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Abstract

The few-shot relation extraction (FSRE) aims
at enhancing the model’s generalization to new
relations with a few labeled instances. Existing
studies usually adopt prototype networks (Pro-
toNets) for FSRE and assume that the support
set, adapting the model to new relations, only
contains accurately labeled support instances.
However, this assumption is often unrealistic,
as even carefully-annotated datasets commonly
contain mislabeled instances. In this paper, we
first conduct a preliminary study that reveals
the high sensitivity of ProtoNets to noisy labels
in the support set. Moreover, we find that fully
leveraging mislabeled support instances is cru-
cial for enhancing the FSRE model robustness.
Thus, we propose a self-denoising model for
FSRE, designed to improve model robustness
by automatically correcting mislabeled support
instances. It comprises two core components:
1) a label correction module (LCM), used to cor-
rect noisy labels of support instances based on
the distances between them in the embedding
space, and 2) a relation classification module
(RCM), aimed to achieve more accurate predic-
tions for new relations based on the corrected
labels produced by LCM. Moreover, we pro-
pose a feedback-based training strategy, which
focuses on training LCM and RCM to synergis-
tically handle noisy labels in support set. Exper-
imental results on two public datasets confirm
the robustness of our model. Particularly, even
in scenarios without noisy labels, our model
significantly outperforms all baselines.

1 Introduction

Relation extraction (RE), as a crucial information
extraction task, has been widely used to provide
useful information for various downstream natu-
ral language processing (NLP) tasks (Han et al.,
2020; Guo et al., 2021). It aims to identify the
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Figure 1: A 2-way-3-shot support set with noisy labels
from FewRel 1.0. [bold] indicates entities. Can you
identify these two relations? Which instances are misla-
beled? See Appendix A for answers and more cases.

semantic relation between entities in a given text.
In this regard, dominant studies usually employ su-
pervised learning methods, where a large amount
of labeled data is used to train various carefully-
designed neural networks. Despite their impressive
results, these methods face challenges in adapting
to new relations (not seen during training). Thus,
many researchers have shifted their attention to
few-shot relation extraction (FSRE), which focuses
on enhancing the generalizability of RE models to
new relations with a handful of labeled instances.

Typically, FSRE studies are conducted in an N -
way-K-shot setting, where models are trained and
tested on a series of few-shot tasks. Here, each
few-shot task contains N new relations, each with
K support instances (as support set S) and Q query
instances (as query set Q). For each few-shot task,
models first adapt to its new relations using the
support instances, and then predict the relations
of query instances. This process effectively sim-
ulates the application of RE models in real-world
scenarios where new relations constantly emerge,
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each with a few labeled instances. However, prior
studies (Han et al., 2018; Gao et al., 2019c; Li
et al., 2022; Borchert et al., 2024) usually assume
that the support set in each few-shot task contains
only accurately labeled support instances. Unfortu-
nately, noisy labels are often inevitable in practical
applications (Tsipras et al., 2020; Northcutt et al.,
2021) due to label similarity, data ambiguity, or hu-
man error. In Figure 1, we intuitively illustrate the
challenges of accurately annotating every support
instance in FSRE. Furthermore, in Appendix A, we
find that advanced large language models (LLMs)
(e.g., GPT-4) also struggle to discern mislabeled
support instances, even with sufficient hints.

More importantly, since each new relation has
only a few support instances in the few-shot task,
even a single noisy instance may significantly im-
pair the performance of FSRE models. Thus, it is
crucial to further consider the robustness of FSRE
models to noisy labels in the support set. Indeed,
such noisy few-shot learning (NFSL) has been dis-
cussed in the CV community (Mazumder et al.,
2021; Liang et al., 2022; Zhang et al., 2023a; Que
et al., 2024), but it has not yet been explored in
FSRE. Notably, unlike traditional noisy label learn-
ing (Song et al., 2022) that aims to reduce the im-
pact of noisy labels in the training set on model
training, NFSL focuses on leveraging clean train-
ing sets to develop a robust (denoising) model that
excels in real-world noisy few-shot tasks. In our ex-
periments, we also explore a more realistic scenario
involving NFSL with a noisy training set.

In this paper, we conduct a preliminary study to
investigate the robustness of prototypical networks
(ProtoNets), widely used in existing FSRE studies
(Snell et al., 2017; Li et al., 2022; Borchert et al.,
2024), to noisy labels in the support set. We ob-
serve that ProtoNets are highly sensitive to such
noisy labels. Further analysis reveals that fully uti-
lizing mislabeled support instances is crucial for
enhancing the FSRE model’s robustness.

Based on the above findings, we propose a self-
denoising model for FSRE, which can automati-
cally correct noisy labels of support instances to
enhance the model’s robustness. As shown in Fig-
ure 4, our model consists of three components: an
encoder, a label correction module (LCM), and
a relation classification module (RCM). For each
few-shot task, we first employ the encoder to gener-
ate the embedding representation of every instance.
Then, LCM is used to correct noisy labels of sup-
port instances according to the distances between

them in the embedding space. Finally, RCM ac-
curately predicts the relations of query instances
based on the corrected labels generated by LCM.

