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Abstract

Relation Extraction (RE) is a key task in table
understanding, aiming to extract semantic re-
lations between columns. However, complex
tables with hierarchical headers are hard to ob-
tain high-quality textual formats (e.g., Mark-
down) for input under practical scenarios like
webpage screenshots and scanned documents,
while table images are more accessible and intu-
itive. Besides, existing works overlook the need
of mining relations among multiple columns
rather than just the semantic relation between
two specific columns in real-world practice.
In this work, we explore utilizing Multimodal
Large Language Models (MLLMs) to address
RE in tables with complex structures. We cre-
atively extend the concept of RE to include cal-
culational relations, enabling multi-task learn-
ing of both semantic and calculational RE for
mutual reinforcement. Specifically, we recon-
struct table images into graph structure based
on neighboring nodes to extract graph-level vi-
sual features. Such feature enhancement alle-
viates the insensitivity of MLLMs to the po-
sitional information within table images. We
then propose a Chain-of-Thought distillation
framework with self-correction mechanism to
enhance MLLMs’ reasoning capabilities with-
out increasing parameter scale. Our method sig-
nificantly outperforms most baselines on wide
datasets. Additionally, we release a benchmark
dataset for calculational RE in complex tables.

1 Introduction

Tables are widely used to present and store data in
various fields, and table understanding involves ex-
tracting structured information from tables for fur-
ther analysis (Shigarov, 2023; Zhang et al., 2024a).
Relation extraction (RE) is a crucial task in table un-
derstanding (Zhang et al., 2020; Deng et al., 2022;
Suhara et al., 2022), focusing on extracting seman-
tic relations between two table columns. For exam-
ple, the “birthplace” relation type can connect the

Quar ter

Total Domestic Overseas

division quantity sales pr ice quantity sales pr ice quantity sales

Q1
first

5 61 13 3 39 11 2 22

Q2 2 22 9 1 9 13 1 13

Q3
second

1 8 6                   0 0 8 1 8

Q4 7 78 12 4 48 10 3 30

total 15 169 - 8 96 - 7 73

Figure 1: An illustration of a complex table with hier-
archical headers. For example, the sub-columns “price”
and “sales” share the same header “domestic”, which
represents a hierarchical structure we mainly focus on.

“person” and “city” columns, providing valuable in-
formation for downstream tasks like table question
answering (Cheng et al., 2023).

With advancements in generative Large Lan-
guage Models (LLMs) like GPT-4 (Achiam et al.,
2023), LLaMa (Touvron et al., 2023), and Qwen
(Bai et al., 2023a), LLMs overcome the disadvan-
tages of traditional models that typically require
massive training data on specific tasks to avoid
overfitting. Fine-tuning LLMs bring new possi-
bilities for RE (Zhang et al., 2024a; Korini and
Bizer, 2024). However, these studies focus on the
simplest table structure composed of a matrix of
rows and columns, and merely deal with the se-
mantic relations between two specified columns.
These overly strong constraints do not meet real-
ity requirement. Wild tables often feature com-
plex layouts like hierarchical headers and merged
cells, containing various types of relations, as illus-
trated in Fig.1. Such tables are hard to be clearly
expressed in textual format (Zheng et al., 2024).
LLMs interpret tables in a one-directional textual
perspective and their Optical Character Recogni-
tion (OCR) (Shi et al., 2023) capability of com-
plex tables is poor, thereby we employ Multimodal
Large Language Models (MLLMs) to directly di-
gest two-dimensional tables via intuitive visual in-
formation from images.

Furthermore, given the demand for mining rela-
tions between multiple columns in real-world sce-
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narios, we take multicolumn relation into account
besides primitive semantic relation between just
two columns. Given that wild tables tend to con-
tain rich numerical data which is valuable for down-
stream applications like automated table analysis
(Chen et al., 2023; Zhang et al., 2024b), we pro-
pose the concept of calculational relation which
means specific columns can be calculated from
related columns, promoting mutual task enhance-
ment as both require understanding of headers and
column contents. As shown in Fig.1, columns
“Overseas/price” and “Overseas/quantity” may be
considered related in semantic RE. While in cal-
culational RE, they can be multiplied to get the
“Overseas/sales”. Such calculational relations en-
hance feature settings, enabling models to better
grasp the interplay among sub-columns, thus im-
proving semantic accuracy and serving as a check
against errors. By sharing feature representations,
the model leverages additional relevant data and
task insights to mitigate overfitting. Through pilot
experiments, we found that vanilla MLLMs with
small parameters still struggle with numerical rea-
soning, a common issue in LLMs.

