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Abstract

Quantization is a powerful tool for accelerating
large language model (LLM) inference, but
the accuracy-performance trade-offs across
different formats remain unclear. In this paper,
we conduct the most comprehensive empirical
study to date, evaluating FP8, INT8, and INT4
quantization across academic benchmarks and
real-world tasks on the entire Llama-3.1 model
family. Through over 500,000 evaluations,
our investigation yields several key findings:
(1) FP8 (W8A8-FP) is effectively lossless
across all model scales, (2) well-tuned INT8
(W8A8-INT) achieves surprisingly low (1-3%)
accuracy degradation, and (3) INT4 weight-
only (W4A16-INT) is more competitive than
expected, rivaling 8-bit quantization. Further,
we investigate the optimal quantization
format for different deployments by analyzing
inference performance through the popular
vLLM framework. Our analysis provides clear
deployment recommendations: W4A16 is the
most cost-efficient for synchronous setups,
while W8A8 dominates in asynchronous
continuous batching. For mixed workloads,
the optimal choice depends on the specific use
case. Our findings offer practical, data-driven
guidelines for deploying quantized LLMs
at scale—ensuring the best balance between
speed, efficiency, and accuracy.

1 Introduction

The high computational cost of serving LLMs
has driven extensive research into inference accel-
eration techniques, including quantization (Fran-
tar et al., 2022; Dettmers and Zettlemoyer, 2022;
Lin et al., 2024a), speculative decoding (Chen
et al., 2023; Leviathan et al., 2023), and prun-
ing (Xia et al., 2023; Muralidharan et al., 2024).
Among these, quantization—reducing the bitwidth
of weights, activations, or both—has emerged as
the most widely used approach. However, its key
challenge lies in balancing efficiency and accuracy.

Despite progress, systematic benchmarks and prac-
tical deployment guidelines remain scarce. This
uncertainty has fueled speculation around quan-
tized models, exemplified by the initial skepticism
toward the Llama-3.1-405B quantized model re-
lease (Dubey et al., 2024), which was later found
to be near-lossless in LMSYS Arena user evalua-
tions (Chiang et al., 2024). To address this gap, we
pose the following core question:

What are the practical accuracy-performance
trade-offs for popular quantization formats?

In this study, we focus on widely supported, com-
putationally efficient quantization formats. Specif-
ically, we examine 8-bit weights and activations
(W8A8), using integer (INT) precision for NVIDIA
Ampere and older GPUs and floating-point (FP)
precision for NVIDIA Hopper and Ada Lovelace.
Additionally, we consider 4-bit integer weights
with 16-bit activations (W4A16-INT), a compet-
itive low-bit alternative. To evaluate accuracy,
we implement a broad automated evaluation suite,
spanning both academic and real-world bench-
marks. Our academic benchmarks include Open
LLM Leaderboard V1 (Beeching et al., 2023)
and its more challenging V2 version (Fourrier
et al., 2024), while real-world generative tasks are
represented by Arena-Hard-Auto-v0.1 (Li et al.,
2024b), HumanEval (Chen et al., 2021) and Hu-
manEval+ (Liu et al., 2023a), and the long-context
RULER benchmark (Hsieh et al., 2024). Beyond
standard evaluations, we further analyze text sim-
ilarity between outputs from uncompressed and
quantized models to assess generative consistency.
Finally, we conduct an extensive inference perfor-
mance study, benchmarking vLLM (Kwon et al.,
2023) (version 0.6.4.post1) across three GPU archi-
tectures (A6000, A100, H100) in seven deployment
scenarios. Our findings provide a comprehensive
view of quantization’s trade-offs and offer practical
recommendations for real-world LLM deployment.
Our main findings are as follows:
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1. W8A8-FP quantization is essentially loss-
less, preserving the uncompressed model’s ac-
curacy across all benchmarks, often within
the evaluation’s margin of error. This re-
sult is achieved with a simple yet robust ap-
proach: dynamic per-token activation quanti-
zation combined with symmetric weight quan-
tization via round-to-nearest assignment.

2. W8A8-INT quantization exhibits only a
modest accuracy degradation of 1–3% per
task on average, far lower than the 10%+
drops reported in prior work (Li et al., 2024a;
Lee et al., 2024b). This performance is en-
abled by dynamic activation quantization or
SmoothQuant (Xiao et al., 2022), paired with
GPTQ (Frantar et al., 2022) for symmetric
weight quantization.

3. W4A16-INT quantization maintains con-
sistently low accuracy loss, performing on
par with W8A8-INT. Surprisingly, we show
for the first time that a simple variant of
GPTQ outperforms the more recent AWQ
method (Lin et al., 2024a) on real-world tasks,
challenging prior assumptions about low-bit
quantization strategies.

4. Beyond accuracy, our text similarity anal-
ysis reveals that larger quantized models
closely adhere to the word choices and
sentence structures of their uncompressed
counterparts in autoregressive text gener-
ation. In contrast, smaller quantized models
introduce moderate variability in structure but
still preserve semantic meaning.

5. In terms of performance, W4A16-INT is
the most efficient choice for synchronous
deployments, while W8A8 formats maxi-
mize throughput in asynchronous settings.
The optimal quantization scheme depends
on model size, hardware, and deployment
needs—whether for latency-sensitive applica-
tions like code completion or high-throughput
multi-turn chat.

Overall, this work provides the first in-depth study
of accuracy vs. performance vs. cost trade-offs
for quantized LLMs across formats, algorithms,
use cases, and hardware types. We aim for these
findings to serve as both a practical deployment
guide and a strong and competitive foundation for
future research on better quantization techniques.

2 Background and Related Work

2.1 A Primer on Quantization
Early work focused on INT8 activation quantiza-
tion and INT4/INT8 weight quantization (Dettmers
et al., 2022; Yao et al., 2022; Park et al., 2022). A
common approach is round-to-nearest (RTN) over
groups: given a group of g consecutive weights as
a vector x ∈ Rg, b-bit RTN is defined as:

Q(x, b) = rnd

(
x−min(x)

max(x)−min(x)
(2b − 1)

)