In addition, the limited training data in FSRE
poses a significant challenge for developing a ro-
bust FSRE model. Hence, we propose a feedback-
based training strategy that aims at training LCM
and RCM to collaboratively handle noisy labels in
the support set. Specifically, we first sample a batch
of few-shot tasks B from the training set and inject
noisy labels into their support sets to create a batch
of noisy few-shot tasks B′. Next, we use LCM to
generate corrected labels for support instances in
B′ and employ these corrected labels to guide the
training of RCM on B′. Intuitively, the more ac-
curate these corrected labels, the better the trained
RCM will perform on B. Thus, we utilize the per-
formance of the trained RCM on B as a reward
signal (feedback) to train LCM, enabling it to cor-
rect mislabeled support instances more accurately.
Unlike prior denoising methods (Liang et al., 2022;
Que et al., 2024) that directly use instance labels to
supervise model denoising training, we apply the
above feedback mechanism to guide the denoising
training of our model, more fully utilizing label
information from the limited training data.

To evaluate the efficacy of our model, we con-
duct extensive experiments on two public datasets.
Experimental results and in-depth analysis demon-
strate the robustness of our model. Notably, even
in scenarios without noisy labels, our model signif-
icantly outperforms all competitive baselines.

2 Preliminary Study

In this section, we conduct a preliminary study to
investigate the robustness of Proto-BERT (Snell
et al., 2017), a classic BERT-based ProtoNets, to
noisy labels in support set. Although Proto-BERT
only includes a BERT-based encoder to obtain in-
stance representations, it still achieves competitive
performance and has been widely used in recent
studies (Zhang et al., 2022b; Borchert et al., 2024).

As shown in Figure 2, we adjust the noise rate in
support set and report the accuracy of Proto-BERT
on the validation set of FewRel 1.0. We observe
that this model is highly sensitive to noisy labels in
support set (See Green Line). The intuitive reason
is that ProtoNets treat each support instance equally
when computing relation prototypes, exacerbating
the negative impact of mislabeled instances. To
verify this, we follow Liang et al. (2022) to remove
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Figure 2: Accuracy of Proto-BERT on the FewRel 1.0
validation set. In the 10-way-10-shot setting, we con-
duct this group of experiments with different noise rates.

mislabeled support instances when generating rela-
tion prototypes, which improves the model’s perfor-
mance (See Red Line). This variant provides a ba-
sis for prior studies (Gao et al., 2019a; Liang et al.,
2022) that enhance model’s robustness by reducing
the impact of mislabeled instances on prototype
vectors. However, compared to the model using
the support instances with ground-truth labels (See
Blue Line), this variant still exhibits significant per-
formance drop at higher noise rates. This implies
that fully utilizing mislabeled support instances is
key to further improving the model’s robustness.

To better understand the limited robustness of
Proto-BERT, we visualize the distribution of in-
stances in its embedding space. From Figure 3, we
note that instances of different relations are not dis-
tinctly separated. Meanwhile, we use a commonly
used clustering metric, the Silhouette Coefficient
(Rousseeuw, 1987), to evaluate the discriminability
between instances with different relations in the
embedding space. In terms of this metric, Proto-
BERT achieves a lower score of 0.28, further indi-
cating the insufficient separation between instances
of different relations. Intuitively, this insufficient
separation worsens the negative impact of misla-
beled support instances on relation prototypes.

3 Our Model

In this section, we provide a detailed introduction
to our self-denoising model for FSRE. As shown in
Figure 4, it contains three components: an encoder,
a label correction module (LCM), and a relation
classification module (RCM). We first elaborate
these components in Sections 3.1−3.3, and then
outline our model training strategy in Section 3.4.

Figure 3: The t-SNE plots of instance representations
generated by Proto-BERT on the FewRel 1.0 validation
set. The number indicates the relation index.

3.1 Encoder
Following prior studies (Liu et al., 2022; Li et al.,
2022; Borchert et al., 2024), we utilize BERT (De-
vlin et al., 2019) as our encoder to generate the
embedding representations of each instance in the
few-shot task. For each instance xi, we first insert
four special tokens “[E1], [/E1]” and “[E2], [/E2]”
into xi to mark the start and end positions of its
head entity and tail entity, respectively. Then, we
feed xi into the encoder to generate its token-level
representations. Finally, we concatenate the repre-
sentations of the [E1] and [E2] tokens at the start
positions of the head and tail entities, yielding the
representation of this instance: hi=[h[E1];h[E2]].

As per common practices (Liu et al., 2022; Li
et al., 2022), we treat the description text of each
relation as an additional support instance xi′ and
apply the encoder to produce its representation hi′ .
Since xi′ does not contain the head and tail entities,
we derive its representation by concatenating the
representation of the [CLS] token with the average
representation of the remaining other tokens: hi′=
[h[CLS];havg]. Given this support instance, in the
N -way-K-shot setting, the support set S of each
few-shot task includes |S|=N∗(K+1) instances.

3.2 Label Correction Module
Back to Figure 4, our LCM comprises two sublay-
ers: a graph neural network (GNN) sublayer and
an iterative correction (IC) sublayer. Particularly,
our GNN sublayer is a single-layer graph attention
network (GAN) (Veličković et al., 2018), designed
to model the correlation among support instances
in each few-shot task by graph propagation:

ĥi = σ
(∑|S|

j=1 αi,jWhj

)
, (1)
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Figure 4: The overall architecture of our model.

where αi,j denotes the attention score between the
i-th and j-th support instances, W is a learnable
weight matrix, and σ(·) refers to the activation func-
tion (i.e., ReLU). With the help of our training strat-
egy, this sublayer can map the encoder-generated
representations of support instances into a more dis-
criminative embedding space, where instances with
the same relation are clustered and those with differ-
ent relations are separated. This lays the foundation
for correcting noisy labels of support instances and
is validated in our experiments.

