
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 26679–26710
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

Scaling Laws and Efficient Inference for Ternary Language Models

Tejas Vaidhya1,2,3* , Ayush Kaushal1* , Vineet Jain2,4, Francis Couture-Harpin5,
Prashant Shishodia6, Majid Behbahani7, Yuriy Nevmyvaka7, Irina Rish1,2,3

1Nolano AI 2Mila- Quebec AI institute 3Université de Montréal 4McGill University
5École de technologie supérieure, Université du Québec 6Google, India 7Morgan Stanley

Abstract

Large language models (LLMs) are increas-
ingly used across research and industry appli-
cations, yet their inference efficiency remains
a significant challenge. As the computational
power of modern GPU architectures continu-
ously improves, their memory bandwidth and
capacity have not scaled proportionally, creat-
ing a critical bottleneck during inference. To
address this, we investigate ternary language
models (TriLMs) that employ quantization-
aware training to significantly reduce mem-
ory requirements. We first analyze the scal-
ability of TriLMs by conducting a scaling law
analysis, revealing that TriLMs benefit more
from increasing training data than from scal-
ing model parameters. Based on this observa-
tion, we introduce TriTera, an open suite of
TriLMs trained on up to 1.2 trillion tokens,
demonstrating sustained performance gains at
scale. Furthermore, to improve inference effi-
ciency, we propose novel 2-bit and 1.6-bit pack-
ing schemes for ternary weights, which demon-
strate accelerated inference across various CPU
architectures. Also, building on the 2-bit pack-
ing, we develop a GPU kernel called TriRun
that accelerates end-to-end model inference by
up to 5 times compared to floating-point base-
lines. To encourage further exploration and de-
velopment of TriLMs, we will release the TriT-
era suite and TriRun inference kernels. Overall,
our work lays the foundation for building and
deploying efficient LLMs, providing a valuable
resource for the research community.

1 Introduction

Large language models (LLMs) (Radford et al.,
2019; Zhang et al., 2022; Touvron et al., 2023)
have become increasingly pivotal in both research
and industry. Beyond their broad utility, their capa-
bilities during inference with additional compute
demonstrate the potential to enable advancements

*Equal contribution, listed in alphabetical order.

in reasoning and agentic tasks (Sardana et al., 2024;
Singh et al., 2024; Wei et al., 2023). As the de-
mand for efficient and scalable inference grows
(Zhou et al., 2024), significant efforts have been di-
rected toward reducing inference costs and latency
(Dettmers et al., 2022a; Frantar et al., 2023; Sheng
et al., 2023). While, the computational power of
GPUs has improved rapidly, advancements in mem-
ory capacity and bandwidth have lagged behind
(Gholami et al., 2024; Kaushal et al., 2024). This
disparity has made memory-related bottlenecks
a predominant challenge during LLM inference,
where memory usage and bandwidth (driven by
model size in bits) increasingly outweigh compu-
tational (FLOPs) limitations. While post-training
quantization, combined with custom kernels for
inference acceleration, has become widely adopted,
its effectiveness in mitigating these bottlenecks re-
mains limited. Specifically, post-training quanti-
zation is typically restricted to 4-bits and results
in significant performance degradation beyond this
threshold (Dettmers and Zettlemoyer, 2023).

Recent advancements in extreme low-bit lan-
guage models (Kaushal et al., 2024; Wang
et al., 2023; Ma et al., 2024) have shown that
quantization-aware training allows ternary-weight
models to achieve performance comparable to full-
precision models (referred to as FloatLMs in this
paper) at larger parameter scales. Additionally,
ternary representations demonstrate superior bit-
efficiency as they scale. However, critical gaps
persist in understanding the scaling laws governing
Ternary Language Models (TriLMs)—specifically,
how TriLM performance is affected by training on
much larger datasets or with many more parame-
ters remains unanswered. Furthermore, the acceler-
ation of inference in sub-4-bit models (e.g., ternary)
remains unexplored, with most existing research
limited to 4-bit quantization (Frantar et al., 2023;
Dettmers et al., 2022a; Frantar et al., 2024; He et al.,
2024). These limitations are compounded by the

26679



1021 1022 1023 1024

Training FLOPs (log scale)

3 × 101

4 × 101

6 × 101
M

M
LU

 A
ve

ra
ge

 S
co

re
 (l

og
 sc

al
e)

GPT-3 175B

Gopher 280B

Chinchilla 70B

PaLM 8B

PaLM 62B

PaLM 540B

LLaMA 7B

LLaMA 13B

LLaMA 33B

LLaMA 65B

TriTera 1B

TriTera 2B

TriTera 3B

Olmo-2 7B

Olmo-2 13B

OLMo-7B

Amber-7BSpectra 99M

Spectra 390M

Spectra 830M
Spectra 1.1B

Spectra 1.5B

Spectra 2.4B

Spectra 3.9B
GPT-NeoX 20B

Model Performance vs. Training FLOPs (Bubble Size ~ log(Model Parameters in Billions)

Model Families
GPT-3
Gopher
Chinchilla
PaLM
LLaMA
TriTera
Olmo-2
OLMo-7B
Amber-7B
Spectra
GPT-NeoX
Spectra Fit
TriTera Fit

7B 13B 34B 70B
Model Size

0

1

2

3

4

5

6

Sp
ee

du
p 

ov
er

 P
yT

or
ch

 b
as

el
in

e

PyTorch: 1 GPU
TriRun: 1 GPU

1.5x

PyTorch: 1 GPU
TriRun: 1 GPU

2.0x

PyTorch: 2 GPU
TriRun: 1 GPU

3.3x

PyTorch: 4 GPU
TriRun: 1 GPU

4.9x

 End-to-End Generation Speedup on NVIDIA L40S.

Figure 1: Model performance (MMLU average accuracy) versus training FLOPs, considering only models with similar compute
budgets and training tokens for a fair comparison (left); and end-to-end generation time speedup achieved by TriRun kernels over
the PyTorch’s FP16 baseline (64 Input Tokens, 64 Output Tokens) on the NVIDIA L40S (right).

absence of a comprehensive suite of strong open-
source models, suppressing innovation in post-
training and broader research on extreme quan-
tization. In this work, we aim to address these
foundational challenges through the following con-
tributions:

Scaling law for ternary language models. We
conduct (in Section 2) a systematic study to explore
the scaling properties of TriLMs, focusing on both
the number of parameters and the volume of train-
ing tokens. Unlike previous works (Kaushal et al.,
2024; Wang et al., 2023), which primarily examine
parameter scaling, we demonstrate that increasing
the number of tokens leads to a greater reduction in
validation loss compared to increasing the number
of parameters (see Section 2.2).

Effect of scaling pretraining tokens. We scale
the TriLM models by pretraining them on 1.2T
tokens (see Section 2.3), refered to as the TriTera
family of models. Our results show that the 3B
model continues to improve with up to 1.2T tokens,
suggesting that TriLM remains effective even at
higher token-to-parameter ratios. Additionally, it
achieves competitive performance with FloatLMs
for a given compute budget (see Figure 1, left).

Efficient packing mechanism for ternary
weights. In Section 3, we propose efficient 1.6-
bit and 2-bit packing schemes for ternary weights.
We provide a theoretical analysis of these packing
methods, along with the implementation of effi-
cient kernels and benchmarking on a CPU (see
Section 3.3 and Appendix F.3), demonstrating a
significant acceleration in inference speed.

Efficient GPU kernels for ternary models. We
introduce GPU kernels based on 2-bit packing
schemes, which we call TriRun (in Section 4). We
extensively benchmark its performance in model
serving settings across various model sizes and
different NVIDIA hardware (see Section 4.2 and
Appendix G.6). Notably, we achieve up to a 7-
8× speedup compared to PyTorch’s float16 ker-
nels in high-batch settings (16-32 samples) for the
ternary layer in transformer blocks of larger pa-
rameter (70B - 405B) models on the L40S GPU.
Additionally, as shown in Figure 1 (right), our 70B
model achieves a 4.9× end-to-end speedup (com-
pared to float16) while running on a single L40S.

2 Scaling ternary models to 1T tokens

In this section, we study the scalability of pre-
training ternary models. We begin by outlining
our training setup, including details about the data,
hardware scaling, and model architecture (see Sec-
tion 2.1). We then analyze the scaling properties
of ternary language models with respect to both
parameters and training tokens, deriving a scaling
law in Section 2.2. Based on insights from our
scaling studies, we train a suite of models on up
to 1.2 trillion tokens, which we call TriTera, and
benchmark their performance in Section 2.3.

2.1 Training Details

Data. Our training corpus comprises a diverse
mix of data from publicly available sources. To
scale TriLMs (Kaushal et al., 2024), we trained
on approximately 1.2 trillion tokens from ArXiv

26680



Figure 2: Effect of scaling number of parameters (left) and number of training tokens (right) on final validation loss for TriLMs.
The dotted lines show the power law derived in Equation (2).

(Clement et al., 2019), Cosmopedia-v2 (Ben Al-
lal et al., 2024), PeS2o (Soldaini and Lo, 2023),
Zyda-StarCoder-Git-Commits, Zyda-StarCoder-
Languages (Tokpanov et al., 2024), FineWeb-Edu
(Lozhkov et al., 2024). The dataset details are
summarized in Table 1 and appendix §B.2. For to-
kenization, we employ the LLaMA tokenizer over
previously used GPT-NeoX tokenizer.

Architecture. Our model follows a decoder-only
transformer architecture (Vaswani et al., 2023),
closely resembling the TriLM (Kaushal et al.,
2024). Inspired by LLaMA (Touvron et al., 2023),
it incorporates SwiGLU MLPs (Shazeer, 2020),
RoPE (Su et al., 2023), multi-head attention, and
bias-free layers. A key distinction is its ternary-
weighted linear layers (-1, 0, 1) with a shared
floating-point scale. Training maintains latent
floating-point weights, applying on-the-fly ternar-
ization in the forward pass, and the scale set to their
absolute mean. Hyperparameters and additional
pretraining details are provided in Appendix B.

Hardware and Scaling. We conduct our training
experiments on the Frontier1 cluster. Each node
comprises four AMD MI250X accelerators (Ad-
vanced Micro Devices, Inc., 2025), where each
MI250X contains two Graphics Compute Dies
(GCDs) operating as separate GPUs (Advanced
Micro Devices, Inc., 2022). Within a node, GPUs
are at most one hop away from one another, fa-
cilitating efficient intra-node communication. Our
distributed training strategy is designed with this
hardware architecture in mind. Similar to the ZeRO
Stage 2 strategy (Rajbhandari et al., 2020), we
shard the AdamW optimizer states and gradients,
synchronizing model parameters after each update
step. However, due to slower inter-node connec-

1https://en.wikipedia.org/wiki/Frontier_
(supercomputer)

tivity, sharding is performed only across devices
within a node. This approach enables near-linear
scaling up to 2,048 GPUs, as shown in Figure 7.

2.2 Scaling Laws for TriLMs
Experimental Setup. For this study (≤150B to-
kens), we use a SlimPajama subset from Shen
et al. (2024), while the 1.2T-token dataset incor-
porating additional sources (Appendix 1). All
other aspects follow the procedures outlined in
Sections 2.1 regarding the pretraining of the mod-
els. We train and evaluate a suite of TriLM
models, conducting a series of language model
pretraining experiments across parameter sizes ∈
[99M, 190M, 390M, 560M, 1100M ] (excluding
embeddings) and dataset sizes ∈ [20, 40, 75, 150]
billion tokens. In Section 2.3, we expand the train-
ing dataset size to 1.2 trillion tokens for models
with 1.5 B, 2.5 B, and 3.6 B parameters.

Parametric Scaling Law. We derive the scaling
law for ternary LLMs following the general form
introduced in Hoffmann et al. (2022). In particular,
we assume the following functional form for the
validation loss L̂ as a function of model size N
(number of parameters, in millions) and training
data D (number of tokens, in billions),

L̂(N,D) ≜ E +
A

Nα
+

B

Dβ
, (1)

where the constant term includes the irreducible
loss due to entropy of natural text, plus the error
introduced by quantization. Based on the valida-
tion losses of the converged models, we fit the
parameters {E,A, α,B, β} (see Appendix C for
evaluation of our fit). This provides a scaling law
that describes how the validation loss of a ternary
model changes with data and model size.

L̂(N,D) ≈ 2.19 +
4.73

N0.32
+

5.18

D0.81
(2)

26681

https://en.wikipedia.org/wiki/Frontier_(supercomputer)
https://en.wikipedia.org/wiki/Frontier_(supercomputer)


Figure 2 shows the final validation loss for differ-
ent models against the number of parameters and
training tokens. For each plot, we also substitute
the corresponding value of D or N to get the scal-
ing law equation for that setting. We discuss the
implications of this law in more detail and compare
with 16-bit models in Appendix C.

From Equation (2), we observe that increasing
the number of tokens lowers the validation loss
more effectively than increasing the number of pa-
rameters. This suggests that TriLM remains ef-
fective at high training token-to-parameter ratios.
Based on these observations, we focus primarily on
increasing the number of tokens to train our new
family of models in the following section.

2.3 Effect of scaling training tokens
We pre-trained three TriLM models with 1.5 B, 2.5
B, and 3.6 B parameters (for simplicity, we refer
to these models as 1B, 2B, and 3B throughout the
paper) on a 1.2 trillion-token dataset (detailed in
Appendix B.2), which we refer to as TriTera suite
in this paper. The details of the parameters are
provided in Table 3. Inspired by well-established
model suites, such as those by (Groeneveld et al.,
2024; Kaushal et al., 2024; Biderman et al., 2023),
TriTera aims to provide robust baseline models to
advance scientific research on TriLMs.

LLM Benchmarks Performance. We evaluate
the TriTera suite of models on a variety of tasks test-
ing commonsense and reasoning abilities, general
knowledge, and mathematical problem-solving. A
full description of the tasks is given in Appendix D.

1B 2B 3B
Model Size (Billion Parameters)

28

30

32

34

36

38

Pe
rfo

rm
an

ce
 (M

M
LU

)

Performance of TriLM Models on MMLU

300B Tokens
1T Tokens
Llama-1 7B

Figure 3: Average MMLU accuracy for TriTera and Spectra,
with the dotted line representing LLaMA-1 7B (trained on
1.2T tokens). Note that LLaMA-3 (AI@Meta, 2024), trained
on over 15 trillion tokens, is not included.

To understand the effect of scaling training to-
kens on downstream performance, we compared
benchmark scores with the Spectra suite of models,

which have comparable parameter sizes and were
trained on 300B tokens. Figure 3 shows the aver-
age accuracy on the MMLU benchmark for both
family of models, demonstrating consistently better
performance across different parameter sizes. Full
results on individual benchmarks are presented in
Table 4.

3 Efficient packing of ternary weights

In this section, we propose weight-packing strate-
gies and kernel implementations to enable the ef-
ficient deployment of ternary LLMs. We begin by
formalizing the packing problem and then present
two progressively optimized solutions. These so-
lutions target effective 1.6-bit and 2-bit packing,
supported by theoretical guarantees. Following
this, we conduct a preliminary feasibility assess-
ment on a CPU to evaluate the practicality of our
approach.

Definition (Lossless Packing and Unpacking).
Let D = (d1, d2, . . . , dn) represent a sequence of
ternary numbers, where di ∈ {−1, 0, 1}. The pack-
ing process is a function P : {−1, 0, 1}n → B,
which maps the ternary sequence D to some binary
representation B, such that the original sequence D
can be reconstructed from B. The unpacking pro-
cess is the inverse function U : B → {−1, 0, 1}n,
which reconstructs the original sequence D from
B. These processes satisfy the property of lossless-
ness:

U(P (D)) = D, ∀D ∈ {−1, 0, 1}n.