= rnd((x− z(x))/s(x)), (1)

where rnd rounds to the nearest integer, z(x) =
min(x) is the zero point, and s(x) = (max(x)−
min(x))/(2b − 1) is the scale, computed using
min-max normalization. However, RTN struggles
at INT4 precision and suffers from lossy activation
quantization even at INT8 (Dettmers et al., 2022).
Weight Quantization. To mitigate weight quan-
tization errors, GPTQ (Frantar et al., 2022) in-
troduced second-order weight adjustments using
calibration data. Subsequent methods, includ-
ing AWQ (Lin et al., 2024a), SqueezeLLM (Kim
et al., 2023), OWQ (Lee et al., 2024a), and
SpQR (Dettmers et al., 2023), incorporated outlier-
aware quantization, storing a fraction of weights
in higher precision to enable highly accurate 4-bit
quantization. More recent high-compression tech-
niques—QuIP (Chee et al., 2023), QuIP# (Tseng
et al., 2024a), QTIP (Tseng et al., 2024b),
AQLM (Egiazarian et al., 2024), and GPTVQ (van
Baalen et al., 2024)—target low-bitwidths using
advanced representations such as vector quantiza-
tion. Yet, these formats are inefficient for batch
sizes larger than 1, limiting their practicality.
Activation Quantization. Quantizing both
weights and activations enables low-bit hardware
operations. Yet, activations are difficult to quan-
tize due to outlier features—elements up to 100×
larger than the average (Dettmers et al., 2022).
Early attempts extracted outlier columns at run-
time, but this is inefficient. SmoothQuant (Xiao
et al., 2022) improves upon this by noticing that
outliers are stable across the model and can be
precomputed using a calibration set. Follow-up
work explored W4A4 quantization (Ashkboos et al.,
2023, 2024) and mixed-precision W4A8 (Lin et al.,
2024b; Zhang et al., 2024), including KV-cache
quantization. While promising, these methods still
suffer accuracy loss and lack robust support in high-
performance inference frameworks.

26873



2.2 Related Work
A significant body of work has explored the
accuracy trade-offs under different quantization
schemes (Yao et al., 2023; Liu et al., 2023b; Huang
et al., 2024; Gong et al., 2024b; Li et al., 2024a;
Gong et al., 2024a). However, much of this re-
search relies primarily on academic benchmarks,
which do not fully reflect real-world deployment
scenarios. Additionally, the lack of hyperparam-
eter tuning in some studies leads to misleading
conclusions about accuracy, as we demonstrate in
our experiments. We challenge the claim that 8-bit
integer activation quantization causes substantial
accuracy degradation (Li et al., 2024a; Lee et al.,
2024b), providing vast evidence to the contrary.
The closest work to ours is by Lee et al. (2024b),
which, like most prior studies, focuses on quanti-
zation accuracy, but overlooks key factors. First,
while the authors claim to analyze models up to
405B parameters, they omit open-ended bench-
marks at this scale and fail to report full-precision
baselines even for academic tasks. Without these
references, the impact of quantization remains un-
clear. To address this, we enable efficient multi-
node evaluations for the 405B model, conducting a
comprehensive accuracy analysis in both academic
and real-world settings. Second, Lee et al. (2024b)
asserts that AWQ outperforms GPTQ in a 4-bit
weight-only quantization setup. We correct this
claim, and attribute it to suboptimal hyperparam-
eter choices. Our comparative analysis (Table 1
and Appendix A.2) shows that while both meth-
ods perform similarly on academic benchmarks,
GPTQ exhibits notable gains over AWQ in real-
world tasks, particularly coding.
Third, we refute the conclusion that W8A8-INT is
significantly inferior to W8A8-FP and W4A16-INT.
With proper tuning, W8A8-INT achieves competi-
tive accuracy, with only minor losses. For example,
while Lee et al. (2024b) reports a 10-point accuracy
drop for W8A8-INT quantized 405B models on the
Open LLM Leaderboard V2 compared to FP8, our
approach reduces this to just 0.7 points.

3 Benchmark Design and Setup

3.1 Datasets and Benchmarks
We categorize benchmarks into three groups: aca-
demic, real-world, and text similarity analysis.
1. Academic benchmarks, such as Open LLM
Leaderboard V1 and V2 (Beeching et al., 2023;
Fourrier et al., 2024), provide structured eval-
uations for question-answering and reasoning

tasks. While widely used for benchmarking, they
lack alignment with real-world scenarios involv-
ing semantics, variability, and context-awareness.
Leaderboard V1 includes tasks like GSM for grade
school math (Cobbe et al., 2021), MMLU and
ARC-Challenge for world knowledge and reason-
ing (Hendrycks et al., 2020; Clark et al., 2018),
Winogrande and HellaSwag for language under-
standing (Sakaguchi et al., 2021; Zellers et al.,
2019), and TruthfulQA for factual correctness (Lin
et al., 2021). Leaderboard V2 extends this with
expert knowledge benchmarks such as MMLU-
Pro (Wang et al., 2024), GPQA (Rein et al., 2023),
and Big Bench Hard (Suzgun et al., 2022), as well
as multi-step reasoning (MuSR (Sprague et al.,
2024)), advanced math (MATH Level 5 (Hendrycks
et al., 2021)), and instruction following (IFE-
val (Zhou et al., 2023)). By evaluating across
both leaderboards, we capture a broad spectrum
of reasoning and knowledge domains, using both
log-likelihood and text-generation evaluations to
stress-test quantized models.

2. Real-world benchmarks evaluate models in
practical scenarios such as instruction following,
chat, long-context, and code generation. Arena-
Hard-Auto-v0.1 (Li et al., 2024b; Chiang et al.,
2024; Li et al., 2024c) automates LMSYS Chat-
bot Arena (Chiang et al., 2024) evaluations, us-
ing an LLM to judge responses to 500 complex
prompts, achieving an 89% agreement with human
rankings (Li et al., 2024c). This allows rapid and
scalable assessment of chat capabilities without hu-
man intervention. For code generation, we evaluate
models on HumanEval (Chen et al., 2021) and its
extension HumanEval+ (Liu et al., 2023a), which
test the ability to generate correct and functional
code. Finally, we conduct long-context evaluations
via the rigorous RULER benchmark (Hsieh et al.,
2024) which consists of retrieval, multi-hop tracing,
information aggregation, and question answering
evaluations at sequence lengths from 4k to 128k.

3. Our text similarity analysis benchmark as-
sesses how closely quantized models’ outputs align
with their full-precision counterparts. While real-
world benchmarks reflect practical usage, their
open-ended nature introduces variability, mak-
ing direct accuracy comparisons challenging. To
mitigate this, we analyze output similarity un-
der identical prompts using ROUGE (Lin, 2004),
BERTScore (Zhang et al., 2019), and Semantic
Textual Similarity (STS) (Reimers and Gurevych,
2019). ROUGE-1 measures unigram overlap, while
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Table 1: Comparison of GPTQ and AWQ 4-bit weight quantization algorithms (W4A16-INT). We observe a small
gap between methods on academic benchmarks (left) but a more pronounced difference in favor of GPTQ on
real-world (open-ended) benchmarks (right).