On top of the GNN sublayer, the IC sublayer
aims to iteratively correct noisy labels of support
instances based on the distances between them in
the embedding space. Here, we sequentially adopt
two iterative strategies to gradually refine the labels
of support instances:

The first strategy. It focuses on leveraging the
distances among support instances with the same
relation to iteratively correct noisy labels in the
support set. Specifically, at the t1-th iteration, we
first compute an importance weight w(t1)

i for each
support instance based on its distance to the nearest
support instance sharing the same relation with it:

w
(t1)
i = −minj∈Nr,j ̸=i{∥ĥi − ĥj∥2}, (2)

where r=ŷ
(t1−1)
i denotes the relation generated in

the previous iteration for the i-th support instance,
Nr symbolizes the index set of all support instances
with the relation r, and ∥·∥2 represents the L2 dis-
tance function. Intuitively, mislabeled support in-
stances often have smaller importance weights than
correctly labeled ones, as they are generally more
distant from other instances with the same relation.
Next, we calculate a prototype vector p(t1)

r for each
relation r using the weighted average representa-
tion of its support instances:

p(t1)
r =

∑

j∈Nr

exp(w
(t1)
j )

∑
j′∈Nr

exp(w
(t1)
j′ )

ĥj . (3)

In this way, we can lessen the effect of mislabeled
support instances on the relation prototypes. Fi-
nally, we use these prototype vectors to correct
noisy labels of support instances as follows:

ŷ
(t1)
i = argmax

r
(−∥ĥi − p

(t1)
r ∥2), (4)

where ŷ
(t1)
i is the updated label of the i-th support

instance. Through repeating the above process T1

times, we can obtain corrected labels Ŷ(T1) for all
support instances, where each row in Ŷ(T1) denotes
the one-hot label of a support instance.

The second strategy. It aims to further refine
the labels of support instances via a label propaga-
tion manner, which iteratively updates the label of
each support instance using the label information of
its neighboring instances in the embedding space.
Concretely, we first construct an adjacency matrix
A=[ai,j ]∈R|S|×|S| using the distances ai,j=ĥT

i ĥj

between support instances. Meanwhile, we set the
diagonal elements of A to −∞ and normalize its
row vectors via a softmax function. Lastly, we per-
form label propagation by iterating the following
process:

Ŷ(T1+t2) = AŶ(T1+t2−1) + Ŷ(T1+t2−1), (5)

where t2 indicates the current iteration step. Unlike
traditional label propagation methods, we mask the
diagonal elements of A and retain the label infor-
mation from the previous iteration by a residual
connection. After T2 iterations, we obtain refined
corrected labels Ŷ(T1+T2) for all support instances.

The primary motivation behind combining the
above two iterative strategies is that the first strat-
egy is more effective at high noise rates while the
second strategy performs better at low noise rates
(as confirmed in ablation studies). Thus, combin-
ing them enables our model to correct noisy labels
of support instances across various noise levels.

3.3 Relation Classification Module

Our RCM consists of a simple multi-layer percep-
tron (MLP), which aims to predict the relations of
query instances based on support instances with
the corrected labels Ŷ(T1+T2). As shown in the top
left of Figure 4, we first feed the encoder-generated
instance representation hi into the MLP, yielding
its updated representation h̃i=MLP(hi). Next, we
normalize the column vectors of Ŷ(T1+T2) to ob-
tain the relevance score si,r between each support
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Figure 5: Illustration of our model training. Red dashed
vectors denote gradients.

instance and each relation. With these scores, we
derive a prototype vector p̃r for each relation r:

p̃r =

|S|∑

i=1

si,rh̃i =

|S|∑

i=1

Ŷ
(T1+T2)
i,r∑|S|

j=1 Ŷ
(T1+T2)
j,r

h̃i. (6)

These prototype vector, benefiting from Ŷ(T1+T2),
is more robust to mislabeled support instances.

Following this, we can compute the relation dis-
tribution p̃(r|xq) of each query instance:

p̃(r|xq) =
exp(−∥h̃q − p̃r∥2)∑N

r′=1 exp(−∥h̃q − p̃r′∥2)
. (7)

Finally, we predict the relation ỹq for each query
instance xq as follows: ỹq=argmax

r
(p̃(r|xq)).

3.4 Model Training

Our model undergoes two training stages: a pre-
training stage and a self-denoising stage. At the
first stage, we define a loss function L1 that is only
related to our encoder and use it to pre-train the
encoder on few-shot tasks sampled from the train-
ing set. As shown in Figure 5 (1), we first replace
Ŷ(T1+T2) and {h̃∗} in Eqs. (6-7) with the ground-
truth labels Y of support instances and the encoder-
generated instance representations {h∗}, yielding
a new relation distribution p(r|xq) for each query
instance. Then, we formalize L1 as follows:

L1 =
∑|Q|

q=1−log(p(yq|xq)), (8)

where Q denotes the query set, yq refers to the
ground-truth label of the q-th query instance xq.

At the self-denoising stage, we freeze the trained
encoder and propose a feedback-based training
strategy to train our RCM and LCM, allowing them
to collaboratively handle noisy labels in the support
set. Concretely, we first sample a batch of few-shot
tasks B from the training set and inject noisy labels
into their support sets, obtaining a batch of noisy

few-shot tasks B′. Then, we alternately trains RCM
and LCM on B′ and B by three training steps:

In the first step, we focus on applying LCM to
guide the training of RCM on B′. As depicted in
Figure 5 (2), we first employ LCM to generate the
corrected labels Ŷ(T1+T2) for support instances in
B′. Next, we feed Ŷ(T1+T2) into RCM to predict
the relation distribution p̃(r|xq) for each query in-
stance in B′ based on Eqs. (6-7), further obtaining a
new loss L2 =

∑|Q|
q=1−log(p̃(yq|xq)). Lastly, we

use the adapted Adam optimizer (Pham et al., 2021;
Ding et al., 2022) and the loss L2 to optimize our
RCM, resulting in a temporary RCM. Since L2

is derived from Ŷ(T1+T2) generated by LCM, this
optimizer can ensure the dependency between the
temporary RCM parameters and the LCM ones, en-
abling the loss computed by the temporary RCM to
directly calculate the gradient of the LCM param-
eters. Intuitively, the more accurate the corrected
labels Ŷ(T1+T2) produced by LCM, the better the
temporary RCM will perform on B.

