GPT-4o: GPT-4o is a multimodal model by
OpenAI, and it has the same high intelligence
as GPT-4 Turbo but is much more efficient—it
generates text 2x faster and is 50% cheaper.
Additionally, GPT-4o has the best vision and
performance across non-English languages of

27059

Table 9: Example of incorrect reasoning steps generated using SLM’s (GSM-8K dataset)

Question

Gerald spends $100 a month on baseball supplies.
His season is 4 months long.
He wants to use the months he’s not playing baseball to save up by raking, shovelling, and mowing lawns.
He charges $10 for each. How many chores does he need to average a month to save up for his supplies?

Final Answer 5

Gold Reasoning step

He needs to save up $400 because 4 x 100 = 400.
He has 8 months to earn this money because 12 - 4 = 8
He needs to earn $50 a month because 400 / 8 = 50
He needs to do 5 tasks a month because 50 / 10 = 5
5

Llama-2-7b-chat Incorrect reasoning step

Gerald spends $100 on baseball supplies per month.
Season is 4 months long.
To save up for baseball supplies, Gerald needs to earn more than the cost of supplies per month.
Gerald charges $10 for each chore he does.
To calculate the number of chores Gerald needs to do per month,
divide the cost of supplies by the amount he charges per chore.

Llama-2-7b-chat Predicted Answer ""

Mixtral-8x7B Incorrect reasoning step
Gerald spends $100 a month for 4 months, so his total spending for the season is 100*4 = $400
Now, we need to find out how many chores he needs to do to earn this amount
He charges $10 per chore, so we divide the total amount by the cost per chore: 400 / 10 = ####

Mixtral-8x7B Predicted Answer 40

Phi-3-mini Incorrect reasoning step

Gerald’s total expenditure for baseball supplies = $100 per month * 4 months = $400
Gerald earns $10 per chore.
To find out how many chores he needs to do to save up $400,
we divide his total expenditure by the amount he earns per chore.= $400 / $10= ####

Phi-3-mini Predicted Answer 40

GSM8K MATH MATHBENCH JEEBENCH AVERAGE
Model D SM D SM D SM D SM D SM Overall
GPT-4o 0.92 0.61 0.66 0.52 0.77 0.39 0.22 0.29 0.64 0.45 0.55
GPT-4 0.99 0.63 0.69 0.46 0.82 0.26 0.38 0.30 0.72 0.42 0.57
GPT-3.5Turbo 0.80 0.23 0.60 0.29 0.66 0.16 0.44 0.18 0.62 0.22 0.42
Llama-2-7b-chat 0.81 NA 0.30 NA 0.44 NA 0.27 NA 0.46 NA 0.46
Mixtral-8x7b 0.87 NA 0.58 NA 0.65 NA 0.06 NA 0.54 NA 0.54
Phi-3-mini 0.88 NA 0.56 NA 0.65 NA 0.47 NA 0.64 NA 0.64

Table 10: Performance in deriving the correct final an-
swer in Task T2 setting.

any OpenAI model. Last training data: Octo-
ber 2023.

2. GPT-4: GPT-4 is a large multimodal model
by OpenAI that can solve difficult problems
with greater accuracy than any of OpenAI’s
previous models, thanks to its broader general
knowledge and advanced reasoning capabili-
ties. Last training data: September 2021.

3. GPT-3.5Turbo: GPT-3.5Turbo is a large lan-
guage model by OpenAI GPT-3.5 that can
understand and generate natural language or
code and has been optimized for chat using
the Chat Completions API, but works well
for non-chat tasks as well. Last training date:
September 2021.

4. Claude-3-Opus: Claude-3-Opus is An-
thropic’s most capable and intelligent model
yet, ideal for navigating complex tasks like in-
depth analysis, research, and task automation.
Last training data: August 2023.

5. Llama-2-7b-chat: Llama 2 is a collection of

pretrained and fine-tuned generative text mod-
els ranging in scale from 7 billion to 70 bil-
lion parameters from Meta. This is the 7B
fine-tuned model, optimized for dialogue use
cases. Training date: September 2022.

