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Abstract

Generative Reward Models (GenRMs) lever-
age synthesized Chains of Thought (CoT) to re-
duce the need for massive labeled data, but this
approach introduces risks of overoptimization
due to the inability to guarantee the correctness
of the CoTs. Identifying and optimizing unex-
pected behaviors within these synthesized CoT
remains a challenge, as it heavily depends on
precise annotations of intermediate behavior,
similar to process supervision. In this work, we
introduce a criteria-based preference tree for
reward modeling, where each path in the tree
represents a reasoning trajectory based on syn-
thesized criteria. Crucially, each reasoning tra-
jectory can be independently optimized through
RL algorithm. These fine-grained process re-
ward signals are derived from the inference-
time computations and predefined rules, elim-
inating the need for human supervision. In
experiments, SyncPL' showed significant im-
provements over baselines on multiple human
preference benchmarks. We further demon-
strate that synthesized data can be learned us-
ing a long CoT format, analogous to an ol-like
model, further enhancing performance while
keeping stability and efficiency during training.

1 Introduction

With Reinforcement Learning from Human Feed-
back (RLHF) (Christiano et al., 2017; Schulman
et al., 2017; Ouyang et al., 2022), large language
models (LLMs) can effectively follow user instruc-
tions and generate responses that align with human
values. Traditionally, discriminative reward mod-
els (e.g., Bradley-Terry models (Bradley and Terry,
1952)) have been used as proxies to evaluate human
preferences. These reward models lack explicit
reasoning, leading to significant overoptimization
issues (Skalse et al., 2022; Chen et al., 2024) and of-
ten deteriorating on out-of-distribution data (Zhang
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* Consistency Rule: Only reasoning trajectories with high
consistency are considered valid.

Figure 1: Illustration of SyncPL.

et al., 2024). The reasoning models like OpenAl
ol and DeepSeek R1 (Guo et al., 2025) demon-
strates that powerful CoT reasoning capability is
key to performance improvement and scalability.
As a potential alternative, GenRMs (Mahan et al.,
2024; Ye et al., 2024) leverage the capabilities of
LLMs, such as CoT reasoning and inference-time
scaling, offering an interpretable evaluation pro-
cess. However, this approach does not guarantee
that the model generates reasonable CoT trajectory
during inference. Especially in open-domain sce-
narios, the model often needs to consider multiple
evaluation criteria (Liu et al., 2023; Wang et al.,
2024b), such as accuracy, fluency, and consistency.

Recent studies (Kim et al., 2023; Saha et al.,
2023; Liang et al., 2024) have used LLMs to syn-
thesize criteria-based CoT for responses evaluation.
In Section 3, we demonstrate how these methods
can address challenges in reward modeling, such
as implicit modeling, thus improving the accuracy
of preference judgments. Additionally, GenRM
ensures the effective parallel generation of multiple
criteria to achieve more accurate judgment results.
However, the compounding error of synthetic
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CoT hinders the model’s improvement through self-
improvement, as the model struggles to verify the
correctness of the CoT trajectories. To address this
issue, we predefined two rules as meta criteria to
filter high-quality trajectories.

As shown in Figure 1, the CoT trajectories in our
proposed method, SyncPL, are composed of three
essential elements: criteria, rubrics, and judgments.
The judgments includes scores assigned to differ-
ent responses (e.g., A and B), such as (1, 3). Fur-
thermore, we will utilize the Monte Carlo rollout
policy to expand CoT trajectories into a preference
tree, which provides a manner to estimate the ex-
pected reward of different trajectories. To identify
and optimize critical criteria, our method contains
two stages: In the ranking phase, we first compute
the score differences between responses A and B
across various reasoning trajectories. By aggregat-
ing these differences, we determine the importance
of each criterion. Specifically, the Ranking Rule
identifies the relative importance of the criteria,
while the Consistency Rule filters out trajectories
with low confidence and inconsistent judgments. In
the learning phase, we utilize these ranked trajecto-
ries to optimize LLMs through Rejection Sampling
Fine-tuning (RSFT) and Direct Preference Opti-
mization (Rafailov et al., 2024) (DPO). SyncPL
achieves substantial performance gains across mul-
tiple preference benchmarks both on in-distribution
and out-of-distribution (OOD) scenarios.

Benefiting from the rigorous data filtering, we
attempted to combine different criteria-based judg-
ments into a long CoT format and conducted RL
training. We demonstrate that the SyncPL-01-8
works effectively, surpassing the performance of
the LLaMA3.1-70B. In a nutshell, our contribu-
tions are as follows:

* We are the first to introduce tree-based prefer-
ence learning into generative reward modeling
to optimize synthetic criteria trajectories.

* SyncPL-DPO prioritizes key and high-quality
criteria, effectively reducing inference costs.

* We are the first to demonstrate and implement
the ol-like long CoT format’> for GenRM
through criteria-based process supervision.

1t denotes multi-step reasoning across different criteria
rather than merely a long response length.
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Figure 2: The difference between our proposed SyncPL
and existing reward modeling approaches.

2 Related Works

Reward modeling plays a crucial role in aligning
LLMs with human values and behaviors (Ouyang
et al., 2022; Bai et al., 2022), particularly in ensur-
ing their safe and effective deployment. To reduce
the cost of annotating preference data, reward mod-
els are often used as proxies to provide reward
signals for the policy model (Rafailov et al., 2024;
Azar et al., 2024). Given the user query and the can-
didate responses A and B, the two main approaches
are discriminative RM and generative RM.