In the second step, inspired by the above intu-
ition, we utilize the performance of the temporary
RCM on B as a reward signal (feedback) to train
our LCM. As shown in the right part of Figure 5 (2),
we input the ground-truth labels Y of support in-
stances in B into the temporary RCM to re-predict
a new relation distribution p̂(r|xq) for each query
instance in B (or B′), thus deriving our third loss
L3=

∑|Q|
q=1−log(p̂(yq|xq)). The loss L3 reflects

the temporary RCM’s performance on B and in-
directly measures the accuracy of the corrected
labels Ŷ(T1+T2) generated by LCM in the first step.
Therefore, we use L3 to optimize our LCM, en-
abling it to generate more accurate corrected labels
for the mislabeled support instances.

In the third step, we utilize the updated LCM to
generate more accurate corrected labels Ŷ(T1+T2)

for support instances in B′. Then, the new corrected
labels Ŷ(T1+T2) are fed into the original RCM to
compute a new L2 loss, as done in the first step.
Finally, we update the RCM parameters with this
loss, allowing it to more accurately predict the re-
lations of query instances based on the corrected
labels generated by LCM.

Notably, the above training process is efficient,
attributed to the limited parameters in our LCM (a
single-layer GAN) and RCM (a small MLP). This
allows our model to attain training and inference
efficiency on par with traditional ProtoNets.
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4 Experiment

4.1 Datasets & Evaluation
Our experiments are conducted on two widely used
datasets:

• FewRel 1.0 (Han et al., 2018). It is a large-
scale human-annotated dataset constructed
from Wikipedia articles. This dataset con-
tains 100 relations, each with 700 instances.
We follow official split to use 64 relations for
training, 16 for validation, and 20 for testing.

• FewRel 2.0 (Gao et al., 2019c). This dataset
aims to evaluate the domain transferability of
FSRE models. It utilizes the same training set
as FewRel 1.0, derived from the Wikipedia do-
main. Meanwhile, it introduces a new test set
from the biomedical domain, which contains
25 relations, each with 100 instances.

Notably, in both datasets, the training, validation,
and test sets contain mutually exclusive relations.

With the official evaluation script, we evaluate
our model on 10,000 few-shot tasks sampled from
the validation and test sets. As in previous studies
(Han et al., 2018; Gao et al., 2019c), we utilize
accuracy as our evaluation metric. Following prior
studies (Liang et al., 2022; Zhang et al., 2023a),
we create a support set with noisy labels by ran-
domly replacing the ground-truth labels of support
instances with other labels from the current few-
shot task. Since this type of noisy label often has a
greater impact on the FSRE model’s performance
than others, it can more rigorously evaluate the
model’s robustness in real-world scenarios.

4.2 Setting
We implement our model based on Huggingface’s
Transformers (Wolf et al., 2020) and PyTorch
(Paszke et al., 2019). To optimize our model, we
use AdamW (Loshchilov et al., 2019) as our op-
timizer, which is equipped with a linear warmup
(Goyal et al., 2017) for the first 10% training steps.
The learning rate of our encoder is set to 1e-5,
while that of other modules is set to 5e-5. In the
N -way-K-shot setting, we set the value of N to 5
and 10, and K to 5. In the 10-way-5-shot setting,
it takes 5.5 hours to train our model on FewRel 1.0
with a single 24GB NVIDIA RTX 3090 GPU.

4.3 Baselines
We compare our model with the following base-
lines: 1) Proto-BERT (Snell et al., 2017) is a Pro-

toNet only equipped with a BERT-based encoder,
serving as our base model. 2) SimpleFSRE (Liu
et al., 2022) utilizes the description text of each
relation as an additional support instance to im-
prove its prototype vector. 3) LPD (Zhang et al.,
2022b) adopts a label prompt dropout method to
prevent the model from overfitting to the relation
description text. 4) GM_GEN (Li et al., 2022) uses
a GNN to model the correlation among support
instances with the same relation, yielding better
relation prototypes. 5) MultiRep (Borchert et al.,
2024) combines multiple sentence representations
to obtain relation prototypes by contrastive learn-
ing. 6) Proto-BERT-Remove is a variant of Proto-
BERT, which enhances the model’s robustness by
removing mislabeled support instances when com-
puting relation prototypes. 7) HATT-BERT (Gao
et al., 2019a) employs an attention mechanism to
mitigate the negative impact of mislabeled support
instances on relation prototypes. It aims to reduce
the impact of unknown noise in the training set on
model training, and is therefore used to pre-train
our encoder when unknown noises exist in the train-
ing set (See Appendix D.3). 8) RNNP (Mazumder
et al., 2021) refines prototype vectors by producing
hybrid features from support instances. 9) TraNFS
(Liang et al., 2022) obtains robust prototype vec-
tors by utilizing the Transformer’s encoder layer to
aggregate support instances. Moreover, we com-
pare our model with several several LLM-based
baselines, including CoT-ER (Ma et al., 2023) and
ICRE (Li et al., 2024). Here, we reimplement
CoT-ER using ChatGPT (OpenAI, 2022) alongside
SBERT (Reimers et al., 2019), and reproduce ICRE
on Llama-2 (Touvron et al., 2023).