6. Mixtral-8x7B: Mixtral is a Mixture of Ex-
perts (MoE) model with 8 experts per MLP,
with a total of 45 billion parameters. Despite
the model having 45 billion parameters, the
compute required for a single forward pass
is the same as that of a 14 billion parameter
model. This is because even though each of
the experts have to be loaded in RAM (70B
like ram requirement), each token from the
hidden states are dispatched twice (top 2 rout-
ing) and thus the compute (the operation re-
quired at each forward computation) is just 2
X sequence_length.

7. Phi-3-mini: The Phi-3-Mini-128K-Instruct
is a 3.8 billion-parameter by microsoft,
lightweight, state-of-the-art open model
trained using the Phi-3 datasets. This dataset
includes both synthetic data and filtered pub-
licly available website data, with an emphasis
on high-quality and reasoning-dense proper-
ties. Last training data: October 2023.

27060

H Categories Wise results

Table 11 shows the F1 score analysis on differ-
ent types of Rule-based reasoning mistakes on
GSM-8K dataset. Furthermore Figure 5, 6,
7 and 8 shows the GPT-4o Mistake detection
and Performance F1 score on different type of
rule based and SLM based mistakes on GSM-8K,
MATH, MATHBENCH andJEEBENCH respec-
tively. Looking at category-wise results, we see
that:

• Reasoning chains without actual mistakes are
also constantly flagged as erroneous by the
model.

• The model particularly struggles with identify-
ing errors in shuffle reasoning steps and delete
reasoning steps. We believe these are critical
errors in the reasoning chain that significantly
impact logical coherence and should not be
overlooked.

I METEOR and BertScore results

BertScore computes a similarity score for each to-
ken in the candidate sentence with each token in
the reference sentence using the BERT embeddings.
Metric for Evaluation of Translation with Explicit
Ordering (METEOR) score is a metric that mea-
sures the quality of generated text based on the
alignment between the generated text and the ref-
erence text. The metric is based on the harmonic
mean of unigram precision and recall, with recall
weighted higher than precision.

Table 12 and Table 13 present the BertScore
and Meteor Score, respectively, for all the datasets
across all models. We observed that these two met-
ric evaluations where not fully able to capture the
nuance capabilities of LLMs in rectifying the mis-
takes within reasoning steps. This can be seen in
the results. GPT-4o has a consistently high per-
formance across all the datasets, but when you
compare the BERTScore between the corrected rea-
soning step and ground truth reasoning step, you
see the rest of the models clearly performing bet-
ter than GPT-4o. GPT-4 has performed better than
GPT-3.5Turbo in most datasets.

J Average Reasoning Step Length

We noticed that the average word length of rectified
reasoning for correct and incorrect for GPT-4o was
higher than other models. Table 14 presents the

average word length of the rectified reasoning step
for all datasets across the models.

K Data contamination and Memorization

Two different types of prompts were used to test
out memorization of individual instances of the
dataset. The reasoning step was split into two
halves, and models were prompted in two different
ways (general and guided) to complete the second
half of the reasoning step. To detect contamination,
we evaluated the overlap score between generated
and reference instances using the ROUGE-L Score.
Listing 4 and Listing 5 show the prompt used for
guided and generation instructions ,respectively.

Listing 4: Guided instruction for dataset GSM8K

You a r e p r o v i d e d wi th a f u l l \
q u e s t i o n and t h e f i r s t answer \
p i e c e from t h e t e s t s p l i t o f t h e \
GSM8K d a t a s e t . F i n i s h t h e \

second answer p i e c e o f t h e \
i n s t a n c e as e x a c t l y a p p e a r e d i n \
t h e d a t a s e t . Only r e l y on t h e \
o r i g i n a l form of t h e i n s t a n c e i n \

t h e d a t a s e t t o f i n i s h t h e \
second answer p i e c e . Outpu t on ly \

t h e second answer p i e c e .

Listing 5: General instruction for dataset GSM8K

Based on t h e p r o v i d e d q u e s t i o n , \
f i n i s h t h e second answer p i e c e \
based on t h e f i r s t answer p i e c e , \

such t h a t t h e s e two p i e c e s \
become a s i n g l e i n s t a n c e answer . \

Ou tpu t on ly t h e second answer \
p i e c e .