Academic Benchmarks Real-World Benchmarks

Model Average Score Leaderboard V1 Leaderboard V2 Average Score Arena-Hard HumanEval MBPP

Llama-3.1-8B-Instruct 50.84 74.06 27.62 53.7 25.8 67.3 68.1
GPTQ (Frantar et al., 2022) 49.82 73.11 26.53 52.3 24.0 67.1 65.8
AWQ (Lin et al., 2024a) 50.05 72.69 27.40 49.4 22.3 63.0 62.8

Llama-3.1-70B-Instruct 62.93 84.20 41.66 73.1 57.0 79.7 82.5
GPTQ (Frantar et al., 2022) 62.18 83.77 40.58 73.1 57.0 80.5 81.9
AWQ (Lin et al., 2024a) 62.53 83.96 41.09 72.3 56.7 79.4 80.8

ROUGE-L captures structural similarity through
the longest common subsequence. BERTScore
computes token-level contextual similarity using
RoBERTa-large embeddings, and STS assesses se-
mantic alignment at the sentence level via Sentence
Transformers built on MiniLM (Wang et al., 2020).

3.2 Models, Formats, and Algorithms

We evaluate using the highly-popular Llama 3.1
model series (Dubey et al., 2024). To assess quan-
tization trade-offs, we conduct experiments on the
instruction-tuned versions of all available sizes (8B,
70B, and 405B). For each, we examine the three
main formats with kernel support in vLLM: W8A8-
FP, W8A8-INT, and W4A16-INT.
W8A8-FP quantizes all linear operators in trans-
former blocks to an 8-bit floating-point format, us-
ing round-to-nearest quantization. Weights follow
a symmetric per-output-channel scheme, while ac-
tivations are dynamically quantized per token. This
requires no calibration data and remains computa-
tionally efficient, even for large-scale models.
W8A8-INT reduces weights and activations to
8-bit integers, applying symmetric per-output-
channel GPTQ quantization for weights and dy-
namic per-token quantization for activations. While
this scheme performs well for 8B and 405B models,
it causes noticeable accuracy drops at 70B. To mit-
igate this, we apply SmoothQuant, shifting some
activation complexity onto weights, which are eas-
ier to quantize. For calibration, random tokens suf-
fice at 8B, but larger models require higher-quality
calibration data, for which we use Lee et al. (2023).
W4A16-INT quantizes weights to 4-bit inte-
gers while keeping activations at 16-bit precision.
Weights are compressed using GPTQ with MSE-
optimal clipping, applied in 128-element groups.
Unlike higher-bit formats, random token calibra-
tion degrades accuracy, so we rely on OpenPlatypus
data for calibration.
INT4 Quantization Algorithms. We focus on

two inference-efficient techniques: AWQ and
GPTQ, evaluating them on Leaderboard V1/V2,
Arena-Hard, HumanEval, and MBPP. Results (Ta-
ble 1) show near-identical performance on aca-
demic benchmarks, with AWQ leading by just 0.23
and 0.35 points on a 0–100 scale. However, GPTQ
outperforms AWQ on real-world tasks by wider
margins (2.9 and 0.8 points, respectively), leading
us to adopt GPTQ as our primary INT4 method.
This finding contrasts with prior studies (Lin et al.,
2024a; Huang et al., 2024), which favored AWQ or
found it tied on academic subsets. We attribute this
to three key factors: (1) we use GPTQ with MSE-
optimal clipping (the AWQ comparison used abs-
max); this has no overhead and yields consistently
better results; (2) we use higher-quality calibration
data than the C4 default; (3) we include real-world
benchmarks, providing a broader evaluation scope.

4 Quantization Impact on Accuracy

We begin our discussion of the results by examining
the accuracy of quantized models across Leader-
board V1 (Table 2), Leaderboard V2 (Table 3) and
real-world benchmarks (Table 3). Given the den-
sity of the results, we discuss them individually via
average recoveries across higher-level benchmarks
and discuss “outlier” observations.

4.1 Academic Benchmarks

Our first analysis focuses on Open LLM Leader-
board V1 and V2, ensuring generalization by opti-
mizing quantization hyperparameters on V1 while
validating results on V2.
The Open LLM Leaderboard V1 follows Meta’s
prompt guidelines for Llama-3.1 models to main-
tain alignment with baseline scores. This intro-
duces two key differences from standard evalua-
tion protocols: MMLU and ARC-Challenge are
assessed as text-generation tasks rather than log-
likelihood-based evaluations (Gao et al., 2021), and
GSM8k is tested using chain-of-thought prompting
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Table 2: Detailed per-task breakdown of accuracy on a subset of academic benchmarks (Open LLM Leaderboard
V1) for quantized Llama-3.1-Instruct models across all three model sizes (8B, 70B, 405B). Higher score is better.

Recovery
%

Average
Score

MMLU
5-shot

MMLU CoT
0-shot

ARC-C
0-shot

GSM8k CoT
8-shot

HellaSwag
10-shot

Winogrande
5-shot

TruthfulQA
0-shot

8B

BF16 100.00 74.06 68.3 72.8 81.4 82.8 80.5 78.1 54.5
W8A8-FP 99.31 73.55 68.0 71.6 81.2 82.0 80.0 77.7 54.3
W8A8-INT 100.31 74.29 67.8 72.2 81.7 84.8 80.3 78.5 54.7
W4A16-INT 98.72 73.11 66.9 71.1 80.2 82.9 79.9 78.0 52.8

70B

BF16 100.00 84.40 83.8 86.0 93.3 94.9 86.8 85.3 60.7
W8A8-FP 99.72 84.16 83.8 85.5 93.5 94.5 86.6 84.6 60.6
W8A8-INT 99.87 84.29 83.7 85.8 93.1 94.2 86.7 85.1 61.4
W4A16-INT 99.53 84.00 83.6 85.6 92.8 94.4 86.3 85.5 59.8

405B

BF16 100.00 86.79 87.4 88.1 95.0 96.0 88.5 87.2 65.3
W8A8-FP 100.12 86.89 87.5 88.1 95.0 95.8 88.5 88.0 65.3
W8A8-INT 99.32 86.20 87.1 87.7 94.4 95.5 88.2 86.1 64.4
W4A16-INT 99.98 86.78 87.2 87.7 95.3 96.3 88.3 87.4 65.3

Table 3: Detailed per-task breakdown of accuracy on a subset of academic (Open LLM Leaderboard V2) and on
real-world (Arena-Hard, HumanEval, RULER) benchmarks for quantized Llama-3.1-Instruct models across all three
model sizes (8B, 70B, 405B). Higher score is better. Long-context RULER evaluations at 405B are prohibitively
expensive for our cluster.