To cope with these challenges, we improve a
visual algorithm, dividing table images into de-
formable patches and rebuilding as graph struc-
ture based on neighbor nodes to approximate the
row and column positions of tabular data. Such
method integrates graph-level visual features, help-
ing MLLMs better capture hierarchical structures.
The framework contains two stages: (1) In pre-
alignment stage, we apply table recognition task
to align the visual and textual embeddings; (2)
Then we conduct multi-task instruction tuning
for both semantic and calculational RE between
columns, boosting performance through mutual re-
inforcement. We also propose a Chain-of-Thought
(CoT) (Wei et al., 2022) distillation framework with
self-correction mechanism, which generates high-
quality reasoning steps from a powerful teacher
model to aid student model in numerical task. In
summary, our main contributions are as follows:
• Our work creatively extends RE task and pro-
pose the concept of calculational relation between
multiple columns. We pioneer exploration of RE
in hierarchical tables through multimodal mode,
improving MLLMs’ performance on semantic RE
through mutual task enhancement.
• We enhance visual embeddings with graph-level
features to improve perception of complex table
structures. And we further propose a CoT distilla-

tion framework with a self-correction mechanism
to assist smaller MLLMs in numerical reasoning.
• We release a benchmark dataset for the proposed
task of calculational RE in complex tables, includ-
ing manually annotated relation labels expressed
as calculation expressions.

2 Related Work

2.1 Relation Extraction in Tables

Table understanding (Bonfitto et al., 2021) focuses
on automatic extracting, transforming, and inter-
preting valuable information from tabular data, in-
cluding Relation Extraction (RE) as a key subtask.
Early methods fine-tune Pretrained Language Mod-
els (PLMs) like BERT (Devlin et al., 2019) with
textual table serialization to learn tabular embed-
dings (Deng et al., 2022; Suhara et al., 2022). The
advent of LLMs in recent years have opened up
new possibilities. TableLlama (Zhang et al., 2024a)
develops the first open-source generalist model for
tables and evaluates on RE task.

2.2 Multimodal Large Language Models

Multimodal Large Language Models (MLLMs)
(Zhu et al., 2024; Liu et al., 2023; Bai et al., 2023b)
are mainly built upon a LLM, a visual module, and
a cross-modality projector. The visual module en-
codes images into dense representations, and the
projector, e.g., MLP, converts these representations
into LLM-readable visual tokens. Finally, visual
and textual tokens are fed into the LLM to per-
form next-token prediction. MLLMs aim to endow
textual LLMs with comprehension for other modal-
ities like images and videos. Table-LLaVA (Zheng
et al., 2024) develops a versatile tabular MLLM for
diverse table-based tasks, and fully evaluates the
table understanding ability of existing models.

3 Task Definition

We define the multimodal RE task as follows:

Definition 1 (RE-semantic). Given an image of
table T and a pair of columns (ci, cj) in T , a model
M with given candidate relation set R predicts a
relation rij ∈ R that best describes the semantic
relationship between ci and cj .

Definition 2 (RE-calculational). Given an im-
age of table T containing a set of columns
(c1, c2, ..., cn), a model M forms a calculation ex-
pression Ep,q,...,m with math operators and takes
column headers as operands, which describes the
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Figure 2: Overview of model structure and workflow.

Q1 Per Miles Percent

2019 2018 change

Salaries 5.27 4.79 0.48 10.0%

Fuel and oil 0.78 0.69 0.09 13.0

Other expenses 1.92 1.79 0.13 7.3

total 12.38 11.74 0.64 5.5%

rate_of

Q1/2019 - Q1/2018 = Per  Miles/change

        (Per  Miles/change) / (Q1/2018) = (Percent/change)

…

Figure 3: Demonstrations of semantic relation and cal-
culational relation between table columns.

calculational relation between numerical columns
cp, cq, ..., cm.

Note that semantic relation exists between a pair
of columns with a given set of candidate semantic
relations, while the calculational RE is an open
extraction task involves multiple columns. Here is
an example for illustration:
Example 1. As shown in Fig.3, the semantic rela-
tion between the “Per ASM/change” column and
the “Percent/change” column can be predicted as
Rate_of, while the calculational relation implied in
the table can be extracted as Q1/2019 - Q1/2018 =
Per Miles/change. For columns with hierarchical
headers, we adopt a splicing method that connects
multi-level header text with a “/” symbol.

4 Methodology

The overall workflow is illustrated in Fig.2, with
two-stage training: During pre-alignment, we fuse

graph-level visual features from table’s image and
apply table recognition task to align the embed-
dings from different modals. Then we conduct
multi-task instruction tuning for both semantic
and calculational RE tasks to boost performance
through mutual reinforcement.