3.1 Packing Strategy with effective 2 bits.
Packing/Encoding The packing process trans-
forms each ternary value di ∈ {−1, 0, 1} into a
digit d′i by the mapping

d′i = di + 1,

so that d′i ∈ {0, 1, 2}. These digits are then
grouped into blocks of up to k values. Each block
is encoded as a single integer using bitwise shifts.
The packing function P (D) = (b′0, b

′
1, . . . , b

′
m−1)

(with m = ⌈n/k⌉ for an original sequence D =
{d0, d1, . . . , dn−1}) is defined as:

b′i =
k−1∑

j=0

(
d′ki+j · 22j

)
,

If a block is not completely filled (when n is not a
multiple of k), the remaining positions are padded

26682



560M 1.1B 1.5B 2.4B 3.9B
Model Size (Parameters)

0

100

200

300

400

500

600

700
To

ke
ns

/S
ec

on
d

Total Tokens/Second (256 Prompt + 64 Output Tokens)
16 bits (F16)
4 bits
2 bits TQ2
1.6 bits TQ1

560M 1.1B 1.5B 2.4B 3.9B
Model Size (Parameters)

0

50

100

150

200

250

To
ke

ns
/S

ec
on

d

Output Tokens/Second vs. Model Size (256 Output Tokens)
16 bits (F16)
4 bits
2 bits TQ2
1.6 bits TQ1

560M 1.1B 1.5B 2.4B 3.9B
Model Size (Parameters)

0

1

2

3

4

5

6

7

8

M
em

or
y 

Co
ns

um
pt

io
n 

(G
B)

1.
14

2.
30

3.
03

4.
92

7.
98

0.
48 0.

85 1.
07

1.
58

2.
46

0.
37 0.

60 0.
74 1.

02

1.
54

0.
35 0.

56 0.
67 0.

91

1.
36

Memory Requirements by Model Size (in GB)
16 bits
4 bits
2 bits
1.6 bits

Figure 4: Comparison of output tokens for different model sizes running on a Mac M4 CPU laptop: (Left) Total output tokens
(for a 256 prompt with 64 output tokens). (Center) Output tokens per second versus model size. (Right) Memory requirements
by model size (in GB) with different Packing Strategies. For more details, refer to Table 6

with 0, which map to 1 after the shift. Since each
d′i is in {0, 1, 2} and fits within 2 bits, each block
uses 2k bits, giving an effective 2 bits per weight.

Unpacking/Decoding The unpacking process
U(P (D)) = (d0, d1, . . . , dn−1) recovers the origi-
nal ternary values from the packed representation.
For each block, the decoding is defined as:

dki+j = d′ki+j − 1,

where d′ki+j =
(
(b′i ≫ 2j)& 0x03

)
,

for i ≥ 0 and 0 ≤ j < k. Here, ≫ denotes
the bitwise right shift operation and & denotes the
bitwise AND operation (with 0x03 serving as a
mask to extract 2 bits). This procedure ensures
that each original ternary value di ∈ {−1, 0, 1}
is accurately reconstructed from its packed form.
Although each d′i is constrained to three possible
states, the packing allocates a total of 2k bits per
block. However, the actual information content per
block is only log2(3

k) = k log2(3) bits, which is
strictly less than 2k bits (since log2(3) ≈ 1.585).
In the following, we outline a general strategy for
a better effective bit rate.

3.2 Packing Strategy with 1.6 effective bits.
Packing/Encoding: The packing process trans-
forms each ternary value di ∈ {−1, 0, 1} into a
base-3 digit (or trit) d′i = di + 1, then groups the
digits into blocks of up to k. Each block is encoded
as a base-3 integer and normalized to fit within
[0, 2p − 1], where p is an integer representing the
number of bits allocated for each encoded block.
The packing P (D) = (b′1, b

′
2, . . . , b

′
k) is defined

as,

b′i =



(∑k−1
j=0 d

′
ki+j · 3k−1−j

)
· 2p + (3k − 1)

3k

 ,

where d′i = di + 1, and di ∈ {−1, 0, 1}.

Here, k is the number of digits in each block (which
may be less than k for the last block). The final
packed byte array B is then constructed from the
b′i values.

Unpacking/decoding: The unpacking process
U(P (D)) = (d1, d2, . . . , dn) is defined as:

dki+j = d′ki+j − 1,

where xi =

⌊
bi × 3k −

(
3k − 1

)
+
(
2p − 1

)

2p

⌋
,

and d′ki+j =
(⌊ xi

3k−1−j

⌋)
mod 3.

Here, k represents the number of digits in each
block, typically equal to 5 for full blocks, though
it may be fewer for the final block. For practical
purposes, we recommend setting p = 8 and k = 5 ,
as this configuration results in an effective packing
of 1.6 bits — very close to the theoretical optimum
for ternary data.

Theorem 1 (Correctness). Let D =
(d1, d2, . . . , dn) be a sequence of ternary
digits di ∈ {−1, 0, 1}. When D is partitioned into
blocks of size k and each block is encoded into a
p-bit integer, the encoding and decoding operations
P and U are lossless if and only if 2p > 3k; that is,
U(P (D)) = D. Proof: See Appendix E.1.

Corollary (Injectivity). If 2p > 3k, then the
mapping P : {−1, 0, 1}k → [0, 2p − 1] is injective
i.e. {dj} ≠ {d′j} implies P ({dj}) ̸= P ({d′j}).
Near-Optimal Bits per Trit From an
information-theoretic perspective, each
trit (with values in {−1, 0, 1}) requires
log2(3) ≈ 1.58496 bits of entropy. To encode
k trits without collision, we need a p-bit container
with 2p > 3k =⇒ p > k log2(3).

26683



Consequently, the bits-per-trit ratio is bounded
below by p

k > log2(3). When p = ⌈k log2(3)⌉,
this is effectively the smallest integer p that still
allows all 3k trit patterns to be stored with no
collisions. As k → ∞, the ratio p

k −→ log2(3),
making the scheme asymptotically optimal in
terms of bits used per trit.

3.3 CPU Inference with efficient packing
To assess the effectiveness of packings, we im-
plemented both packing methods in ggml.cpp2, a
framework optimized for running large language
models (LLMs) on CPUs. While further optimiza-
tions are possible, our primary focus is on reduc-
ing a model’s memory footprint and accelerating
memory-bound workloads. This is achieved by
statically compressing pretrained weights and de-
compressing them on-the-fly during inference. We
begin by showing the efficiency of the CPU imple-
mentations for the 1.6-bit packing, referred to as
TQ1, and the 2-bit packing, referred to as TQ2.

TQ2: Implementing effective 2 bit for TriLMs.
The quantization process begins with partitioning
the input tensor into contiguous, non-overlapping
blocks, each containing 256 elements. For each
block, a scaling factor (floating-point numbers as-
sociated with TriLMs) di is calculated as the max-
imum absolute value of the elements within the
block, i.e., di = max(|bij |), where bij denotes
the j-th element in the i-th block. The inverse
scaling factor d̂i is then defined as d̂i = 1

di
. Each

element bij in the block is quantized to a ternary
value by multiplying it by the inverse scaling factor
and rounding the result: qij = round(bij · d̂i). To
enable efficient storage, the quantized values are
shifted, resulting in qij ∈ {0, 1, 2} and packed into
64 bytes per block of 256 elements using base-4
positional encoding. The scaling factor di is stored
in 2 bytes (float16), leading to a total storage of
66 bytes per block. The dequantization process
begins by reversing the base-4 encoding to recover
the four ternary elements (see F.1). The elements
are then adjusted back to their signed values by
subtracting 1. Finally, the original block is recon-
structed by multiplying each quantized value by the
corresponding scaling factor: b̂ij = di · qij , where
b̂ij denotes the dequantized approximation of bij .
This quantization scheme achieves significant mem-
ory efficiency by compressing 256 floating-point
values into just 66 bytes.

2https://github.com/ggerganov/llama.cpp

TQ1: Implementing effective 1.6 bit for TriLMs.
In our implementation, we encode k = 5 ternary
digits (trits) into p = 8 bits, achieving an effec-
tive bit rate of 1.6 bits per trit. A key challenge
arises in efficiently decoding these packed trits for
SIMD-optimized operations. Traditional decod-
ing methods rely on division and modulo opera-
tions, which are computationally expensive and
ill-suited for vectorization. The conventional ap-
proach to decoding a packed byte b involves com-
puting a base-3 integer x using the formula: x =⌊
b·35−(35−1)+(28−1)

28

⌋
. Each trit di ∈ {−1, 0, 1}

is then extracted through the operation: di+1 =⌊
x

34−i

⌋
mod 3 for i = 0, . . . , 4. This method

incurs high computational costs due to the repeated
divisions and modulo operations, which hinder
SIMD parallelism. To address these inefficiencies,
we exploit the near-equivalence 35 ≈ 28, enabling
a multiplication-based scheme that iteratively ex-
tracts trits without explicit division or modulo oper-
ations. (See Appendix F.2 for the detailed iterative
procedure and its SIMD advantages.)

Results. Figure 4 compares token generation
speeds (end-to-end and decoding) for models span-
ning 560M to 3.9B parameters on a Mac M4, high-
lighting end-to-end latency and output token gen-
eration speedup. Specifically, TQ2 outperforms
other formats by utilizing 2-bit weight packing, sur-
passing both 4-bit quantization (as implemented in
GGML) and TQ1 (1.6 bits per weight). While TQ1
requires additional fixed-point multiplication oper-
ations—resulting in slower inference compared to
TQ2—it achieves a significantly smaller memory
footprint (shown in Figure 4 on the right), mak-
ing it advantageous for low-resource environments
where memory storage constraints outweigh com-
putational latency. Additional benchmarks are con-
ducted on AMD EPYC 7502 (see Figure 10) and
Apple M4 Max (14 CPU cores), with detailed re-
sults presented in Table 6, 5 and Appendix F.3.
These findings motivate our next step: in the fol-
lowing section, we introduce an optimized 2-bit
packing variant designed for high-batch GPU work-
loads. While our current implementation demon-
strates significant speedups, further refinements re-
main possible to enhance computational efficiency.

4 TriRun: GPU Kernels for High-Batch
Settings.

LLM weight quantization leverages the fact that
GPUs perform floating-point operations much

26684



Figure 5: Performance evaluation of ternary layers in a transformer block, comparing TriRun with PyTorch FP16 (using
CUTLASS), shows near-optimal inference speedup in high-batch settings for larger models. Each subplot corresponds to a
specific Nvidia GPU. For additional results, refer to Appendix G.6.

faster than they can fetch data from memory. For
example, the NVIDIA L40 has a FLOPs-to-Bytes
of approximately 105 (Technologies, 2023). In a
typical matrix multiplication for mixed-precision
inference in large language models, each input to-
ken requires about 2 FLOPs per weight. When
weights are 2 bits, each weight occupies 0.25 bytes.
During the time needed to load one such weight,
the L40 can perform roughly 26 FLOPs. Since
each token needs 2 FLOPs per weight, the GPU
can support a critical input batch size of about ≈
13 tokens. Thus, for the L40, if the input batch size
is below roughly 13, memory loading becomes the
bottleneck for the computation.

4.1 Ternary Kernel Implementation
Optimized Mixed-Precision Multiplication In
this work, we introduce an optimized mixed-
precision matrix multiplication routine (Frantar
et al., 2024) that performs FP16 × INT2 compu-
tations. In this scheme, an FP16 input matrix is
multiplied by a weight matrix stored in a compact
2-bit integer (INT2) format, wherein each 32-bit
integer encodes 16 distinct 2-bit values. The cen-
tral component of this approach is a dequantization
function that employs carefully selected bit masks
and a lookup-based three-input logical operation
to extract the 2-bit fields. This function applies a
series of fused arithmetic operations to convert the
packed 2-bit data into FP16 values(see appendix
§G). As a result, dequantized weight values are pro-
duced as fragments containing four FP16 numbers,
which can subsequently be scaled using quantiza-
tion scales stored in a separate buffer.

GPU Performance Optimization. On the GPU,
the multiplication kernel is engineered for high per-

formance by using asynchronous memory copy
operations alongside specialized tensor core in-
structions available on modern NVIDIA hard-
ware. Input fragments from the FP16 matrix are
asynchronously loaded into shared memory via
cp.async3 instructions, allowing global memory ac-
cesses to overlap with computation. The kernel
arranges these fragments in memory to minimize
bank conflicts and maximize data reuse. Concur-
rently, the INT2 weight values are fetched using
asynchronous copy operations that include cache
hints, thereby reducing L2 cache pollution since
these weights are used only once during each oper-
ation. Once the FP16 fragments and dequantized
INT2 weights reside in registers, the kernel em-
ploys tensor core mma instructions to perform effi-
cient block-wise multiplications. These operations
accumulate the results in FP32 registers to main-
tain higher precision during the reduction phase
before converting the final outputs back to FP16
for storage in global memory.

Flexible Implementation and Data Movement.
The implementation supports flexible configura-
tion of thread block dimensions, pipeline stages,
and grouping parameters for varying problem sizes
and hardware. Data is moved from global to
shared memory using double-buffering with asyn-
chronous copy fences and explicit barriers. Partial
results accumulated across warps or thread blocks
are reduced using a hierarchical reduction scheme
that first operates within shared memory and then,
if necessary, synchronizes globally across thread
blocks. Finally, results are reorganized and writ-

3cp.async in CuPy refers to the support for asynchronous
execution of GPU operations

26685



7B 13B 34B 70B
Model Size

0.0

0.1

0.2

0.3

0.4

0.5

0.6

TT
FT

 (s
)

1.6x

2.1x

3.4x

4.7x

TTFT vs Model Size (64 Token Encoding + 1 Tokens Decoding)
Pytorch
Trirun

7B 13B 34B 70B
Model Size

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

TP
OT

 (s
)

1.5x

2.0x

3.3x

4.9x
TPOT vs Model Size (1 Input Tokens, 64 Output Tokens)

Pytorch
Trirun

L40S L40 A40 4090
Device

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

To
ta

l T
im

e 
(s

)

4.9x 5.4x

4.9x

5.3x

70B Model: Total Time (64 Tokens Encoding + 64 Tokens Decoding)
Pytorch
Trirun

Figure 6: Comparison of TriRun kernels with the FP16 PyTorch baseline on NVIDIA L40S (for more details see Appendix G.6):
(a) Left: Time to first token, (b) Center: Time per output token, (c) Right: Total time across different NVIDIA GPUs.

ten back to global memory in FP16 format. This
approach leverages efficient data packing, asyn-
chronous memory operations, and tensor core ac-
celeration, optimizing FP16×INT2 matrix multipli-
cation for ternary large language models.

4.2 Experimental Results

Performance of TriRuns Kernels. In Figure 5
and 12, we evaluate the efficiency of TriRun kernels
against PyTorch’s FP16 kernels for the ternary lay-
ers within transformer modules. We benchmarked
models ranging from 3 billion to 405 billion pa-
rameters across different hardwares (see Table 7,
and 8 for complete results). Our findings demon-
strate that TriRun provides substantial performance
improvements. Specifically, on an NVIDIA L40
GPU (optimized for inference) processing large
matrices from a 405B parameter model, TriRun
achieves a speedup of roughly 7.98x compared to
FP16 when using batch sizes between 16 and 32.
However, as batch sizes increase beyond this range,
the speedup diminishes. This is because the compu-
tation becomes increasingly limited by the GPU’s
processing capabilities (compute-bound). This pat-
tern of speedup reduction with batch size is ob-
served across all tested GPUs. For more detailed
analysis and results, refer to Appendix G.6.

End-to-End Serving Benchmark Figure 6 il-
lustrates the time-to-first-token performance of
TriRun with PyTorch, achieving up to a 4.7×
speedup on the 70B model with 64 input tokens
when running on NVIDIA L40s. Additionally, it
shows the time per output token (with 1 input and
64 output tokens), demonstrating a 4.9× improve-
ment in decoding. This trend is particularly evident
for larger models, where the 70B model achieves
a 4.9× end-to-end generation speedup compared

to PyTorch. TriRun uses only one GPU, as op-
posed to the four GPUs used in the PyTorch FP16
configuration (see Figure 1 on the right for more
details). Furthermore, Figure 6 (c) shows that these
performance gains are consistent across different
NVIDIA hardware, with a more detailed analy-
sis provided in Appendix G.6. Finally, Figure
11 demonstrates that these speedups are particu-
larly pronounced on newer consumer GPUs, as the
FLOPs/byte ratio increases.