Academic Benchmarks (Open LLM Leaderboard V2) Real-World Benchmarks

Recovery
%

Average
Score

IFEval
0-shot

BBH
3-shot

Math lvl 5
4-shot

GPQA
0-shot

MuSR
0-shot

MMLU-Pro
5-shot

Arena-Hard
Win-Rate

HumanEval
pass@1

HumanEval+
pass@1

RULER
Score

8B

BF16 100.0 27.6 77.8 30.1 15.7 3.7 7.6 30.8 25.8 67.3 60.7 82.8
W8A8-FP 101.2 27.9 77.2 29.6 16.5 5.7 7.5 31.2 26.8 67.3 61.3 82.8
W8A8-INT 101.5 28.0 77.9 30.9 15.5 5.4 7.6 30.9 27.2 67.1 60.0 82.8
W4A16-INT 96.1 26.5 76.3 28.9 14.8 4.1 6.3 28.8 24.0 67.1 59.1 81.1

70B

BF16 100.0 41.7 86.4 55.8 26.1 15.4 18.1 48.1 57.0 79.7 74.8 83.3
W8A8-FP 100.0 41.7 87.6 54.9 28.0 14.6 17.2 47.7 57.7 80.0 75.0 83.0
W8A8-INT 97.3 40.5 86.6 55.2 23.9 13.6 16.8 47.1 57.0 78.7 74.0 82.5
W4A16-INT 97.4 40.6 85.7 55.0 24.4 13.8 17.2 47.2 56.3 80.5 74.2 82.2

405B

BF16 100.0 48.7 87.7 67.0 38.9 19.5 19.5 59.7 67.4 86.8 80.1 -
W8A8-FP 99.9 48.7 86.8 67.1 38.8 18.9 20.8 59.4 66.9 87.0 81.0 -
W8A8-INT 98.3 47.9 86.9 66.7 35.8 20.4 19.2 58.4 64.6 86.9 80.4 -
W4A16-INT 98.9 48.2 88.0 67.5 37.6 17.5 19.4 59.3 66.5 85.1 78.9 -

instead of a few-shot approach.
Table 2 shows that all quantization schemes,
across model sizes, recover approximately 99%
of the unquantized BF16 baseline. The low-
est task recovery occurs on TruthfulQA, reaching
96.88% for W4A16-INT at 8B and ∼98.5% for
larger models (see Appendix Table 10). On aver-
age, 8-bit quantization achieves 99.75% recovery,
while W4A16-INT reaches a competitive 99.36%.
The Open LLM Leaderboard V2 incorporates
more challenging tasks to assess advanced reason-
ing. Unlike V1, V2 normalizes scores by subtract-
ing the random baseline and rescaling to a 0-100
range, ensuring equal weighting across tasks re-
gardless of inherent difficulty.
Table 3 shows that quantized models maintain
99% of the baseline’s average score, with all
models recovering at least 96%. However, due
to the increased difficulty, smaller models exhibit
higher variance, particularly on GPQA and MuSR,
where full-precision models already approach ran-

dom guessing thresholds, reducing the reliability
of accuracy recovery signals (Appendix Table11).
Focusing on tasks where the full-precision model
scores above 40%, ensuring a meaningful perfor-
mance baseline, we observe the lowest per-task re-
covery for 8-bit FP quantization at 98.44% on BBH
(70B) and for 8-bit INT at 97.8% on MMLU-Pro
(405B). Notably, W4A16-INT models demonstrate
superior recovery over W8A8-INT, with a mini-
mum accuracy retention of 98% for the 8B model
on IFEval. This suggests that, for INT, quantizing
activations is harder than quantizing weights.

4.2 Real-World Benchmarks
While academic benchmarks offer structured evalu-
ations, real-world benchmarks better capture model
performance in dynamic environments. These
evaluations involve diverse prompts, longer gen-
erations, and multiple valid responses, empha-
sizing correctness and semantic quality. We as-
sess four key benchmarks: Arena-Hard-Auto-v0.1
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Figure 1: Text similarity metrics comparing the outputs of quantized Llama-3.1-Instruct models to full-precision
baselines. We refer to W8A8-FP as FP8, W8A8-INT as INT8, and W4A16-INT as INT4.

(measuring chat and instruction-following perfor-
mance, averaging two runs per model and quan-
tization scheme), HumanEval, and HumanEval+
(measuring code generation quality and reporting
pass@1 scores using the EvalPlus library (Liu et al.,
2023a)), and RULER (evaluating long-context abil-
ities). Table 3 summarizes the results.
On Arena-Hard-Auto-v0.1, quantized models
exhibit competitive response quality, with over-
lapping 95% confidence intervals across all con-
figurations (Appendix Table 7). In coding eval-
uations, quantized models also maintain strong
performance, with 8-bit achieving 99.9% recov-
ery and 4-bit recovering 98.9%, demonstrat-
ing their robustness across simple and complex
coding tasks. Similarly, for the long-context
RULER benchmark, quantized models achieve
average score recovery of ≥ 98% across all for-
mats. See Appendix A.1 for additional results.

4.3 Reasoning Benchmarks
Given the recent rise in popularity of reasoning
abilities of LLMs, we also focus on the popular
DeepSeek-R1-Distill (DeepSeek-AI, 2025) mod-
els. These models have been fine-tuned through
the process of distillation for improved reasoning
capabilities. To assess their reasoning performance,
we focus on the challenging and widely recognized
reasoning benchmarksi through LightEval (Habib
et al., 2023): AIME 2024, MATH-500 (Lightman
et al., 2023), and GPQA-Diamond (Rein et al.,
2024). Following DeepSeek’s recommendations
for text generation, we use sampling with a tem-
perature of 0.6 and top-p of 0.95, generating 20
responses per query to estimate the pass@1 score.
The repetitive sampling was important to estimate
an accurate average performance for the bench-
marks due to high variance across the relatively
small datasets. As can be seen from the results in
Table 14, the conclusions from the previous sec-
tions with academic and real-world benchmarks

still hold: when quantization is properly tuned
and configured, quantized models perform very
competitively with their unquantized (BF16)
baselines, recovering on average >99% accuracy
except for the smallest models at INT4 which
exhibit a bit larger but reasonable drops.

4.4 Text Similarity Investigation

Next, we analyze the similarity of generated text be-
tween quantized and full-precision models. Using
Arena-Hard-Auto-v0.1 prompts and greedy sam-
pling for full reproducibility, we compute ROUGE-
1, ROUGE-L, BERTScore, and Semantic Textual
Similarity (STS) normalized to a 0-1 range.
As shown in Figure 1, large quantized models (70B
and 405B) closely match their full-precision coun-
terparts, achieving an average ROUGE-1 of 0.7
and ROUGE-L of 0.56, indicating strong word
and structural preservation. BERTScore (0.93) and
STS (0.96) further confirm semantic consistency
despite minor token variations. While 8B models
exhibit slightly higher variability, with ROUGE-1
and ROUGE-L dropping to 0.62 and 0.46, they still
maintain strong semantic fidelity, as reflected in
their BERTScore (0.92) and STS (0.95). These
results demonstrate that quantized models gen-
erate high-quality outputs across all sizes and
schemes.

5 Quantized Inference Performance

LLM inference consists of two main stages: pre-
fill, where all input tokens are processed simulta-
neously, and decode, where tokens are generated
sequentially. Prefill is typically compute-bound,
while decode is memory-bound. Weight quanti-
zation primarily accelerates decode by reducing
memory movement, whereas weight-and-activation
quantization improves computational efficiency in
prefill. Thus, the optimal choice for quantization
scheme depends on the ratio of prefill to decode
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Table 4: Detailed per-task and per-model breakdown of accuracy on the popular reasoning benchmarks across all
quantized variants of DeepSeek-R1-Distill models from both Llama and Qwen families.