4.1 Graph-Level Feature Enhancement

Recent works (Dosovitskiy et al., 2021; Tolstikhin
et al., 2021; Han et al., 2022) have proved that
viewing an image as a graph is more flexible and
effective for visual perception. We naturally think
of dividing a table image composed of grid cells
into patches and reconstructing it into an undirected
graph based on the proximity relationships between
nodes. This process enables the model to effec-
tively capture structural information in hierarchical
layouts. Unlike previous methods that use fixed-
size patch embeddings, we introduce an adaptive
patch-partitioning approach (Chen et al., 2021) to
minimize positional information loss of the cell
objects contained in the image.
Embedding of Deformable Patches. As shown
in Stage 1 of Fig.2, the initial input table image
denoted as A ∈ RH×W×3, is firstly divided into
N fixed-size patches with size a × a × 3(a =
⌊H

√
N⌋, assume H = W for simplicity) denoted

as {p(i)}, 1 ≤ i ≤ N . Each patch is mapped to a
high dimensional vector of length D via a linear
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layer L. Then we introduce an added branch (Chen
et al., 2021) to predict a pair of offset for center
coordinate and width-height dimension parameters
for each patch with Eq. (1) and (2):

ox, oy = σ1(W∆ · L(p)) (1)

dw, dh = σ2 (σ1 (Ws · L(p) + bs)) (2)

Here, W∆ and Ws are weight matrices that perform
transformation on features, σ1 and σ2 are activation
functions used to constrain offset amplitude and
ensure non negative scale, while ox, oy, dw, dh
represent predicted offsets and size, respectively.
We can determine a new patch region based on
predicted values and overlaps are allowed between
patches. Finally we obtain a new feature map P =
[p1, p2 ,...,pN ] of original table image, where pi is
the embedding of new i-th patch.
Graph Construction via k-NN. Feature of
patches in P are then regarded as a set of unordered
nodes V =[v1, v2 ,. ,vN ]. We identify k nearest
neighbors N (vi) for each node vi and establish an
edge eij between vi and vj for vj ∈ N (vi). Thus
we construct a graph representation G based on
the visual features, where nodes are linked without
the constraint of local position. We employ Pyra-
mid ViG-B (Han et al., 2022) in experiments for
graph convolution and follow its original settings
to perform further training, k is set to 9 by default.
Training details and model can be found in Ap-
pendix A. We take it as integrated vision encoder
to obtain graph-level visual feature of tables.

4.2 Cross-Modality Feature Alignment

In order to develop MLLMs’ ability to digest vi-
sual tabular data, we employ table recognition task
(Zheng et al., 2024) to perform futher feature align-
ment. We conduct dimension adjustment on the
graph-level visual embeddings obtained in Section
4.1 and concat it with conventional visual embed-
dings from ViT. A cross-modality projector is then
trained to align visual features from various table
images with ground-truth textual representations.

As shown in Stage 2 of Fig.2, the model learns to
generate textual table representation (e.g., HTML
string) based on instructions and corresponding
table images with next-token prediction. This pro-
cess improves the base LLM’s perception of hier-
archical table structure and character content, fa-
cilitating effective multi-task instruction tuning in
later stages.

[Table Image]

[Task Descriptions]

Please read the table image, identify the columns composed of numerical values, 

and return corresponding headers. If the column header is hierarchical, please 

concatenate it with / in sequence... ...

Prompt

Headers of columns composed of numerical values: 
Q1/2019

Q1/2018

Per ASM/change

Percent/change

Response

Figure 4: Locator. Read table image, locate numerical
columns and recall corresponding hierarchical headers.

4.3 Multi-Task Instruction Tuning

Afterwards, we perform jointly multi-task instruc-
tion tuning that combines semantic and calcula-
tional relation extraction, mutually reinforcing per-
formance in both tasks.

When dealing with diverse tables with varying
cells distributions, MLLMs with limited param-
eters struggle to generate accurate and coherent
responses (Tang et al., 2024), particularly when
involving numerical values. We attempt to address
this challenge by utilizing CoT prompting (Wei
et al., 2022) to guide the model in generating in-
termediate reasoning steps. For the challenging
calculational RE task, we devise a progressive CoT
distillation framework with self-correction mecha-
nism which extracts robust steps from large-scale
closed-source LLMs like GPT-4V, and use them as
supervisory signals to tune our smaller model (Tang
et al., 2024).

The framework comprises three distinct mod-
ules: Locator, Planner, and Verifier. These mod-
ules guide the model to realize step-by-step nu-
merical reasoning by generating intermediate steps,
simultaneously ensure transparent and understand-
able reasoning and decision-making process.
Locator. As shown in Fig. 4, given the input table
image and task instruction, the Locator identifies
all columns that composed of numerical values and
recalls their headers as the basis for constructing
calculation expressions later.
Planner. Existing solutions for mathematical prob-
lems usually require models to generate expres-
sions directly, but some calculations are too com-
plex for accurate single-step generation. To address
this issue, we decompose the expression into op-
erators and operands in separate perspectives to
simplify the generation of complete expressions.
In most common cases, the operands are typically
extracted from table cells, while operators are de-
termined by the inter-column semantics (e.g., the
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[Table Image]

[Task Descriptions]

[Reasoning History]

Please infer the possible calculational relation to exist between these columns, 

use the corresponding headers as the operands and choose appropriate 

operators to form a complete arithmetic expression.... ...

