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Abstract

Aligning large VLMs with human preferences
is a challenging task, as methods like RLHF
and DPO often overfit to textual information or
exacerbate hallucinations. Although augment-
ing negative image samples partially addresses
these pitfalls, no prior work has employed list-
wise preference optimization for VLMs, due to
the complexity and cost of constructing listwise
image samples. In this work, we propose LPOI,
the first object-aware listwise preference opti-
mization developed for reducing hallucinations
in VLMs. LPOI identifies and masks a criti-
cal object in the image, and then interpolates
the masked region between the positive and
negative images to form a sequence of incre-
mentally more complete images. The model is
trained to rank these images in ascending order
of object visibility, effectively reducing hallu-
cinations while retaining visual fidelity. LPOI
requires no extra annotations beyond standard
pairwise preference data, as it automatically
constructs the ranked lists through object mask-
ing and interpolation. Comprehensive experi-
ments on MMHalBench, AMBER, and Object
HalBench confirm that LPOI outperforms exist-
ing preference optimization methods in reduc-
ing hallucinations and enhancing VLM perfor-
mance. We make the code available at https:
//github.com/fatemehpesaran310/lpoi.

1 Introduction

Aligning large language models (LLMs) or vi-
sion language models (VLMs) with human pref-
erences has been an emergent challenge in the
field. Approaches like Reinforcement Learning
with Human Feedback (RLHF) (Ouyang et al.,
2022; Glaese et al., 2022; Bai et al., 2022; Stiennon
et al., 2022) and Direct Preference Optimization
(DPO) (Rafailov et al., 2024; Li et al., 2023a) have
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"What is the color of the person's outfit in the image?"

The person’s outfit is blue. The person’s outfit is green.

(a) DPO

less alignment

The person’s outfit is blue.

(c) LPOI (ours)

more alignment

(b) mDPO

The person’s outfit is blue.

0~20%
Random 
cropping

The person’s outfit is blue.

Figure 1: Comparison of preference optimization (PO)
strategies for VLMs, with text and image negatives back-
grounded in gray and orange, respectively. (a) DPO
(Rafailov et al., 2024): PO with text negatives. (b)
mDPO (Wang et al., 2024a): DPO + PO using randomly
cropped images as binary image negatives. (c) The pro-
posed LPOI method: DPO + listwise PO with ranked
image negatives, consisting of four samples: (1) the full
image, (2) an image with the partial outfit, (3) an image
with no outfit but some parts of person, and (4) an image
with neither outfit nor person.

increasingly tackled this problem in the text do-
main. However, adapting these methods to multi-
modal settings introduces substantial challenges;
simply substituting textual preference data with
multimodal ones often leads to unreliable results
and can even amplify critical issues like hallucina-
tions (Zhao et al., 2024; Yue et al., 2024).

In this regard, a line of research has revealed
that multimodal models often overfit to textual in-
formation in the preference data, overlooking the
necessary information in the image (Wang et al.,
2024a; Xie et al., 2024). They propose augment-
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ing the negative samples in the preference data via
randomly cropping the image or editing the image
using diffusion models.

Meanwhile, recent studies have demonstrated
that the methods employing listwise samples for
preference optimization often surpass the ones
based on pairwise samples by directly optimizing
the entire ranking order in the list (Cao et al., 2007a;
Wu et al., 2019; Li et al., 2023b). This approach
can capture interdependencies among items, unlike
pairwise ranking that only compares two items at
a time. Although efforts have been made to adapt
DPO to listwise ranking in the text domain (Bansal
et al., 2024; Liu et al., 2024c; Song et al., 2024;
Yuan et al., 2023), applying this to images remains
unexplored due to the complexity of ranking vi-
sual data and high cost of collecting listwise image
samples.

To address this, we propose LPOI (Listwise
Preference Optimization via Interpolating between
Images), an object-aware listwise preference op-
timization framework for reducing hallucinations
in VLMs. LPOI begins by identifying the critical
object in an image based on textual context and cre-
ating hard negative images by masking this object
while keeping overall context. Next, LPOI interpo-
lates the masking ratios between the positive and
hard negative images, automatically generating a
preference list to be optimized (Figure 2). Finally,
the model is trained to rank these interpolated im-
ages using a listwise preference loss.

LPOI ranks images by how much of a critical
object mentioned in the associated text they reveal
(Figure 1). Thus, the model’s likelihood of generat-
ing positive text about the object increases with its
visibility. By aligning the model’s output with the
object’s actual presence, LPOI can lower halluci-
nation rates compared to the state-of-the-art VLM
preference optimization approaches. We also em-
ploy visual prompting (Shtedritski et al., 2023) to
highlight the masked region in each negative exam-
ple, redirecting the model’s focus to the missing
object (Figure 4). By efficiently generating diverse
image lists without costly annotations or diffusion
models, LPOI helps the model learn subtle dis-
tinctions between factual and hallucinating text,
learning more robust and nuanced representation.

To empirically evaluate LPOI’s reduction of hal-
lucination, we fine-tune three VLM models, Idefics-
8B (Laurençon et al., 2024), LLaVA-v1.5-7B, and
LLaVA-v1.5-13B (Liu et al., 2024a), and assess
their performance on the MMHalBench (Sun et al.,

2023), AMBER (Wang et al., 2024b), and Object
HalBench (Rohrbach et al., 2019). Our experi-
ments demonstrate that preference learning in mul-
timodal model benefits from the use of incremen-
tally ranked listwise negatives, in reducing halluci-
nations and improving overall model performance.

Our contributions can be outlined as follows.