Here GSM-8K and test are the extra information
provided for the model to uniquely identify in-
stances from the source dataset and complete the
reasoning step.

Figure 9 presents the variation in ROUGE-L
scores between guided and general instructions
across different datasets and models. The observed
discrepancies provide strong initial evidence of
data contamination, particularly in larger models.
Table 15 presents the complete result for the aver-
age ROUGE-L score of guided and general for all
datasets across all models. Our evaluation results
suggest that the performance gains of GPT-4o are
indeed influenced by data contamination. For in-
stance, on datasets like GSM-8K and MATH, the

27061

Table 11: F1 Score Analysis on Different Types of Rule-Based Reasoning Mistakes on GSM8k Dataset.

Model Correct Reasoning Shuffle Reasoning Delete Reasoning Shuffle Numerical Replace Numerical Shuffle Operations Random Reasoning SLM Combined
GPT-4o 0.69 0.84 0.87 0.92 0.96 0.93 0.67 0.73
GPT-4 0.95 0.38 0.54 0.85 0.89 0.72 0.33 0.52
GPT-3.5Turbo 0.83 0.65 0.71 0.82 0.87 0.78 0.76 0.52
Llama-2-7b-chat 1.00 0.00 0.01 0.00 0.02 0.00 0.09 NA
Mixtral-8x7b 0.83 0.59 0.60 0.77 0.75 0.63 0.63 NA
Phi-3-mini 0.85 0.72 0.42 0.60 0.52 0.58 0.82 NA
Claude-3-Opus 0.94 0.51 0.71 0.84 0.94 0.79 0.54 0.76
Qwen2-7B-Instruct 0.95 0.45 0.36 0.53 0.45 0.34 0.62 0.13
Llama-2-70b 0.85 0.55 0.49 0.45 0.44 0.41 0.78 0.55
Llama-3-8b 0.77 0.76 0.62 0.68 0.82 0.63 0.98 0.68
Llama-3-70b 0.75 0.52 0.60 0.83 0.93 0.87 0.84 0.54
Llama-3-8b-finetuned 0.77 0.91 0.80 0.77 0.75 0.65 0.99 0.68

type

0.00

0.25

0.50

0.75

1.00

reasoning chain shuffle reasoning delete reasoning shuffle numerical
values

replace half numerical
values

shuffle operations random reasoning step SLM-combined

Mistake Identification (F1 Score) Performance (F1 Score)

GSM8K

Figure 5: Category Wise mistake detection and performance results on GSM-8K dataset.

type

0.00

0.25

0.50

0.75

1.00

reasoning chain shuffle reasoning delete reasoning shuffle numerical
values

replace half numerical
values

shuffle operations random reasoning step SLM-combined

Mistake Identification (F1 Score) Performance (F1 Score)

MATH

Figure 6: Category Wise mistake detection and performance results on MATH dataset.

type

0.00

0.25

0.50

0.75

1.00

reasoning chain shuffle reasoning delete reasoning shuffle numerical
values

replace half numerical
values

shuffle operations random reasoning step SLM-combined

Mistake Identification (F1 Score) Performance (F1 Score)

MATHBENCH

Figure 7: Category Wise mistake detection and performance results on MATHBENCH dataset.

27062

type

0.00

0.25

0.50

0.75

1.00

reasoning chain shuffle reasoning delete reasoning shuffle numerical
values

replace half numerical
values

shuffle operations random reasoning step SLM-combined

Mistake Identification (F1 Score) Performance (F1 Score)

JEEBENCH

Figure 8: Category Wise mistake detection and performance results on JEEBENCH dataset.
Table 12: BERTscores for correct and incorrect final answers derived after mistake rectification across all models
and datasets.