4.4 Main Results
Results on FewRel 1.0. Experimental results on
the validation and test sets of FewRel 1.0 are shown
in Table 1. We observe that our model consistently
outperforms all baselines across all settings. More-
over, we draw several conclusions:

The first part of Table 1 shows the performance
of recent competitive baselines in FSRE, which
do not consider the issue of noisy labels. Despite
achieving improved results at a 0% noise rate, these
baselines are highly sensitive to noisy labels in the
support set, limiting their practicality. This also
indicates that enhancing the FSRE model’s robust-
ness to noisy labels in the support set is crucial.

In the second part of Table 1, we report the per-
formance of several classic denoising models in
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N-way-K-shot 5-way-5-shot 10-way-5-shot

val test val test

Noise Rate 0% 20%∗ 40%∗ 60%∗ 0% 0% 20%∗ 40%∗ 60%∗ 0%

Proto-BERT (Snell et al., 2017) 91.32 87.27 82.21 70.72 89.60 83.68 80.35 72.55 57.27 82.89
LPD (Zhang et al., 2022b) 90.65 89.22 84.31 74.19 95.07 82.15 81.08 73.89 61.30 91.08
SimpleFSRE (Liu et al., 2022) 94.05 89.80 84.77 74.43 96.37 89.68 83.11 74.87 61.51 93.47
GM_GEN (Li et al., 2022) 95.62 89.60 84.58 74.60 96.96 91.27 82.67 74.60 61.94 94.30
MultiRep (Borchert et al., 2024) 93.79 89.57 84.66 74.51 96.29 88.80 82.90 74.88 61.75 91.98

Proto-BERT-Remove (Snell et al., 2017)∗ 91.32 88.89 87.71 80.88 89.60 82.89 81.14 79.85 72.16 83.68
HATT-BERT (Gao et al., 2019a)∗ 94.26 92.46 90.28 80.19 96.42 89.74 87.24 84.17 71.95 93.51
RNNP (Mazumder et al., 2021)∗ 94.26 92.46 90.28 80.19 96.42 89.74 87.24 84.17 71.95 93.51
TraNFS (Liang et al., 2022)∗ 93.87 90.92 89.07 79.93 96.11 89.17 86.70 83.98 71.82 93.03

CoT-ER (+ChatGPT) (Ma et al., 2023)∗ 94.07 89.38 83.26 73.11 96.59 89.50 82.54 73.64 58.82 93.25
MICRE (+Llama-2) (Li et al., 2024)∗ 93.90 89.22 84.57 73.81 96.46 88.87 82.73 74.25 61.01 92.24

Ours 96.68 96.33 95.41 91.22 97.33 92.17 91.88 90.23 86.22 94.96

Table 1: Accuracy (%) on the FewRel 1.0 validation and test sets. Results with * are obtained by our reproduction.

NFSL, which are designed to reduce the impact of
mislabeled support instances on relation prototypes.
In comparison to these models, our model consis-
tently exhibits greater robustness across various
noise rates. It suggests that our model can further
enhance its robustness by correcting mislabeled
support instances (thus fully utilizing them).

As shown in the third part of Table 1, these LLM-
based FSRE models also exhibit high sensitivity
to noisy labels in the support set. These findings
underscore the significance of improving the FSRE
model’s robustness to noisy labels in the support
set, even when leveraging LLMs for FSRE.

Particularly, our model still significantly outper-
forms all competitive baselines at a 0% noise rate.
Notably, in this case, our model is tested on clean
few-shot tasks, while our feedback-based training
strategy utilizes noisy few-shot tasks with the low-
est noise rate (20%) to train our LCM and RCM.
There are two underlying reasons for this: 1) the
feedback mechanism in our training strategy can
more effectively utilize the label information in the
limited training set to train our model, leading to
improved overall model performance. 2) the noisy
few-shot tasks employed in our training strategy
function as a data augmentation, mitigating the
scarcity of training data in FSRE.

Results on FewRel 2.0. Similar to its perfor-
mance on FewRel 1.0, our model consistently out-
performs all baselines on FewRel 2.0. These results
and detailed analyses are presented in Appendix C.

4.5 Ablation Study

We further conduct ablation studies by removing
various components of our model to assess their

Model 0% 20% 40% 60%

Ours 96.68 96.33 95.41 91.22

1 w/o. GNN sublayer 96.03 94.53 93.02 87.78
2 w/o. First iterative strategy 96.57 95.08 90.22 78.53
3 w/o. Second iterative strategy 95.91 94.86 93.33 88.04
4 w/o. Encoder pre-training 96.17 95.28 92.07 85.01
5 w/o. FTS 95.55 95.06 93.61 88.68
6 w/o. RCM & FTS 95.03 94.75 93.11 88.07

Table 2: Ablation results on FewRel 1.0 validation
set in the 5-way-5-shot setting. FTS is an acronym of
Feedback-based Training Strategy.

individual contributions. Specifically, we compare
our model with the following variants in Table 2:

(1) w/o. GNN sublayer. In this variant, we re-
move the GNN sublayer from our LCM. From Line
1 of Table 2, we observe that this change leads to a
significant performance drop of 3.44 points when
the noise rate is set to 60%. This suggests that our
GNN sublayer can indeed map support instances
into a better embedding space, allowing the IC sub-
layer to more accurately correct their noisy labels.
For further analysis, refer to Appendix D.3.