• We present LPOI, the first approach to ap-
ply listwise ranking for VLM preference opti-
mization to reduce hallucinations without re-
quiring additional annotation beyond standard
pairwise preference data. This is achieved by
masking the image’s critical object, and then
interpolating the mask ratios between positive
and negative images to generate the prefer-
ence list automatically.

• We evaluate LPOI with three VLM models
across three hallucination benchmarks. The
results show that LPOI consistently achieves
a lower hallucination rate compared to state-
of-the-art VLM preference learning meth-
ods. Furthermore, LPOI outperforms exist-
ing methods in various scenarios, including
when trained on datasets of different sizes or
compared under a fixed budget of GPU hours.

2 Related Work

Preference Learning. Aligning LLMs or VLMs
with human preferences and values, known as pref-
erence learning, is an emerging challenge. Rein-
forcement learning with human feedback (RLHF)
typically involves a multi-phase pipeline, including
supervised fine-tuning of the policy model, training
a reward model, and optimizing the policy based on
the reward model (Christiano et al., 2023; Ouyang
et al., 2022; Ziegler et al., 2020; Gao et al., 2022;
Zadeh et al., 2024). Direct Preference Optimiza-
tion (DPO) (Rafailov et al., 2024) has emerged as
a promising alternative, demonstrating remarkable
performance while simplifying the process by elim-
inating the need for reward model training. Follow-
ing the DPO, numerous works have been proposed
to enhance preference alignment for LLMs (Hong
et al., 2024; Xu et al., 2024b; Meng et al., 2024;
Xu et al., 2024a).

Preference Learning for VLMs. Several studies
have focused on adapting DPO to VLMs, primar-
ily by constructing preference datasets (Xiao et al.,
2024; Zhou et al., 2024; Pi et al., 2024; Deng et al.,
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Prompt: How many batches of bananas 
are there in the image?

Chosen: There are three batches of 
bananas in the image.
Rejected: By studying the image, I can 
confidently state that the answer is 
1.5.0.2.9.7.8.3.4.6.5.2.0.1.2…. chosen text rejected text

Detect & Mask & Filter

Step2. Hard Negatives Generation

more alignment less alignment

Step3. Listwise DPO with Image negatives

Step1. DPO with text negatives

positive negative1 negative N

LPOI Objective

Figure 2: Overview of the LPOI framework. (1) Given an input image, prompt and corresponding set of chosen and
rejected responses, we first compute LDPO and LAnchor using the response pairs similar to traditional DPO. (2) An
object detection model and a VLM are employed to identify the most important object in the image. These objects
are progressively masked in a sequence, with more visual clues being masked as the image deviates further from the
positive example. (3) We optimize our model using this sequence of progressively masked images, which allows it
to better differentiate between varying levels of hallucination, thereby improving its ability to discern subtle changes
in visual context and generate responses more accurately grounded in the image.

2024). Other approaches have explored generat-
ing negative images and using them in preference
learning, either through random cropping (Wang
et al., 2024a) or using computationally expensive
diffusion models (Xie et al., 2024). In this work,
we propose automatically generating hard negative
samples by identifying the critical objects in the
image using an object detection module and textual
information, and then masking these objects out of
the original image.

Hard Negative Mining. Hard negative mining
has been extensively explored in deep metric
learning and contrastive learning, with techniques
like contrastive loss (Hadsell et al., 2006), triplet
loss (Schroff et al., 2015), and adaptive sampling
(Robinson et al., 2021). They aim to enhance repre-
sentation learning by identifying challenging nega-
tives that are semantically close to positive samples.
In our work, we adapt this principle to create hard
negative images by preserving the overall semantic
context of the image while masking out the critical
object.

Listwise Ranking. Empirical and mathematical
studies have shown that listwise ranking is more
effective than pairwise ranking (Cao et al., 2007a;
Li et al., 2023b; Wu et al., 2019), since it optimizes
the entire ranked list simultaneously, considering
the relative positions of all items within the list.
While prior work has focused on adapting DPO for
listwise ranking in text-based applications (Bansal
et al., 2024; Liu et al., 2024c; Song et al., 2024;
Yuan et al., 2023), adapting listwise ranking in
the VLM domain remains underexplored due to
the high costs associated with collecting listwise
image preference data. Our approach is the first
to effectively leverage listwise ranking for VLM
preference optimization to reduce hallucinations,
without incurring additional annotation costs.

3 Approach

A major challenge in preference learning for VLMs
is that models often overfit to textual patterns
and overlook the image information (Wang et al.,
2024a). This issue can lead to object hallucina-
tion (Rohrbach et al., 2019), where the model er-
roneously describes objects or attributes that do
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Algorithm 1 Listwise Preference Optimization via Interpolating between Images (LPOI)
Require: Policy network πθ , reference policy network πref, dataset D, parameters N , list size L

1: for i = 1 to N do
2: Sample (x, q, w, l) ∼ D ▷ x: input image, q: question, w: chosen answer, l: rejected answer

3: Calculate LDPO(θ) = − log σ
(
β log πθ(w | x,q)

πref(w | x,q) − β log πθ(l | x,q)
πref(l | x,q)

)

4: Calculate LAnchor(θ) = − log σ
(
β log πθ(w | x,q)

πref(w | x,q) − δ
)

5: Extract bounding box of the main object b from x, prompt q and chosen answer w.
6: for k = 1 to L do ▷ Create k-th negative sample in the list
7: Define mk as the mask obtained by masking

(
k−1
L−1

)
× 100% of the bounding box b.