Discriminative RM. The Bradley-Terry (Bradley
and Terry, 1952) model improves pairwise pref-
erence selection through Luce-Shephard Choice
Rule (Luce, 1959; Shepard, 1957). However, this
method is prone to reward hacking (Yang et al.,
2024; Coste et al., 2023; Pace et al., 2024; Shen
et al., 2024), also known as overoptimization, as
it easily learns spurious correlations between data
and preference label. For example, Chen et al.
(2024) demonstrate that verbose but less helpful
responses often receive higher reward scores. To
address this issue, Shen et al. (2023) introduce con-
sistency training to mitigate spurious reward when
handling lexically similar instructions. Despite it,
discriminative RM still requires massive data to
address the challenges posed by their inherent spar-
sity modeling (Sun et al., 2024).

Generative RM. GenRM can improves LLMs
by synthesizing interpretable critiques. In practice,
the LLM-as-a-Judge paradigm (Dubois et al., 2024;
Wang et al., 2023; Zheng et al., 2024) demonstrates
high consistency between LLMs and humans in
evaluation tasks, further highlighting the potential
of generative modeling. The self-reward model-
ing (Yuan et al., 2024b; Wu et al., 2024; Ye et al.,
2024) approach showcases the optimization of syn-
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thesized critiques through self-improvement. Fur-
thermore, some researchers (Ankner et al., 2024,
Yu et al., 2024) try to combine the strengths of both
by jointly generating critiques and scalar reward
scores. In contrast, as illustrated in Figure 2, our ap-
proach emphasizes criteria-based reward modeling
by introducing a synthetic preference tree (Yuan
et al., 2024a; Lehnert et al., 2024; Tian et al., 2024)
to synthesize criteria and incorporating process su-
pervision to reduce error accumulation.

3 Preliminaries

Implicit modeling in reward model training reduce
data dependency but pose risks like reward hack-
ing®. This section explores key challenges (see
§ 3.1) and suggests potential improvement strate-
gies based on the findings of trials (see § 3.2).

3.1 Barriers to Progress

Implicit Modeling and Inference. In reward
modeling, the number of required comparisons of-
ten far exceeds the available preference pairs (Sun
etal., 2024). While sparse comparisons help reduce
human annotation costs, they introduce the risk
of failing to capture true order relationships, such
as non-transitive preferences (Wang et al., 2024a).
The human preference (y, or y;) can be considered
as a weighted combination of multiple R based on
different criteria C:

IC]
R(l’, Ya, yb) = Z aZR(xa Yar Yb, Ci),
‘ (1

R('r7ya7 Yb, ci) ~ ,P(yT‘ciwrayau yb)7
C; = ,P<c’$7ya7yb)'

However, this weighting coefficient « is largely
determined heuristically, making it impossible to
obtain the value. Similarly, BT models and non-
CoT GenRMs also rely on the implicit learning of
human preferences rather than providing explicit re-
ward signals, making it difficult for them to model
complex preference relationships. Considering the
overall reward R is derived from a combination
of criteria-based sub-rewards R, can we enable
the LLMs to generate these sub-rewards, thereby
facilitating explicit generative reward modeling?
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Figure 3: Experimental Results of generative reward
models (LLaMA3.1-8B) on RewardBench.

3.2 Trial Experiment Design

To evaluate the effectiveness of criteria-based judg-
ment, we adapt LLaMA3.1-8B-Instruct as a genera-
tive reward model. We utilize the Chat and Reason-
ing datasets from the human preference benchmark
RewardBench. First, we guide the model to gener-
ate criteria-based CoT judgments using carefully
designed prompts and then aggregate all judgments
to obtain the final result. As illustrated in Figure 3,
single-step reasoning represents the output of a
traditional single-step GenRM, while multi-step
reasoning corresponds to results derived from 1 to
9 different criteria. Furthermore, we employ rejec-
tion sampling to synthesize CoT trajectories on the
UltraFeedback dataset for fine-tuning the LLMs, in
order to evaluate whether self-improvement (using
STaR-like methods (Zelikman et al., 2022)) can
further enhance performance.

Observation 1. In the experiment, the curve rep-
resents the changes in cumulative judgment results
based on an increasing number of criteria, demon-
strating that multiple criteria-based preference judg-
ment markedly improves model performance. Ad-
ditionally, incorporating more criteria in the evalu-
ation leads to enhanced accuracy (e.g., achieving
an 11.63% improvement in reasoning tasks), sur-
passing the performance of using a single criterion.

Observation 2. Although we aim to optimize the
model’s capabilities through the synthesis of CoT

3For example, imbalanced label distributions may cause
high-frequency labels to dominate predictions, misleading the
model’s decisions.
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4

and self-improvement, compounding errors™ result

in a performance decline after fine-tuning.

Conclusion . It is evident that aligned LLMs in-
herently serve as criteria-based reward models, yet
this capability still requires further guidance. The
primary cause of “compounding errors” is the ab-
sence of human supervision in each CoT trajec-
tory. Therefore, our main objective is to improve
the quality of criteria-based CoT through explicit
training and optimization. Additionally, multi-step
reasoning introduces a significant inference cost,
which poses challenges for practical deployment.