(2) w/o. First iterative strategy and w/o. Sec-
ond iterative strategy. In the IC sublayer, we se-
quentially apply two iterative strategies to gradu-
ally correct noisy labels of support instances. In
these two variants, we respectively discard these
two strategies from our model to validate their ef-
ficacy. The results presented in Line 2 and Line
3 indicate that the first strategy is more effective
under high noise conditions, while the second strat-
egy performs better at low noise rates. Moreover,
our model achieves further performance gains by
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combining these two strategies, which effectively
demonstrates their compatibility.

(3) w/o. Encoder pre-training. This variant di-
rectly employs our feedback-based training strategy
to jointly train all components of our model. In this
context, the encoder is regarded as a part of our
LCM and is updated along with it. As illustrated
in Line 4, this variant exhibits a significant perfor-
mance decline, particularly at high noise rates. The
potential reason is that noisy labels in the support
set negatively affect the expressive ability of our
encoder during training. Furthermore, compared
to our model, this variant significantly increases
the model training time (5.5 hours vs. 13.5 hours).
These results effectively confirm that encoder pre-
training is crucial for improving the efficiency and
stability of our model training.

(4) w/o. FTS. Here, we remove the feedback-
based training strategy from our model and only
use L2 in Section 3.4 to jointly train our LCM and
RCM, which leads to a significant performance
drop across all settings (See Line 5). This reveals
that our feedback-based training strategy can more
effectively train our LCM and RCM to collabora-
tively handle noisy labels of support instances.

(5) w/o. RCM & FTS. Following prior denoising
methods (Gao et al., 2019a; Liang et al., 2022), this
variant directly utilizes the ground-truth labels of
support instances to supervise the training of our
LCM on noisy few-shot tasks, while excluding the
feedback-based training strategy and RCM from
our model. According to Line 6, this alteration con-
sistently degrades our model’s performance across
all noise levels, particularly at a 0% noise rate.
These results further validate that our training strat-
egy can indeed more efficiently exploit the label
information in the limited training set to train our
model, thus improving the robustness and overall
performance of our model.

Notably, the hyper-parameter settings of our
model are discussed in Appendix B. Moreover, in
Appendix D, we further analyze our model’s cor-
rection capability and its robustness to unknown
noise in the training set, while also intuitively illus-
trating the effectiveness of our GNN sublayers.

5 Related Work

Relation extraction (RE) is a fundamental task in in-
formation extraction, which aims to identify the se-
mantic relation between two entities in a given text
(Zeng et al., 2020; Han et al., 2020; Zhang et al.,

2022a; Chen et al., 2022; Zhang et al., 2023b,c,
2024; Yue et al., 2024). However, conventional
methods heavily rely on a large number of labeled
data and struggle with handling unseen relations.
Therefore, recent studies turn to few-shot relation
extraction (FSRE) that aims to train a model to
classify instances into novel relations with only a
few labeling instances.

Most existing studies (Gao et al., 2019b; Yang
et al., 2020; Han et al., 2021; Zhang et al., 2022b,
2023d) apply prototypical networks for FSRE,
which aims to learn a suitable prototype vector
for each relation from a handful of labeling in-
stances. For example, Ye et al. (2019) present a
multi-level matching and aggregation network to
interactively encode query and support instances
by considering their matching information at both
local and instance levels. Qu et al. (2020) pro-
poses a Bayesian meta-learning approach to learn
the correlations among different relations. Zeng
et al. (2020) distinguishes between hard and easy
few-shot tasks and proposes a hybrid contrastive
relation-prototype method to improve model perfor-
mance on hard few-shot tasks. Meanwhile, some
studies (Yang et al., 2020; Wang et al., 2020; Han
et al., 2021; Borchert et al., 2024) aim to obtain
more expressive relation prototypes by utilizing
additional information such as entity and relation
description texts. Recently, Li et al. (2022) achieve
new state-of-the-art performance by leveraging a
GNN to learn better relational prototypes.

Moreover, some studies (Dong et al., 2021) fo-
cus on further training pre-trained language models
(PLMs) using noisy RE datasets to improve the
model’s generalization to new relations. Soares
et al. (2019) propose a matching the blanks method
to further train PLMs on their collected dataset.
Peng et al. (2020) introduce an entity-masked con-
trastive pre-training framework for FSRE. Zhang
et al. (2022b) establish a more rigorous pre-training
setting by filtering relations contained in FewRE
1.0 from the pre-trained corpus.

Notably, these methods usually assume that the
support set, adapting the model to new relations,
only includes accurately labeled instances. How-
ever, this assumption is usually unrealistic because
even carefully-annotated dataset often contains mis-
labeled instances. Inspired by noisy few-shot learn-
ing in the computer vision community (Mazumder
et al., 2021; Liang et al., 2022; Zhang et al., 2023a;
Que et al., 2024), we introduce a more realistic
testing setting for FSRE, where the support set in
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test few-shot tasks contains noisy labels. In this
way, we can further evaluate the practicality and ro-
bustness of FSRE models. Meanwhile, we propose
a self-denoising model for FSRE, which can auto-
matically correct noisy labels of support instances
to enhance the robustness of the model.

6 Conclusion and Future Work

In this paper, we propose a self-denoising model
for FSRE, which focuses on automatically correct-
ing noisy labels of support instances to enhance
the model robustness. Our model comprises two
core component: a label correction module (LCM)
and a relation classification module (RCM). For
each few-shot task, we first use LCM to iteratively
correct noisy labels of support instances. Then,
we feed these corrected labels into RCM to gen-
erate more robust relation prototypes, thus more
accurately predicting the relation of each query in-
stances. Moreover, we propose a feedback-based
training strategy, designed to train our LCM and
RCM to synergistically handle noisy labels of sup-
port instances. Experimental results and in-depth
analysis on two public datasets demonstrate the
effectiveness and robustness of our model.