DeepSeek-R1-Distill Recovery
%

Average
Score

AIME24
pass@1

MATH-500
pass@1

GPQA-Diamond
pass@1

Llama-8B

BF16 100.0 62.9 49.3 ± 6.4 90.2 ± 1.2 49.3 ± 3.1
W8A8-FP 100.6 63.3 50.8 ± 9.0 90.2 ± 1.1 48.7 ± 2.5
W8A8-INT 99.6 62.7 49.1 ± 6.2 90.0 ± 1.0 48.9 ± 2.0
W4A16-INT 97.2 61.1 46.3 ± 6.9 89.9 ± 1.1 47.1 ± 2.6

Llama-70B

BF16 100.0 76.2 67.8 ± 7.2 95.3 ± 0.7 65.6 ± 2.3
W8A8-FP 100.3 76.5 69.2 ± 6.5 95.1 ± 0.5 65.2 ± 2.4
W8A8-INT 99.7 76.0 67.8 ± 6.4 95.3 ± 0.5 65.0 ± 1.8
W4A16-INT 98.3 75.0 65.6 ± 5.3 95.2 ± 0.6 64.0 ± 2.8

Qwen-32B

BF16 100.0 76.3 69.8 ± 4.9 95.1 ± 0.6 64.1 ± 2.1
W8A8-FP 99.0 75.6 68.5 ± 4.0 95.3 ± 0.7 62.9 ± 2.6
W8A8-INT 99.6 76.0 68.2 ± 5.1 95.0 ± 0.8 64.8 ± 2.6
W4A16-INT 99.5 75.9 68.8 ± 4.2 95.0 ± 0.5 63.8 ± 1.7

Qwen-14B

BF16 100.0 73.6 66.7 ± 5.1 94.7 ± 0.7 59.4 ± 2.3
W8A8-FP 101.0 74.3 68.1 ± 5.8 94.6 ± 0.6 60.1 ± 2.9
W8A8-INT 99.4 73.1 66.3 ± 7.1 94.7 ± 0.7 58.3 ± 2.0
W4A16-INT 99.0 72.8 66.0 ± 6.3 95.0 ± 0.5 57.5 ± 2.1

Qwen-7B

BF16 100.0 65.8 53.2 ± 6.4 93.7 ± 0.8 50.5 ± 2.8
W8A8-FP 99.9 65.7 53.2 ± 7.5 93.6 ± 0.7 50.3 ± 2.0
W8A8-INT 100.7 66.3 55.2 ± 4.9 93.0 ± 1.1 50.7 ± 3.5
W4A16-INT 98.3 64.7 50.9 ± 7.8 93.3 ± 1.1 49.8 ± 2.8

Qwen-1.5B

BF16 100.0 50.0 30.1 ± 5.3 84.7 ± 1.1 35.4 ± 3.0
W8A8-FP 100.3 50.2 29.8 ± 5.6 84.7 ± 1.3 35.9 ± 3.3
W8A8-INT 96.9 48.5 26.7 ± 6.3 84.4 ± 1.1 34.4 ± 2.8
W4A16-INT 93.5 46.8 24.6 ± 5.1 82.5 ± 1.1 33.2 ± 3.4

tokens. Beyond direct speedups, quantization also
enhances end-to-end performance by increasing
the number of simultaneous queries, improving ef-
ficiency, and enabling lower-cost GPU usage for
memory-constrained tasks. Thus, real-world de-
ployment involves complex trade-offs.
To assess these trade-offs, we benchmarked W8A8-
FP, W8A8-INT, and W4A16-INT across three GPU
types (A6000, A100, H100) in seven use cases.
Tasks like code completion and instruction follow-
ing involve short prefill phases (256 tokens) and
varying decode lengths (1024 and 128 tokens, re-
spectively). More complex tasks like summariza-
tion require significantly longer prefill (4096 to-
kens) with a moderate decode length (512 tokens).
Multi-turn chat and RAG involve moderate prefill
lengths (512 and 1024 tokens) with shorter decode
phases (256 and 128 tokens). Finally, docstring
generation (768 prefill, 128 decode) and code fix-

ing (1024 prefill, 1024 decode) reflect intermediate
token requirements. For latency-sensitive appli-
cations, we compare both synchronous and asyn-
chronous deployment under latency constraints,
while throughput-driven cases are evaluated in
asynchronous mode. To assess cost efficiency
across hardware setups, we use Lambda Labs’ on-
demand GPU pricing (Lambda Labs, 2024), shown
in Table 9, which is standard.

5.1 Synchronous Deployment
Latency-sensitive applications are sometimes de-
ployed in synchronous mode, where a single query
is processed at a time. This approach minimizes
latency by avoiding resource contention, making
inference largely decode-bound.
Table 5 compares inference performance across
model sizes, GPU types, quantization schemes,
and use cases, highlighting the most cost-effective

26878



Table 5: Synchronous inference performance comparison across model sizes and GPU configurations. Results
show latency (in seconds) and cost-efficiency (Queries per USD) for various tasks. We refer to W8A8-FP as FP8,
W8A8-INT as INT8, and W4A16-INT as INT4.

Size GPU # Format CR
Code

Completion
Docstring

Generation
Code

Fixing RAG Instruction
Following

Multi-Turn
Chat Summarization

Lat. Q/$ Lat. Q/$ Lat. Q/$ Lat. Q/$ Lat. Q/$ Lat. Q/$ Lat. Q/$

8B A6000
1 BF16 – 24.5 183 3.2 1,395 25.0 180 3.3 1,374 3.1 1,445 6.2 723 13.4 335
1 INT8 1.54 15.9 284 2.1 2,157 16.3 276 2.1 2,139 2.0 2,249 4.0 1,120 8.9 506
1 INT4 2.39 9.7 462 1.4 3,290 10.1 445 1.4 3,136 1.3 3,543 2.5 1,787 6.1 736

70B

A6000
4 BF16 – 61.7 18 6.6 170 62.6 18 8.1 138 8.0 141 15.8 71 32.6 35
2 INT8 1.94 63.4 35 7.1 317 63.8 35 8.4 267 8.0 280 16.2 139 34.0 66
2 INT4 2.96 39.2 57 5.0 453 40.4 56 5.8 390 5.1 440 10.2 221 23.5 96

A100
2 BF16 – 50.7 20 2.9 343 51.2 20 6.8 148 6.4 156 12.9 78 27.3 37
1 INT8 1.81 54.3 37 4.0 500 54.8 37 7.2 279 6.9 291 13.8 146 29.3 69
1 INT4 2.67 35.0 57 2.8 718 35.8 56 5.2 390 4.6 439 9.2 220 21.0 96