5 Conclusion and Future Work

In this work, we address the growing memory
bottlenecks in large language model inference by
studying ternary language models (TriLMs) and
proposing strategies for efficient kernel implemen-
tation. We conduct a comprehensive scaling law
analysis, revealing that TriLMs benefit significantly
from scaling training data, achieving competitive
performance with floating-point models for a given
compute budget despite their extreme quantization.
Our experiments with the TriTera family, trained
on up to 1.2 trillion tokens, demonstrate sustained
performance improvements, emphasizing the po-
tential of ternary models for large-scale training
and deployment. To further improve inference ef-
ficiency, we introduce novel ternary weight pack-
ing schemes and develop optimized kernels. Our
GPU kernel, TriRun, achieves up to an 8× speedup
over float16 baselines in high-batch inference set-
tings, making ternary models a viable solution for
memory-constrained environments. By releasing
the TriTera models and optimized inference kernels,
we aim to encourage further research on extreme
low-bitwidth models and their deployment. Our
results demonstrate the scalability and efficiency of
ternary models, laying the groundwork for future
advancements in efficient LLM research.

26686



Limitations

We study the scaling law for TriLMs where we
consider the dependence on number of parame-
ters and training tokens, but do not explicitly ac-
count for the number of bits b used to quantize
the model. The various terms that appear in Equa-
tion (2) may depend non-linearly on b, which is
an interesting direction for future work. Our pre-
training scale was constrained by computational
resources, and both the parameters and data need to
be scaled up significantly to make TriLMs competi-
tive with current state-of-the-art models (AI@Meta,
2024). TriRun implements the 2-effective-bit pack-
ing scheme from Section 3.1. A more memory-
efficient solution would involve implementing the
1.6-effective-bit packing scheme. However, due to
the increased complexity of packing, the unpack-
ing functions would require additional operations
in the latter case, making it slower than TriRun.
This is left as a direction for future work.

Ethics Statement

The development of TriLMs represents a significant
step toward making large-scale language models
more efficient by reducing memory consumption
and accelerating inference. These advancements
enhance accessibility and sustainability in AI re-
search. We advocate for openness in AI, as it drives
scientific progress, fosters collaboration, and elim-
inates the need for re-training, which helps lower
environmental impact. However, openness also
presents challenges, including concerns related to
privacy, security, and fairness. Despite these risks,
we believe that transparency enables more effec-
tive risk mitigation by inviting diverse scrutiny and
safeguards. By releasing the TriTera suite and
TriRun kernels, we aim to empower further innova-
tion while ensuring that efficient language models
serve a broad spectrum of stakeholders. As open
model releases continue to gain momentum, we see
this approach as the most effective way to balance
progress with responsible AI development.

Acknowledgement

We acknowledge the support from the Mozilla Re-
sponsible AI Grant, the Canada CIFAR AI Chair
Program, Nolano AI and the Canada Excellence
Research Chairs Program. This research was en-
abled by the computational resources provided by
the Summit supercomputer, awarded through the
Frontier DD allocation and INCITE 2023 program

for the project "Scalable Foundation Models for
Transferable Generalist AI" and SummitPlus allo-
cation in 2024. These resources were supplied by
the Oak Ridge Leadership Computing Facility at
the Oak Ridge National Laboratory, with support
from the Office of Science of the U.S. Department
of Energy.

References
Advanced Micro Devices, Inc. 2022. AMD CDNA™2

ARCHITECTURE. White paper, Advanced Micro
Devices, Inc.

Advanced Micro Devices, Inc. 2025. Amd
instinct™ mi250x accelerators. https:
//www.amd.com/en/products/accelerators/
instinct/mi200/mi250x.html. Accessed Febru-
ary 9, 2025.

AI@Meta. 2024. Llama 3 model card.

Saleh Ashkboos, Amirkeivan Mohtashami, Maximil-
ian L. Croci, Bo Li, Pashmina Cameron, Martin Jaggi,
Dan Alistarh, Torsten Hoefler, and James Hensman.
2024. Quarot: Outlier-free 4-bit inference in rotated
llms. Preprint, arXiv:2404.00456.

Loubna Ben Allal, Anton Lozhkov, Guilherme Penedo,
Thomas Wolf, and Leandro von Werra. 2024. Cos-
mopedia.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville.
2013. Estimating or propagating gradients through
stochastic neurons for conditional computation.
Preprint, arXiv:1308.3432.

Stella Biderman, Hailey Schoelkopf, Quentin Anthony,
Herbie Bradley, Kyle O’Brien, Eric Hallahan, Mo-
hammad Aflah Khan, Shivanshu Purohit, USVSN Sai
Prashanth, Edward Raff, Aviya Skowron, Lintang
Sutawika, and Oskar van der Wal. 2023. Pythia:
A suite for analyzing large language models across
training and scaling. Preprint, arXiv:2304.01373.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng
Gao, and Yejin Choi. 2019. Piqa: Reasoning about
physical commonsense in natural language. In AAAI
Conference on Artificial Intelligence.

Christopher Clark, Kenton Lee, Ming-Wei Chang,
Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. 2019. BoolQ: Exploring the surprising
difficulty of natural yes/no questions. In Proceedings
of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and
Short Papers), pages 2924–2936, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? try arc, the ai2 reasoning challenge.

26687

https://www.amd.com/content/dam/amd/en/documents/instinct-business-docs/white-papers/amd-cdna2-white-paper.pdf
https://www.amd.com/content/dam/amd/en/documents/instinct-business-docs/white-papers/amd-cdna2-white-paper.pdf
https://www.amd.com/en/products/accelerators/instinct/mi200/mi250x.html
https://www.amd.com/en/products/accelerators/instinct/mi200/mi250x.html
https://www.amd.com/en/products/accelerators/instinct/mi200/mi250x.html
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://arxiv.org/abs/2404.00456
https://arxiv.org/abs/2404.00456
https://huggingface.co/datasets/HuggingFaceTB/cosmopedia
https://huggingface.co/datasets/HuggingFaceTB/cosmopedia
https://arxiv.org/abs/1308.3432
https://arxiv.org/abs/1308.3432
https://arxiv.org/abs/2304.01373
https://arxiv.org/abs/2304.01373
https://arxiv.org/abs/2304.01373
https://api.semanticscholar.org/CorpusID:208290939
https://api.semanticscholar.org/CorpusID:208290939
https://doi.org/10.18653/v1/N19-1300
https://doi.org/10.18653/v1/N19-1300
https://api.semanticscholar.org/CorpusID:3922816
https://api.semanticscholar.org/CorpusID:3922816


Colin B. Clement, Matthew Bierbaum, Kevin P.
O’Keeffe, and Alexander A. Alemi. 2019. On the use
of arxiv as a dataset. Preprint, arXiv:1905.00075.

Tim Dettmers, Mike Lewis, Younes Belkada, and
Luke Zettlemoyer. 2022a. Llm.int8(): 8-bit matrix
multiplication for transformers at scale. Preprint,
arXiv:2208.07339.

Tim Dettmers, Mike Lewis, Younes Belkada, and
Luke Zettlemoyer. 2022b. Llm.int8(): 8-bit matrix
multiplication for transformers at scale. Preprint,
arXiv:2208.07339.

Tim Dettmers and Luke Zettlemoyer. 2023. The case for
4-bit precision: k-bit inference scaling laws. Preprint,
arXiv:2212.09720.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and
Dan Alistarh. 2023. Gptq: Accurate post-training
quantization for generative pre-trained transformers.
Preprint, arXiv:2210.17323.

Elias Frantar, Roberto L. Castro, Jiale Chen, Torsten
Hoefler, and Dan Alistarh. 2024. Marlin: Mixed-
precision auto-regressive parallel inference on large
language models. Preprint, arXiv:2408.11743.

Amir Gholami, Zhewei Yao, Sehoon Kim, Cole-
man Hooper, Michael W. Mahoney, and Kurt
Keutzer. 2024. Ai and memory wall. Preprint,
arXiv:2403.14123.

Dirk Groeneveld, Iz Beltagy, Pete Walsh, Akshita Bha-
gia, Rodney Kinney, Oyvind Tafjord, Ananya Harsh
Jha, Hamish Ivison, Ian Magnusson, Yizhong Wang,
Shane Arora, David Atkinson, Russell Authur, Khy-
athi Raghavi Chandu, Arman Cohan, Jennifer Du-
mas, Yanai Elazar, Yuling Gu, Jack Hessel, Tushar
Khot, William Merrill, Jacob Morrison, Niklas Muen-
nighoff, Aakanksha Naik, Crystal Nam, Matthew E.
Peters, Valentina Pyatkin, Abhilasha Ravichander,
Dustin Schwenk, Saurabh Shah, Will Smith, Emma
Strubell, Nishant Subramani, Mitchell Wortsman,
Pradeep Dasigi, Nathan Lambert, Kyle Richardson,
Luke Zettlemoyer, Jesse Dodge, Kyle Lo, Luca Sol-
daini, Noah A. Smith, and Hannaneh Hajishirzi. 2024.
Olmo: Accelerating the science of language models.
Preprint, arXiv:2402.00838.

Pujiang He, Shan Zhou, Wenhuan Huang, Changqing
Li, Duyi Wang, Bin Guo, Chen Meng, Sheng Gui,
Weifei Yu, and Yi Xie. 2024. Inference perfor-
mance optimization for large language models on
cpus. Preprint, arXiv:2407.07304.

Dan Hendrycks, Collin Burns, Steven Basart, Andy
Zou, Mantas Mazeika, Dawn Song, and Jacob Stein-
hardt. 2021. Measuring massive multitask language
understanding. Proceedings of the International Con-
ference on Learning Representations (ICLR).

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch,
Elena Buchatskaya, Trevor Cai, Eliza Rutherford,
Diego de Las Casas, Lisa Anne Hendricks, Johannes
Welbl, Aidan Clark, Tom Hennigan, Eric Noland,

Katie Millican, George van den Driessche, Bogdan
Damoc, Aurelia Guy, Simon Osindero, Karen Si-
monyan, Erich Elsen, Jack W. Rae, Oriol Vinyals,
and Laurent Sifre. 2022. Training compute-optimal
large language models. Preprint, arXiv:2203.15556.

Albert Q. Jiang, Alexandre Sablayrolles, Antoine
Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las
Casas, Emma Bou Hanna, Florian Bressand, Gi-
anna Lengyel, Guillaume Bour, Guillaume Lam-
ple, Lélio Renard Lavaud, Lucile Saulnier, Marie-
Anne Lachaux, Pierre Stock, Sandeep Subramanian,
Sophia Yang, Szymon Antoniak, Teven Le Scao,
Théophile Gervet, Thibaut Lavril, Thomas Wang,
Timothée Lacroix, and William El Sayed. 2024. Mix-
tral of experts. Preprint, arXiv:2401.04088.

Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke
Zettlemoyer. 2017. TriviaQA: A large scale distantly
supervised challenge dataset for reading comprehen-
sion. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1601–1611, Vancouver,
Canada. Association for Computational Linguistics.

Dhiraj Kalamkar, Dheevatsa Mudigere, Naveen Mellem-
pudi, Dipankar Das, Kunal Banerjee, Sasikanth Avan-
cha, Dharma Teja Vooturi, Nataraj Jammalamadaka,
Jianyu Huang, Hector Yuen, Jiyan Yang, Jongsoo
Park, Alexander Heinecke, Evangelos Georganas, Su-
darshan Srinivasan, Abhisek Kundu, Misha Smelyan-
skiy, Bharat Kaul, and Pradeep Dubey. 2019. A
study of bfloat16 for deep learning training. Preprint,
arXiv:1905.12322.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B.
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. Preprint,
arXiv:2001.08361.

Ayush Kaushal, Tejas Vaidhya, Arnab Kumar Mon-
dal, Tejas Pandey, Aaryan Bhagat, and Irina Rish.
2024. Spectra: Surprising effectiveness of pretrain-
ing ternary language models at scale. Preprint,
arXiv:2407.12327.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang,
Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han.
2024. Awq: Activation-aware weight quantization
for llm compression and acceleration. Preprint,
arXiv:2306.00978.

Jian Liu, Leyang Cui, Hanmeng Liu, Dandan Huang,
Yile Wang, and Yue Zhang. 2021. Logiqa: a chal-
lenge dataset for machine reading comprehension
with logical reasoning. In Proceedings of the Twenty-
Ninth International Joint Conference on Artificial
Intelligence, IJCAI’20.

Kyle Lo, Lucy Lu Wang, Mark Neumann, Rodney Kin-
ney, and Daniel Weld. 2020. S2ORC: The semantic
scholar open research corpus. In Proceedings of the

26688

https://arxiv.org/abs/1905.00075
https://arxiv.org/abs/1905.00075
https://arxiv.org/abs/2208.07339
https://arxiv.org/abs/2208.07339
https://arxiv.org/abs/2208.07339
https://arxiv.org/abs/2208.07339
https://arxiv.org/abs/2212.09720
https://arxiv.org/abs/2212.09720
https://arxiv.org/abs/2210.17323
https://arxiv.org/abs/2210.17323
https://arxiv.org/abs/2408.11743
https://arxiv.org/abs/2408.11743
https://arxiv.org/abs/2408.11743
https://arxiv.org/abs/2403.14123
https://arxiv.org/abs/2402.00838
https://arxiv.org/abs/2407.07304
https://arxiv.org/abs/2407.07304
https://arxiv.org/abs/2407.07304
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2401.04088
https://arxiv.org/abs/2401.04088
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://arxiv.org/abs/1905.12322
https://arxiv.org/abs/1905.12322
https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2407.12327
https://arxiv.org/abs/2407.12327
https://arxiv.org/abs/2306.00978
https://arxiv.org/abs/2306.00978
https://doi.org/10.18653/v1/2020.acl-main.447
https://doi.org/10.18653/v1/2020.acl-main.447


58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 4969–4983, Online. Asso-
ciation for Computational Linguistics.

Ilya Loshchilov and Frank Hutter. 2019. De-
coupled weight decay regularization. Preprint,
arXiv:1711.05101.

Anton Lozhkov, Loubna Ben Allal, Leandro von Werra,
and Thomas Wolf. 2024. Fineweb-edu: the finest
collection of educational content.

Shuming Ma, Hongyu Wang, Lingxiao Ma, Lei Wang,
Wenhui Wang, Shaohan Huang, Li Dong, Ruiping
Wang, Jilong Xue, and Furu Wei. 2024. The era of
1-bit llms: All large language models are in 1.58 bits.
Preprint, arXiv:2402.17764.

Paulius Micikevicius, Sharan Narang, Jonah Alben, Gre-
gory Diamos, Erich Elsen, David Garcia, Boris Gins-
burg, Michael Houston, Oleksii Kuchaiev, Ganesh
Venkatesh, and Hao Wu. 2018. Mixed precision train-
ing. Preprint, arXiv:1710.03740.

Denis Paperno, Germán Kruszewski, Angeliki Lazari-
dou, Ngoc Quan Pham, Raffaella Bernardi, Sandro
Pezzelle, Marco Baroni, Gemma Boleda, and Raquel
Fernández. 2016. The LAMBADA dataset: Word
prediction requiring a broad discourse context. In
Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1525–1534, Berlin, Germany.
Association for Computational Linguistics.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase,
and Yuxiong He. 2020. Zero: Memory optimizations
toward training trillion parameter models. Preprint,
arXiv:1910.02054.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-
ula, and Yejin Choi. 2021. Winogrande: an adver-
sarial winograd schema challenge at scale. Commun.
ACM, 64(9):99–106.