8: xk = Highlight(Mask(x,mk)) ▷ Apply masking and visual prompting
9: end for

10: if filtering model answers (xL, q, w) to be positive answer then
11: Go to Line 5 with different object b
12: end if
13: Calculate LListwise(θ) = − log

(∏z
k=1

exp(Sk)∑z
j=k

exp(Sj)

)
where Sk = β log πθ(w | xk,q)

πref(w | xk,q)

14: Minimize LTotal(θ) = LDPO(θ) + LAnchor(θ) + LListwise(θ) ▷ Optimize towards S1 > S2 > · · · > SL

15: end for

not actually appear in the visual scene; particularly
when there are no proper negative image samples
during training. In this work, we propose to reduce
object hallucination by addressing two key objec-
tives: (1) Generating hard negative image samples,
in which the critical object mentioned in the text is
missing but the overall context is preserved (Sec-
tion 3.1). (2) Creating listwise samples without
any additional costly annotations, where the im-
ages are aligned with the object’s actual presence.
(Section 3.2).

3.1 Hard Negative Sample Generation

We generate hard negative image samples—images
that turn the originally preferred answer into the
hallucinated one while preserving the overall se-
mantic context—through two steps of detecting
the object to be masked, and applying the mask
(Figure 2). First, we run the zero-shot object de-
tection module, Grounding-DINO-Tiny with 172M
parameters (Liu et al., 2024b), through the input
image. We select the object to be masked in the
following orders: objects in the first sentence of the
chosen answer, then those in the query, and finally
any remaining objects in the answer. We also ran-
domly select a detected object that are not in the
text. For the selected object, we mask its bounding
box and highlight it using a visual prompting tech-
nique (e.g., a red circle) (Shtedritski et al., 2023),
directing the model’s attention to the masked area.

We then verify that the masked image is indeed a
hard negative sample by making sure that Idefics2-
8B (Laurençon et al., 2024) hallucinates. If it does
not hallucinate, another object is selected, and the
process is repeated (Algorithm 1, Lines 5–12).

3.2 Listwise Optimization
We automatically create listwise samples with no
annotation by interpolating the masking ratios be-
tween the positive image and the hard negative
image. Specifically, when generating k-th image
in the list, we progressively mask k−1

L−1 × 100%
of the bounding box starting from the side closest
to the image edge, where L denotes the list size.
As a result, we obtain a list of samples aligned by
the visibility, where images with less masking are
more positive and those with more masking are
more negative.

Once the listwise samples are created, we opti-
mize the model to have higher likelihood of gen-
erating positive response according to the order of
the list. This is achieved by using a listwise rank-
ing loss, which can be interpreted as the negative
log-likelihood of a given permutation (Cao et al.,
2007b; Rafailov et al., 2024; Liu et al., 2024c):

LListwise(θ) = − log

(
z∏

k=1

exp(Sk)∑z
j=k exp(Sj)

)
,

(1)

where Sk = β log πθ(w |xk,q)
πref(w |xk,q)

. Here, πθ and πref
denote the fine-tuned model and the base model,
respectively. Sk is the normalized log-likelihood of
the model πθ describing the relevant object given
the image xk. x1 is the original image, xL is the
hard negative image, and xk is the interpolated
image with the masking ratio of k−1

L−1 × 100%.
By minimizing the listwise loss in eq. (1), we

optimize the values of Sk to be S1 > S2 > · · · >
SL, which implies that the model’s likelihood of
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Object HalBench MMHalBench AMBER

Method CHAIRs ↓ CHAIRi ↓ Score ↑ HalRate ↓ CHAIRs ↓ Cover. ↑ HalRate ↓ Cog. ↓
LLaVA-v1.5-7B (Liu et al., 2024a) 49.7 26.1 2.02 0.65 7.7 49.8 31.9 3.7
+ DPO (Rafailov et al., 2024) 42.3 23.2 2.00 0.69 6.7 53.2 33.7 3.3
+ HALVA (Sarkar et al., 2024) - - - - 6.6 53.0 32.2 3.4
+ HA-DPO (Zhao et al., 2024) 39.9 19.9 - - 6.7 49.8 30.9 3.3
+ V-DPO (Xie et al., 2024) - - - - 6.6 49.1 30.8 3.1
+ mDPO (Wang et al., 2024a) 30.7 16.0 2.40 0.59 5.0 52.5 27.5 2.4
+ LPOI (Ours) 24.3 14.6 2.40 0.59 4.3 51.9 26.4 2.0

LLaVA-v1.5-13B (Liu et al., 2024a) 44.3 21.2 2.09 0.64 6.3 51.0 30.2 3.0
+ DPO (Rafailov et al., 2024) 38.3 19.4 2.36 0.61 6.2 54.3 31.8 2.6
+ mDPO (Wang et al., 2024a) 33.3 16.6 2.50 0.57 4.6 52.6 25.0 2.0
+ LPOI (Ours) 24.3 11.7 2.54 0.57 3.9 52.9 22.3 1.8

Idefics2-8B (Laurençon et al., 2024) 6.3 4.2 2.62 0.43 3.4 36.5 7.6 0.4
+ DPO (Rafailov et al., 2024) 6.0 4.2 2.48 0.45 3.5 37.4 8.1 0.2
+ mDPO (Wang et al., 2024a) 7.3 5.4 2.80 0.40 2.7 37.7 6.2 0.2
+ LPOI (Ours) 5.3 3.6 2.88 0.36 2.6 36.4 5.7 0.2

Table 1: Performance comparison between various preference learning methods on Object HalBench, MMHalBench,
and AMBER benchmarks. We use three base VLM models: Llava-v1.5-7B/13B and Idefics2-8B. The results of
DPO and mDPO are reproduced under a fair setting with LPOI. HALVA, HA-DPO, and V-DPO are taken from their
respective papers; they are included for reference.

generating positive text about the object increases
as its visibility in the image grows (Figure 2). This
approach helps the model reduce hallucinations, as
it encourages the model to mention the object in
proportion to its visibility.