H100
2 BF16 – 31.3 18 4.0 139 31.5 18 4.1 138 4.0 142 7.9 71 16.4 34
1 FP8 1.84 32.8 33 4.3 256 33.1 33 4.3 254 4.2 262 8.3 132 17.4 63
1 INT4 2.11 28.6 38 3.8 289 28.2 39 3.8 287 3.7 299 7.1 153 15.3 72

405B

A100
16 BF16 – 81.9 2 10.8 12 81.2 2 11.2 11 10.6 12 20.9 6 44.1 3
8 INT8 3.27 50.1 5 6.6 38 50.5 5 6.8 37 6.4 39 12.8 20 26.9 9
4 INT4 6.38 48.9 10 7.0 71 49.5 10 7.3 68 6.4 79 12.7 39 29.4 17

H100
16 BF16 – 50.6 1 6.5 12 50.3 1 6.6 11 6.4 12 13.0 6 26.5 3
8 FP8 3.17 31.7 5 4.2 36 31.9 5 4.2 36 4.1 37 8.0 19 16.7 9
4 INT4 5.15 37.5 8 5.0 58 37.8 8 5.1 57 4.8 60 9.2 32 20.4 14

†CR: Cost Reduction factor compared to BF16 baseline. Higher is better.
Lat.: Latency in seconds (lower is better). Q/$: Queries per USD (higher is better).

Table 6: Asynchronous inference performance evaluation across model sizes and hardware configurations. Results
show throughput (queries per second) and cost-efficiency (queries per USD) for various use cases. We refer to
W8A8-FP as FP8, W8A8-INT as INT8, and W4A16-INT as INT4.

Size HW Format Speedup
Code

Compl.
Doc.
Gen.

Code
Fixing RAG Inst.

Following
Multi-Turn

Chat Summarization

QPS Q/$ QPS Q/$ QPS Q/$ QPS Q/$ QPS Q/$ QPS Q/$ QPS Q/$

8B 1×A6000
BF16 – 1.5 6.8k 5.6 25.1k 1.1 4.8k 4.4 19.9k 11.8 53.0k 5.3 24.0k 0.7 3.2k
INT8 1.38 2.2 9.8k 7.7 34.6k 1.4 6.4k 6.1 27.6k 16.5 74.5k 7.2 32.3k 1.0 4.4k
INT4 1.08 2.2 9.8k 5.3 24.0k 1.3 6.0k 4.1 18.6k 11.2 50.5k 5.4 24.3k 0.7 3.1k

70B

4×A6000
BF16 – 0.4 0.4k 1.4 1.6k 0.3 0.3k 1.4 1.6k 3.3 3.8k 1.5 1.7k 0.2 0.3k
INT8 1.91 0.7 0.8k 3.9 4.4k 0.5 0.6k 2.8 3.1k 6.9 7.7k 2.2 2.5k 0.3 0.4k
INT4 1.92 1.2 1.4k 2.7 3.1k 0.7 0.8k 1.9 2.1k 5.2 5.9k 2.6 3.0k 0.3 0.3k

4×A100
BF16 – 1.4 0.7k 6.9 3.5k 1.0 0.5k 3.3 1.6k 8.7 4.4k 4.3 2.2k 0.7 0.4k
INT8 1.87 2.4 1.2k 15.9 8.0k 1.8 0.9k 6.1 3.1k 16.5 8.3k 8.0 4.0k 1.2 0.6k
INT4 1.64 2.3 1.2k 22.8 11.5k 1.4 0.7k 4.3 2.2k 11.9 6.0k 5.8 2.9k 0.8 0.4k

4×H100
BF16 – 3.5 1.0k 10.0 2.9k 2.6 0.7k 8.0 2.3k 20.3 5.9k 9.9 2.9k 1.7 0.5k
FP8 1.77 6.9 2.0k 17.8 5.2k 4.0 1.2k 14.3 4.2k 38.3 11.1k 18.4 5.4k 2.6 0.8k

INT4 1.55 5.9 1.7k 16.4 4.8k 3.1 0.9k 13.0 3.8k 35.8 10.4k 16.1 4.7k 2.2 0.6k

405B

16×A100
BF16 – 0.8 59 2.5 187 0.3 20 2.1 156 4.6 347 2.1 158 0.3 22
INT8 2.53 1.3 98 4.8 358 1.1 79 3.8 282 10.1 760 4.9 366 0.8 63
INT4 2.21 1.9 144 3.6 271 1.2 93 2.8 211 8.2 616 4.0 304 0.6 43

16×H100
BF16 – 0.7 52 6.1 456 0.6 44 4.8 363 8.5 638 5.3 398 0.6 46
FP8 3.04 4.4 329 9.6 725 2.7 200 7.6 571 20.7 1561 10.4 780 1.7 125

INT4 3.09 4.0 304 11.1 833 2.5 192 8.7 652 24.7 1856 11.6 872 1.6 122
QPS: Queries per second (higher is better). Q/$: Queries per USD (higher is better).
Numbers denoted with k represent thousands (e.g., 20.3k = 20,300).

GPU configurations. The results show that W4A16-
INT consistently achieves the highest performance
gains across all models and hardware setups.
For 8B and 70B models, W4A16-INT reduces
cost per query by 2–3× and improves latency by

1.5–2.5× compared to the full-precision BF16 base-
line. The impact is even more pronounced at 405B,
where W4A16-INT achieves 5–7× cost reductions
and enables inference with fewer GPUs. Notably,
deploying the 405B model on 4× A100 or H100
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GPUs with W4A16-INT meets performance thresh-
olds that previously required 16 GPUs in BF16,
reducing inter-GPU communication and latency.
Given the minor accuracy trade-offs observed in the
previous section, this makes W4A16-INT highly
effective for synchronous deployment.

5.2 Asynchronous Deployment

Processing multiple queries concurrently improves
computational efficiency compared to single-query
execution. vLLM automatically manages asyn-
chronous requests, balancing computation between
prefill and decode stages.
While asynchronous deployment increases per-
query latency relative to synchronous execution,
it amortizes computation across multiple requests,
significantly boosting overall throughput, measured
in queries per second (QPS). Table 6 reports the
maximum achievable throughput and cost effi-
ciency (queries per dollar) across different quan-
tization formats, model sizes, and hardware con-
figurations. The setups were optimized for peak
BF16 performance and kept consistent when evalu-
ating quantized models. Results show that W8A8-
INT and W8A8-FP yield the highest throughput,
though W4A16-INT remains competitive and
can outperform W8A8 in some scenarios.
Many real-world applications impose latency con-
straints on asynchronous deployment. Figures 2
and 3 illustrate trade-offs between latency and
throughput for two example tasks: docstring gen-
eration and code fixing. W4A16-INT is more ef-
ficient at lower latencies, making it ideal for
applications requiring rapid response times. In
contrast, W8A8 formats maximize throughput
at the cost of higher latency, making them bet-
ter suited for batch processing. The point where
W8A8 overtakes W4A16 depends on factors such
as model size, hardware, and task requirements.