3.3 Motivation

A natural question is that Can LLMs optimize and
prioritize the most critical criteria? Based on this
idea, we reformulated the objective of reward mod-
eling as a further optimization of Equation (1):

H{R (2, ya )} = HR(2, yas s, )},

" ~
¢ = arg HlCaXR(QJ, Ya s Yb, Ci)a

where ¢* represents the most critical criterion, I
represents the indicator function, which takes the
value 1 if y, is better, and O if y is better. This
objective requires the explicit optimization of sub-
rewards R, but we lack explicit reward signals in
practice. To address this limitation, outcome-based
reward learning must be transformed into process-
based reward learning. Specifically, in the training
data, we only have R rather than R, which must
be identified through searching and learning.

Remark: Ir is important to note that c* is not a
global optimal solution to the current preference
problem, but rather a local optimal solution within
the limited criteria candidate space in our work.

4 Methods

To achieve the abovementioned goals, we decom-
pose it into two components: (1) obtaining esti-
mated values for the sub-rewards 7@, and (2) opti-
mizing the LLMs to output the most critical crite-
ria ¢*. Thus, we introduce a method SyncPL, as
shown in Figure 4. This approach first ranks the
CoT judgments according to synthesized criteria,
generating sub-reward estimates for various trajec-
tories. Then, we fine-tune the LLMs to emphasize
critical criteria, ensuring that they are prominently
reflected in the model’s predictions.

“LLMs experience compounding errors, where initial mis-
takes in generation propagate as the sequence length increases.

4.1 Ranking for Criteria Preference Tree

SyncPL first introduce an additional rubric node
between the criterion node and the judgment node,
as defined by the following:

Pr)=P(r|z,a),

P(yr) = P(yr | T, Ya; Ybs Cis 73)-
Generative reward models need to generate the
sequences of criteria, rubric, and judgment for
each trajectory. The judgment is a text sequence
generated by the model, including explicit eval-
uation scores (Rq, Rp) for the paired responses
(Ya, Yp)- As a result, we can obtain the final prefer-
ence choice: If 7éa > 7éb, then y, is the better; if
7€a < 7@1,, then vy is the better. The distributions
‘P in Equation 3 are modeled using LLMs.

Given the datasets D = {(z, Ya, yp, )i } Y, we
construct a preference tree using the Monte Carlo
rollout policy, where each parent node generates
multiple child nodes (two in practice). The prefer-
ence label [ is annotated by human as ground truth.
In the implementation, the sub-tree for each crite-
rion is represented as a complete binary tree, con-
taining 4 distinct evaluation scores. Each path from
the root node to a leaf node represents a complete
evaluation trajectory T = {x, Ya, Ub, Ci, T4, Yr - It
is important to note that we adopt two distinct roll-
out strategies: For criteria, we use LLMs to di-
rectly generate text sequence {ci,- - ,cjc|} rele-
vant to the user query, similar to the brainstorming.
For rubric and judgment, we employ a sampling
strategy based on the probabilities of the output.

To optimize the LLMs policy under different
criteria, we leverage the oracle label [ and prede-
fined rules to perform credit assignment for various
criteria. Unlike traditional Monte Carlo rollout
that estimate confidence scores, we do not rely on
preference scores for each criterion. Instead, these
sub-reward scores are estimated based on the oracle
preference and predefined rules:

3)

* Ranking Rule: Criteria with larger score mar-
gins indicate higher confidence in evaluation
by LLMs. Consequently, the evaluation tra-
jectory of the current criterion should be gen-
erated with higher priority.

* Consistency Rule: In each sub-tree with the
criterion as the root node, when conflicting
judgments arise, the majority voting result
can be regarded as final judgments. This sug-
gests that judgments which deviate from the
majority are probable to be erroneous.
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Figure 4: SyncPL primarily consists: The ranking process focuses on synthesizing preference data, while the
learning process aims to enhance model through inference-time computations.The retrain process can further
enforce the reasoning ability by introducing a special prompt: [Keep going] indicates that the previous criteria-
based judgment is correct, while [Reflection] signifies an inconsistency between reasoning and the oracle label.

Based on these rules, we can collect pairwise pref-
erence training data from different tree node:

Criteria. We calculate the score margins (]7% —
7%|) for all criteria and reorder the output sequence
{e1,-++ ,¢iel} based on the ranking results (|C| is
set to 10). The reordered sequence is denoted as
¢, while the original sequence serves as ¢~

Rubric & Judgment. For each rubric and judg-
ment synthesized based on criterion, we apply the
consistency rule to filter out sub-trees: inconsistent
results are treated as rejected samples (r~ and y,. ),
while consistent results with large score margins
are selected as chosen samples (r* and y;1).

4.2 Criteria Preference Learning

In generative reward modeling, high-quality pref-
erence pairs (¢, c¢™), (rt,r7), and (y;",y, ) are
utilized for training both RSFT and DPO. Specifi-
cally, RSFT employs chosen samples (¢t T, ")
as training data, while DPO leverages paired pref-
erences for its training. The reward model can
optimize the synthesis process® through preference
learning, such as the loss function for criteria is
defined as follows:

EDPO(We; 7rref) -

- E(x,c+7c—)~D 4)
ro(ct|o) ro(c o)
{m”(ﬁbg e (1) B rer(c m)]’

>In practice, we use Pg(c|z) instead of Py (c|z, ya, ys) to
reduce computational cost.

where 7.f is typically the RSFT model, S is the
hyperparameter that controls the proximity of the
policy 7y to the original policy 7rref.