In addition to the listwise loss, we also use the
standard DPO loss and the anchor loss:

LAnchor = − log σ

(
β log

πθ(w |x, q)
πref(w |x, q) − δ

)
,

which is proposed in mDPO (Wang et al., 2024a).
Minimizing the anchor loss further increases the
likelihood that the model generates postive re-
sponses when given the original image. In total,
our objective becomes

LTotal(θ) = LDPO(θ) + LAnchor(θ) + LListwise(θ).

Algorithm 1 summarizes the overall procedure of
the proposed LPOI method.

4 Experiment

4.1 Experimental Setup

Baselines. We compare our LPOI approach
against established methods, including DPO
(Rafailov et al., 2024), mDPO (Wang et al., 2024a),
HALVA (Sarkar et al., 2024), HA-DPO (Zhao et al.,
2024), and V-DPO (Xie et al., 2024). We eval-
uate each method using three VLMs including
the LLaVA-v1.5-7B, LLaVA-v1.5-13B (Liu et al.,
2024a), and Idefics2-8B (Laurençon et al., 2024).

For DPO and mDPO, we report reproduced results
using the same training dataset as our LPOI method.
For HALVA, HA-DPO, and V-DPO, we report the
originally published performance for reference.

Evaluation. We evaluate both the base and fine-
tuned versions of VLMs using MMHalBench (Sun
et al., 2023), Object HalBench (Rohrbach et al.,
2019), and AMBER (Wang et al., 2024b), which
are standard benchmarks for assessing hallucina-
tion and the quality of generated text of VLMs. We
report the CHAIR metric (Rohrbach et al., 2019) to
measure object hallucination and the MMHalBench
score (computed via GPT-4o (OpenAI, 2024)) to
quantify the quality of generated outputs.

Training setup. We conduct the preference learn-
ing via LoRA fine-tuning (Hu et al., 2021). For
training sets, we randomly sample 10K preference
data from Silkie (Li et al., 2023a) and instruction
datafrom LLaVA-Instruct-150K (Liu et al., 2023),
following the setup of mDPO (Wang et al., 2024a).
Idefics2-8B is trained for 3 epochs with a learning
rate of 5e-6, and LLaVA-v1.5 (7B and 13B) for 1
epoch with a learning rate of 1e-6. We employ 1
RTX A6000 GPU for fine-tuning Idefics2-8B and
LLaVA-v1.5-7B, and employ 2 RTX A6000 GPU
for LLaVA-v1.5-13B. Refer to Appendix A for de-
tails on hyperparameters.
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Object HalBench MMHalBench AMBER

Method CHAIRs ↓ CHAIRi ↓ Score ↑ HalRate ↓ CHAIRs ↓ Cover. ↑ HalRate ↓ Cog. ↓
Idefics2-8B (Laurençon et al., 2024) 6.3 4.2 2.62 0.43 3.4 36.5 7.6 0.4
+ DPO (Rafailov et al., 2024) 6.0 4.3 2.29 0.51 3.1 36.4 6.8 0.3
+ mDPO (Wang et al., 2024a) 8.7 5.6 2.71 0.42 2.8 37.2 6.5 0.3
+ LPOI (Ours) 5.3 4.0 2.81 0.38 2.8 36.2 6.2 0.3

Table 2: Performance comparison under the same training cost (20 hours on a single RTX A6000 GPU) for
Idefics2-8B model on Object HalBench, MMHalBench, and AMBER benchmarks.

Object HalBench MMHalBench AMBER

Method CHAIRs ↓ CHAIRi ↓ Score ↑ HalRate ↓ CHAIRs ↓ HalRate ↓
without V.P. 5.3 4.0 2.74 0.40 2.7 6.0
with V.P. 5.0 3.4 2.91 0.35 2.6 5.8

Table 3: Performance comparison with and without
visual prompting for the Idefics2-8B model on Object
HalBench, MMHalBench, and AMBER benchmarks.

Object HalBench MMHalBench AMBER

Method CHAIRs ↓ CHAIRi ↓ Score ↑ HalRate ↓ CHAIRs ↓ HalRate ↓
List size 3 7.3 5.1 2.86 0.36 2.9 6.6
List size 4 6.7 4.5 2.86 0.36 2.5 5.6
List size 5 5.3 3.6 2.88 0.36 2.6 5.7

Table 4: Performance comparison across different list
sizes for the Idefics2-8B model on Object HalBench,
MMHalBench, and AMBER benchmarks.

4.2 Results

We present the results in Table 1. Our proposed
LPOI consistently improves performance of differ-
ent VLMs across most benchmarks. Notably, it
excels at hallucination related metrics, including
the HalRate in MMHalBench, the CHAIR metric
in Object HalBench, and the CHAIR and cogni-
tion metric in AMBER. Specifically, our method
achieves 24.3 in CHAIRs and 14.6 in CHAIRi

for LLaVA-v1.5-7B on Object HalBench, which
is superior than state-of-the-art mDPO with 30.7
in CHAIRs and 16.0 in CHAIRi in the same set-
ting. It is also worth noting that although our cov-
erage performance is on par with other methods,
this metric often grows at the expense of increased
hallucination since it measures how much ratio of
correct objects are detected by the model. Thus,
models that generate more mentions, even if some
are erroneous, can inflate their coverage score.