Based on the analysis, the most probable calculational relation is :

(Q1/2019- Q1/2018) / (Q1/2018) = (Percent/change)

[probable further analysis]

Prompt

Response

Figure 5: Planner. Interpret headers and infer the most
appropriate calculation expressions.

[Table Image]

[Task Descriptions]

[Reasoning History]

Please verify the correctness of the expression you proposed in the last step by 

sequentially substituting the values for each row corresponding to these 

columns and provide your calculation process. If the number of failed 

validation rows is reached <threshold>, please summarize these errors and 

end the validation… …

The verification process involves the following steps:

[line-by-line value substitution for validation]

Situation 1: Validation succeeded

Return calculational relation expression

Situation 2: Validation failed

[miscalculation summary] to Planner  for iteration.

Prompt

Response

Figure 6: Verifier. Validate line by line, collect error
information for iterative self-correction when necessary.

“Percent” in the header suggests the division opera-
tor).

As shown in Fig. 5, the Planner first interprets
the extracted header list sequentially, which inter-
actively promotes the ability of semantic relation
annotation. Then it infers the most probable calcu-
lational relation to exist, recalling relevant headers
as operands and selecting appropriate operators to
construct a preliminary arithmetic expression.
Verifier. For the arithmetic expression proposed
by Planner, the Verifier performs sequential veri-
fication on the value sets within each row of the
relevant columns, as shown in Fig. 6. Its goal is
to accurately identify calculational errors and pro-
vide feedback. Considering the presence of noise
in the numerical values of wild tables, a certain
degree of tolerance is necessary, thereby we intro-
duce an adjustable threshold η. If the number of
rows that fail validation exceeds η, Verifier extracts
the error details and returns them to the Planner for
introspection and re-inference. The Planner then
proposes the next possible expression or returns
None if no satisfactory answer is found. During
the process, we ensure robustness to floating-point
arithmetic errors through a tolerance-based setting.

Through this workflow, we extract high-quality

inference paths from the teacher and let our model
learn to generate target answers and reasoning
paths. This trains the logical reasoning ability of
our smaller MLLM and enhances its calculational
skills by learning the process of understanding, de-
composing, and planning numerical problems. To
improve consistency in task settings, we employ ba-
sic CoT paradigm by prompting the teacher model
to directly generate reasoning evidence for the se-
mantic RE task.

5 Experiments

5.1 Instruction Tuning Dataset Construction
Semantic RE datasets. We design a simple data
processing pipeline which includes converting col-
umn type labels into relation labels and performing
modal transformation on semantic RE datasets. We
carefully design Python scripts to convert textual
tables into high-quality images. Task-specific in-
put and output are transformed into a pre-defined
instruction-following format.
Calculational RE datasets. We collect over 1,200
tables containing rich numerical relations from
datasets HiTab, WTQ and AIT-QA, most of which
have hierarchical headers. We then conduct care-
ful manual annotation of calculational relation in
these tables. We obtain their images from MMTab
(Zheng et al., 2024) and finally propose a bench-
mark dataset CCR for the Column Calculational
Relation extraction task with about 2.2K samples 1,
the demonstrations and detailed statistical informa-
tion of CCR is presented in Tab. 1.

More details on dataset construction and sample
demo can be found in Appendix B.

5.2 Experimental Settings
Datasets. We select a wide range of datasets to
validate the effectiveness of our model on multi-
relation extraction task, including TURL (Deng
et al., 2022), Wiki (Bhagavatula et al., 2015),
SemTab (Qiu et al., 2023), AIT-QA (Katsis et al.,
2022), HiTab (Cheng et al., 2022) and WTQ (Pa-
supat and Liang, 2015), which cover basic and
hierarchical tables for a comprehensive evaluation.
Baselines. We consider baselines of two main gen-
res: Open-source MLLMs including BLIP (Li
et al., 2022), Monkey (Li et al., 2024), BLIP2
(Li et al., 2023), MiniGPT-4 (Zhu et al., 2024),
Qwen2-VL (Wang et al., 2024), LLaVA-1.5 (Liu
et al., 2024), Table-LLaVA (Zheng et al., 2024)

1https://huggingface.co/datasets/1728-zxy/CCR
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Table 1: Demonstrations of calculational relation between multiple table columns with hierarchical headers.
Operators Demonstration

+ playoffs/w + playoffs/l = playoffs/gc
- aboriginal population/percent - nonaboriginal population/percent = difference/percentage points
* Fuel Expense (in millions) = Gallons Consumed (in millions) * Average Price Per Gallon
/ ( regular season/w ) / ( regular season/gc ) = regular season/win%
-/ (2012/number of jobs - 2011/number of jobs) / (2011/number of jobs) = 2012/percentage change
+/ Year = (Jan + Feb + Mar + Apr + May + Jun + Jul + Aug + Sep + Qct + Nov + Dec) / 12