Nikhil Sardana, Jacob Portes, Sasha Doubov, and
Jonathan Frankle. 2024. Beyond chinchilla-optimal:
Accounting for inference in language model scaling
laws. Preprint, arXiv:2401.00448.

Noam Shazeer. 2020. Glu variants improve transformer.
Preprint, arXiv:2002.05202.

Zhiqiang Shen, Tianhua Tao, Liqun Ma, Willie
Neiswanger, Zhengzhong Liu, Hongyi Wang, Bowen
Tan, Joel Hestness, Natalia Vassilieva, Daria Sobol-
eva, and Eric Xing. 2024. Slimpajama-dc: Under-
standing data combinations for llm training. Preprint,
arXiv:2309.10818.

Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuo-
han Li, Max Ryabinin, Daniel Y. Fu, Zhiqiang Xie,
Beidi Chen, Clark Barrett, Joseph E. Gonzalez, Percy

Liang, Christopher Ré, Ion Stoica, and Ce Zhang.
2023. Flexgen: High-throughput generative infer-
ence of large language models with a single gpu.
Preprint, arXiv:2303.06865.

Avi Singh, John D. Co-Reyes, Rishabh Agarwal,
Ankesh Anand, Piyush Patil, Xavier Garcia, Pe-
ter J. Liu, James Harrison, Jaehoon Lee, Kelvin
Xu, Aaron Parisi, Abhishek Kumar, Alex Alemi,
Alex Rizkowsky, Azade Nova, Ben Adlam, Bernd
Bohnet, Gamaleldin Elsayed, Hanie Sedghi, Igor
Mordatch, Isabelle Simpson, Izzeddin Gur, Jasper
Snoek, Jeffrey Pennington, Jiri Hron, Kathleen Ke-
nealy, Kevin Swersky, Kshiteej Mahajan, Laura
Culp, Lechao Xiao, Maxwell L. Bileschi, Noah Con-
stant, Roman Novak, Rosanne Liu, Tris Warkentin,
Yundi Qian, Yamini Bansal, Ethan Dyer, Behnam
Neyshabur, Jascha Sohl-Dickstein, and Noah Fiedel.
2024. Beyond human data: Scaling self-training for
problem-solving with language models. Preprint,
arXiv:2312.06585.

Luca Soldaini and Kyle Lo. 2023. peS2o (Pretraining
Efficiently on S2ORC) Dataset. Technical report,
Allen Institute for AI. ODC-By, https://github.
com/allenai/pes2o.

Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha,
Bo Wen, and Yunfeng Liu. 2023. Roformer: En-
hanced transformer with rotary position embedding.
Preprint, arXiv:2104.09864.

PNY Technologies. 2023. Nvidia l40s datasheet. Ac-
cessed: 2025-02-12.

Yury Tokpanov, Beren Millidge, Paolo Glorioso,
Jonathan Pilault, Adam Ibrahim, James Whitting-
ton, and Quentin Anthony. 2024. Zyda: A 1.3t
dataset for open language modeling. Preprint,
arXiv:2406.01981.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. Llama: Open
and efficient foundation language models. Preprint,
arXiv:2302.13971.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2023. Attention is all
you need. Preprint, arXiv:1706.03762.

Hongyu Wang, Shuming Ma, Li Dong, Shaohan Huang,
Huaijie Wang, Lingxiao Ma, Fan Yang, Ruiping
Wang, Yi Wu, and Furu Wei. 2023. Bitnet: Scaling 1-
bit transformers for large language models. Preprint,
arXiv:2310.11453.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and
Denny Zhou. 2023. Chain-of-thought prompting elic-
its reasoning in large language models. Preprint,
arXiv:2201.11903.

26689

https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1711.05101
https://doi.org/10.57967/hf/2497
https://doi.org/10.57967/hf/2497
https://arxiv.org/abs/2402.17764
https://arxiv.org/abs/2402.17764
https://arxiv.org/abs/1710.03740
https://arxiv.org/abs/1710.03740
https://doi.org/10.18653/v1/P16-1144
https://doi.org/10.18653/v1/P16-1144
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:160025533
https://arxiv.org/abs/1910.02054
https://arxiv.org/abs/1910.02054
https://doi.org/10.1145/3474381
https://doi.org/10.1145/3474381
https://arxiv.org/abs/2401.00448
https://arxiv.org/abs/2401.00448
https://arxiv.org/abs/2401.00448
https://arxiv.org/abs/2002.05202
https://arxiv.org/abs/2309.10818
https://arxiv.org/abs/2309.10818
https://arxiv.org/abs/2303.06865
https://arxiv.org/abs/2303.06865
https://arxiv.org/abs/2312.06585
https://arxiv.org/abs/2312.06585
https://github.com/allenai/pes2o
https://github.com/allenai/pes2o
https://arxiv.org/abs/2104.09864
https://arxiv.org/abs/2104.09864
https://www.pny.com/en-eu/File%20Library/Professional/DATASHEET/DATA%20CENTER%20CARDS/PNY-NVIDIA-L40S-Datasheet.pdf
https://arxiv.org/abs/2406.01981
https://arxiv.org/abs/2406.01981
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2310.11453
https://arxiv.org/abs/2310.11453
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903


Johannes Welbl, Nelson F. Liu, and Matt Gardner. 2017.
Crowdsourcing multiple choice science questions.
ArXiv, abs/1707.06209.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu,
Julien Demouth, and Song Han. 2024. Smoothquant:
Accurate and efficient post-training quantization for
large language models. Preprint, arXiv:2211.10438.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. HellaSwag: Can a ma-
chine really finish your sentence? In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 4791–4800, Florence,
Italy. Association for Computational Linguistics.

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex
Smola. 2022. Automatic chain of thought
prompting in large language models. Preprint,
arXiv:2210.03493.

Zixuan Zhou, Xuefei Ning, Ke Hong, Tianyu Fu, Ji-
aming Xu, Shiyao Li, Yuming Lou, Luning Wang,
Zhihang Yuan, Xiuhong Li, Shengen Yan, Guohao
Dai, Xiao-Ping Zhang, Yuhan Dong, and Yu Wang.
2024. A survey on efficient inference for large lan-
guage models. Preprint, arXiv:2404.14294.

A Related Work

Training LLMs in low precision Large lan-
guage models such as GPT (Radford et al., 2019),
OLMo (Groeneveld et al., 2024), and the LLaMA
family (Touvron et al., 2023) have traditionally re-
lied on mixed precision (FP32/FP16 or FP32/BF16)
(Micikevicius et al., 2018) and half-precision
(FP16/BF16) (Kalamkar et al., 2019) to optimize
computational efficiency. More recent advance-
ments in extreme quantization have introduced
ternary and binary network paradigms (Kaushal
et al., 2024; Wang et al., 2023), which leverage
quantization-aware training (QAT) for efficient
low-bitwidth model representations. These mod-
els maintain higher-precision latent (or master)
weights, such as FP16, to stabilize training while
dynamically binarizing or ternarizing weights dur-
ing inference. The straight-through estimator (STE)
(Bengio et al., 2013) is commonly employed to fa-
cilitate gradient-based updates. The Spectra suite
(Kaushal et al., 2024) provides a comprehensive
study of ternary, quantized, and FP16 language
models, offering insights into the performance and
scaling trends of low-bitwidth models.

Advancements in Post-Training Quantization
Post-training quantization (PTQ) remains a crucial
approach for reducing LLM memory and compute
requirements without requiring retraining. Tech-
niques such as SmoothQuant (Xiao et al., 2024) and

QuaRot (Ashkboos et al., 2024) address challenges
associated with activation quantization, particularly
mitigating large activation outliers (Dettmers et al.,
2022b). While these methods improve compres-
sion, they often rely on 8-bit quantization to pre-
serve numerical stability. Continued research into
activation-aware quantization techniques is vital
for further enhancing LLM deployment in resource-
constrained environments.

Optimizing Inference Efficiency To improve
LLM deployment efficiency, frameworks like
MARLIN (Frantar et al., 2024) initially imple-
mented GPTQ-based quantization, enabling accel-
erated inference.MARLIN kernels combine various
techniques, ranging from advanced task schedul-
ing, partitioning, and pipeplining techniques to
quantization-specific layout and compute optimiza-
tions. More recently, MARLIN has been ex-
tended to incorporate Activation-Weight Quanti-
zation (AWQ) (Lin et al., 2024), a technique that
jointly quantizes both weights and activations to
mitigate accuracy degradation in low-bitwidth set-
tings.

B Pretraining Details

B.1 Quantized Linear Layer: Forward,
Backward, and Inference Stages

We now present the mathematical formulation for
a linear layer employing the TriLM quantization
scheme (Kaushal et al., 2024), outlining the pro-
cesses for the forward pass, backward pass, and
inference stages.

Forward Pass. In the forward pass, we begin by
calculating the scaling factor γ to normalize the
weight matrix W . The scaling factor is given by:

γ = ϵ+
1

nm

n∑

i=1

m∑

j=1

|Wij |

where n and m denote the dimensions of the
weight matrix W , and ϵ is a small constant added
for numerical stability.

Subsequently, the weight matrix W is quantized
by rounding its entries to the nearest value in the
set {−1, 0, 1}, scaled by γ:

Ŵij = round
(
min

(
max

(
Wij

γ
,−1

)
, 1

))

The quantized weight matrix W̃ is then obtained
by scaling the rounded weights: W̃ij = γŴij

26690

https://api.semanticscholar.org/CorpusID:1553193
https://arxiv.org/abs/2211.10438
https://arxiv.org/abs/2211.10438
https://arxiv.org/abs/2211.10438
https://doi.org/10.18653/v1/P19-1472
https://doi.org/10.18653/v1/P19-1472
https://arxiv.org/abs/2210.03493
https://arxiv.org/abs/2210.03493
https://arxiv.org/abs/2404.14294
https://arxiv.org/abs/2404.14294


Dataset Name Number of Tokens (Billion) Percentage

ArXiv (Clement et al., 2019) 3.67 0.31%
Cosmopedia-v2 (Ben Allal et al., 2024) 22.36 1.86%
PeS2o (Soldaini and Lo, 2023) 42.70 3.56%
FineWeb-Edu (Lozhkov et al., 2024) 960.42 80.04%
Zyda - StarCoder (Tokpanov et al., 2024) 170.85 14.24%

Total 1200.00 100.00%

Table 1: Pretraining datasets and token counts for TriTera models.

Finally, the output Y is computed as the product
of the input X and the transposed quantized weight
matrix: Y = XW̃ T

Backward Pass. During the backward pass, the
gradients of the loss function L with respect to the
input X and the weight matrix W are computed.
These gradients are given by:

∂L

∂X
=

∂L

∂Y
W̃

∂L

∂W
=

∂L

∂Y

T

X

Inference. For inference, the quantized weight
matrix Ŵ and the scaling factor γ are precomputed
and cached to reduce computation during predic-
tion. The steps are as follows:

1. Compute Ŵ and γ once and store them.

2. Use the precomputed values to calculate the
quantized weight matrix: W̃ij = γŴij

3. Finally, the output Y is computed as: Y =
XW̃ T

By caching the scaling factor and the quantized
weights, the inference process is significantly ac-
celerated, as it eliminates the need for redundant
recalculations.

B.2 Dataset
Our training corpus comprises a diverse mix of data
from publicly available sources. To scale TriLMs,
we trained on approximately 1.2 trillion tokens, up-
sampling the most factual sources to enhance the
model’s knowledge while reducing hallucinations.
The details of the datasets used are summarized in
Table 1. Each dataset was preprocessed and tok-
enized using llama2 tokenizer (AI@Meta, 2024).

• ArXiv (Clement et al., 2019): The dataset
comprises 1.5 million arXiv preprint articles

from fields such as Physics, Mathematics, and
Computer Science, encompassing text, fig-
ures, authors, citations, and metadata.

• Cosmopedia-v2 (Ben Allal et al., 2024): A
synthetic dataset of over 30 million documents
and 25 billion tokens. The dataset was gen-
erated using the Mixtral-8x7B-Instruct-v0.1
model, a multi-expert language model intro-
duced in (Jiang et al., 2024), designed for high-
quality content generation. It is one of the
largest publicly available synthetic datasets.

• PeS2o (Soldaini and Lo, 2023): It comprises
40 million open-access academic papers that
have been cleaned, filtered, and formatted
specifically for the pre-training of language
models. It is derived from the Semantic
Scholar Open Research Corpus (Lo et al.,
2020).

• Zyda-StarCoder Git-Commits (Tokpanov
et al., 2024): For our models, we exclu-
sively utilize the GitHub-Issues and Jupyter-
Structured subsets of the Zyda-Starcoder
dataset.

• Zyda-StarCoder-Languages: A dataset en-
compassing multiple programming languages,
enabling the model to perform well across
diverse coding tasks.

• FineWeb-Edu (Lozhkov et al., 2024): A sub-
set of high quality dataset consists of 1.3T
tokens of educational web pages filtered from
FineWeb dataset.

B.3 Hyperparameter Choices
We adopt a single learning rate with a warmup
followed by a cosine decay schedule, replacing
the dual learning rate approach used in TriLMs
(Kaushal et al., 2024). Additionally, we eliminate
the use of weight decay, consistent with the modifi-
cations.

26691



Feature TriTera

Biases None
Activation SwiGLU
RoPE (θ) 5 · 105
QKV Normalization QK-Norm
Layer Norm RMSNorm
Layer Norm Applied to Outputs
Z-Loss Weight 10−5

Weight Decay on Embeddings No

Table 2: Configuration Details for TriTera

B.4 Hyperparameters.

All the models are randomly initialized from a trun-
cated normal distribution with a mean of 0 and a
standard deviation of 0.02. We trained using the
AdamW optimizer (Loshchilov and Hutter, 2019),
with β1 = 0.9, β2 = 0.95, and ϵ = 10−5. The
weight decay was applied with a value of 0.1. A
cosine learning rate schedule was employed, with
a warmup of 2000 steps, followed by a decay of
the final learning rate to 10% of the peak learning
rate. We used gradient clipping with a threshold
of 1.0. Metrics were logged every 10 steps. For
simplicity during training, we adopt a single learn-
ing rate with a warmup followed by a cosine decay
schedule, replacing the dual learning rate approach
used in Spectra. Additionally, we eliminate the use
of weight decay, consistent with the modifications.
Table 3 summarizes the hyperparameters for our
largest models.

B.5 Hardware and Training Setups

Each node in the Frontier cluster includes four
AMD MI250X accelerators, with each acceler-
ator featuring two GCDs that function as inde-
pendent GPUs. The total bidirectional commu-
nication bandwidth within a node ranges between
100 GB/s and 400 GB/s. The nodes are connected
via Ethernet-based HPE Slingshot interconnects.
Each node is equipped with four links, each provid-
ing a total directional bandwidth of 50 GB/s. Our
approach scales near-linearly up to 2048 GPUs, as
shown in Figure 7

C Scaling Laws

C.1 Scaling Laws of TriLMs and FloatLMs

In Section 2.2, we derived the scaling law for
TriLMs as a function of the number of parame-
ters (N ) and the number of training tokens used
(D) by assuming the parametric form defined in

0 250 500 750 1000 1250 1500 1750 2000
Number of GPUs

0

5

10

15

20

25

30

Re
la

tiv
e 

Sp
ee

du
p

Number of GPUs vs. Relative Speedup
Actual
Ideal

Figure 7: Number of GPUs vs. Relative Speedup.

Kaplan et al. (2020); Hoffmann et al. (2022). We
apply the same procedure to derive the scaling law
for FloatLMs which use 16-bit precision to facili-
tate direct comparison and understand the effect of
compute on performance.