We further note that Object HalBench is gener-
ally more challenging than AMBER with respect
to the CHAIR score, and models tend to exhibit a
higher hallucination rate on this benchmark. Our
method yields a notably larger performance gain
on Object HalBench compared to AMBER, where
models already maintain a low hallucination rate

and the scores are largely saturated.

4.3 Human Evaluation

To further assess the quality of responses, we con-
duct a human evaluation using 80 randomly se-
lected image-question pairs, 40 from the AMBER
benchmark and 40 from the Object HalBench. We
present the results in Figure 3. Each pair is pre-
sented to three crowd workers recruited via Ama-
zon Mechanical Turk from English-speaking coun-
tries, with a maximum payment of $0.50 per HIT.
The annotators are provided with two responses
generated by the Idefics2-8B, one fine-tuned us-
ing our LPOI and the other using mDPO, which is
the strongest baseline in Table 1. Workers are in-
structed to select the response that is more accurate
and reliable, considering the visual information in
the image.

We also compare with DPO under the same con-
ditions. Annotators consistently prefer responses
from our fine-tuned model over those from mDPO
and DPO. Inter-annotator agreement is measured
using Krippendorff’s α, which yields a value of
0.735 for DPO and 0.671 for mDPO on the AM-
BER benchmark, and a value of 0.823 for DPO and
0.627 for mDPO on the Object HalBench. These
values reflect the level of agreement among annota-
tors regarding the relative quality of the responses,
with three possible choices: A is better, B is better,
or a tie. More details can be found in Appendix I.

4.4 Analysis

Comparison Under Equal Training Budget.
We present the results of evaluating DPO, mDPO
and LPOI (ours) under the same training budget
(GPU hours). Since the listwise objective inher-
ently incurs a higher training cost compared to the
pairwise objective, we further present the results of
training LPOI, DPO, and mDPO for 20 hours on a
single RTX A6000 GPU using a 5K subsample of
the preference dataset. Table 2 demonstrates that,
even under the same training budget, our method
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47.5% 25% 27.5%

45% 22.5% 32.5%

WIN TIE LOSE

vs mDPO

vs DPO

LPOI (ours) on Object HalBench

42.5% 27.5% 30%

42.5% 45% 12.5%

vs mDPO

vs DPO

LPOI (ours) on AMBER

Figure 3: Human evaluation results on a subset of the
AMBER and Object HalBench benchmark. We compare
responses generated by the Idefics-2B model fine-tuned
using LPOI (ours), DPO, and mDPO.

Masking + Visual Prompting

Figure 4: Comparison of saliency maps with or with-
out visual prompting (highlighted in red circle). Vi-
sual prompting shifts the model’s attention towards the
masked area, guiding it to focus more on the region
of interest. In the saliency maps, blue indicates low
saliency, while red indicates high saliency.

consistently outperforms DPO and mDPO, particu-
larly in terms of hallucination scores and the overall
quality of the generated outputs.

Advantages of Visual Prompting. Masking the
critical object in an image may not always turn
the original preferred answer into a negative one,
when VLMs can still infer the correct answer by
using surrounding context. Thus, we apply visual
prompting (Shtedritski et al., 2023; Wu et al., 2024;
Lin et al., 2024; Cai et al., 2024) to highlight more
the masked region and guide the model’s attention
there. We validate that visual prompting directs the
model’s focus and increase the performance.

Figure 4 shows the saliency maps of the masked
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Figure 5: MMHalBench results for different preference
optimization methods trained on three different sizes of
training sets.

image with and without visual prompting. The
saliency maps are computed using a gradient-based
method with ResNet-50 (He et al., 2015), where we
aggregate the absolute gradient of the prediction
loss with respect to the input image across RGB
channels. After the masked area is highlighted
with a red circle, the saliency score in that region
increases, showing that the model focuses more
on the masked area. Please refer to Appendix G
for more examples. Table 3 shows that using vi-
sual prompting improves the quality of generated
outputs and in reducing hallucinations, thanks to
generating higher-quality negative images.

Impact of List Sizes. We present the results of
LPOI with list sizes of 3, 4, and 5, assessing the
impact of the list size on the performance. Table 4
shows that larger list sizes result in improved over-
all performance, particularly for the Idefics2-8B on
the Object HalBench dataset. We speculate that this
improvement comes from the model being able to
learn from a wider range of preference samples, i.e.,
larger list sizes provide more opportunities for the
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Q. Please provide a detailed description.

(base) The image features a large, freshly baked pizza with a generous amount of sauce and cheese. The pizza is placed 
on a metal tray, which is sitting on a dining table. The table is surrounded by chairs, with one on the left side and 
another on the right side. In the background, there is a person partially visible, likely enjoying the meal or preparing 
to eat the pizza. The overall atmosphere of the image is casual and inviting, with the focus on the delicious pizza and the 
comfortable dining setup.

(DPO) The image features a large, freshly baked pizza with a generous amount of tomato sauce and melted cheese. The 
pizza is placed on a metal tray, which is sitting on a dining table. The table appears to be in a restaurant setting, as 
there are chairs positioned around it. The pizza is cut into several slices, with some of the slices appearing to be missing, 
indicating that it has been partially eaten. The sauce is spread evenly across the pizza, with some areas appearing to be 
more saucy than others. The cheese is melted and bubbly, creating a mouth-watering appearance. The overall mood of 
the image is one of indulgence and enjoyment, as the pizza looks delicious and inviting. The restaurant setting suggests a 
casual dining atmosphere, where people can gather to share a meal and socialize.