and Bunny (He et al., 2024). Open-source LLMs
including Llama-32, Baichuan2 (Yang et al., 2023),
Qwen2.5 (Team, 2024) and TableLlama (Zhang
et al., 2024a). To enable LLMs to digest table im-
ages, we follow (Zheng et al., 2024) to provide
HTML sequences recognized from images via a
competitive OCR engine PaddleOCR 20243.
Implementation Details. We take Bunny-v1.1 (He
et al., 2024) as the base model, which contains three
modules: a well pre-trained ViT model, SigLIP
(Zhai et al., 2023) with S2-Wrapper (Shi et al.,
2024) enabled as the vision encoder, a two-layer
MLP as the cross-modality projector and Llama-3
8B2 as the base LLM. We conduct two-stage train-
ing of feature alignment and instruction tuning. We
first optimize the cross-modality projector for one
epoch to align visual and textual features. Then the
MLLM is fine-tuned with instructions to adapt to
downstream RE tasks, training the projector and
LLM backbone with LoRA (Hu et al., 2022) ap-
plied. We adopt 6:4 ratio for instruction tuning and
testing across all datasets and baselines. Consider-
ing the limited size of most datasets, improvement
of data distribution diversify to avoid overfitting is
necessary. We perform multi-level data augmen-
tation on the training set by rewriting the prompt
in chunks, and conduct random set partitions for
three times and repeat the experiment. We report
the average metrics for the final results and apply
same settings for all baselines to ensure fairness.
Detailed constructive process and examples are
shown in Appendix C.
Metrics. For semantic RE task with a candidate re-
lation set, we adopt Micro-F1 which is suitable for
multi-classification tasks. For the calculational RE
which requires exanct matchig of expressions, we
use Accuracy for evaluation. And for precise eval-
uation of the calculation expression, we combine
rule-based Python scripts and manual methods to
address the issue that exact match cannot identify
equivalent expressions with different formulations.

2https://github.com/meta-llama/llama3
3https://github.com/PaddlePaddle/PaddleOCR

5.3 Main Results

The main results are presented in Tab. 2 and prove
that our framework achieves the best performance
on most datasets. We additionally conduct single-
task experiments for a comprehensive evaluation.
We skip the experiment on the TURL dataset using
TableLlama, as this model is tabular-targeted and
has already been trained on this dataset.
Performance on single-task. As shown in Tab.
2, our method achieves superior performance in
both semantic RE and the more challenging calcu-
lational RE tasks, respectively surpassing baseline
models by a notable difference of 6.27% and 4.96%
at most. One exception is the RE-semantic perfor-
mance on the Wiki dataset, which is 3.64% lower
than the best result, because the specification of
columns in this dataset is achieved through col-
umn index instead of textual column names, and
there are too many candidate relation types. Such
factors depends heavily on the model’s OCR ca-
pabilities, making it slightly inferior to the latest
Qwen2-VL. The other exception is on HiTab-C,
which is attributed to the high resolution of images
it contains, leading to quality loss during resizing.
Early MLLMs like BLIP exhibit minimal profi-
ciency in multimodal table understanding due to
the lack of tabular training data, but recent ones
like LLaVA-1.5 make progress on comprehending
table images, owing to their improvements on OCR
scenarios. Moreover, TableLlama+OCR performs
better that most other baselines on SemTab, be-
cause it has been instruction-tuned on large-scale
tabular data, which leads to better table understand-
ing and instruction-following ability. We skip the
separate experiment on AIT-C for its limited sam-
ple size.
Performance on multi-task. Most methods signifi-
cantly outperform single-task performance in multi-
relation extraction by over 5%, owing to the inher-
ent relationship between two tasks, which leverages
the multi-task learning capabilities of LLMs. Our
method achieves superior scores of 58.76% and
47.19%, exceeding the highest baselines by 4.69%
and 3.09% separately. And most baselines strug-
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Table 2: Overall evaluation results with best bolded and runner-up underlined. “RE-multi” refers to mixed
instruction tuning of multi-task learning paradigm, which means tuning with all mixed 6 datasets and test separately
on sum of 3 semantic/calculational datasets denoted as “Sem”/“Cal”. While “RE-semantic” and “RE-calculational”
refer to experiments focusing solely on two separate single tasks. The symbol † indicates that the model is designed
for table tasks. “-C” represents the calculational relation dataset we annotated.

Method LLM RE-multi RE-semantic RE-calculational
Sem Cal TURL Wiki SemTab HiTab-C WTQ-C

MLLMs
BLIP 385M 3.55 0 1.06 2.38 0.97 0 0.02

Monkey Qwen 7B 15.17 7.54 13.30 5.27 11.96 7.44 10.95
BLIP2 Flan-T5 3B 5.45 7.01 2.17 4.40 2.01 0.54 1.21

MiniGPT-4 Vicuna 7B 29.11 19.07 13.74 6.73 23.98 5.19 11.43
LLaVA-1.5 Vicuna-1.5 7B 38.77 19.20 35.03 12.14 36.41 18.10 17.59