6 Conclusion

We provided a broad, in-depth study of
accuracy-vs-performance-vs-cost trade-offs
for quantized LLMs across various deployment
environments, covering all quantization formats
with efficient support, and a range of quantization
algorithms, deployment use cases, and GPUs. In
Figure 4 we summarize our findings in terms
of accuracy recovery per quantization format,
using carefully-tuned state-of-the-art quantization
techniques. Broadly, our findings show that, with a
judicious choice of algorithm and parametrization,
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Figure 2: Latency-throughput example for docstring
generation use-case. W4A16 is more efficient at low
latency (lower throughput), whereas W8A8 becomes
more efficient at high latency (high throughput).
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Figure 3: Latency-throughput example for code fixing
use-case. W4A16 is more efficient at low latency (lower
throughput), whereas W8A8 becomes more efficient at
high latency (high throughput).
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Figure 4: Accuracy recovery trends across academic
benchmarks highlight the challenges of integer activa-
tion quantization, particularly at larger model sizes.

these formats can offer higher accuracy than
previously thought, significantly improve inference
performance, and reduce costs. At the same
time, we have also shown that the optimal choice
of format can be task and algorithm specific,
providing guidelines for this choice.
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Limitations

While our study provides a comprehensive evalua-
tion of quantization effects on model accuracy and
inference performance, several limitations remain.
We have primarily focused on weight and activation
quantization, leaving open questions about the im-
pact of compressing other model components such
as the KV-cache, input embeddings, and language
modeling head. Further investigation is needed
to assess how these additional compression tech-
niques influence both accuracy and computational
efficiency. Additionally, our analysis does not fully
explore the effects of quantization across special-
ized use cases, such as multi-lingual tasks, where
accuracy degradation could vary significantly de-
pending on the language distribution and underly-
ing model architecture. Future work should extend
these evaluations to provide a more holistic un-
derstanding of quantization trade-offs in diverse
deployment scenarios.
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A Additional Results

A.1 Real-World Benchmarks

In Figures 5 and 6 we report pass@10 scores for
all models on HumanEval and HumanEval+ bench-
marks.
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Figure 5: HumanEval pass@10 scores for quantized
Llama-3.1-Instruct models.
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Figure 6: HumanEval+ pass@10 scores for quantized
Llama-3.1-Instruct models.

In Table 7 we report scores of two Arena-Hard-
Auto-v0.1 runs, aggregated average scores, and
95% confidence intervals (CI).

A.2 Detailed Comparison of GPTQ and AWQ

To complement the results in Table 1, Ta-
bles 8, 12, 13 provide a detailed per-task and per-
run breakdown of scores.

A.3 GPU Pricing

We use Lambda Labs’ on-demand GPU pric-
ing (Lambda Labs, 2024), as displayed in Table 9.
For A100 GPUs Lambda Labs only provides the 8x
configuration. For scenarions with a smaller num-
ber of A100 GPUs we assume a price proportional
to the number of GPUs.

Table 7: Scores and confidence intervals of two evalua-
tion runs for Llama-3.1-Instruct models through Arena-
Hard-Auto-v0.1.

Llama-3.1
Instruct

Score
(1st run)

Score
(2nd run)

Average
Score 95% CI

BF16 405B 67.3 67.5 67.4 (-2.6, 1.9)
W8A8-FP 66.3 67.55 66.9 (-2.6, 2.3)
W8A8-INT 64.3 64.8 64.6 (-2.4, 2.8)
W4A16-INT 66.5 66.4 66.5 (-2.6, 2.3)

BF16 70B 55.8 58.2 57.0 (-2.6, 2.1)
W8A8-FP 57.6 57.75 57.7 (-2.4, 3.1)
W4A16-INT 57.1 56.8 57.0 (-2.8, 2.5)
W8A8-INT 56.0 56.6 56.3 (-2.9, 2.4)

BF16 8B 25.1 26.5 25.8 (-2.1, 2.1)
W8A8-FP 26.8 26.85 26.8 (-2.1, 2.6)
W8A8-INT 27.6 26.7 27.2 (-2.0, 2.2)
W4A16-INT 23.4 24.6 24.0 (-2.2, 2.0)

Table 8: Comparison of GPTQ and AWQ quantization
algorithms, both with group size of 128, across two runs
of the Arena-Hard-Auto-v0.1 benchmark.

Score
(1st run)

Score
(2nd run)

Average
Score

Llama-3.1-70B-Instruct 55.8 58.2 57.0
GPTQ (Frantar et al., 2022) 57.1 56.8 57.0
AWQ (Lin et al., 2024a) 56.3 57.0 56.3

Llama-3.1-8B-Instruct 25.1 26.5 25.8
GPTQ (Frantar et al., 2022) 23.4 24.6 24.0
AWQ (Lin et al., 2024a) 22.4 22.2 22.3

Table 9: On-demand hardware cost on Lambda Labs’
cloud.

Hardware
On-demand cost
(USD per hours)

1xA6000 0.80
2xA6000 1.60
4xA6000 3.20

8xA100 14.32

1xH100 3.29
2xH100 6.38
4xH100 12.36
8xH100 23.92

A.4 Academic Benchmarks
In Tables 10 and 11 we report accuracy recoveries
per-task across academic benchmarks.
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Table 10: Accuracy recoveries in percentages (%) for each task in the Open LLM Leaderboard V1 benchmark.

Llama-3.1-Instruct MMLU
5-shot

MMLU CoT
0-shot

ARC-C
0-shot

GSM8k CoT
8-shot

HellaSwag
10-shot

Winogrande
5-shot

TruthfulQA
0-shot

Baseline BF16 8B 100.00 100.00 100.00 100.00 100.00 100.00 100.00
W8A8-FP 99.59 98.35 99.75 99.03 99.38 99.49 99.63
W8A8-INT 99.27 99.18 100.37 102.42 99.75 100.51 100.37
W4A16-INT 97.95 97.66 98.53 100.12 99.25 99.87 96.88

Baseline BF16 70B 100.00 100.00 100.00 100.00 100.00 100.00 100.00
W8A8-FP 100.00 99.42 100.21 99.58 99.77 99.18 99.84
W8A8-INT 99.88 99.77 99.79 99.26 99.88 99.77 101.15
W4A16-INT 99.76 99.53 99.46 99.47 99.42 100.23 98.52

Baseline BF16 405B 100.00 100.00 100.00 100.00 100.00 100.00 100.00
W8A8-FP 100.11 100.00 100.00 99.79 100.00 100.92 100.00
W8A8-INT 99.66 99.55 99.37 99.48 99.66 98.74 98.62
W4A16-INT 99.77 99.55 100.32 100.31 99.77 100.23 100.00

Table 11: Accuracy recoveries in percentages (%) for each task in the Open LLM Leaderboard V2 benchmark.