(mDPO) The image features a close-up view of a partially eaten pizza with a generous amount of sauce, sitting on a metal 
tray. The pizza appears to be a cheese and tomato-based variety, with a slightly burnt crust. The sauce is predominantly 
red, and the cheese is white, creating a visually appealing contrast. In the background, there is a person partially 
visible, likely enjoying the pizza or preparing to eat it. The dining table is also present, but it is not the main focus of the 
image. The overall mood is casual and inviting, as the pizza is a popular and comforting food choice.

(OURS) The image features a close-up view of a large, partially eaten pizza with a generous amount of red sauce, likely 
tomato-based. The pizza is placed on a metal tray, which is the main focus of the image. The crust appears to be slightly 
burnt, giving the pizza a slightly charred appearance. The pizza is sliced into several pieces, with a few visible in the 
foreground and others in the background. The sauce is spread across the pizza, with some areas appearing more 
saturated than others. The close-up view emphasizes the details of the pizza, including the cheese and the sauce, 
creating a sense of depth and texture. The image does not include any people or objects, which allows the viewer to 
focus solely on the pizza and its details. The overall mood or atmosphere of the image is one of indulgence and 
satisfaction, as the pizza appears to be a delicious and satisfying meal.

Q. Compare the tomatoes in the photo.
(DPO) In the photo, there are four tomatoes hanging from a vine, each at a different stage of ripeness. The first tomato 
on the left is the most unripe, with a greenish hue and a firm texture. The second tomato, in the middle, appears to be 
slightly riper, with a more yellowish color and a slightly softer texture. The third tomato, on the right, is the ripest, with a 
deep yellow color and a noticeably softer texture. The fourth tomato, at the far right, is the most unripe of the group, with 
a greenish hue and a firm texture. This progression of ripeness from left to right indicates that the tomatoes are at different 
stages of maturity, with the ripest tomato being ready for consumption and the others still needing more time to ripen.

(base) In the photo, there are three tomatoes hanging from a vine. The first tomato is located on the left side of the image, 
the second tomato is in the middle, and the third tomato is on the right side. They all appear to be ripe and ready for 
harvest. The tomatoes are hanging from the vine, which is a common sight in gardening and agriculture.

(mDPO) In the photo, there are three tomatoes hanging from a vine. They appear to be at different stages of ripeness. 
The tomato on the left seems to be the least ripe, with a greenish tint, indicating that it is still unripe. The tomato in 
the middle is more ripe, with a yellowish hue, suggesting that it is at an intermediate stage of ripeness. The tomato on the 
right is the most ripe, with a deep orange color, indicating that it is fully ripe and ready to be picked. The differences 
in color and texture suggest that the tomatoes are at different stages of maturity, with the left one being the least ripe 
and the right one being the most ripe. 

(OURS) The photo features three tomatoes hanging from a vine, with each tomato appearing to be at a different stage of 
ripeness. The first tomato is the most ripe, with a bright orange color and a slightly yellowish tint. The second tomato is 
slightly less ripe, with a more orange hue and a slightly greenish tint. The third tomato is the least ripe, with a more 
greenish-yellow color and a noticeable stem. This progression of ripeness suggests that the tomatoes are at different 
stages of maturity, with the first tomato being ready for immediate consumption, while the other two tomatoes may 
require more time to ripen further before they are at their peak flavor and nutritional value. 

Figure 6: Qualitative results of the base model (LLaVA-v1.5-7B) its finetuned versions with DPO, mDPO, and
LPOI (Ours). Correct answers and hallucinations are highlighted.

model to capture fine-grained differences between
candidates, leading to a better model performance.

Ablating the DPO Loss. The listwise prefer-
ence loss only utilizes positive text (with multiple
masked images). Without the text DPO loss, nega-
tive text samples in the dataset are not used, mean-
ing that the model would not learn from any textual
preference information (i.e., learn from only image
preference information). To demonstrate the effect
of incorporating the text DPO loss, we conducted
ablation experiments by training the Idefics2-8B
model on a 5K training dataset with LPOI (a list
size of 3) for 3 epochs. We compared three scenar-
ios: (1) LPOI without the text DPO loss, (2) LPOI
with neither the text DPO loss nor the anchor loss,
and (3) the full LPOI loss as proposed in this paper.
The results, presented in Table 5, show that exclud-
ing the DPO loss leads to suboptimal performance
compared to using the complete LPOI loss.

Object HalBench MMHalBench AMBER

Method CHAIRs ↓ CHAIRi ↓ Score ↑ HalRate ↓ CHAIRs ↓ HalRate ↓
Idefics2-8B 6.3 4.2 2.62 0.43 3.4 7.6
+LPOI (without DPO loss) 7.7 4.6 2.56 0.44 3.3 7.4
+LPOI (without DPO, anchor loss) 6.0 4.1 2.50 0.45 3.5 7.5
+LPOI 5.7 3.6 2.74 0.40 2.8 6.4

Table 5: Ablation experiments comparing (1) LPOI
without text DPO loss, (2) LPOI without both text DPO
and anchor loss, and (3) the full LPOI loss, using the
Idefics2-8B model trained for 3 epochs on 5K dataset,
using list size of 3.

Results on Different Training Sets. We quanti-
tatively compare between DPO, mDPO, and LPOI
when training on smaller datasets for Idefics2-8B
in Figure 5. We train them on the subsets with sizes
of 5K, 7K, and 10K, repeating the process three
times for each subset, and report the average and
standard deviation of the GPT-score and hallucina-
tion ratio on the MMHalBench benchmark. Our
experiments demonstrate a consistent advantage
of LPOI over the other methods, both in terms of
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output quality and hallucination reduction, across
preference datasets of varying sizes.