4.3 Retrain with Long CoT Format

OpenAl’s ol-series models introduce inference-
time scaling through a long CoT reasoning pro-
cess. Inspired by this, we also explore utilizing
the long CoT for GenRM, leveraging high-quality
criteria-based judgments generated by SyncPL-
SFT. Specifically, we reorganize the training data
by alternating between chosen and rejected trajec-
tories, aiming to stimulate the model’s reflection
ability. Subsequently, we retrain SyncPL-o1 based
on LL.aMA3.1-8B using DPO as before.

4.4 Implementation

Rejection sampling is designed to eliminate low-
quality synthetic data by applying a consistency
rule to filter out invalid trajectories. This process
ensures that only evaluation results consistent with
both majority voting and oracle labels are retained.
If each sample includes 10 distinct criteria, the
number of trajectories required for synthetic data
s ((2+4) x 10). Clearly, this process involves a
significant amount of inefficient sampling.

Efficiency improvement . To enhance the effi-
ciency of data synthesis, we generate evaluation
trajectories for only one criterion per dialogue dur-
ing the RSFT synthesis. For DPO, we synthesize
trajectories for all 10 criteria simultaneously to en-
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sure comprehensive preference learning. This will
results in nearly a 10X speedup. During DPO,
we select only the inconsistent samples between
the backbone and RSFT models, resulting in the
removal of approximately 70% of the total dataset.

5 Experiments

5.1 Evaluation Datasets and Details

In experiments, we employ three distinct human
preference benchmarks to evaluate the reward
models: RewardBench (Lambert et al., 2024),
Auto-J (Li et al., 2023), and MT-Bench (Zheng
et al., 2024). Specifically, RewardBench com-
prises four distinct subsets: chat, chat-hard, safety,
and reasoning, containing 358, 456, 740, and
1,431 samples, respectively. Each subset is de-
signed to evaluate model performance in helpful-
ness, instruction-following, safety, and reasoning.
Additionally, Auto-J and MT-bench include 1,392
and 3,355 dialogues across diverse domains. We
exclude samples labeled as ‘tie’ from the Auto-17J.
For evaluation, we adopt consistency metric be-
tween model predictions and human annotations.

For baseline models, we employ the state-of-the-
art closed-source generative models GPT-4, GPT-
40, and DeepSeek V3. For the discriminative RM,
we select LLaMA3-8B RM with ultrafeedback
using the BT objective. For the generative RM,
we select Prometheus2, which trained by GPT-4
synthesized data. Additionally, CLoud leverages
LLaMA3-405B to generate CoT reasoning paths
using a hybrid methods for model training.

5.2 Out-of-Distribution Reward Modeling

We utilize Qwen2.5-32B-Instruct-GPTQ-Int8 to
construct CoT data and train the LLaMA3.1-8B
Distill model as our backbone model. SyncPL
leverages dialogue data from UltraFeedback and
OffsetBias as training set to construct a fine-grained
reward model. It is notable that the data dis-
tribution of these training datasets differs signif-
icantly from that of the evaluation benchmarks,
meaning the results in Table 1 can be regarded
as out-of-distribution (OOD) evaluations. With
RSFT, SyncPL achieves superior alignment with
human preferences, outperforming the LLaMA3.1-
8B Distill model by 2.8 points. Moreover, SyncPL-
DPO further enhances reward modeling capabili-
ties, yielding a 3.8 point improvement.
SyncPL-o1 is trained on synthetic data generated
by SyncPL-SFT, as it can produce rejected data to

better guide the model’s reflection ability compared
to SyncPL-DPO. Through reinforcement learning,
SyncPL-o01 achieves superior performance, surpass-
ing LLaMA3.1-70B (84.2 v.s. 84.0). While it ob-
tains optimal performance with a single inference
step, this primarily depends on SyncPL’s ability
to optimize process-level data (criteria-based judg-
ment). The introduction of process supervision
signals ensures the correctness of the reasoning
chain in long CoT, fully unleashing its potential.

5.3 In-Distribution Reward Modeling

To evaluate in-distribution judge performance,
we fine-tune Mistral-7B-Instruct using the Fen-
nec (Liang et al., 2024) training data, which in-
cludes 3K dialogue samples from Auto-J (Li et al.,
2023), along with CoT trajectory data annotated by
GPT-4. For a fair comparison, we adopt Agreement
(AGR) and Consistency (CNS) as performance
metrics, following Auto-J. Notably, CNS measures
only positional consistency without considering
correctness. As observed in Table 2, the RSFT and
DPO models demonstrate significant performance
improvements over most baseline methods on both
Auto-J and Fennec, achieving the highest agree-
ment score of 58.41.

Dialogue Correction. The core capability of
GenRM is to identify and rectify flaws in dialogues,
thereby enhancing overall quality. To evaluate this,
we test our model’s ability to assess and refine
dialogues generated by Alpaca-13B (Taori et al.,
2023) and LLaMA2-7B Chat (Touvron et al., 2023)
in MT-Bench. Unlike previous pairwise evalua-
tions, MT-Bench is a multi-turn dialogue evalua-
tion benchmark that utilizes GPT-4 to score Al re-
sponses on a scale from 1 to 10, subsequently estab-
lishing ranking relationships based on these scores.
Specifically, we generate multiple judgments for
the responses and refine those with scores below 3.
As shown in Table 3, after refinement, both Alpaca-
13B and LLaMA2-7B Chat achieve higher scores.
Moreover, the DPO model’s corrections outperform
those of the RSFT model, demonstrating that im-
proved evaluation feedback can lead to significant
enhancements in evaluation quality.