In the future, we plan to apply our model to other
tasks involving noisy labels, such as text and image
classification tasks, so as to verify its generality.

Acknowledgments

The project was supported by National Natural
Science Foundation of China (No. 62276219),
Natural Science Foundation of Fujian Province
of China (No. 2024J011001), and the Public
Technology Service Platform Project of Xiamen
(No.3502Z20231043). We also thank the reviewers
for their insightful comments.

Limitations

The limitations of our method mainly include fol-
lowing two aspects: 1) Our method is only exam-
ined on the FSRE task, while whether it is able to
generalize to other tasks, such as image classifica-
tion, is not yet explored in this paper. 2) We did
not consider non-of-the-above scenarios where a
query instance may not belong to any class in the
few-shot task.
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T2 \T1 1 2 3 4 5 6

1 88.86 89.15 89.83 90.16 90.01 90.06
2 89.26 89.82 90.07 90.39 90.17 90.21
3 89.71 89.64 90.23 90.51 90.66 90.47
4 89.91 90.75 90.46 90.53 90.21 90.61
5 90.28 90.43 90.61 90.67 90.32 90.55
6 90.19 90.50 90.79 91.22 90.72 90.51
7 90.25 90.24 90.59 91.10 91.02 90.84
8 90.37 90.35 90.63 90.89 90.53 90.63

Table 3: Accuracy (%) of our model with different
values of T1 and T2 on the FewRel 1.0 validation set.
These experiments are conducted in the 5-way-5-shot
setting at a 60% noise rate.

A Further Analysis of Noisy Support Sets

In this section, we aim to further elaborate on the
fact that noise labels are inevitable in FSRE. First,
we apply the popular large language models (i.e.,
Chat-GPT and GPT-4) to identify the relations and
mislabeled instances in the case illustrated in Fig-
ure 1. As shown in Figure 7, even with sufficient
hints, both Chat-GPT and GPT-4 fail to accurately
predict these two relations and mislabeled support
instances. This intuitively illustrates the challenge
of identifying mislabeled support instances from
the support set, and highlights the inevitability of
noisy labels in the support set.

Meanwhile, Figure 8 presents two more repre-
sentative cases of support sets with noisy labels,
both of which are real cases from FewRel 1.0 and
FewRel 2.0, respectively. Due to space limitations,
we provide only a simplified version of Case 1 in
Figure 1. It is worth noting that the second case
comes from the biomedical field. From these two
cases, we drew several conclusions: (1) The sim-
ilarity among relations is one of the factors that
leads to noisy labels in FSRE (see Case 1 (2) In
some specialized domains, such as biomedicine
and finance, obtaining accurate relation label for
every support instance is greater challenging due to
the substantial expertise required (See Case 2). (3)
By observing the instances in Figure 8, it is intu-
itively evident that acquiring accurate labeled data
for RE is more challenging than the image classifi-
cation tasks in the CV community. However, noisy
few-shot learning has been widely discussed in the
CV community, but it has not yet to be explored in
the context of FSRE. Therefore, we hope our work
will inspire further research to design more robust
and practical FSRE models.

B Hyper-parameter Settings

B.1 Effect of iteration numbers T1 and T2

To investigate the impact of hyper-parameters T1

and T2 on our model, we compare the performance
of models with different values of T1 and T2 on the
FewRel 1.0 validation set. As illustrated in Table 3,
our model achieves the best performance when T1

and T2 are set to 4 and 6, respectively. Meanwhile,
we also observe that our model exhibits low sen-
sitivity to these two hyper-parameters. Hence, we
adopt T1=4 and T2=6 for all other experiments.

B.2 Effect of distance function in IC sublayer

In the two iteration strategies of the IC sublayer,
we employ L2 distance and dot product to measure
the distances between support instances in the em-
bedding space, respectively. To further investigate
the impact of different distance functions on our IC
sublayer, we present the performance of our model
variants with different distance functions. From
Table 4, we observe that using different distance
functions in these two iteration strategies gener-
ally leads to better performance. The underlying
reason is that different distance functions can as-
sess the correlation between support instances from
diverse perspectives, allowing our IC sublayer to
more accurately estimate whether two support in-
stances share the same relation. Notably, our model
achieves optimal performance when using L2 dis-
tance and dot product in our two iteration strategies,
respectively.

C Results on FewRel 2.0

To assess the domain transfer ability of our model,
we also conduct experiments on FewRel 2.0. As
illustrated in Table 5, our model still consistently
outperforms all baselines across all settings, which
further demonstrates the superiority of our model.
Meanwhile, we note that most models exhibit simi-
lar sensitivity to noisy labels in the support set on
FewRel 2.0 as they do on FewRel 1.0.

D Further Analysis

D.1 Analysis for correction performance

To further illustrate the correction capability of our
model, we report its accuracy in correcting noisy la-
bels of support instances. As shown in Table 6, our
model successfully corrects over 90% noisy labels
even at a 60% noise rate, which further demon-
strates the robustness of our model. Meanwhile,
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The distance functions

First iterative strategy Second iterative strategy 0% 20% 40% 60%

L2 distance L2 distance 95.16 94.72 93.84 89.03
L2 distance Dot product 96.68 96.33 95.41 91.22
L2 distance Cosine similarity 95.83 95.81 94.80 90.53
Dot product L2 distance 94.47 93.89 93.01 88.39
Dot product Dot product 94.09 93.21 92.53 87.81
Dot product Cosine similarity 94.11 93.39 92.70 87.97
Cosine similarity L2 distance 94.26 93.41 92.83 88.13
Cosine similarity Dot product 94.02 93.09 92.40 87.55
Cosine similarity Cosine similarity 93.78 92.79 92.02 87.26

Table 4: Accuracy (%) on the FewRel 1.0 validation set in the 5-way-5-shot setting.