Qualitative Examples Figure 6 presents a com-
parative analysis of outputs from the LLaVA-v1.5-
7B base model and its fine-tuned variants using
DPO, mDPO, and LPOI. For instance, in the first
example, where the main factor in hallucination is
determining which tomato is the ripest, our model
accurately selects the leftmost tomato while other
models erroneously choose the rightmost one. The
baselines’ explanations often contradict what is
clearly observable in the image. These results high-
light the importance of guiding the model to focus
on subtle incremental visual changes. By doing so,
our LPOI enables the model to ground its responses
more reliably in the image, improving the recogni-
tion of fine details and reducing the likelihood of
hallucinating common yet irrelevant objects.

5 Conclusion

In this work, we addressed the challenge of align-
ing VLMs with human preferences by proposing
LPOI, a novel framework that combines hard neg-
ative sampling with listwise ranking. By generat-
ing object-aware hard negatives through masking
key objects in images and interpolating between
them and positive samples, we provide an efficient
method for creating listwise preference data with-
out additional annotation cost. Extensive evalu-
ations on Object HalBench, MMHalBench, and
AMBER benchmarks demonstrate that LPOI sig-
nificantly improves performance by mitigating hal-
lucinations and enhancing multimodal alignment.

Ethics Statement

We have used open source models, libraries,
datasets, and closed source models for their in-
tended use and license, and not use other than re-
search purposes.

Limitations

A potential limitation of our approach is that while
we focus on listwise sample generation for the vi-
sion and language domain, we do not address other
modalities, such as the audio domain. Future work
could explore further optimization strategies and
extend listwise preference learning to additional
modalities, including audio, by adapting similar
interpolation strategies to reduce hallucinations in
those domains. Additionally, the prompts provided

are exclusively in English but it can be expanded
to include multiple languages in future iterations.
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A Experimental Details

Training setup and hyperparameters We report the hyperparameters for training LPOI in Table 6. We
fine-tune base models with LoRA adapter with the configuration in Table 6.

Model LLaVA-v1.5-7B LLaVA-v1.5-13B Idefics2-8B

Training epochs 1 1 3
Training set size 10K 10K 10K
Batch size 64 64 64
Optimizer AdamW AdamW AdamW
Learning rate 1e-6 1e-6 5e-6
Learning rate scheduling Linear Linear Linear
Mixed precision FP16 FP16 BF16
LoRA rank 8 8 8
LoRA alpha 8 8 8
LoRA dropout 0.0 0.0 0.0

Table 6: Training hyperparameters for fine-tuning LLaVA-v1.5-7B, LLaVA-v1.5-13B, and Idefics2-8B models.

B Computational Overhead and Performance Analysis

We present the training time of DPO, mDPO, and LPOI with the list sizes of 3, 4, and 5 on 5K examples
for 1 epoch, measured on an RTX A6000 GPU in Table 7. Additionally, we include the number of epochs
and scores on the MMHalBench benchmark when trained with the same GPU budget (20 GPU hours),
also in Table 7. As the list size increases, LPOI introduces computational overhead, but it provides richer
signals that help reduce hallucinations, leading to a lower hallucination ratio (See Table 4 ). Moreover,
with sufficient optimization time, LPOI outperforms both mDPO and DPO within the same GPU training
budget, benefiting from these richer signals.

Methods
Time per

epoch
Epochs under
20 GPU hours

MMHalBench
GPT-Score (↑)

MMHalBench
HalRate (↓)

DPO 2.2 hrs 9 epochs 2.29 0.51
mDPO 4.0 hrs 5 epochs 2.71 0.42
LPOI (list size 3) 4.5 hrs 4.5 epochs – –
LPOI (list size 4) 5.3 hrs 3.8 epochs – –
LPOI (list size 5) 6.2 hrs 3 epochs 2.81 0.38

Table 7: Training time per epoch on 5K examples for DPO, mDPO, and LPOI (list sizes 3, 4, 5), using an RTX
A6000 GPU, along with the number of epochs and MMHalBench results under the same GPU budget.

C Extended Benchmark Comparison

We further evaluated our method (LPOI) and the baselines (DPO and mDPO) on the HallusionBench
benchmark (Guan et al., 2024) using Idefics2-8B model, and presented the results in Table 8. LPOI
consistently outperforms or matches the baseline methods across most of the metrics.

D Additional Results with Increased Training Data

We chose to use a 10K subset of Silkie and LLaVA-Instruct-150K for preference fine-tuning by following
the experiment setup in mDPO. Furthermore we conducted additional experiments by fine-tuning the
Idefics2-8B model on 15K data for 1 epoch, using our method (LPOI) and baselines (DPO, mDPO). The
results, presented in Table 9, demonstrate that our method consistently outperforms the baselines across
most metrics.
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Model Question Pair Acc Figure Acc Easy Acc Hard Acc All Acc

Idefics2-8B (Laurençon et al., 2024) 8.35 14.16 32.53 30.93 35.08
+DPO (Rafailov et al., 2024) 15.82 22.54 49.45 33.72 46.68
+mDPO (Wang et al., 2024a) 16.48 24.28 50.33 36.05 48.45
+LPOI (Ours) 17.80 23.70 51.65 36.98 49.78

Table 8: Performance comparison between various preference learning methods on HallusionBench benchmark.

Object HalBench MMHalBench AMBER

Method CHAIRs ↓ CHAIRi ↓ Score ↑ HalRate ↓ CHAIRs ↓ Cover. ↑ HalRate ↓ Cog. ↓
Idefics2-8B (Laurençon et al., 2024) 6.3 4.2 2.62 0.43 3.4 36.5 7.6 0.4
+ DPO (Rafailov et al., 2024) 6.3 4.4 2.57 0.44 3.3 36.4 7.3 0.3
+ mDPO (Wang et al., 2024a) 7.7 5.0 2.74 0.41 3.0 37.6 6.8 0.3
+ LPOI (Ours) 5.0 3.7 2.75 0.38 3.0 36.8 6.8 0.3

Table 9: Performance comparison between various preference learning methods with larger dataset (15K).