In addition to the ternary LLMs de-
scribed in Section 2.2, we train corre-
sponding 16-bit models which we refer
to as FloatLMs across parameters sizes
∈ [990M, 1900M, 3900M, 5600M, 11000M ]
(excluding embeddings) and dataset sizes
∈ [20B, 40B, 75B, 150B] tokens. We follow the
same procedure as for TriLMs and obtain the
following power law for FloatLMs,

L̂(N,D) ≈ 2.17 +
7.86

N0.56
+

3.42

D0.53
. (3)

Comparing this with Equation (2), we make two in-
teresting observations. First, the constant term and
the coefficients are markedly different for ternary
and float LMs, indicating that these terms might be
dependent on the level of quantization. Second, the
terms involving N and D have almost the same ex-
ponents for FloatLMs, which means that increasing
either parameters and training tokens has a similar
effect on improving LLM performance. This is in
contrast to TriLMs, where the term involving train-
ing tokens decays much more rapidly than term
involving number of parameters.

Figure 8 shows the final validation loss for dif-
ferent FloatLM models against the number of pa-
rameters and the number of training tokens, along
with the scaling law fit.

C.2 Parametric Fit for Scaling Law
We obtain the coefficients for the parametric scal-
ing law in Equation (1) by finding the least squares

26692



Parameter TriTera-1B TriTera-2B TriTera-3B

Number of Parameters 1.526B 2.5547B 3.6680B

Hidden Size 2048 2560 3072

Number of Layers 24 26 28

Attention Heads 16 20 24

MLP Hidden Size 8192 10240 11264

Number of KV Heads 4 5 6

Embedding Size 32768 32768 32768

Max Sequence Length 2048 2048 2048

Activation Function SiLU SiLU SiLU

Optimizer AdamW AdamW AdamW

Learning Rate 0.0015 0.0015 0.0015

Weight Decay 0.1 0.1 0.1

Gradient Clipping 1.0 1.0 1.0

Table 3: Architecture summary for TriTera 1B, 2B, and 3B models based on revised configurations.

fit on the the final validation losses of the suite
of models trained across different parameter and
training token values.

To evaluate our fit, we calculate the coefficient
of determination, or R2, which is a statistical mea-
sure that indicates how well a model fits a set of
data, with R2 = 1.0 indicating a perfect fit. Our
fitted power laws have R2 = 0.9921 for TriLMs
and R2 = 0.9958 for FloatLMs. Figure 9 plots
the predicted validation loss following our derived
scaling law versus the actual empirical values.

D Benchmark Details

We benchmark TriLM across knowledge, common-
sense, and reasoning benchmarks. We average our
scores across three different ’seeds’.

D.1 Commonsense and Reasoning
We report commonsense and reasoning benchmark
scores across 6 benchmarks in Table 4. Each is
considered in a zero-shot setting. Following are the
details of each of the benchmarks considered:

• ARC Challenge and Easy: (Clark et al.,
2018) The ARC dataset consists of 7,787
multiple-choice science questions, split into
two categories: Challenge and Easy. We com-
pute both the accuracy and normalized accu-
racy for these two sets.

• BoolQ: (Clark et al., 2019) BoolQ is a read-
ing comprehension dataset featuring naturally
occurring yes/no questions. We evaluate the
model’s performance by calculating its accu-
racy on this task.

• HellaSwag: (Zellers et al., 2019) HellaSwag
is a dataset for testing grounded commonsense
through multiple-choice questions. Incorrect
answer choices are generated using Adversar-
ial Filtering (AF), designed to deceive ma-
chines but not humans. Accuracy and normal-
ized accuracy are reported for this dataset.

• WinoGrande: (Sakaguchi et al., 2021) Wino-
Grande is a dataset of 44,000 questions de-
signed to assess commonsense reasoning via a
fill-in-the-blank task with binary options. We
report the model’s accuracy on this dataset.

• PIQA: (Bisk et al., 2019) The Physical In-
teraction Question Answering (PIQA) dataset
evaluates physical commonsense reasoning.
We compute accuracy and normalized accu-
racy for this task.

• LAMBADA OpenAI: (Paperno et al., 2016)
LAMBADA is a dataset used to test text under-
standing through next-word prediction, con-
taining narrative passages from BooksCorpus.

26693



Figure 8: Effect of scaling number of parameters (left) and number of training tokens (right) on final validation loss for
FloatLMs. The dotted lines show the power law derived in Equation (3).

Figure 9: Predicted versus actual values of the final validation loss based on the parametric fit of the scaling law for TriLMs
(left) and FloatLMs (right).

To perform well on LAMBADA, models must
leverage broad discourse information rather
than just local context. We report both per-
plexity and accuracy for this dataset.

• LogiQA: (Liu et al., 2021) LogiQA focuses
on testing human-like logical reasoning across
multiple types of deductive reasoning tasks.
We measure both accuracy and normalized
accuracy for this dataset.

D.2 Knowledge
We report performance on SciQ, TriviaQA in Ta-
bles 4. Each is considered in a zero-shot setting.
Following are the details of each of the benchmarks
considered:

The knowledge-based evaluation included the
following tasks:

• SciQ: (Welbl et al., 2017) The SciQ dataset
contains multiple-choice questions with 4

answer options from crowd-sourced science
exams. The questions range from Physics,
Chemistry and Biology and several other
fields. We calculate the accuracy and length
normalized accuracy on this task.

• TriviaQA: (Joshi et al., 2017) TriviaQA is
a reading comprehension dataset containing
question-answer-evidence triples. We calcu-
late the exact match accuracy on this task.

• MMLU (Hendrycks et al., 2021): The bench-
mark aims to assess the knowledge gained dur-
ing pretraining by evaluating models solely in
zero-shot and few-shot scenarios. It spans 57
subjects, including STEM fields, humanities,
social sciences, and more.

D.3 Serving benchmark for inference
We report the following serving benchmark for our
TriRun kernels.

26694



Dataset Metric TriTera 1B TriTera 2B TriTera 3B Llama-1 7B

Arc Challenge
acc 33.45±1.38 37.29±1.41 40.61±1.44 41.81±1.44

acc_norm 36.43±1.41 39.69±1.43 42.58±1.44 44.80±1.45

Arc Easy
acc 69.82±0.94 72.60±0.92 75.97±0.88 75.25±0.89

acc_norm 62.54±0.99 67.42±0.96 71.93±0.92 72.81±0.91

BoolQ acc 62.57±0.85 56.70±0.87 66.15±0.83 75.11±0.76

HellaSwag
acc 43.20±0.49 46.44±0.50 49.65±0.50 56.95±0.49

acc_norm 56.61±0.49 61.37±0.49 66.28±0.47 76.21±0.42

LAMBADA (OpenAI) acc 47.31±0.70 48.85±0.70 54.22±0.89 73.53±0.61

LAMBADA (Standard) acc 34.81±0.66 38.58±0.68 47.04±0.70 67.82±0.65

LogiQA
acc 22.12±1.63 22.27±1.63 22.00±1.66 22.73±1.64

acc_norm 27.04±1.75 29.65±1.79 30.57±1.81 30.11±1.80

OpenBookQA
acc 28.60±2.02 30.00±2.05 32.20±2.09 34.20±2.12

acc_norm 38.80±2.18 41.00±2.20 41.80±2.21 44.40±2.22

PIQA
acc 71.98±1.05 73.67±1.03 76.01±1.00 78.67±0.96

acc_norm 72.47±1.04 75.41±1.00 76.33±0.99 79.16±0.95

WinoGrande acc 58.09±1.39 58.56±1.38 62.43±1.36 69.93±1.29

SciQ
acc 89.60±0.97 90.80±0.91 92.80±0.82 94.60±0.72

acc_norm 84.10±1.16 87.00±1.06 88.40±1.01 93.00±0.81

MMLU (cont.): Humanities acc 29.16±0.65 30.33±0.66 30.90±0.65 33.28±0.67

MMLU (cont.): Other acc 38.46±0.86 40.42±0.86 49.39±0.87 46.31±0.86

MMLU (cont.): Social Sciences acc 35.81±0.86 38.97±0.87 40.92±0.87 42.44±0.88

MMLU (cont.): STEM acc 27.62±0.79 30.23±0.80 32.06±0.82 33.43±0.83

MMLU (cont.) Average acc 32.34±0.39 34.43±0.39 36.12±0.39 38.21±0.40

GSM8K exact_match 2.05±0.39 2.12±0.40 3.03±0.47 9.70±0.82

MathQA
acc 23.22±0.77 24.22±0.78 24.69±0.79 27.07±0.81

acc_norm 23.12±0.77 24.52±0.79 24.63±0.79 26.50±0.81

Table 4: Model performance across various datasets.

• Time to First Token. The time taken from the
start of the inference process until the model
generates its first token. This metric is used to
measure the latency before the model begins
producing outputs.

• Time per Output Token. The average time
taken by the model to generate each subse-
quent token after the first. This metric reflects
the efficiency of the model in producing to-
kens once the inference process has started.

• Total Tokens per Second. The overall rate at
which the model generates tokens, including
both the initial and subsequent tokens. This
metric accounts for the entire sequence gener-
ation process and provides an aggregate mea-
sure of inference speed.

• Output Tokens per Second. The rate at
which the model generates tokens after the
first token has been produced. This metric

focuses on sustained generation speed, reflect-
ing the model’s efficiency once the decoding
process has started.

E Formal Proofs

E.1 Notations and Theorem
Theorem 1 (Correctness). Let D =
(d1, d2, . . . , dn) be a sequence of ternary
digits di ∈ {−1, 0, 1}. When D is partitioned into
blocks of size k and each block is encoded into a
p-bit integer, the encoding and decoding operations
P and U are lossless if and only if 2p > 3k; that is,
U(P (D)) = D.

Let

D = {d1, d2, . . . , dn}, di ∈ {−1, 0, 1},
be a sequence of balanced ternary digits. We parti-
tion D into blocks of k digits (with the last block
possibly shorter). For a given block, define the
shifted digits by

d′j = dj + 1, j = 0, 1, . . . , k − 1,

26695



so that d′j ∈ {0, 1, 2}. Then define the integer

N =
k−1∑

j=0

d′j · 3 k−1−j .

Since each d′j is in {0, 1, 2}, we have

0 ≤ N ≤ 3k − 1.

Assume we choose an integer p such that

2p > 3k.

The packing function is defined by

b =

⌊
N · 2p + (3k − 1)

3k

⌋
.

This mapping is one-to-one on the set
{0, 1, . . . , 3k − 1} and yields an integer b in
the range [0, 2p − 1].

The unpacking function recovers a number x via

x =

⌊
b · 3k − (3k − 1) + (2p − 1)

2p

⌋
.

The recovery of the shifted digits is given by:

d′j =
(⌊ x

3 k−1−j

⌋)
mod 3, j = 0, 1, . . . , k−1.

E.2 Proof of Theorem 1 (Correctness).
Step 1. Necessity of the Condition. Notice that
the mapping P takes an input N ∈ {0, 1, . . . , 3k −
1} (a total of 3k values) and produces an output
b ∈ {0, 1, . . . , 2p − 1} (a total of 2p values). If

2p ≤ 3k,

then by the pigeonhole principle the mapping P
cannot be injective, and therefore lossless recov-
ery is impossible. Thus, a necessary condition for
U(P (D)) = D is that

2p > 3k.

We now show that U(P (D)) = D if and only
if 2p > 3k. We start by showing that x = N , and
then we recover the original digits.

Step 2. Expressing the Packing Equation via the
Division Algorithm. By the division algorithm,
there exists a unique remainder integer r with 0 ≤
r ≤ 3k − 1 such that

N · 2p + (3k − 1) = b · 3k + r.

Rearranging, we obtain

N · 2p = b · 3k − (3k − 1) + r.

Dividing both sides by 2p yields

N =
b · 3k − (3k − 1)

2p
+

r

2p
.

Because 0 ≤ r ≤ 3k − 1, the term

r

2p

satisfies

0 ≤ r

2p
<

3k

2p
.

Thus, the requirement 2p > 3k is equivalent to
having

0 ≤ r

2p
< 1.

If 2p ≤ 3k the fractional part might reach or exceed
1, and the mapping would fail to be one-to-one.
Hence, the lossless property holds if and only if
2p > 3k.

Step 3. Recovery of N via the Decoding Opera-
tion. Examine the decoding formula:

x =

⌊
b · 3k − (3k − 1) + (2p − 1)

2p

⌋
.

We rewrite the expression inside the floor as

b · 3k − (3k − 1) + (2p − 1)

2p

=
b · 3k − (3k − 1)

2p
+

2p − 1

2p

= N − r

2p
+

2p − 1

2p

= N +
(2p − 1)− r

2p
.

Since 0 ≤ r ≤ 3k − 1 and 3k < 2p, the correction
term

(2p − 1)− r

2p

satisfies

0 ≤ (2p − 1)− r

2p
< 1.

Thus,

N ≤ N +
(2p − 1)− r

2p
< N + 1.

Taking the floor gives

x = N.

26696



Step 4. Recovery of the Original Ternary Digits
Since N represents the base-3 number with shifted
digits d′j ∈ {0, 1, 2}, we recover each d′j by writing
N in base 3. It is important to note that if N has
a “short” base-3 representation (i.e., fewer than k
digits), we must pad the representation on the left
with zeros so that it has exactly k digits. In other
words, we interpret the expansion of x as

x =

k−1∑

j=0

d′j · 3k−1−j ,

where the digits d′j include leading zeros as
needed. Then, for each j = 0, 1, . . . , k − 1, we
have

d′j =
(⌊ x

3k−1−j

⌋)
mod 3.

Finally, reversing the initial shift,

dj = d′j − 1, j = 0, 1, . . . , k − 1,

retrieves the original balanced ternary digits.

Conclusion
The decoding operation precisely recovers N , and
therefore the original sequence of digits. In other
words,

U(P (D)) = D.

This completes the corrected proof that the packing
and unpacking functions are exact inverses.

2

F Inference implementation on CPUs and
benchmarking across hardware.

F.1 Additional Implementation details of
TQ2.

For quantization, the packed value calculation and
detailed encoding steps are as follows:

• Packing: qpacked = q0 + 4q1 + 16q2 + 64q3.

• Storage: 64 bytes for quantized elements + 2
bytes for the float16 scaling factor di, totaling
66 bytes per block.

For dequantization, the explicit unpacking pro-
cedure involves: q0 = qpacked mod 4, q1 =⌊ qpacked

4

⌋
mod 4, q2 =

⌊ qpacked
16

⌋
mod 4,

q3 =
⌊ qpacked

64

⌋
mod 4. The ternary storage method

uses only 2 bits per element, with minimal over-
head from the float16 scale per block. The process

relies on hardware-friendly bitwise operations for
fast packing and unpacking, making it suitable for
large-scale deployments in memory-constrained en-
vironments while maintaining a balance between
numerical fidelity and storage efficiency.

F.2 Additional Implementation details of
TQ1.

Ternary digit extraction using fixed-point and
bitwise operations. In this optimized decoding
approach, we define i as the index variable, which
represents the iteration counter for extracting each
trit. The index i ranges from 0 to 4, as we are
extracting k = 5 trits from a packed byte b. The
procedure begins by setting b0 = b. For each it-
eration i, we multiply the current value bi by 3,
yielding a 10-bit intermediate value. The high byte
of this value is then extracted to obtain the ternary
digit d′i =

⌊
bi·3
28

⌋
, where d′i ∈ {0, 1, 2}. After this,

the remainder is updated for the next iteration using
the operation bi+1 = (bi · 3)&0xFF . This process
repeats for all iterations i = 0, 1, 2, 3, 4, extracting
the corresponding ternary digits. Once all the trits
d′i are extracted, they are normalized by subtracting
1, mapping the values from {0, 1, 2} to {−1, 0, 1}.