6 Analysis
6.1 Scalability of SyncPL’s Branching

To evaluate whether different criteria contribute to
performance scalability, we compare model per-
formance across different training stages using
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Evaluator Backbone Chat Chat Hﬁewasr:fe?;ncleasoning Ave, Auto-J | MT-Bench
GPT4-0 ® 96.1 76.1 86.6 88.1 86.7 74.6 80.7
GPT4 (&) 95.3 74.3 87.6 86.9 86.0 73.1 79.9
DeepSeek-V3 & 96.9 79.8 87.0 84.3 87.0 - -
Prometheus2-7B (i 85.5 49.1 78.7 76.5 724 75.1 74.6
Prometheus2-8x7B I 93.0 47.1 83.5 77.4 75.3 80.0 73.6
LLaMA3-8B RM x 94.7 44.9 66.2 83.6 72.4 79.3 78.1
CLoud x 94.3 46.5 78.6 84.6 76.0 81.2 79.9
LLaMA3.1-8B x 80.7 49.8 64.0 68.1 65.7

LLaMA3.1-70B (2] 97.2 70.2 82.8 86.0 84.0 - -
LLaMA3.1-8B Distill{ x 92.9 61.8 82.5 79.9 79.3 76.5 73.2
SyncPL-RSFT-8B (72 941516 66.45.5 84.9¢40 83.00.75 82.1 78.0 74.8
SyncPL-DPO-8B x 93.30.15  T71.3033 86.5, 5 81.20.55 83.1 77.1 74.1
SyncPL-01-8B x 93.9010 732095 85.85.47 83.71.12 84.2 77.8 73.5

Table 1: The experimental results on RewardBench, Auto-J, and MT-Bench, where bold numbers indicate the best
performance among open-source, small-size LLMs. t represent our reimplementations.
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Figure 5: The results of judgments ensemble based on different criteria. SyncPL-o1 utilizes long CoT for preference
judgments and inherently incorporates multiple criteria. One key advantage of an ol-like model is that it requires
only a single inference step, whereas other models must perform multiple steps depending on the number of criteria.

Evaluator C w/ Tie w/o Tie

AGR7T CNS?T | AGR1 CNS1

GPT-4 1| 62.28 86.28 - -
GPT-3.5 1| 4441 7239 | 59.86  73.57
Auto-J T 1| 55.13 8244 | 7413  87.26
Fennec 1| 5536 83.80 | 68.63 86.33
5| 5580 8552 | 7414  89.19
SyncPL-RSFT | 1 | 56.87 8792 | 7092 88.99
5| 5632 87.86 | 75.17  89.79
SyncPL-DPO | 1 | 57.54 90.66 | 78.60 93.32
5| 5841 91.52 | 79.69 93.72

Table 2: For a fair comparison on the Auto-J benchmark,
we use only five criteria (C). Additionally, methods
marked with T represent our reimplementations.

RewardBench. As shown in Figure 5, both the
Distill model and SyncPL-SFT exhibit a significant
performance improvement as the number of criteria
increases. This effect is particularly notable in rea-

Models | Rating | Refine Rate
GPT-4 8.96 -
LLaMA2-70B Chat 6.99 -
LLaMAZ2-7B Chat 6.26 -

w/ SyncPL-RSFT Corr 6.85 87.5%
w/ SyncPL-DPO Corr 7.08 72.5%
Alpaca-13B 4.97 -

w/ SyncPL-RSFT Corr 6.61 95.0%
w/ SyncPL-DPO Corr 6.85 98.8 %

Table 3: Results of dialogue correction.

soning tasks, where different criteria significantly
enhance the model’s judgment accuracy, with max-
imum improvements of +18.2% and +12.6%,
respectively. Furthermore, the SyncPL-DPO model
optimizes the ability to select key criteria more ef-
fectively, allowing it to make accurate judgments
with only single criterion. This demonstrates that
our preference optimization method effectively sub-
stantiates the claims presented in the motivation.
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Figure 6: The results demonstrate the effectiveness of self-synthesized CoT data in combination with SyncPL.

Models Chat Chat H. Safety Reasoning Avg.
SyncPL-RSFT 94.1 66.4 84.9 83.0 82.1
w/ UltraF. 94.7 522 81.0 83.4 77.9
w/ OffsetB. 89.9 67.7 854 82.1 80.7
SyHCPL—DPO 93'3L[],8 71'3T4-9 86.5A1 6 81. QVL 8 83.1
w/ UltraF. 949400 544T22 83'1T2-1 82-6U],8 78.8
w/ OffsetB. 855v44 71.2’(3'3 85.3“),1 77.1V3_0 79.8

Table 4: Results on different dialogue datasets (Offset-
Bias and UltraFeedback) based on LLaMA3.1-8B.

Additionally, the SyncPL-o1 model employs a
long CoT format, leveraging the key criteria ex-
tracted by SyncPL-SFT. This method proves to be
more optimization-friendly in experiments while
ensuring stable performance improvements. It can
be observed that SyncPL-o1 consistently achieves
superior results compared to others across almost
all sub-datasets.

6.2 Ablations of Different Dialogue Datasets

As shown in Figure 4, we find that OffsetBias
significantly improves evaluation performance on
Chat Hard but does not outperform UltraFeedback
in Chat evaluations. The primary reason for this is
the distribution shift between Chat Hard and other
datasets. Using OffsetBias alone as the training
set leads to reward hacking, causing performance
degradation across all datasets except Chat Hard.
To address this issue, we combined UltraFeedback
and OffsetBias for training in our previous exper-
iments. Nevertheless, the distribution gap affects
the DPO training process, emphasizing the need for
more suitable dialogue datasets in future research.