Table-LLaVA† Vicuna-1.5 7B 33.52 16.38 30.77 17.21 39.67 13.06 22.38
Qwen2-VL Qwen 7B 51.79 40.02 54.57 31.15 61.98 38.82 40.46
Bunny-v1.1 Llama-3 8B 54.07 31.16 53.31 25.51 58.19 26.60 35.10

LLMs
Llama3+OCR Llama-3 8B 53.10 37.80 49.86 26.85 54.70 37.94 33.08

Baichuan2+OCR Baichuan2 7B Chat 42.83 29.32 37.15 15.28 26.17 26.23 19.03
Qwen2.5+OCR Qwen2.5 8B 52.09 44.10 46.29 13.96 38.00 43.22 41.10

TableLlama+OCR† Llama-2 7B - 24.47 - 23.39 61.21 20.72 27.40
Ours

OUR Llama-3 8B 58.76 47.19 60.84 27.51 63.52 39.81 45.12

gle with the challenging calculational RE task, as
this requires both strong numerical analysis skills
and a deep understanding of complex table struc-
tures. Both the language models and multimodal
models in the Qwen series achieve outstanding per-
formance among open-source models. Overall, the
experimental result trend can reflect that mixed in-
struction data of multi-task is more conducive to
model performance.

5.3.1 Ablation Study

We conduct sufficient ablation experiments on both
types of datasets to validate the effectiveness of
each framework component, as shown in Tab. 3.

We divide the ablation study into three parts: (1)
Ablation of graph-level visual features. Our first re-
move of graph-level features results in respectively
6.28% and 7.87% performance drop in multi-task
scenario, shining the effectiveness of graph visual
embeddings for enhancing understanding of table
structures. (2) Ablation of alignment task. We
remove the TR task to assess its individual im-
pacts. It causes significant drop with performance

Table 3: Ablation results on three scenarios same as the
setup of the main experiments.

Modules RE-multi RE-sem RE-cal
sem cal SemTab HiTab-C

FULL 58.76 47.19 63.52 39.81
w/o gf 52.48 39.32 57.76 31.63
w/o TR 54.28 41.22 60.14 35.31

w/o CoT 54.71 36.80 60.03 29.70

2 4 6 8 10 12
(a) Sample number
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Ours
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Figure 7: (a) Sample number ms effect on semantic
RE, ranging from 2 to 12. The whole table will be
input when it has less rows than ms. (b) Performance
improvements over increasing the tuning data size.

decreasing by 4.48% and 5.97% respectively. This
indicates that alignment is crucial for robust un-
derstanding of the mapping from table images to
text especially for calculational RE task. (3) Abla-
tion of CoT. We compare original instruction tuning
with our approach of integrating distilled reasoning
steps for CoT prompting. Our performance shows
an impressive 10.39% gain in the calculation sce-
nario, suggesting that the model better mimics the
reasoning strategies of teacher model and enhances
its intrinsic reasoning capability.

5.4 Data Efficiency Analysis

Input Data Efficiency. A common flaw in LLMs’
semantic RE capacity is that they cannot handle a
full wide table due to input length restriction. Our
approach, however, is input data efficient and can
make wise predictions with only a few samples
from each column. This makes our model more
attractive in practice as it can handle large long
tables.
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Figure 8: Effects of varying involved column numbers
on calculational RE.

We train different variants of our model with
fewer table rows to discuss their input efficiency,
by conducting random row sampling when convert-
ing tables into images. For better comparison, we
conduct same training on the models with best RE
performance in MLLMs and LLMs. As shown in
Fig.7, we find that our F1 score exceeded 0.42 with
just 4 sampled rows and then gradually level off
as the number of sampled rows increases, while
the other two methods have relatively slow growth.
This confirms that our model has a nice input data
efficiency property and is practical for long tables
on semantic RE task.
Tuning Efficiency. The setting of multi-task learn-
ing should further stabilize the performance with
fewer tuning data for each task. To verify the tun-
ing efficiency of our model M, we compare vari-
ants with different high-quality instruction-tuning
training data sizes (20% to 100%) and evaluate the
performance on two single tasks where the model is
denoted as Msolo. As Fig.7 shows, M consistently
outperforms Msolo and respectively achieves over
0.55 F1 scores and almost 0.4 Accuracy on two
tasks with only 70% of the tuning data. This indi-
cates that our model can effectively utilize limited
data resources, which is crucial in low-resource RE
scenarios.

5.5 Effect of Calculational RE Complexity

Intuitively, the complexity of a calculational RE
task should be related to the number of items in-
volved (refers to columns specifically in our task).
Therefore, we delve into the performance of our
method on complex calculational ability in tables
which may include mixed operations. Specifically,
we group and test the effectiveness of table samples
in CCR with calculational expressions involving
different numbers of columns, and the results are
shown in the Fig.8. Consistent with our expec-
tations, the extraction of calculational relation be-
tween 3 table columns works best with an Accuracy
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Figure 9: Resolution distribution of table images in
CCR dataset.
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Figure 10: Calculational RE performance on images
with wide and high resolutions in different ranges.

of 54.02% because it only involves fundamental
arithmetic operations and very few columns. And
then the performance sharply drops off as the num-
ber of involved columns increase, which implies
the increase in calculational RE complexity.