Algorithm 1 Ternary Digit Extraction Using Fixed-
Point and Bitwise Operations

1: Input: Packed byte b
2: Output: Extracted ternary digits

d0, d1, d2, d3, d4
3: Initialize b0 = b
4: for each iteration i = 0, 1, 2, 3, 4 do
5: Multiply bi by 3 to get a 10-bit intermediate

value
6: Extract high byte to get ternary digit d′i =⌊

bi·3
28

⌋

7: Update remainder for next iteration:
bi+1 = (bi · 3)&0xFF

8: end for
9: Normalize extracted digits by subtracting 1,

mapping {0, 1, 2} to {−1, 0, 1}
10: Return: d0, d1, d2, d3, d4

This iterative method replaces the costly division
and modulo operations with fixed-point arithmetic
and bitwise masking, both of which are highly op-
timized for SIMD implementations. The structure
of this approach minimizes data dependencies, en-
abling the parallel extraction of trits across multiple
packed bytes. Furthermore, by leveraging the near

26697



560M 1.1B 1.5B 2.4B 3.9B
Model Size

0

25

50

75

100

125

150

175

200

To
ke

ns
/S

ec
on

d

Total Tokens/Second (256 Prompt + 64 Output Tokens) on AMD EPYC 7502
16 bits
4 bits
2 bits
1.6 bits

560M 1.1B 1.5B 2.4B 3.9B
Model Size

0

20

40

60

80

100

120

To
ke

ns
/S

ec
on

d

Output Tokens/Second vs. Model Size (256 Output Tokens) on AMD EPYC 7502
16 bits
4 bits
2 bits
1.6 bits

Figure 10: Comparison of output tokens for different model sizes running on a AMD EPYC 750 laptop: (Left) Output tokens
(for a 256 prompt with 64 output tokens). (Right) Output tokens per second versus model size. For more details, refer to Table 5

equivalence of 35 and 28, it achieves efficient de-
coding of ternary values with computational com-
plexity that scales linearly with k. The avoidance of
costly arithmetic operations and compatibility with
SIMD architectures make this approach particu-
larly well-suited for high-performance applications
involving ternary arithmetic.

F.3 Benchmarking across various hardware.
We present a comprehensive benchmarking anal-
ysis of quantization kernels: TQ1 (1.6 bits), TQ2
(2 bits), Q4 (4 bits, implementation provided in
ggml), and FP16 (16 bits), across various model
sizes ranging from 560M to 3.9B parameters and
different token configurations. The benchmarks are
executed on the AMD EPYC 7502 and Apple M4
Max (14 CPU cores). Detailed results are presented
in Tables 6 and 5. It should be noted that further
hardware-level optimizations are possible and will
be addressed in future work.

Prompt Encoding Performance: On the Ap-
ple M4 Max, TQ1 and TQ2 outperformed FP16
and Q4, particularly for longer prompts, indicat-
ing efficient utilization of lower-bit quantization
for prompt processing on this architecture. In
contrast, benchmarks on the AMD EPYC 7502
showed that FP16 achieved superior throughput for
shorter prompts (32–128 tokens), while Q4 and
TQ2 gained an advantage at 256 tokens, highlight-
ing a precision vs. memory bandwidth trade-off.
TQ1 underperformed FP16 and Q4 on this plat-
form. Across both architectures, larger models led
to reduced prompt encoding throughput.

Autoregressive Decoding Performance. Autore-
gressive decoding consistently demonstrated quan-
tization’s performance benefits on both platforms.
Quantized kernels (Q4, TQ2, TQ1) outperformed

FP16 in output tokens per second. AMD EPYC
7502 showed substantial Q4 gains over FP16, with
TQ2 further improving throughput, highlighting
reduced precision benefits for decoding. Apple M4
Max showed even greater quantization improve-
ments; TQ2 achieved highest throughput, followed
by TQ1 and Q4, all exceeding FP16. Output to-
ken length (8-256) minimally impacted decoding
throughput, suggesting independence within this
range. Larger models reduced decoding through-
put, consistent with prompt encoding.

Combined Prompt Encoding and Autoregres-
sive Decoding Performance. The combined
benchmark confirmed quantization advantages. For
both platforms, quantized kernels, especially TQ2
and Q4, delivered higher overall tokens per second
than FP16 in combined scenarios. Prompt/decode
token ratio (256/8, 256/64, 256/128) influenced
overall throughput. Increased decoding token pro-
portion decreased overall tokens per second, reflect-
ing lower decoding throughput relative to prompt
encoding. Apple M4 Max demonstrated highest
combined throughput with TQ1 and TQ2, partic-
ularly at higher decoding token ratios, indicating
optimization for end-to-end generation on this ar-
chitecture.

G TriRun Kernel Design for Accelerated
Matrix Multiplication

This section presents the design of the TriRun
kernel, which accelerates matrix multiplication
A × B → C, where A is stored in half-precision
(16-bit floating point), B is quantized to 2 bits per
element, and C is accumulated in single-precision
(32-bit floating point) before optional conversion
to half-precision. The kernel optimizes memory
efficiency and computational throughput through

26698



Configuration Model Size

Tokens Bits Kernel 560M 1.1B 1.5B 2.4B 3.9B

Prompt Encoding Benchmark (Prompt Tokens/seconds)

32 16 FP16 223.1 ± 0.3 110.7 ± 0.1 77.2 ± 0.2 49.1 ± 0.0 30.7 ± 0.1
32 4 Q4 182.4 ± 0.3 92.0 ± 0.1 70.2 ± 0.9 44.2 ± 0.8 27.8 ± 0.0
32 2 TQ2 315.2 ± 0.6 165.1 ± 0.4 130.1 ± 0.1 83.7 ± 0.0 51.3 ± 0.1
32 1.6 TQ1 181.1 ± 0.2 89.2 ± 0.1 70.0 ± 0.1 40.3 ± 0.1 25.4 ± 0.0
64 16 FP16 233.0 ± 0.3 113.5 ± 0.1 80.2 ± 0.1 49.7 ± 0.6 31.0 ± 0.0
64 4 Q4 182.9 ± 0.5 98.7 ± 0.1 69.3 ± 0.2 44.2 ± 0.7 27.6 ± 0.0
64 2 TQ2 320.5 ± 0.5 179.2 ± 0.3 130.6 ± 0.1 83.9 ± 0.3 51.1 ± 0.1
64 1 TQ1 180.9 ± 0.5 89.6 ± 0.1 66.6 ± 0.4 40.3 ± 0.0 25.3 ± 0.0
128 16 FP16 228.6 ± 1.1 116.2 ± 0.2 81.1 ± 0.2 51.5 ± 0.1 32.1 ± 0.0
128 4 Q4 179.2 ± 0.7 97.0 ± 0.6 69.3 ± 1.0 44.8 ± 0.1 27.9 ± 0.0
128 2 TQ2 305.2 ± 2.2 174.8 ± 0.1 124.2 ± 0.1 81.9 ± 0.1 51.5 ± 0.1
128 1.6 TQ1 177.2 ± 0.3 90.4 ± 0.1 65.8 ± 0.1 40.5 ± 0.1 25.5 ± 0.0
256 16 FP16 220.3 ± 0.6 105.9 ± 1.0 79.9 ± 0.1 50.0 ± 0.1 31.3 ± 0.1
256 4 Q4 170.1 ± 0.1 90.0 ± 2.2 69.3 ± 0.1 42.9 ± 0.1 27.3 ± 0.0
256 2 TQ2 287.1 ± 2.2 176.5 ± 1.7 122.4 ± 0.1 77.5 ± 0.3 49.9 ± 0.1
256 1.6 TQ1 169.5 ± 0.5 88.0 ± 1.0 64.3 ± 0.0 39.4 ± 0.0 24.9 ± 0.0

Autoregressive Decoding Benchmark (Output Tokens/seconds)

8 16 FP16 37.6 ± 0.2 16.9 ± 0.0 14.1 ± 0.0 8.6 ± 0.0 5.4 ± 0.0
8 4 Q4 83.0 ± 0.0 47.1 ± 0.2 35.5 ± 0.0 22.6 ± 0.0 15.1 ± 0.0
8 2 TQ2 135.1 ± 0.3 84.6 ± 0.1 62.0 ± 0.1 42.0 ± 0.0 29.2 ± 0.0
8 1.6 TQ1 102.0 ± 0.8 62.5 ± 0.1 48.6 ± 0.0 30.1 ± 0.1 20.7 ± 0.0
64 16 FP16 37.4 ± 0.0 17.8 ± 0.0 14.0 ± 0.0 8.7 ± 0.0 5.4 ± 0.0
64 4 Q4 83.1 ± 0.6 46.3 ± 0.7 35.2 ± 0.1 23.1 ± 0.0 15.0 ± 0.1
64 2 TQ2 126.3 ± 0.0 83.2 ± 0.1 60.8 ± 0.5 44.1 ± 0.1 28.9 ± 0.3
64 1.6 TQ1 105.4 ± 3.6 56.9 ± 0.3 45.1 ± 0.1 29.8 ± 0.0 20.5 ± 0.0
128 16 FP16 37.2 ± 0.1 18.7 ± 0.3 14.3 ± 0.0 8.7 ± 0.0 5.4 ± 0.0
128 4 Q4 85.6 ± 0.3 47.9 ± 0.1 37.5 ± 0.1 23.6 ± 0.0 15.0 ± 0.0
128 2 TQ2 131.4 ± 0.3 82.2 ± 0.5 64.1 ± 0.0 43.1 ± 0.1 28.8 ± 0.0
128 1.6 TQ1 104.4 ± 0.2 60.5 ± 0.0 47.7 ± 0.1 31.8 ± 0.1 20.8 ± 0.0
256 16 FP16 36.4 ± 0.2 18.0 ± 0.0 14.0 ± 0.1 8.4 ± 0.0 5.3 ± 0.0
256 4 Q4 82.3 ± 0.7 44.1 ± 0.7 36.1 ± 0.1 21.9 ± 0.1 14.6 ± 0.0
256 2 TQ2 117.5 ± 3.9 72.0 ± 0.3 59.7 ± 0.5 37.6 ± 0.1 27.7 ± 0.2
256 1.6 TQ1 94.5 ± 0.4 58.6 ± 0.6 44.0 ± 0.1 31.0 ± 0.0 19.6 ± 0.3

Prompt Encoding + Autoregressive Decoding Benchmark (Tokens/seconds)

256/8 16 FP16 190.2 ± 0.1 90.3 ± 0.3 73.7 ± 0.1 43.4 ± 0.1 26.6 ± 0.1
256/8 4 Q4 167.6 ± 0.2 86.0 ± 0.2 70.2 ± 0.2 41.1 ± 0.1 27.7 ± 0.3
256/8 2 TQ2 271.7 ± 1.0 149.3 ± 0.4 118.4 ± 0.7 73.6 ± 0.1 50.7 ± 0.1
256/8 1.6 TQ1 164.8 ± 0.6 82.4 ± 0.1 65.7 ± 0.1 38.4 ± 0.1 25.2 ± 0.0
256/64 16 FP16 103.8 ± 0.7 52.3 ± 0.0 41.8 ± 0.1 25.1 ± 0.1 15.1 ± 0.6
256/64 4 Q4 133.4 ± 0.8 72.4 ± 0.0 57.3 ± 0.3 35.2 ± 0.1 23.5 ± 0.0
256/64 2 TQ2 206.4 ± 2.7 123.5 ± 0.1 103.3 ± 0.4 62.1 ± 0.2 43.7 ± 0.2
256/64 1.6 TQ1 141.6 ± 0.1 74.5 ± 0.1 59.2 ± 0.3 35.9 ± 0.1 23.7 ± 0.3
256/128 16 FP16 79.0 ± 1.1 39.1 ± 0.1 31.0 ± 0.0 18.8 ± 0.0 11.9 ± 0.0
256/128 4 Q4 117.0 ± 0.3 63.2 ± 0.8 51.8 ± 2.1 31.7 ± 0.1 20.5 ± 0.0
256/128 2 TQ2 177.2 ± 1.0 104.6 ± 1.0 85.7 ± 0.1 54.5 ± 0.3 37.9 ± 0.2
256/128 1.6 TQ1 125.5 ± 0.5 68.5 ± 0.2 54.6 ± 0.2 33.7 ± 0.1 22.4 ± 0.0

Table 5: Tokens per second for different model sizes and quantization kernels with varying prompt lengths on AMD
EPYC 7502. Values represent mean ± standard deviation.

26699



Configuration Model Size

Tokens Bits Kernel 560M 1.1B 1.5B 2.4B 3.9B

Prompt Encoding Benchmark (Prompt Tokens/seconds)

32 16 FP16 730.0 ± 6.5 417.6 ± 17.3 295.9 ± 2.4 152.4 ± 0.2 91.2 ± 0.7
32 4 Q4 490.4 ± 3.2 270.0 ± 1.6 195.2 ± 0.9 106.1 ± 0.6 61.8 ± 0.3
32 2 TQ2 543.0 ± 3.5 305.1 ± 1.1 221.9 ± 0.6 118.3 ± 0.9 68.6 ± 0.3
32 1.6 TQ1 617.9 ± 2.8 362.7 ± 2.5 276.5 ± 5.7 145.5 ± 1.4 84.0 ± 0.0
64 16 FP16 1223.8 ± 21.7 640.8 ± 2.1 440.4 ± 0.8 247.1 ± 0.5 144.7 ± 0.4
64 4 Q4 886.1 ± 7.1 451.0 ± 1.3 320.7 ± 0.5 180.0 ± 1.1 105.5 ± 0.4
64 2 TQ2 951.1 ± 10.6 501.7 ± 1.1 363.0 ± 1.2 198.7 ± 0.3 116.2 ± 0.3
64 1.6 TQ1 1104.4 ± 11.5 578.3 ± 9.2 435.7 ± 0.4 235.2 ± 0.7 136.1 ± 0.4
128 16 FP16 1256.1 ± 4.2 788.2 ± 6.4 564.8 ± 1.7 328.0 ± 1.7 205.8 ± 0.6
128 4 Q4 1081.5 ± 4.6 629.7 ± 2.4 460.6 ± 0.6 266.6 ± 0.5 162.5 ± 0.3
128 2 TQ2 1143.2 ± 7.2 677.9 ± 2.7 494.3 ± 2.7 285.8 ± 1.0 175.8 ± 0.3
128 1.6 TQ1 1223.2 ± 11.1 769.6 ± 4.6 556.8 ± 0.6 320.4 ± 2.1 197.9 ± 0.2
256 16 FP16 1485.2 ± 3.3 785.5 ± 2.8 611.6 ± 1.3 367.5 ± 0.7 243.6 ± 3.6
256 4 Q4 1350.2 ± 3.4 710.3 ± 1.4 545.2 ± 2.1 325.8 ± 0.5 209.3 ± 2.2
256 2 TQ2 1398.6 ± 2.6 738.9 ± 2.4 561.7 ± 1.9 339.2 ± 0.7 225.9 ± 0.5
256 1.6 TQ1 1468.0 ± 3.5 786.7 ± 1.7 601.8 ± 2.2 361.6 ± 0.2 242.9 ± 0.5

Autoregressive Decoding Benchmark (Output Tokens/seconds)