6.3 SyncPL with Self-Improvement

In this subsection, we further examine the neces-
sity of leveraging data distillation from larger mod-
els to warmup the backbone model. To investi-
gate this, we retrain the SyncPL-self series models

using only self-synthesized CoT data generated
by LLaMA3.1-8B. As shown in Figure 6, the re-
sults reveal that small size LLMs struggle to en-
hance certain skills through test-time scaling, as
also observed by Guo et al. (2025). Moreover, our
findings indicate a substantial performance gap be-
tween SyncPL-self and the distilled model, particu-
larly in Chat and Safety tasks, with a degradation
of up to 25.9 points. A major factor is the presence
of bias in Chat Hard, which makes small size mod-
els prone to misjudgment. These results highlight
the critical importance of high-quality CoT data in
improving the reasoning of small size LLMs.
Additionally, we observe that even with self-
improvement, SyncPL-self achieves consistent per-
formance gains on Rewardbench (except for safety,
likely due to “alignment tax”). Notably, it surpasses
SyncPL-o1 in chat and reasoning sub-tasks.

6.4 Error Analysis

We conduct an analysis of error types in chat
datasets, revealing that 60% of errors stem from
the preference for shorter responses, 13% are at-
tributed to intent misinterpretation and inherent
model limitations, and 27% involve high ambiguity.
For more details, please refer to the Appendix A.2.

7 Conclusion

In this work, we introduce SyncPL, which reformu-
lates the generative reward modeling process into
a criteria-based preference tree, enabling LLMs
to more effectively identify key criteria. Our ex-
periments not only validate the efficacy of multi-
criteria training but also demonstrate that SyncPL-
ol achieves the most substantial gains in the long-
CoT format, outperforming even the LLaMA3.1-
70B model. Beyond improving performance, our
approach introduces a effective mechanism for pro-
cess supervision in generative modeling, offering a
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promising solution to mitigate compounding errors
stemming from model limitations.

8 Limitations

The Candidate Space of Criteria. A intuitive
limitation lies in the candidate space of criteria
that LLMs consider during judgments, which di-
rectly affects whether the model can select the op-
timal criterion for making judgments. In our work,
we rely on LLMs to autonomously generate cri-
teria for evaluation, making the effectiveness of
this approach partially dependent on the model’s
inherent capabilities. Possible ways to expand the
candidate space include, but are not limited to: (1)
Using more strong LLMs for data synthesis. (2)
Constructing a candidate pool list and retrieving
relevant criteria as needed. Since this study primar-
ily aims to validate the feasibility of criteria-based
preference learning, we do not extensively explore
these potential extensions.

Pure RL v.s. Process Supervision . The key
difference from DeepSeek R-zero lies in the learn-
ing approach. R-zero relies solely on reinforce-
ment learning, optimizing through rule-based re-
wards. In contrast, our method first leverages pro-
cess supervision to generate effective intermediate
trajectories before applying reinforcement learn-
ing for further improvement. Notably, the R-zero
study demonstrates that their approach is ineffec-
tive on small-scale LLMs. In contrast, our method
is specifically designed to enhance the performance
of these models. Moreover, since reinforcement
learning necessitates a rigorously defined candi-
date set for effective optimization, the training pro-
cess can quickly collapse if high-quality solutions
are rarely sampled. Our method addresses this
challenge by filtering candidates based on multiple
criteria, thereby ensuring a search domain that is
highly conducive to optimization.
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A Appendix

A.1 Training details

We utilize the DeepSpeed (Rasley et al., 2020) li-
brary, Zero Redundancy Optimizer (ZeRO) (Ra-
jbhandari et al., 2020) Stage 3, and FlashAtten-
tion (Dao, 2023), along with a mixed precision
computation approach using bfloat16 (BF16) and
tfloat32 (TF32), across 8 NVIDIA A100 GPUs.
For optimization, we set the number of gradient
accumulation steps to 32. The initial and SFT mod-
els are trained with a learning rate of 5e-6, while
the DPO model is trained with a learning rate of
5e-7. Each training stage consists of one epoch,
and we set § = 0.1 for training the DPO model.
The prompt templates used in our evaluation are
provided in Table 6.

A.2 Case Study

Case 1: Length Bias

Query: Who created the Superman cartoon
character?

Response A: The Superman cartoon char-
acter was created by Jerry Siegel and Joe
Shuster in 1938.

Response B : (ground truth) Superman,
the iconic comic book superhero, was cre-
ated by writer Jerry Siegel and artist Joe
Shuster. Superman first appeared in Action
Comics 1, which was published by Detec-
tive Comics, Inc. (later DC Comics) in June
1938. The character’s immense popularity
established him as one of the most enduring
and recognizable figures in the superhero
genre.

Judge : Accuracy of Information: This cri-
terion ensures that the response correctly
identifies the creators of the Superman ...
Response A directly answers the user query
by naming Jerry Siegel and Joe Shuster as
the creators of the Superman cartoon charac-
ter. ... The response is clear and to the point,
making it easy for the user to understand
the answer. ... Response B also correctly
identifies Jerry Siegel and Joe Shuster as the
creators of Superman. However, it provides
additional information about the character’s
first appearance and the publisher, which,
while interesting, is not directly asked for
in the user query. ....

Case 2: Length Bias

Query: what language does argentina peo-
ple speak?

Response A: The official language of Ar-
gentina is Spanish.