Surprisingly, the model effects slightly rebound
in the cases involving 6 and 7 columns. We further
examine table samples in these two subsets and
find that they contain a certain number of homo-
geneous tables and labels from HiTab-C. It can be
speculated that the model may have learned enough
inference information during tuning process, so as
to perform better on similar tables in test stage.

5.6 Effect of Resolution Size

Image resolution is currently a key limited factor
for the performance of MLLMs. To evaluate its
impact on the performance of our model, we further
conduct tests on table images in CCR. Fig.9 shows
their wide and high-resolution distribution.

We divide table images with different width and
height ranges into groups and separately test their
performance, as shown in Fig. 10. We can see
that table images with lower resolution have bet-
ter effects on RE, within the acceptable resolution
range of the vanilla SigLIP with S2-Wrapper of
1152×1152. And performance drops off as the
resolution increases. It is worth noting that the
model is not so sensitive to increase in width, com-
paring to that in height. When the image width
increases to over 2000, the model’s performance
can still reach about 35% -45%. While as the height
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increases to the same level, the model’s effective-
ness rapidly decreases. Such results imply that our
model can well perform RE tasks on wide tables
with rich columns with a high upper bound of ca-
pacity.

6 Conclusion

This work pioneers the exploration of relation ex-
traction task of hierarchical tables in multimodal
mode and introduces the innovative concept of
calculational relations among multicolumn, along
with a manually annotated corresponding bench-
mark dataset. We propose a framework tailored
for multi-RE in hierarchical tables, which demon-
strates superior performance in experiments.

Limitations

While this work represents a pioneering effort in ad-
dressing multi-relation extraction from multimodal
tables, several limitations remain for future explo-
ration. The dataset available for research is still
relatively scarce, and in the future, it is necessary
to construct a large scale hierarchical table dataset
that covers both semantic and calculational rela-
tions. Besides, the current calculational RE experi-
ment still has some limitations, as the data volume
is relatively small and could not represent gener-
alization performance. Addressing these issues
presents valuable foundation for future research.
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A Training Details of Graph Encoder

We take the model of pvigb_224_gelu (Han et al.,
2022) and its code library as basis, and continue
training on mini-ImageNet after adding deformable
patch prediction block. The training parameters are
summarized in the Tab. 4, achieving 83.9% top-1
accuracy. The trained model is publicly available4.

4https://huggingface.co/1728-zxy/pvig-b-deformable

Table 4: Training hyper-parameters for the graph en-
coder.

Pyramid ViG-B with deformable patches Parameter
Epochs 30

Batch size 128
Optimizer AdamW

Learning rate schedule Cosine
lr 2e-6

weight-decay 0.05
k 9

B Dataset Construction Details

Semantic RE. For the RE samples in TURL
dataset, we utilize its test (2072 column pairs from
1467 tables) and validation (2,175 column pairs
from 1,560 tables) set in experiments due to the
large number of complete sets. Finally, we obtain
a total number of 4247 column pairs from 3027
tables for practice.

Due to the scarcity of suitable table RE datasets,
we design a processing pipeline to construct train-
ing data. Semantic RE aims to identify relations
between primary and non-primary columns. In
other words, we aim to identify the attributes in
non-primary columns as relations connecting them
to the primary column. At the experimental level,
the type labels of non-primary columns, e.g., “age”
or “birth date” can naturally be interpreted as rela-
tion labels between them and primary column.

Based on this insight, we transform two classic
column type annotation datasets (SemTab, Wiki)
into relation label through a simple pipeline. For
each table, we pair the primary column with each
non-primary columns, using the type label of the
non-primary column as corresponding relation la-
bel. We filter extremely long tables with too many
rows or make appropriate truncation, and prepro-
cess noise such as vacancy and garbled text.

Then we carefully design Python scripts to con-
vert textual tables into high-quality images. Task-
specific input and output are transformed into a pre-
defined instruction-following format. We add extra
requirement for the model to answer in JSON for-
mat to minimize errors when generating answers.
Calculational RE. We collect over 1,200 tables
containing rich numerical relations from datasets
HiTab, AIT-QA and WTQ, most of which have
hierarchical headers. We then conduct a careful
manual annotation process to identify calculational
relations within these tables. We ensure robust-
ness to floating-point arithmetic errors through a
tolerance-based setting and implement difficulty-
appropriate annotation filtering criteria. Finally we
collect about 2.2K samples and obtain their images
from MMTab (Zheng et al., 2024).
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Task Table Images Input requests of different tasks 
(task description, required output format, task-related input)

Output responses
(final answer, chain-of-thoughts)

Semantic RE

Calculational RE

Task Description:

This is a semantic relation extraction task. The goal for this task is to choose the 

correct relations between two selected columns of the input table from the given 

candidates. You need to choose one relation from the candidate relation set that can 

best describe the semantic connection between these two columns. Please gradually 

deduce the intermediate results of each step and finally provide the answer.