Llama-3.1-Instruct IFEval
0-shot

BBH
acc_norm

3-shot

Math lvl 5
exact_match

4-shot

GPQA
acc_norm

0-shot

MuSR
acc_norm

0-shot

MMLU-Pro
acc

5-shot

Baseline BF16 8B 100.00 100.00 100.00 100.00 100.00 100.00
W8A8-FP 99.10 98.54 105.42 155.98 98.82 101.33
W8A8-INT 100.12 102.89 98.92 146.20 100.00 100.26
W4A16-INT 98.00 96.08 94.39 109.78 83.18 93.63

Baseline BF16 70B 100.00 100.00 100.00 100.00 100.00 100.00
W8A8-FP 101.34 98.44 107.52 94.68 94.49 99.13
W8A8-INT 100.17 98.89 91.83 88.38 92.62 97.86
W4A16-INT 99.22 98.60 93.52 89.94 94.99 98.19

Baseline BF16 405B 100.00 100.00 100.00 100.00 100.00 100.00
W8A8-FP 99.00 100.12 99.69 97.38 106.93 99.43
W8A8-INT 99.20 99.57 91.94 104.51 98.77 97.81
W4A16-INT 100.39 100.73 96.53 89.85 99.54 99.35

Table 12: Comparison of GPTQ (Frantar et al., 2022) and AWQ (Lin et al., 2024a) quantization algorithms, both
with group size of 128, across Open LLM Leaderboard V1 benchmarks (Beeching et al., 2023) with Meta’s
prompts (Dubey et al., 2024).

Average
Score

MMLU
5-shot

MMLU CoT
0-shot

ARC-C
0-shot

GSM8k CoT
8-shot

HellaSwag
10-shot

Winogrande
5-shot

TruthfulQA
mc2

0-shot

Llama-3.1-8B-Instruct 74.06 68.30 72.80 81.40 82.80 80.50 78.10 54.50
GPTQ 73.11 66.90 71.10 80.20 82.90 79.90 78.00 52.80
AWQ 72.69 66.37 69.76 80.89 82.56 79.61 76.80 52.81

Llama-3.1-70B-Instruct 84.20 82.37 86.06 93.30 94.90 86.80 85.30 60.70
GPTQ 83.77 82.03 85.54 92.80 94.40 86.30 85.50 59.80
AWQ 83.96 82.15 85.64 93.00 94.47 86.44 85.79 60.23

Table 13: Comparison of GPTQ and AWQ quantization algorithms, both with group size of 128, across Open LLM
Leaderboard V2 benchmarks (Fourrier et al., 2024).

Average Score IFEval
0-shot

BBH
acc_norm

3-shot

Math lvl 5
exact_match

4-shot

GPQA
acc_norm

0-shot

MuSR
acc_norm

0-shot

MMLU-Pro
acc

5-shot

Llama-3.1-8B-Instruct 27.62 77.86 30.09 15.68 3.68 7.61 30.77
GPTQ (Frantar et al., 2022) 26.53 76.30 28.91 14.80 4.04 6.33 28.81
AWQ (Lin et al., 2024a) 27.40 78.25 27.20 13.87 5.21 10.45 29.41

Llama-3.1-70B-Instruct 41.66 86.41 55.79 26.07 15.40 18.16 48.12
GPTQ (Frantar et al., 2022) 40.58 85.74 55.01 24.38 13.85 17.25 47.25
AWQ (Lin et al., 2024a) 41.09 86.60 55.24 25.14 13.68 18.81 47.06
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Table 14: Detailed per-task and per-model breakdown of accuracy on the popular reasoning benchmarks across all
quantized variants of DeepSeek-R1-Distill models from both Llama and Qwen families.

DeepSeek-R1-Distill Recovery
%

Average
Score

AIME24
pass@1

MATH-500
pass@1

GPQA-Diamond
pass@1

Llama-8B

BF16 100.0 62.9 49.3 ± 6.4 90.2 ± 1.2 49.3 ± 3.1
W8A8-FP 100.6 63.3 50.8 ± 9.0 90.2 ± 1.1 48.7 ± 2.5
W8A8-INT 99.6 62.7 49.1 ± 6.2 90.0 ± 1.0 48.9 ± 2.0
W4A16-INT 97.2 61.1 46.3 ± 6.9 89.9 ± 1.1 47.1 ± 2.6

Llama-70B

BF16 100.0 76.2 67.8 ± 7.2 95.3 ± 0.7 65.6 ± 2.3
W8A8-FP 100.3 76.5 69.2 ± 6.5 95.1 ± 0.5 65.2 ± 2.4
W8A8-INT 99.7 76.0 67.8 ± 6.4 95.3 ± 0.5 65.0 ± 1.8
W4A16-INT 98.3 75.0 65.6 ± 5.3 95.2 ± 0.6 64.0 ± 2.8

Qwen-32B

BF16 100.0 76.3 69.8 ± 4.9 95.1 ± 0.6 64.1 ± 2.1
W8A8-FP 99.0 75.6 68.5 ± 4.0 95.3 ± 0.7 62.9 ± 2.6
W8A8-INT 99.6 76.0 68.2 ± 5.1 95.0 ± 0.8 64.8 ± 2.6
W4A16-INT 99.5 75.9 68.8 ± 4.2 95.0 ± 0.5 63.8 ± 1.7

Qwen-14B

BF16 100.0 73.6 66.7 ± 5.1 94.7 ± 0.7 59.4 ± 2.3
W8A8-FP 101.0 74.3 68.1 ± 5.8 94.6 ± 0.6 60.1 ± 2.9
W8A8-INT 99.4 73.1 66.3 ± 7.1 94.7 ± 0.7 58.3 ± 2.0
W4A16-INT 99.0 72.8 66.0 ± 6.3 95.0 ± 0.5 57.5 ± 2.1

Qwen-7B

BF16 100.0 65.8 53.2 ± 6.4 93.7 ± 0.8 50.5 ± 2.8
W8A8-FP 99.9 65.7 53.2 ± 7.5 93.6 ± 0.7 50.3 ± 2.0
W8A8-INT 100.7 66.3 55.2 ± 4.9 93.0 ± 1.1 50.7 ± 3.5
W4A16-INT 98.3 64.7 50.9 ± 7.8 93.3 ± 1.1 49.8 ± 2.8

Qwen-1.5B

BF16 100.0 50.0 30.1 ± 5.3 84.7 ± 1.1 35.4 ± 3.0
W8A8-FP 100.3 50.2 29.8 ± 5.6 84.7 ± 1.3 35.9 ± 3.3
W8A8-INT 96.9 48.5 26.7 ± 6.3 84.4 ± 1.1 34.4 ± 2.8
W4A16-INT 93.5 46.8 24.6 ± 5.1 82.5 ± 1.1 33.2 ± 3.4
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