Response B : (ground truth) The primary
language spoken in Argentina is Spanish.
Specifically, the variety of Spanish spo-
ken there is known as Rioplatense Spanish,
which is characterized by its unique accent
and the use of the pronoun "vos" instead of
"td" for the second person singular. Addi-
tionally, there are various indigenous lan-
guages spoken in different regions of the
country, as well as immigrant languages
such as Italian, German, and English, but
these are much less widespread than Span-
ish.

Judge : Accuracy of Information: This cri-
terion ensures that the response correctly
identifies the primary language spoken in
Argentina. It is crucial because providing in-
correct information can lead to misinforma-
tion and dissatisfaction with the response. ...
Response A directly answers the user query
by stating that the official language of Ar-
gentina is Spanish. This response is concise
and to the point, which aligns well with the
user’s query. It does not provide additional
information that might not be relevant to the
user’s query, which can sometimes be seen
as a positive aspect of brevity. ... Response
B provides more detailed information about
the language spoken in Argentina, includ-
ing the specific variety of Spanish and the
use of indigenous and immigrant languages.
While this information might be interesting
and informative, it goes beyond the scope
of the user’s query, which was simply to
identify the primary language spoken in
Argentina. This makes the response less
focused and potentially less useful for the
user’s immediate needs. Comparison: Re-
sponse A is more aligned with the user’s
query, providing a direct and concise an-
swer to the question. Response B, while
informative, includes additional details that
were not requested by the user, which can
be seen as unnecessary and potentially con-
fusing. ...
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Case 3: Length Bias Case 4: Model Capability Limitation

Query: You are given a paper citation,
convert it to the requested citation style.
Chicago:  Vaswani, Ashish, Shazeer,
Noam, Parmar, Niki, Uszkoreit, Jakob,
Jones, Llion, Gomez, Aidan N., Kaiser,
Lukasz, and Illia Polosukhin. "At-
tention Is All You Need." arXiv, (2017).
https://doi.org/10.48550/arXiv.1706.03762.
MLA:

Response A: Vaswani, Ashish, et al. "Atten-
tion Is All You Need." ArXiv, 17 June 2017,
https://doi.org/10.48550/arXiv.1706.03762.

Response B (ground  truth)
Vaswani, Ashish, et al. "Atten-
tion Is All You Need." arXiv, 2017,
d0i:10.48550/arXiv.1706.03762. In the

MLA citation style, the citation would
be formatted as follows:Author(s) of the
source: Vaswani, Ashish, et al. Title of the
source:"Attention Is All You Need."Title
of the container (if the source is part of
a larger work):arXiv Publication date:
2017 Location (such as a URL or page
range):doi:10.48550/arXiv.1706.03762
Note that in MLA style, the authors are
listed with the last name followed by the
first name, and the names are separated by
a comma. ...

Judge : Accuracy of Citation Style: This
criterion evaluates whether the response
correctly converts the citation to the MLA
style as requested. ... Response A provides
a direct conversion of the Chicago citation
style to MLA style, adhering closely to the
MLA format guidelines. It includes the
author’s last name, first name, title of the
source, title of the container, publication
date, and DOI. The response is concise and
directly answers the user query without
unnecessary elaboration. ... Response B
attempts to explain the MLA citation style
but does not provide a direct conversion of
the citation as requested. Instead, it offers
a general explanation of how to format a
citation in MLA style, which is not what
the user query asked for. The response is
informative but does not fulfill the specific
request for a citation in MLA style. ...

Query: You should capitalize the sentence
according to the guide. Guide: Every other
letter alternates between lower case and up-
per case. Sentence: A giant spider blocks
your path.

Response A: (ground truth) Sure! Here’s
the sentence with alternating capitalization:
A glaNt SpIdEr BIOcKs YoUr PaTh.
Response B : A GiANT spider BLOCKS
your path.

Judge : Consistency with the Guide: The
response must adhere strictly to the guide
provided, ensuring that every other letter
is alternately in lower case and upper case.
This criterion is crucial as it directly mea-
sures the AI’s ability to follow instructions
accurately. Judge: Response A Score: 1
Analysis of Response A: Response A does
not follow the guide provided in the user
query. The guide specifies that every other
letter should alternate between lower case
and upper case, but Response A does not
maintain this pattern. Instead, it seems to
randomly capitalize letters, which does not
meet the criteria set by the user. Response B
Score: 5 Analysis of Response B: Response
B correctly follows the guide provided in
the user query. It alternates between lower
case and upper case letters as specified,
maintaining the pattern throughout the sen-
tence. This response accurately capitalizes
the sentence according to the guide, mak-
ing it the superior response. Comparison:
Response A fails to adhere to the guide’s
instructions, leading to a score of 1. In con-
trast, Response B successfully alternates be-
tween lower case and upper case letters as
instructed, earning a score of 5. Response B
is superior as it accurately follows the guide
and provides the correct capitalization of
the sentence. ... Relevance to the Query: ...
Accuracy of Capitalization: ... Response A
does not maintain this pattern. Instead, it
randomly capitalizes letters, which does not
meet the criteria set by the user. ... It al-
ternates between lower case and upper case
letters as specified, maintaining the pattern
throughout the sentence. ...

So, the final decision is Response B

26767




Case 5: High Ambiguity

Query: I want you to act as a Tiktok Ads
Keywords generator. Your task is to come
up with keywords that can be used in Tik-
tok advertising campaigns. The keywords
should be relevant to the target audience
and the product or service being advertised.
Your responses should not include more
than 5 keywords per request.