N-way-K-shot 5-way-5-shot 10-way-5-shot

Noise Rate 0% 20%∗ 40%∗ 60%∗ 0% 20%∗ 40%∗ 60%∗

Proto-BERT (Snell et al., 2017) 51.50 50.37 47.16 34.63 36.93 36.03 30.95 17.79
LPD (Zhang et al., 2022b) 86.90 82.86 73.97 66.73 78.43 74.93 66.56 56.50
GM_GEN (Li et al., 2022) 91.28 88.61 82.48 67.44 84.84 82.04 75.72 59.41

Proto-BERT-Remove (Snell et al., 2017)∗ 51.50 51.03 50.24 42.53 36.93 36.57 35.48 26.06
HATT-BERT (Gao et al., 2019a)∗ 89.52 88.84 86.71 74.51 83.46 82.34 80.08 69.65
TraNFS (Liang et al., 2022)∗ 89.33 88.27 86.52 74.19 83.01 82.30 79.77 69.09

CoT-ER (+ChatGPT) (Ma et al., 2023)∗ 90.21 85.30 79.05 70.45 82.36 75.49 66.84 52.53
MICRE (+Llama-2) (Li et al., 2024)∗ 89.86 85.05 80.11 71.90 81.74 75.26 67.34 54.76

Ours 92.39 92.14 91.64 84.61 85.88 85.53 84.89 79.04

Table 5: Accuracy (%) on the FewRel 2.0 test set. Results with * are obtained by our reproduction.

Model 20% 40% 60%

Ours 95.56 94.06 90.08

w/o. First iterative strategy 94.07 87.90 76.54
w/o. Second iterative strategy 92.84 88.02 83.03

Table 6: Accuracy of our model in correcting noisy la-
bels in the support set. These experiments are conducted
on the FewRel 1.0 validation set in the 5-way-5-shot
setting.

removing either the first or second iteration strategy
from our IC sublayer leads to a significant decline
in model performance. These results suggest that
both iterative strategies effectively improve the cor-
rection capability of our model.

D.2 Analysis for GNN sublayer

To further illustrate the effectiveness of our GNN
sublayer, we visualize the distribution of instances
in its embedding space. As shown in Figure 6,
our GNN sublayer can effectively map instances
into a better embedding space, where instances
with different relations are clearly separated. As
in our preliminary study, we use the Silhouette
Coefficient to evaluate the discriminability among
instances with different relations in the embedding
space. In terms of this metric, our GNN sublayer
achieves a higher score of 0.63 than Proto-BERT’s
0.28 score, indicating that instances with different

Figure 6: The t-SNE plots of instance representations
produced by our GNN sublayer. These instances are
from the validation set of FewRel 1.0. The number
indicates the relation index.

relations are better distinguished in the embedding
space learned by the GNN sublayer. These results
indicate that our feedback-based training strategy
can indeed help the GNN sublayer learn a better
embedding space, thus laying a solid foundation
for the IC sublayer to correct the noisy labels of
support instances.

D.3 Analysis for noise in the training set

In noisy few-shot learning, considering the absence
of a strong correlation between the training and
test sets due to their entirely distinct class spaces,
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α\β 0% 20% 40% 60%

0% 96.68 96.33 95.41 91.22
5% 96.42 96.01 95.16 90.85
10% 96.10 95.95 94.74 90.79
15% 95.72 95.21 94.60 90.39
20% 95.14 94.67 94.08 89.68

Table 7: Accuracy (%) of our model on FewRel 1.0
validation set in the 5-way-5-shot setting. Here, α and
β represent the noise rate in the training set and the
support set of the test few-shot task, respectively.

previous studies (Mazumder et al., 2021; Liang
et al., 2022) within the CV community usually pre-
sumed that relatively clean training sets could be
found for model training. However, noisy labels
are often inevitable in real-world scenarios. Here,
therefore, we evaluate the robustness of our model
to unknown noise in the training set. Specifically,
we first randomly introduce some noisy labels into
the entire training set, and then train our model
on it. In particular, to avoid the influence of such
unknown noise on our encoder, we use the training
objective of HATT-BERT (Gao et al., 2019a) to
pre-train our encoder. This training objective aims
to mitigate the negative impact of unknown noise
in the training set on model training by an attention
mechanism. As shown in Table 7, our model is
insensitive to this unknown noise and still exhibits
strong robustness to noisy labels in support set.
These results further demonstrate the practicality
and robustness of our model.
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Figure 7: Results of Chat-GPT and GPT-4 identifying the two relations and mislabeled support instances in the case
shown in Figure 1 of the paper. We observe that, even with sufficient hints, both Chat-GPT and GPT-4 are unable to
accurately predict these two relations and mislabeled instances.
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Figure 8: Illustration of two suppor set with noisy lables (in 3-way-3-shot setting) from FewRel 1.0 and FewRel 2.0,
respectively. The relation types are presented at the top of each case. The gray indicates the mislabeled instances.
We use [bold] to indicate the head and tail entities in each instance. Please refer to the FewRel 1.0 and FewRel 2.0
datasets for more detailed information about these relations and instances
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