Datasets Models GPT-4o GPT-4 GPT-3.5Turbo Llama-2-7b-chat Mixtral-8x7B Phi-3-mini
Correct Incorrect Correct Incorrect Correct Incorrect Correct Incorrect Correct Incorrect Correct Incorrect

GSM-8K
D 0.95 0.91 0.98 0.93 0.97 0.95 0.96 0.98 0.97 0.94 0.94 0.91
SM 0.83 0.82 0.84 0.82 0.84 0.82 NA NA NA NA NA NA

MATH
D 0.88 0.90 0.96 0.93 0.95 0.93 0.96 0.88 0.95 0.92 0.90 0.87
SM 0.84 0.80 0.83 0.81 0.84 0.81 NA NA NA NA NA NA

MATHBENCH D 0.88 0.83 0.97 0.95 0.97 0.94 0.90 0.89 0.96 0.95 0.93 0.90
SM 0.82 0.82 0.85 0.82 0.84 0.83 NA NA NA NA NA NA

JEEBENCH D 0.89 0.89 0.88 0.87 0.94 0.95 0.86 0.82 0.85 0.87 0.70 0.85
SM 0.86 0.87 0.85 0.86 0.78 0.86 NA NA NA NA NA NA

Table 13: Meteor Score for correct and incorrect final answers derived after mistake rectification across all models
and datasets.

Datasets Models GPT-4o GPT-4 GPT-3.5Turbo Llama-2-7b-chat Mixtral-8x7B Phi-3-mini
Correct Incorrect Correct Incorrect Correct Incorrect Correct Incorrect Correct Incorrect Correct Incorrect

GSM-8K
D 0.81 0.54 0.92 0.62 0.88 0.77 0.87 0.83 0.85 0.74 0.77 0.66
SM 0.33 0.27 0.37 0.31 0.37 0.32 NA NA NA NA NA NA

MATH
D 0.48 0.54 0.76 0.70 0.76 0.67 0.78 0.59 0.73 0.66 0.55 0.48
SM 0.32 0.28 0.30 0.26 0.33 0.28 NA NA NA NA NA NA

MATHBENCH D 0.55 0.35 0.82 0.63 0.82 0.68 0.49 0.57 0.81 0.68 0.67 0.53
SM 0.33 0.30 0.32 0.25 0.32 0.29 NA NA NA NA NA NA

JEEBENCH D 0.37 0.31 0.30 0.22 0.49 0.54 0.15 0.13 0.53 0.46 0.20 0.25
SM 0.28 0.26 0.21 0.21 0.08 0.25 NA NA NA NA NA NA

Table 14: Average length of rectified reasoning steps on MWP-MISTAKE dataset

GSM-8K MATH MATHBENCH JEEBENCH Average
Model D SM D SM D SM D SM D SM Overall
GPT-4o 100.14 131.47 147.50 182.69 312.11 323.45 647.66 619.09 301.85 314.18 308.01
GPT-4 66.59 122.24 79.32 121.59 146.54 140.43 356.71 322.53 162.29 176.69 169.49
GPT-3.5Turbo 66.58 126.30 94.17 124.56 140.50 177.36 670.34 338.53 242.90 191.69 217.29
Llama-2-7b-chat 44.73 NA 113.35 NA 177.67 NA 137.05 NA 118.20 NA 118.20
Mixtral-8x7B 63.04 NA 88.26 NA 140.57 NA 402.79 NA 173.67 NA 173.67
Phi-3-mini 84.92 NA 115.10 NA 172.57 NA 293.90 NA 166.62 NA 166.62
Claude-3-Opus 62.18 138.91 70.60 134.05 144.85 192.84 561.88 438.44 209.88 226.06 217.97

ROUGE-L scores are notably high, corresponding
to strong performance in mistake detection and
rectification. However, on newer datasets such as
JEEBENCH and MATHBENCH, where contam-
ination scores are much lower, GPT-4o’s perfor-
mance in detecting and rectifying mistakes drops
significantly. This highlights the impact of contam-

ination on the model’s performance.

Qualitative Analysis of Data Contamination

Here we provide qualitative examples to compare
these LLMs in the context of data contamination
experiments.