8 16 FP16 170.9 ± 0.8 92.6 ± 0.1 71.5 ± 0.0 44.5 ± 0.0 28.1 ± 0.0
8 4 Q4 237.8 ± 0.3 134.8 ± 0.3 107.2 ± 0.3 64.8 ± 0.6 43.3 ± 0.7
8 2 TQ2 278.7 ± 0.6 167.4 ± 0.1 134.0 ± 0.2 86.6 ± 0.0 57.6 ± 0.1
8 1.6 TQ1 228.8 ± 0.5 125.7 ± 0.1 99.6 ± 0.1 62.3 ± 0.1 40.0 ± 0.1
64 16 FP16 169.4 ± 0.3 92.4 ± 0.1 71.3 ± 0.0 44.5 ± 0.0 28.0 ± 0.2
64 4 Q4 236.8 ± 0.7 134.0 ± 0.0 106.1 ± 0.1 66.2 ± 0.5 42.6 ± 0.2
64 2 TQ2 279.7 ± 0.1 166.5 ± 0.1 132.2 ± 0.1 86.1 ± 0.0 57.5 ± 0.0
64 1.6 TQ1 227.4 ± 0.5 125.4 ± 0.1 98.6 ± 0.1 62.1 ± 0.0 38.3 ± 0.0
128 16 FP16 171.5 ± 0.1 91.6 ± 0.1 71.0 ± 0.1 44.5 ± 0.1 28.1 ± 0.1
128 4 Q4 232.7 ± 0.3 132.2 ± 0.1 105.5 ± 0.1 67.0 ± 0.1 43.5 ± 0.3
128 2 TQ2 281.3 ± 1.0 164.0 ± 0.2 132.0 ± 0.1 85.1 ± 0.0 56.9 ± 0.0
128 1.6 TQ1 225.3 ± 1.6 124.5 ± 0.1 97.8 ± 0.1 61.6 ± 0.0 39.7 ± 0.0
256 16 FP16 166.0 ± 0.4 89.4 ± 0.4 69.1 ± 0.2 43.3 ± 0.2 27.7 ± 0.0
256 4 Q4 225.1 ± 0.2 128.4 ± 0.1 101.6 ± 0.6 63.7 ± 0.5 41.1 ± 0.4
256 2 TQ2 268.9 ± 0.2 158.6 ± 1.0 128.5 ± 0.2 82.9 ± 0.2 55.6 ± 0.0
256 1.6 TQ1 217.2 ± 1.1 121.1 ± 0.6 95.5 ± 0.0 60.3 ± 0.1 39.0 ± 0.0

Prompt Encoding + Autoregressive Decoding Benchmark (Tokens/seconds)

256/8 16 FP16 1142.4 ± 7.0 628.9 ± 1.4 489.9 ± 1.5 296.4 ± 0.7 194.6 ± 0.3
256/8 4 Q4 1165.6 ± 2.6 620.8 ± 2.2 481.8 ± 1.4 288.8 ± 0.5 186.6 ± 0.9
256/8 2 TQ2 1234.7 ± 0.9 668.9 ± 1.3 513.5 ± 1.1 308.6 ± 0.3 202.1 ± 0.5
256/8 1.6 TQ1 1241.5 ± 4.7 665.5 ± 4.9 517.6 ± 1.2 311.7 ± 0.5 205.4 ± 0.3
256/64 16 FP16 550.0 ± 2.9 298.9 ± 0.5 234.8 ± 0.2 144.1 ± 0.3 93.6 ± 0.1
256/64 4 Q4 648.3 ± 1.1 358.6 ± 1.7 286.8 ± 0.3 175.2 ± 0.7 114.6 ± 0.4
256/64 2 TQ2 726.3 ± 1.9 415.5 ± 0.5 328.3 ± 0.3 205.2 ± 0.2 135.9 ± 0.4
256/64 1.6 TQ1 652.7 ± 2.4 364.1 ± 0.6 285.7 ± 0.3 177.0 ± 0.2 115.7 ± 0.4
256/128 16 FP16 385.8 ± 3.5 210.4 ± 1.2 165.1 ± 0.5 102.1 ± 0.2 66.1 ± 0.2
256/128 4 Q4 475.3 ± 0.7 270.2 ± 0.3 216.6 ± 0.4 133.1 ± 0.6 87.5 ± 0.4
256/128 2 TQ2 540.8 ± 0.6 317.9 ± 0.6 255.4 ± 0.2 160.8 ± 0.1 108.2 ± 0.1
256/128 1.6 TQ1 466.8 ± 0.5 265.8 ± 0.4 209.9 ± 0.1 130.9 ± 0.1 86.0 ± 0.3

Table 6: Tokens per Second for Different Model Sizes and Quantization Kernels M4 Max (14CPU Coresz). Values
represent mean ± standard deviation.

26700



specialized data layouts, dequantization strategies,
and tensor-core utilization. Key components in-
clude:

G.1 Data Organization and Quantization

2-Bit Weight Matrix (B Storage) The 2-bit
quantized elements of B are packed into 64-bit
int2 vectors, where each 32-bit integer contains
16 quantized weights. During loading, 64-bit
global memory transactions retrieve 32 weights per
int2, minimizing memory bandwidth. To align
with tensor-core requirements, these packed values
are asynchronously copied to shared memory via
cp.async instructions, then unpacked into 16-bit
fragments for computation.

Half-Precision Matrix (A Access) Matrix A is
stored in half-precision and loaded via 128-bit int4
vectors, fetching eight elements per transaction.
This aligns with the 16-byte memory alignment
optimal for GPU global memory accesses. Subse-
quent stages repack these into 16×16 submatrices
compatible with tensor-core operations.

G.2 Dequantization and Tensor-Core
Computation

The dequant function performs dequantiza-
tion of 2-bit integer values into half-precision
floating-point representations, employing
hardware-optimized bitwise operations and
fused arithmetic to enable efficient tensor core
execution. Rather than relying on conventional
shift-and-mask techniques, the implementation
decomposes each 32-bit word—which encodes
sixteen 2-bit weights—using a specialized bitwise
operation that leverages a tailored mask to both
isolate the individual weight segments and embed
a predetermined FP16 exponent. Following this,
an integrated arithmetic fusion stage applies a
zero-point adjustment, effectively adding 1.0
to the extracted values, and performs dynamic
range scaling through a fused multiply-add
operation. This approach diverges from the
traditional scale · (w − zero_point) formulation
by consolidating multiple arithmetic steps into
a single, hardware-specific sequence. Subse-
quently, per-group FP16 scales are applied to
the dequantized values, which are then stored in
register-based fragments (FragB) to minimize
shared memory contention. Later, the kernel
employs ldmatrix.sync.aligned.m8n8.x4
to load A and B fragments into tensor-core

registers. Each mma.sync.aligned.m16n8k16
operation computes a 16×8×16 submatrix product,
accumulating results into 32-bit floating-point
fragments (FragC) for numerical stability. By
unrolling across submatrix tiles, the kernel fully
utilizes tensor-core throughput while maintaining
warp-level synchronization.

G.3 Memory Latency Hiding via
Asynchronous Pipelines

To overlap computation with memory transfers, the
kernel implements a four-stage software pipeline
with double buffering. Key mechanisms include:

• Asynchronous Data Copies: cp.async in-
structions prefetch A and B tiles into shared
memory without stalling computation threads.

• Double Buffering: Two shared memory
buffers alternate between data ingestion (from
global memory) and consumption (by ten-
sor cores), ensuring continuous utilization of
memory and compute units.

• cp.async Synchronization: Warps issue
cp.async.commit_group to batch memory
transactions and cp.async.wait_group to
enforce dependencies, preventing read-after-
write hazards.

2020-10
2021-01

2021-04
2021-07

2021-10
2022-01

2022-04
2022-07

2022-10
2023-01

2023-04

Device Release Date

3

4

5

6

7

8

Sp
ee

du
p 

ov
er

 P
yT

or
ch

 F
P1

6 
Ke

rn
el

s

A100_PCIe
A100_SXM

L40

4090

L40S

3090

L4

A30

Speedup Across Hardware
Linear Regression Fit

Figure 11: Speedup across hardware over the years
using TriRun kernels

G.4 Precision-Preserving Accumulation

Intra-Warp Reduction Partial sums within a
thread block are reduced across warps using shared
memory. A tree-based summation merges per-warp
FragC outputs, minimizing shared memory bank
conflicts through staggered access patterns.

26701



Global Memory Atomic Reduction For outputs
spanning multiple thread blocks, atomic 32-bit
floating-point additions ensure correct inter-block
accumulation. Final results are converted to half-
precision (if specified) using round-to-nearest-even
mode, balancing precision and storage efficiency.

G.5 Performance Configuration

Thread blocks (256 threads) balance register pres-
sure (128/thread) and occupancy (8 warps/block).
Tile dimensions adapt to problem size: 128×128
tiles for small batches (m ≤ 16) and 64×256 tiles
for larger workloads. The 96 KB shared memory
budget supports four concurrent pipeline stages,
sustaining 98% tensor core utilization across varied
workloads. This implementation demonstrates that
2-bit quantized inference can achieve near-FP16
throughput while maintaining numerical fidelity,
providing a practical solution for deploying com-
pressed deep learning models on modern GPUs.

G.6 TriRun performance benchmark across
various Nvidia hardware.

Performance Acceleration of Ternary Linear
Layers in Transformer Blocks. TriRun kernels
in transformer blocks including ternary linear lay-
ers demonstrate significant performance improve-
ments across various hardware configurations. As
shown in Figure 12, we evaluated TriRun’s perfor-
mance against a standard FP16 PyTorch implemen-
tation (CUTLASS) across multiple NVIDIA GPU
platforms, including the L40, A100 SXM/PCIe,
A40, 3090, A30, L40s, and RTX 4090. The perfor-
mance analysis covered models ranging from 3B
to 405B parameters under varying batch sizes, with
speedup quantified as the ratio of FP16 baseline ex-
ecution time to TriRun execution time. The results
indicate sustained performance for batch sizes up
to 16–32 across all tested GPUs. Moreover, larger
models, which incorporate a higher proportion of
ternary weights relative to their total parameters,
achieve more substantial speedups compared to
smaller models. This performance trend suggests a
positive correlation between model size and the ef-
ficiency gains offered by TriRun’s implementation.
Detailed per-layer results are provided in Tables
Table 7 and Table 8.

End-to-End Generation Performance. Fig-
ure 13 presents the end-to-end token generation
speedup. For a comprehensive view, Figure 13
(with detailed results in Table 9, Table 10, Table 11,

and Table 12) shows the total time for end-to-end to-
ken generation using TriRun on Nvidia L40s, L40,
A40, and 4090 GPUs for models ranging from 7B
to 70B parameters. This reflects the output token
throughput, with TriRun achieving up to approxi-
mately 5× speedup. The slightly lower end-to-end
speedup compared to the per-layer results can be
attributed to additional inference overheads beyond
the linear layers, which are specifically acceler-
ated by TriRun. In this case as well, larger models
achieve higher speedups due to their increased pro-
portion of ternary weights.

H Artifacts Released

To foster open research, we will be making the
artifacts from this paper publicly available. The
following resources are provided:

• TriTera Suite. We are releasing all models
from the Tritera suite (as described in Sec-
tion 2), along with all intermediate check-
points, under the MIT license.

• TriRun Kernels. We plan to open-source
the TriRun Library (as detailed in Section 4)
under the Apache 2.0 license.

26702



Model Size GPU Type Batch Size
(Parameters) 1 2 4 8 16 32 64 128

A40
405B A40 7.85 7.65 7.66 7.70 7.50 7.27 3.91 1.98
123B A40 7.67 7.67 7.68 7.63 7.65 6.99 3.69 1.97
70B A40 7.36 7.39 7.45 7.29 7.46 6.80 3.64 1.90
34B A40 7.22 7.29 7.35 7.36 7.46 6.29 3.57 1.99
13B A40 6.76 6.91 6.72 6.92 6.93 5.89 3.33 1.86
8B A40 6.42 6.62 6.62 6.66 6.55 5.18 2.99 1.84
3B A40 5.39 4.76 5.50 5.51 5.56 4.35 2.81 1.93

3090
405B 3090 4.92 4.70 4.70 4.98 5.04 2.72 1.41 1.09
123B 3090 4.83 4.75 4.75 5.46 5.50 2.63 1.34 1.14
70B 3090 4.51 4.69 4.70 4.72 4.74 2.48 1.35 1.10
34B 3090 4.42 4.70 4.76 4.75 4.65 2.53 1.62 1.23
13B 3090 4.25 4.39 4.47 4.41 4.39 2.40 1.26 1.15
8B 3090 4.19 4.25 4.30 4.32 4.17 2.37 1.34 1.15
3B 3090 4.05 3.53 3.71 3.71 3.68 2.32 1.32 1.24

A30
405B A30 3.96 3.98 3.99 4.00 4.01 2.80 1.77 1.35
123B A30 3.89 3.90 3.90 3.91 3.90 2.66 1.68 1.12
70B A30 3.81 3.82 3.91 3.94 3.90 2.70 1.64 1.19
34B A30 3.62 3.62 3.67 3.81 3.78 2.76 1.71 1.29
13B A30 3.36 3.44 3.45 3.48 3.38 2.47 1.59 1.48
8B A30 3.28 3.30 3.32 3.33 3.31 2.28 1.61 1.13
3B A30 2.66 2.90 2.90 2.94 2.87 2.08 1.35 1.39

L4
405B L4 5.98 6.10 6.12 6.24 6.46 5.38 3.21 1.00
123B L4 6.34 6.05 6.05 6.08 6.07 5.24 3.12 1.63
70B L4 5.91 5.97 5.96 5.90 5.86 5.22 3.15 1.65
34B L4 6.75 5.87 5.87 5.84 5.76 5.40 3.20 1.80
13B L4 7.75 5.64 5.64 5.63 6.16 5.03 3.13 1.66
8B L4 5.31 5.25 5.27 5.23 5.30 4.42 2.79 1.56
3B L4 7.74 5.43 5.43 5.38 5.40 4.49 2.83 1.63

Table 7: Speedup over FP16 PyTorch (using CUTLASS) across different batch sizes for all ternary linear layers in a
transformer block, accounting for the matrix structures in models ranging from 3B to 405B on A40, 3090, A30 and
L4 GPUs.

26703



Model Size GPU Type Batch Size
(Parameters) 1 2 4 8 16 32 64 128

L40
405B L40 7.99 7.67 7.69 7.78 7.79 7.67 4.04 2.05
123B L40 8.47 7.58 7.57 7.57 7.52 7.44 3.97 2.11
70B L40 7.91 7.39 7.46 7.49 7.64 6.90 3.80 2.02
34B L40 7.93 7.32 7.27 7.38 7.57 6.48 3.63 2.01
13B L40 9.98 6.83 6.83 6.83 6.74 5.46 3.22 1.86
8B L40 8.30 6.57 6.68 6.61 6.42 4.41 2.69 1.70
3B L40 5.98 6.97 6.41 6.83 6.67 3.05 1.97 1.49

A100 (SXM)
405B A100 4.25 4.25 4.30 4.28 4.25 3.05 1.86 1.28
123B A100 4.25 4.11 4.08 4.14 4.04 3.06 1.95 1.12
70B A100 4.66 3.90 3.87 3.93 3.95 2.88 1.81 1.13
34B A100 3.66 3.63 3.66 3.64 3.62 2.70 1.73 1.13
13B A100 3.33 3.30 3.42 3.41 3.42 2.32 1.57 1.26
8B A100 2.79 2.68 2.82 2.90 2.86 2.08 1.49 1.17
3B A100 2.26 2.44 2.26 2.57 2.22 1.42 1.45 0.97

A100 (PCIe)
405B A100 4.98 4.96 4.99 5.06 4.94 3.52 2.19 1.23
123B A100 4.89 4.88 4.74 4.86 4.87 3.51 2.24 1.27
70B A100 4.67 4.48 4.49 4.55 4.58 3.35 2.10 1.31
34B A100 4.21 4.24 4.23 4.24 4.28 3.10 1.98 1.29
13B A100 3.86 3.97 3.57 3.96 3.96 2.73 1.82 1.42
8B A100 3.27 3.37 3.33 3.09 3.37 2.30 1.64 1.32
3B A100 2.93 2.75 2.74 2.72 2.93 1.86 1.22 1.09

4090
405B 4090 7.67 7.65 7.69 7.71 7.77 5.29 2.74 1.48
123B 4090 7.64 7.68 7.68 7.71 7.74 5.20 2.80 1.41
70B 4090 4.96 6.65 7.45 7.51 7.20 5.02 2.60 1.40
34B 4090 7.25 7.28 6.82 6.84 7.34 4.89 2.59 1.43
13B 4090 6.36 6.39 6.39 6.39 6.36 4.18 2.32 1.43
8B 4090 5.42 5.54 5.70 5.94 5.53 3.56 1.99 1.37
3B 4090 3.96 4.29 4.40 4.32 4.15 2.52 1.37 1.37

Table 8: Speedup over FP16 PyTorch (using CUTLASS) across different batch sizes for all ternary linear layers in a
transformer block, accounting for the matrix structures in models ranging from 3B to 405B on L40, A100(SXM),
A100 (PCIe) and 4090 GPUs.