E Analysis and Ablation of the Verification Module

For the full 10K dataset with a list size of 5, object detection takes 1,298 seconds (21 minutes), and the
verification module takes 18,938 seconds (5.26 hours), averaging 0.166 seconds and 2.43 seconds per
data point, respectively. While we reported the version with verification to achieve the best performance,
we note that our method performs well even without the verification step, outperforming all baseline
methods in this case. To further illustrate this, we conducted an additional experiment using only the
object detection module, focusing on a single salient object per image and excluding the verification
step, and presented the results in Table 10. Despite this simplification, the LPOI still enables the model
to outperform baseline methods like DPO and mDPO across most metrics—especially on hallucination
scores, as shown in Table 10. This demonstrates that our approach can maintain strong performance while
significantly reducing preprocessing time.

F Details on Object Detection Model

For the object detection component in Section 3.1, we utilize the Grounding-DINO-Tiny model. Since
generating accurate hard negative samples is vital for our pipeline, and precise object detection plays a key
role in this process, we evaluate various object detection models to find the most suitable one for our task.
Specifically, we compare different versions of Grounding-DINO (Liu et al., 2024b), OwlV2 (Minderer
et al., 2024), and YOLO-World (Cheng et al., 2024) on a 1k subset of our dataset. The chosen model,
with 172 million parameters, effectively detects around 80% of the key noun objects present in the image.

G Details on Visual Prompting

Figure 7 illustrates 3 more examples of the impact of incorporating an additional visual prompting
represented by a red circle in the image, to guide the model’s attention toward the region of interest.
In each group, the left column displays an image from our dataset with only the applied mask, its
corresponding saliency map, and an overlap visualization of the two. The right column shows the same
image, but with the visual prompt added by circling the masked area.

H Qualitative Analysis

We provide additional examples generated by the fine-tuned models using DPO, mDPO, and LPOI (ours).
In the first example, shown at the left, all models except ours mistakenly claim that the kiwi in the
foreground, which is dried into chips, is fresh. In the third example at the right, the image shows a
motorcycle without a rider. When asked to determine the gender of the person riding the motorcycle, our
model correctly states that no person is visible, while the other models erroneously identify a woman as
the rider. These examples highlight how our method reduces common hallucinations in vision-language
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Object HalBench MMHalBench AMBER

Method CHAIRs ↓ CHAIRi ↓ Score ↑ HalRate ↓ CHAIRs ↓ Cover. ↑ HalRate ↓ Cog. ↓
Idefics2-8B (Laurençon et al., 2024) 6.3 4.2 2.62 0.43 3.4 36.5 7.6 0.4
+ DPO (Rafailov et al., 2024) 6.0 4.2 2.48 0.45 3.5 37.4 8.1 0.2
+ mDPO (Wang et al., 2024a) 7.3 5.4 2.80 0.40 2.7 37.7 6.2 0.2
+ LPOI (without verification) 6.0 4.1 2.86 0.35 2.7 36.1 5.9 0.2

+ LPOI (with verification) 5.3 3.6 2.88 0.36 2.6 36.4 5.7 0.2

Table 10: Performance of DPO, mDPO, and LPOI on the Idefics2-8B model trained for 3 epochs. LPOI preserves
its superiority over the baselines even without verification module. LPOI with verification is included for reference.

Masking + Visual Prompting Masking + Visual Prompting Masking + Visual Prompting

Figure 7: Comparison of saliency maps with or without visual prompting (highlighted in red circle).

models, such as the false assumption of co-occurring objects, the failure to recognize subtle object features
or the provision of answers to questions that cannot be derived from the image alone.

I Details on Human Evaluation

Figure 9 shows the user interface where annotators select the less hallucinatory response between two
answers generated by mDPO and LPOI (ours). Each worker is presented with two responses generated
by the Idefics2-8B model: one fine-tuned using mDPO or DPO, and the other using the LPOI method.
Workers are instructed to select the response they consider more accurate and reliable based on the visual
information in the image. If the responses are identical or both factually incorrect, workers are asked to
choose the ’tie’ option. The workers’ answers are then aggregated using a majority vote. To prevent bias,
the order of the responses (Response A and Response B) is shuffled for each datapoint, and workers must
also provide justifications for their selections. These justifications are reviewed to ensure the reliability
and consistency of the answers, which are then used to validate the integrity of the evaluation process.

Q. Is the kiwi in the front fresh or dried?
(base) The kiwi in the front is fresh.

(DPO) The kiwi in the front is fresh, 
as it is still attached to the stem 
and has not been dried.

(OURS) The kiwi in the front is dried, 
indicated by the fact that it is cut in 
half and appears to be a slice of a 
dried kiwi.

(mDPO) The kiwi in the front is 
fresh, as it is still attached to the 
skin and has not been dried.

(base) The person riding the 
motorcycle in the image is a woman.

(DPO) The person riding the 
motorcycle in the image is a woman.

(OURS) The image does not show a 
person riding the motorcycle, so it is not 
possible to determine the gender.

(mDPO) The person riding the 
motorcycle in the image is a woman.

Q. What is the gender of the person?

Figure 8: Qualitative results of the base model (LLaVA-v1.5-7B) its variants optimized with DPO, mDPO, and
LPOI(Ours). Correct answers and hallucinations are highlighted.
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Figure 9: User interface and instruction for human evaluation.
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