The input to the model is the question along with

27063

GPT-4O GPT-4 GPT-3.5Turbo Llama-2-7b-chat Mixtral Phi

0.00

0.05

0.10

0.15

0.20

Gu
ide

d -
 Ge

ne
ral

 In
str

uct
ion

s R
ou

ge
L

(Guided - General Instructions) RougeL by model and dataset
Dataset
GSM8K(D)
GSM8K(SM)
MATH(D)
MATH(SM)
MATHBENCH(D)
MATHBENCH(SM)
JEEBENCH(D)
JEEBENCH(SM)

Figure 9: Difference between guided and general instructions rouge-L score across all datasets. A high positive
difference indicates high contamination, and a low positive or negative difference indicates little to no contamination.

the first half of the reasoning chain. The model
is tasked to reproduce the second half of the rea-
soning chain based on both general and guided
instructions. By computing the ROUGE-L scores
for these two instruction types, we measure the
overlap to evaluate contamination.

We show examples from GPT4o and Llama-3-
8b-finetuned, and we can clearly see in the GPT4o
case that the model is able to replicate the second
part of the reasoning chain exactly as the ground
truth, indicating the contamination.

These qualitative comparisons highlight the ex-
tent of contamination in different models, reinforc-
ing the quantitative trends in the paper. We will
include these examples in the revised version for
clarity.

Example: GPT4o on gsm8k
Input to the model:

• Question: James decides to run 3 sprints 3
times a week. He runs 60 meters each sprint.
How many total meters does he run a week?

• First half of reasoning chain (provided to the
model): He sprints 3*3=«3*3=9»9 times So
he r

Ground truth: Second half of the reasoning
chain: uns 9*60=«9*60=540»540 meters ### 540

Guided reasoning chain generated: uns
60*9=«60*9=540»540 meters in a week.

General reasoning chain generated: uns 60 me-
ters each sprint, so he runs a total of 9*60=540
meters each week. Therefore, James runs 540 me-
ters a week by doing 3 sprints 3 times a week at 60
meters each sprint.

Rouge L score:
(i) Guided R_L = Rouge L between Guided and

GT (0.79)

(ii) General R_L = Rouge L between General
and GT (0.30)

(iii) Guided R_L – General R_L = 0.49
Finetuned llama8B Evaluation
Guided Output: uns 60 meters each time, which

means he runs a total of 9 * 60 = «9*60=540»540
meters a week.

General Output: James runs a total of
3*60=«3*60=180»180 meters per sprint. Since
he sprints 9 times a week, he runs a total of
9*180=«9*180=1620»1620 meters a week.

Rouge L score:
(i) Guided R_L: 0.53
(ii) General R_L: 0.22
(iii) Guided R_L – General_R_L = 0.30

L Model performance on self-generated
reasoning steps

We evaluated the model’s detection, rectification
and final answer performance on their self gen-
erated error reasoning steps. For instance, using
GPT-4 on the MATH dataset with 100 incorrect
self-generated reasoning steps, we observed the
following results for self-generated incorrect rea-
soning compared to SLM-generated reasoning:

• Mistake Identification: 0.914 (self-generated)
vs. 0.90 (SLM-generated)

• Final Answer Accuracy: 0.471 (self-
generated) vs. 0.65 (SLM-generated)

• Rectification Performance: 0.533 (self-
generated) vs. 0.70 (SLM-generated)

Similarly, used GPT-4O on the MATH dataset
with 100 incorrect self-generated reasoning steps,
and we observed the following results:

27064

Table 15: Rouge L score between guided and general instructions on MWP-MISTAKE dataset

Datasets Models GPT-4o GPT-4 GPT-3.5Turbo Llama-2-7b-chat Mixtral-8x7B Phi-3-mini Llama-3-8b-finetuned
Guided General Guided General Guided General Guided General Guided General Guided General Guided General

GSM-8K
D 0.57 0.44 0.67 0.56 0.53 0.49 0.26 0.28 0.46 0.44 0.32 0.32 0.47 0.49
SM 0.55 0.51 0.57 0.55 0.49 0.47 0.30 0.32 0.55 0.50 0.42 0.41 0.51 0.46

MATH
D 0.44 0.25 0.52 0.48 0.39 0.38 0.25 0.26 0.39 0.32 0.26 0.27 0.39 0.35
SM 0.51 0.38 0.54 0.54 0.45 0.44 0.30 0.29 0.48 0.46 0.38 0.39 0.48 0.46