Response A: (ground truth) Sure, I’d be
happy to help! Can you please provide me
with some information about the product
or service being advertised, as well as the
target audience? This will help me generate
keywords that are relevant and effective for
your TikTok advertising campaign.
Response B : TikTok is a popular short-
form video sharing app that ... Here are a
few TikTok ads keywords generator ideas:
1. Trends and Hashtags: TikTok users are
always on the lookout for the latest trends
and hashtags. By incorporating these into
your ads, you can increase the chances of
your ads being seen by the right audience.
... 5. Comedy: TikTok users love to laugh,
so if your ad is funny, you can use comedy-
related keywords to target TikTok users. 6.
Gaming: TikTok users also love gaming, so
if your ad is about a new game, you can use
gaming-related keywords to target. ...
Judge : Relevance to the Query: ... Re-
sponse A is a good start as it acknowledges
the need for more information about the
product or service and the target audience.
However, it does not provide any specific
keywords or a list of ideas as requested in
the user query. It is more of a request for ad-
ditional information rather than a direct re-
sponse to the query. ... Response B provides
a comprehensive overview of the types of
keywords that can be used in TikTok adver-
tising campaigns. It includes a variety of
categories such as trends, music, dancing,
fashion, comedy, gaming, celebrities, ani-
mals, contests, and quotes. This response is
more aligned with the user query’s request
for a list of keywords and ideas. However, it
could have been more concise and directly
provided the requested 5 keywords per re-
quest as specified in the user query. ...

As illustrated above, we identify several types of
errors observed during inference. The majority of
these errors (from Case 1 to Case 3) arise from a
preference for shorter responses. However, these
shorter responses are not necessarily incorrect but
may simply reflect a misalignment with human
preferences at the time, which favored longer an-
swers. Additionally, the error in Case 4 stems from
the model’s inability to distinguish variations in
letter casing, leading to misjudgments in specific
cases. Finally, we present a scenario where both
responses have flaws in Case 5. However, since
a choice must be made, the ground truth is set to
A. In fact, Response B also provides a concrete
answer and could be considered more helpful than
A in certain contexts. This issue primarily stems
from the ambiguity in criteria selection, as different
judges may prioritize different key criteria, leading
to variations in judgment.

Reward Bench

Evaluator ‘ Chat Chat H. Safety Reasoning Avg.
GPT3.5-turbo 922 44.5 65.5 59.1 65.3
LLaMA3-8B 85.5 41.6 68.0 64.8 65.0
SyncPL-o01-16B ‘ 83.8 49.8 67.4 67.9 67.3

Table 5: The experimental results on RewardBench.

A.3 Results of MoE models

We train an MoE model and evaluate it on
RewardBench based on DeepSeek-V2-Lite, which
consists of 16B total parameters with 2.4B active
parameters. As shown in Table 5, despite relying
on only 2.4B active parameters, it still outperforms
strong models such as LLaMA3-8B, demonstrating
the generalizability of our approach.
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Step ‘ Content

Criteria For evaluating human satisfaction with responses from an Al assistant based on a [User
Query], we need to brainstorm and establish ten [Evaluation Criteria] directly linked to the
user’s query. These criteria play a crucial role in objectively assessing response content, with
higher priority and greater evaluation weight.

kekck

As an illustration:

1. Relevance: Evaluate whether the response is directly related to the user’s query.

2. Criterion: Assess the correctness of the information provided in the response. etc.

skkck

[User Query]:

{query}

skekck

Please return ten [Evaluation Criteria]:

Rubrics Consider a [User Query] and [Evaluation Criteria] for evaluating response satisfaction.
Reflect on these criteria and offer a comprehensive [Scoring Guideline] on a scale of 1-5
(1 represents 'Not at all satisfactory’ and 5 represents *Extremely satisfactory’). Ensure
that these guidelines are closely tied to both the user query and the assessment criteria,
allowing for a precise evaluation of possible responses to the user query. Conduct a detailed
comparison of the [Scoring Guideline] to ease adherence and assist individuals in assigning
reasonable scores.

sfesksk

[User Query]:

{query}

kekck

[Evaluation Criteria]:
{criteria}
sesksk

Please return detailed [Scoring Guideline]:

Judgments | Given a [Dialogue Context] and a [User Query], please score the responses (A and B) from
two Al assistants according to the [Evaluation Criteria] and [Scoring Guideline]. Ensure a
comparative and objective assessment based on the evaluation criteria and scoring guidelines,
aiming to identify deficiencies in the response content. Provide a final score of 1-5 along
with relevant explanations.

Kk

[Dialogue Context]:

{context}

kkck

[User Query]:

{query}

kekck

[Evaluation Criteria]:

{criteria}

kekck

[Scoring Guideline]:

{scoring guidelines}

kekck

[The Start of Response A]:{responsel }[The End of Response A]

skekck

[The Start of Response B]:{response2}[The End of Response B]

sesksk

Please return [Judge Result] as follows:

Response A Score: 3 Analysis of Response A: Explanation of the score for the Response A.
Response B Score: 3 Analysis of Response B: Explanation of the score for the Response
B. Comparison: Discuss the comparative strengths and weaknesses of Response A and
Response B [Judge Result]:

Table 6: Prompts for multi-step evaluation. The criteria in Scoring Guidelines and Pairwise-eval is regularly
extracted from the output of the first step. The scoring guidelines in Pairwise-eval are the output of the second step.
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