26704



2 4 8 16 32 64 128
Batch (log scale)

1

2

3

4

5

Sp
ee

du
p

A100_PCIe

2 4 8 16 32 64 128
Batch (log scale)

1

2

3

4

Sp
ee

du
p

A100_SXM

2 4 8 16 32 64 128
Batch (log scale)

2

4

6

8

Sp
ee

du
p

L40

2 4 8 16 32 64 128
Batch (log scale)

2

4

6

8

Sp
ee

du
p

4090

2 4 8 16 32 64 128
Batch (log scale)

2

4

6

8

Sp
ee

du
p

L40S

2 4 8 16 32 64 128
Batch (log scale)

1

2

3

4

5
Sp

ee
du

p

3090

2 4 8 16 32 64 128
Batch (log scale)

2

4

6

Sp
ee

du
p

A40

2 4 8 16 32 64 128
Batch (log scale)

2

4

6

Sp
ee

du
p

L4

2 4 8 16 32 64 128
Batch (log scale)

1

2

3

4

Sp
ee

du
p

A30

Models
3B 8B 13B 34B 70B 123B 405B

Figure 12: We evaluate the performance of ternary layers in transformer blocks, showing near-optimal speedup over
PyTorch FP16 on different NVIDIA GPUs using CUTLASS.

26705



7B 13B 34B 70B
Model Size

0.0

0.1

0.2

0.3

0.4

0.5

0.6

TT
FT

 (s
)

1.6x

2.1x

3.4x

4.7x

TTFT vs Model Size (64 Token Encoding + 1 Tokens Decoding)
Pytorch
Trirun

7B 13B 34B 70B
Model Size

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

TP
OT

 (s
)

1.5x

2.0x

3.3x

4.9x
TPOT vs Model Size (1 Input Tokens, 64 Output Tokens)

Pytorch
Trirun

7B 13B 34B 70B
Model Size

0.0

0.1

0.2

0.3

0.4

0.5

0.6

TT
FT

 (s
)

1.7x

2.4x

3.2x

4.3x

TTFT vs Model Size (64 Token Encoding + 1 Tokens Decoding)
Pytorch
Trirun

7B 13B 34B 70B
Model Size

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

TP
OT

 (s
)

1.6x

2.2x

3.4x

5.3x
TPOT vs Model Size (1 Input Tokens, 64 Output Tokens)

Pytorch
Trirun

7B 13B 34B 70B
Model Size

0.0

0.2

0.4

0.6

0.8

TT
FT

 (s
)

1.6x

2.0x

3.1x

4.1x

TTFT vs Model Size (64 Token Encoding + 1 Tokens Decoding)
Pytorch
Trirun

7B 13B 34B 70B
Model Size

0.0

0.1

0.2

0.3

0.4

0.5

TP
OT

 (s
)

1.5x

2.1x

3.2x

4.3x

TPOT vs Model Size (1 Input Tokens, 64 Output Tokens)
Pytorch
Trirun

7B 13B 34B 70B
Model Size

0.0

0.1

0.2

0.3

0.4

0.5

TT
FT

 (s
)

1.8x

2.5x

3.3x

3.8x

TTFT vs Model Size (64 Token Encoding + 1 Tokens Decoding)
Pytorch
Trirun

7B 13B 34B 70B
Model Size

0.00

0.05

0.10

0.15

0.20

0.25

0.30

TP
OT

 (s
)

1.8x

2.8x

4.3x

5.3x
TPOT vs Model Size (1 Input Tokens, 64 Output Tokens)

Pytorch
Trirun

Figure 13: Comparison of TriRun kernels with the FP16 PyTorch baseline on NVIDIA L40S, L40, A40, and 4090 (top to
bottom). More details in Table 9, Table 10, Table 11 and Table 12 (a) Left: Time to first token, (b) Right: Time per output token.

26706



Size Kernel #GPU 1 2 4 8 16 32 64

Encoding

7B Pytorch 1 0.0210 0.0218 0.0219 0.0221 0.0225 0.0237 0.0244
7B Trirun 1 0.0135 0.0146 0.0146 0.0145 0.0146 0.0146 0.0146
7B Speedup - 1.5556 1.4932 1.5000 1.5241 1.5411 1.6233 1.6712

13B Pytorch 1 0.0380 0.0401 0.0402 0.0405 0.0411 0.0431 0.0461
13B Trirun 1 0.0184 0.0195 0.0193 0.0194 0.0207 0.0195 0.0195
13B Speedup - 2.0652 2.0564 2.0829 2.0876 1.9855 2.2103 2.3641

34B Pytorch 2 0.0986 0.1025 0.1027 0.1036 0.1051 0.1126 0.1213
34B Trirun 1 0.0277 0.0292 0.0288 0.0287 0.0288 0.0288 0.0339
34B Speedup - 3.5596 3.5103 3.5660 3.6098 3.6493 3.9097 3.5782

70B Pytorch 4 0.1952 0.2062 0.2066 0.2076 0.2093 0.2300 0.2352
70B Trirun 1 0.0381 0.0399 0.0397 0.0396 0.0397 0.0403 0.0544
70B Speedup - 5.1234 5.1679 5.2040 5.2424 5.2720 5.7072 4.3235

123B Trirun 1 0.0544 0.0556 0.0557 0.0559 0.0566 0.0617 0.0850

Decoding - (Input Length: 1 Token)

7B Pytorch 1 0.0229 0.0449 0.0889 0.1768 0.3529 0.7047 1.4133
7B Trirun 1 0.0152 0.0299 0.0596 0.1193 0.2374 0.4748 0.9463
7B Speedup - 1.5066 1.5017 1.4916 1.4820 1.4865 1.4842 1.4935

13B Pytorch 1 0.0399 0.0791 0.1573 0.3132 0.6250 1.2494 2.5005
13B Trirun 1 0.0196 0.0388 0.0777 0.1555 0.3114 0.6219 1.2411
13B Speedup - 2.0357 2.0387 2.0245 2.0141 2.0071 2.0090 2.0147

34B Pytorch 2 0.1009 0.2009 0.4011 0.8014 1.6022 3.2050 6.4134
34B Trirun 1 0.0300 0.0603 0.1203 0.2408 0.4815 0.9632 1.9272
34B Speedup - 3.3633 3.3317 3.3342 3.3281 3.3275 3.3275 3.3278

70B Pytorch 4 0.1975 0.3941 0.7877 1.5746 3.1491 6.2989 12.6034
70B Trirun 1 0.0400 0.0808 0.1615 0.3244 0.6501 1.3005 2.6025
70B Speedup - 4.9375 4.8775 4.8774 4.8539 4.8440 4.8434 4.8428

123B Trirun 1 0.0566 0.1126 0.2246 0.4488 0.8976 1.7936 3.5924

Table 9: End-to-end inference time (in seconds) on NVIDIA L40s GPUs, comparing Trirun kernels to PyTorch
FP16 for varying sequence lengths, showing the speedup of Trirun relative to PyTorch FP16.

26707



Size Kernel #GPU 1 2 4 8 16 32 64

Encoding

7B Pytorch 1 0.0166 0.0174 0.0175 0.0175 0.0179 0.0185 0.0198
7B Trirun 1 0.0085 0.0092 0.0093 0.0093 0.0093 0.0092 0.0117

7B Speedup - 1.9484 1.8871 1.8869 1.8890 1.9288 2.0141 1.6963

13B Pytorch 1 0.0316 0.0325 0.0326 0.0330 0.0336 0.0364 0.0380
13B Trirun 1 0.0106 0.0115 0.0113 0.0112 0.0112 0.0113 0.0177

13B Speedup - 2.9774 2.8384 2.8953 2.9307 2.9911 3.2055 2.1415

34B Pytorch 2 0.0794 0.0809 0.0815 0.0823 0.0840 0.0899 0.0934
34B Trirun 1 0.0171 0.0180 0.0178 0.0178 0.0187 0.0258 0.0408

34B Speedup - 4.6470 4.5056 4.5781 4.6294 4.4869 3.4866 2.2901

70B Pytorch 4 0.1547 0.1598 0.1605 0.1615 0.1633 0.1667 0.1825
70B Trirun 1 0.0285 0.0293 0.0294 0.0295 0.0300 0.0418 0.0712

70B Speedup - 5.4276 5.4595 5.4535 5.4685 5.4451 3.9857 2.5645

Decoding - (Input Length: 1 Token)

7B Pytorch 1 0.0175 0.0346 0.0688 0.1371 0.2744 0.5477 1.0979
7B Trirun 1 0.0097 0.0193 0.0390 0.0773 0.1546 0.3095 0.6196

7B Speedup - 1.7969 1.7952 1.7629 1.7734 1.7749 1.7694 1.7720

13B Pytorch 1 0.0325 0.0645 0.1286 0.2566 0.5122 1.0240 2.0510
13B Trirun 1 0.0116 0.0232 0.0462 0.0925 0.1850 0.3702 0.7381

13B Speedup - 2.8040 2.7841 2.7841 2.7751 2.7683 2.7658 2.7787

34B Pytorch 2 0.0805 0.1607 0.3211 0.6422 1.2843 2.5693 5.1450
34B Trirun 1 0.0185 0.0373 0.0748 0.1499 0.3039 0.6014 1.2210

34B Speedup - 4.3532 4.3132 4.2912 4.2828 4.2254 4.2721 4.2136

70B Pytorch 4 0.1559 0.3115 0.6230 1.2461 2.4920 4.9844 9.9766
70B Trirun 1 0.0297 0.0590 0.1180 0.2356 0.4725 0.9471 1.8942

70B Speedup - 5.2519 5.2760 5.2804 5.2893 5.2741 5.2626 5.2670

Table 10: End-to-end inference time (in seconds) on NVIDIA 4090 GPUs, comparing Trirun kernels to PyTorch
FP16 for varying sequence lengths, showing the speedup of Trirun relative to PyTorch FP16.

26708



Size Kernel #GPU 1 2 4 8 16 32 64

Encoding

7B Pytorch 1 0.0210 0.0219 0.0220 0.0221 0.0225 0.0244 0.0258
7B Trirun 1 0.0129 0.0139 0.0139 0.0142 0.0139 0.0138 0.0138

7B Speedup - 1.6239 1.5749 1.5810 1.5552 1.6193 1.7617 1.8681

13B Pytorch 1 0.0381 0.0402 0.0403 0.0407 0.0413 0.0458 0.0481
13B Trirun 1 0.0157 0.0170 0.0173 0.0174 0.0174 0.0170 0.0184

13B Speedup - 2.4219 2.3633 2.3306 2.3368 2.3765 2.6850 2.6097

34B Pytorch 2 0.0990 0.1028 0.1031 0.1038 0.1054 0.1180 0.1226
34B Trirun 1 0.0268 0.0281 0.0280 0.0278 0.0281 0.0279 0.0427

34B Speedup - 3.6857 3.6630 3.6814 3.7370 3.7462 4.2331 2.8736

70B Pytorch 4 0.1958 0.2068 0.2071 0.2080 0.2097 0.2167 0.2358
70B Trirun 1 0.0358 0.0371 0.0367 0.0368 0.0372 0.0439 0.0723

70B Speedup - 5.4757 5.5771 5.6356 5.6579 5.6366 4.9367 3.2611

Decoding - (Input Length: 1 Token)

7B Pytorch 1 0.0227 0.0448 0.0889 0.1769 0.3531 0.7043 1.4104
7B Trirun 1 0.0144 0.0285 0.0571 0.1144 0.2284 0.4579 0.9093

7B Speedup - 1.5759 1.5705 1.5579 1.5464 1.5461 1.5382 1.5511

13B Pytorch 1 0.0399 0.0792 0.1578 0.3145 0.6273 1.2536 2.5101
13B Trirun 1 0.0175 0.0356 0.0711 0.1407 0.2779 0.5560 1.1106

13B Speedup - 2.2862 2.2228 2.2203 2.2343 2.2569 2.2546 2.2600

34B Pytorch 2 0.1013 0.2020 0.4031 0.8054 1.6102 3.2202 6.4492
34B Trirun 1 0.0291 0.0588 0.1173 0.2355 0.4711 0.9484 1.8970

34B Speedup - 3.4876 3.4350 3.4359 3.4195 3.4183 3.3955 3.3997

70B Pytorch 4 0.1987 0.3966 0.7924 1.5842 3.1681 6.3388 12.6871
70B Trirun 1 0.0374 0.0754 0.1514 0.3002 0.6015 1.1935 2.3860

70B Speedup - 5.3117 5.2600 5.2330 5.2774 5.2666 5.3110 5.3172

Table 11: End-to-end inference time (in seconds) on NVIDIA L40 GPUs, comparing Trirun kernels to PyTorch
FP16 for varying sequence lengths, showing the speedup of Trirun relative to PyTorch FP16.

26709



Size Kernel #GPU 1 2 4 8 16 32 64

Encoding

7B Pytorch 1 0.0280 0.0281 0.0283 0.0286 0.0300 0.0322 0.0325
7B Trirun 1 0.0177 0.0188 0.0189 0.0190 0.0192 0.0189 0.0190

7B Speedup - 1.5840 1.4939 1.4952 1.5058 1.5642 1.7012 1.7150

13B Pytorch 1 0.0509 0.0522 0.0524 0.0528 0.0535 0.0556 0.0573
13B Trirun 1 0.0280 0.0301 0.0302 0.0302 0.0302 0.0301 0.0291

13B Speedup - 1.8139 1.7323 1.7377 1.7470 1.7745 1.8431 1.9732

34B Pytorch 2 0.1277 0.1331 0.1339 0.1335 0.1357 0.1433 0.1472
34B Trirun 1 0.0438 0.0452 0.0462 0.0462 0.0460 0.0453 0.0514

34B Speedup - 2.9170 2.9425 2.8964 2.8877 2.9513 3.1624 2.8633

70B Pytorch 4 0.2580 0.2673 0.2685 0.2702 0.2752 0.2845 0.3494
70B Trirun 1 0.0765 0.0792 0.0784 0.0786 0.0790 0.0789 0.0898

70B Speedup - 3.3734 3.3747 3.4234 3.4393 3.4826 3.6055 3.8922

Decoding - (Input Length: 1 Token)

7B Pytorch 1 0.0299 0.0590 0.1171 0.2334 0.4662 0.9318 1.8670
7B Trirun 1 0.0195 0.0391 0.0773 0.1587 0.3101 0.6184 1.2324

7B Speedup - 1.5341 1.5073 1.5145 1.4709 1.5033 1.5067 1.5150

13B Pytorch 1 0.0527 0.1046 0.2085 0.4159 0.8314 1.6628 3.3312
13B Trirun 1 0.0253 0.0506 0.1013 0.2029 0.4051 0.8122 1.6293

13B Speedup - 2.0871 2.0666 2.0581 2.0503 2.0526 2.0474 2.0446

34B Pytorch 2 0.1302 0.2594 0.5178 1.0353 2.0716 4.1386 8.2878
34B Trirun 1 0.0400 0.0818 0.1631 0.3278 0.6513 1.3201 2.6081

34B Speedup - 3.2521 3.1735 3.1737 3.1582 3.1804 3.1351 3.1777

70B Pytorch 4 0.2608 0.5204 1.0404 2.0823 4.1608 8.3258 16.6702
70B Trirun 1 0.0790 0.1219 0.2229 0.4486 0.9942 1.8002 3.4719

70B Speedup - 3.2997 4.2700 4.6675 4.6413 4.1851 4.6250 4.8015

Table 12: End-to-end inference time (in seconds) on NVIDIA A40 GPUs, comparing Trirun kernels to PyTorch
FP16 for varying sequence lengths, showing the speedup of Trirun relative to PyTorch FP16.

26710