Question input:

What are the correct relation type for the two selected columns <(Stadium),(Team)>?

The relation type candidates are: http://dbpedia.org/ontology/Cricketer,http://dbpedi

a.org/ontology/BaseballPlayer,http://dbpedia.org/ontology/PoliticalParty, ... 

Please give your reasoning evidence and return the final answer as JSON in the 

format {"answer": "<YOUR ANSWER>"}

Output:

By analyzing the table content, it is evident that the Team 

column contains names of football clubs (e.g., Arsenal , 

Aston Villa ), while the Stadium column lists their 

corresponding home stadiums (e.g., Emirates Stadium , 

Villa Park ). Among the provided candidates, several 

represent types such as Person , Place , and Company , 

which are not relevant to the nature of the data. Relations 

like BaseballTeam or BasketballTeam are also excluded 

due to the mismatch in sport type. The most semantically 

appropriate candidate is SoccerClub, as it directly….. 

{"answer": ["http://dbpedia.org/ontology/SoccerClub"]}

Task Description:

This is a calculational relation extraction task. The goal for this task is to find out 

the calculational relation between columns in the input table, which means one 

column can be calculated from other columns. You should construct expressions 

from operator and operand perspectives. The candidate operator set contains 

addition, subtraction, multiplication, division, and their simple mixtures, and the 

operands should be…

Question input:

Based on the table, please first list the known conditions, then gradually deduce the 

intermediate results of each step, and finally provide the answer

Please give your reasoning evidence and return the final answer as JSON in the 

format {"answer": "<YOUR ANSWER>"}

Output:

We can identify the columns that contain numerical values:1. 

Gold 2. Silver 3. Bronze 4. Total. The headers are straightfor

ward and do not require concatenation for hierarchical heade

rs.The most probable calculational relation between the colu

mns identified is that the "Total" column can be calculated b

y summing the values in the "Gold," "Silver“, and "Bronze" 

columns. This is evidenced by the fact that, -For Nigeria: To

tal = Gold (13) + Silver (5) + Bronze (6) = 24……And so o

n for the rest of the nations listed. 

{"answer": 

["Total = Gold + Silver + Bronze"]}

Figure 11: Concise task examples.

Demonstrations input and output of two tasks
are shown in Fig.11.

C Multi-Level Data Augmentation

Previous works have shown that the diversity of
instruction-following data is crucial to the capa-
bility of the resulting models (Zhou et al., 2023;
Si et al., 2023). To diversify the tuning data dis-
tribution and avoid over-fitting, we perform data
augmentations at multiple levels by rewriting the
prompt in chunks.

We resort to GPT-4V to rewrite multiple ver-
sions of instruction templates, task descriptions
and JSON output format based on several manually
annotated demonstrations. We randomly select an
instruction, a task description and an output for-
mat description from the candidate pool, and then
combine them with the task-specific input such as
table-related questions to produce the final sample.
This combination strategy can bring more diver-
sity of input requests. Moreover, our tables im-
ages are rendered with varied structures and styles
such as Web-page, Excel and Markdown with fine-
grained adjustments such font type and cell col-
ors. Through random concatenation to produce the
final input request and manually review, we ulti-
mately generated multiple times training samples
for datasets excluding TURL, as shown in Tab. 5.

D Implementation Details

For the pre-training stage of modal alignment, we
employ the MMTab-pre dataset (Zheng et al., 2024)
for the Table Recognition (TR) task, which com-

Table 5: Dataset Statistics. “samples” and “tables” de-
notes the number of instruction pairs and involved tables.
† means that only a portion of the dataset is used for
experiments due to its large size. DA represents the
multiple by which data augmentation was performed on
training set. The symbol n refers to average number of
columns involved per expression.

Datasets
Annotation Type Table Info
sem cal samples tables DA n

TURL† ✓ 4247 3027 - 2
SemTab ✓ 370 166 5 2

Wiki ✓ 247 221 5 2
HiTab-C ✓ 1898 1012 2 6.723
WTQ-C ✓ 232 208 5 4.594
AIT-C ✓ 58 44 10 3.839
CCR ✓ 2188 1264 - -

prises 150K table recognition samples in three text
formats (HTML: 96K, Markdown: 27K, Latex:
27K) on 97K table images. To enhance general-
ization and robustness, we first perform training
on general-purpose image-text data (100K samples
from Bunny-pretrain-LAION-2M (He et al., 2024))
to warm-up, followed by domain-specific TR data.
The projector is trained for one epoch with a learn-
ing rate of 1e-3. While in multi-task instruction
tuning stage, we take learning rate of 2e-5 and the
training lasts three epochs. We use the same cross-
entropy loss for next-token prediction throughout.
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