MATHBENCH D 0.43 0.41 0.48 0.46 0.38 0.36 0.26 0.28 0.36 0.36 0.30 0.30 0.38 0.37
SM 0.40 0.38 0.43 0.42 0.39 0.38 0.30 0.33 0.40 0.38 0.29 0.30 0.43 0.40

JEEBENCH D 0.43 0.39 0.42 0.40 0.34 0.33 0.27 0.25 0.38 0.34 0.33 0.31 0.37 0.34
SM 0.32 0.29 0.34 0.35 0.31 0.24 0.22 0.25 0.26 0.27 0.20 0.22 0.34 0.30

Model Validity Mistake-detected
Reasoning Step

Validity Rectified
Reasoning Step

Differene in Validity
(Rectified - Detected)

GPT-4o 0.57 0.74 0.18
GPT-4 0.55 0.67 0.13
GPT-3.5Turbo 0.57 0.66 0.09
Llama-2-7b-chat 0.44 0.48 0.04
Mixtral-8x7b 0.42 0.57 0.15
Phi-3-mini 0.44 0.60 0.16
Claude-3-Opus 0.56 0.74 0.17
Qwen2-7B-Instruct 0.58 0.69 0.11
Llama-2-70b 0.58 0.63 0.05
Llama-3-8b 0.57 0.63 0.06
Llama-3-70b 0.56 0.69 0.13
Llama-3-8b-finetuned 0.57 0.61 0.04

Table 16: GSM-8K results on ReasonEval’s validity
metric

• Mistake Identification: 0.758 (self-generated)
vs. 0.94 (SLM-generated)

• Final Answer Accuracy: 0.265 (self-
generated) vs. 0.79 (SLM-generated)

• Rectification Performance: 0.255 (self-
generated) vs. 0.84 (SLM-generated)

These findings suggest that while models can
effectively identify mistakes in their own reason-
ing, the challenge lies in rectifying these errors
and producing accurate final answers. This dis-
crepancy underscores the limitations of LLMs in
self-evaluation, particularly in more complex sce-
narios.

M Evaluating Rectified Reasoning Steps

We used the ReasonEval (Xia et al., 2024) frame-
work to evaluate the rectified reasoning steps gener-
ated by our models. In Table 16, we provide results
for the GSM-8K dataset, comparing the validity
metric scores for:

• The mistake detected reasoning steps (reason-
ing steps where the model detected there was
an error).

• The rectified reasoning steps (where the model
rectified the above error reasoning steps).

• The difference between the mistake detected
and rectified reasoning chains.

N Running Experiment Multiple Times

While running experiments on all models (LLMs
and SLMs) we used the default hyperparameters
to generate tokens. We ran a subset of the dataset
on different prompt variations and saw compara-
ble performance for various prompts. Due to the
limitation of the API key, we were only able to run
GPT-4o model on the GSM-8K dataset. On rerun
we got very similar results, with an error rate of <=
0.01.

O Insights for math tutoring applications

• False Positives in Reasoning Evaluation:
The model often flags reasoning chains that
are actually correct as erroneous. This means
that while using LLMs as tutors, educators
should be cautious about relying solely on
the model’s error detection. It’s essential to
incorporate human oversight or secondary ver-
ification methods to avoid mistakenly discour-
aging students with incorrect feedback.

• Effective Identification of Calculator Er-
rors: The model demonstrates strong perfor-
mance in pinpointing calculator-related mis-
takes, such as arithmetic errors or incorrect
operations. This capability can be valuable
in automated tutoring systems where quick
identification and correction of basic compu-
tational mistakes are needed.

• Challenges with Detecting Incomplete Solu-
tions: The model struggles to identify issues
in cases where reasoning steps are missing
(e.g., shuffled or deleted steps in the chain
of thought). Educators should be aware that
while the model may excel at catching overt
computational errors, it might not reliably flag
gaps in the logical progression of a solution.
This limitation suggests that LLMs should be
supplemented with methods that ensure com-
prehensive, step-by-step reasoning is main-
tained.

27065

