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Abstract

We propose Row-Column Fine-Tuning (Ro-
CoFT), a parameter-efficient finetuning method
for large language models based on updating
only a few rows and columns of the weight
matrices in transformers. Through extensive
experiments with medium size language mod-
els like RoBERTa and DeBERTa, and large
language models (LLMs) liken Bloom-7B,
Llama2-7B and Llama2-13B, we show that
our method gives comparable accuracies to the
state-of-the-art Parameter-Efficient Finetuning
methods while also being more memory and
computation-efficient. We also study the rea-
son behind the effectiveness of our method with
tools from Neural Tangent Kernel (NTK) the-
ory. We empirically demonstrate that our ker-
nel, constructed using a restricted set of row
and column parameters, is numerically close
to the full-parameter kernel and gives compara-
ble classification performance. Ablation stud-
ies are conducted to investigate the impact of
different algorithmic choices, including the ro-
bustness of RoCoFT to any selection of rows
and columns, as well as the optimal rank for
the effective implementation of our method.

1 Introduction

Adapting Large Language Models (LLMs) to dif-
ferent downstream applications is the current pre-
vailing paradigm for solving many Natural Lan-
guage Processing (NLP) problems, such as sen-
timent analysis, machine translation, question an-
swering, named entity recognition, and text summa-
rization. LLMs like GPT-4 (Achiam et al., 2023)
and Llama (Touvron et al., 2023) are trained on
massive amounts of text data and contain billions of
parameters. They give state-of-the-art performance
on many NLP, mathematical reasoning (Hendrycks
et al., 2021; Cobbe et al., 2021), and programming
benchmarks (Jiang et al., 2024). Early works on

“This work was done during an internship at Nokia Bell
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transfer learning with pretrained LLMs, such as
BERT (Devlin et al., 2018) and RoBERTa (Liu
et al., 2019), use full finetuning, which updates
all the parameters of the LLMs when adapting to
downstream tasks. This approach becomes imprac-
tical as language models continue to scale up (Hoff-
mann et al., 2022), since a separate copy of the
model parameters needs to be stored for each down-
stream application. Updating all the parameters is
also prone to overfitting and the loss of LLM capa-
bilities due to catastrophic forgetting (Kirkpatrick
et al.,, 2017). Adaptor methods (Houlsby et al.,
2019; Kowsher et al., 2024) solve this problem
of finetuning LLMs by introducing extra modules
called adaptors with a small set of independent
parameters. Only the parameters in the adaptors
need to be optimized during finetuning, and their
small size makes it efficient to adapt an LLM to
many different tasks. Parameter-Efficient Finetun-
ing (PEFT) is the study of adapting LLMs to down-
stream applications by finetuning only a very small
set of parameters. Many PEFT methods have been
proposed, including the popular LoRA (Hu et al.,
2021) and its variants (Zhang et al., 2023c; Edalati
et al., 2022; Hyeon-Woo et al., 2021), prefix and
prompt tuning (Li and Liang, 2021; Lester et al.,
2021), and many other more advanced and com-
plex adaptor methods (He et al., 2021; Zeng et al.,
2023). These PEFT methods are effective in reduc-
ing the number of parameters required to adapt to
downstream tasks, while maintaining performance
close to full finetuning.

Despite the numerous PEFT methods available,
we pose a critical question: can we design even sim-
pler PEFT methods capable of adapting LLMs to
diverse downstream tasks in a more efficient way?
A simpler method could not only enhance compu-
tational and storage efficiency but also offer deeper
insights into why PEFT methods succeed as sim-
pler methods are easier to analyze. We answer this
question by presenting a new method called Ro-
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CoFT, where the LLMs can be efficiently adapted
by updating only a small subset of rows or columns
in the transformer block weight matrices.

We evaluate the effectiveness of our approach
across several benchmarks on different language
models. Our experimental results demonstrate that
RoCoFT outperforms current PEFT techniques in
accuracies, requires fewer trainable parameters,
and has faster training times. We further analyze
our method using Neural Tangent Kernel (NTK)
theory (Jacot et al., 2018; Malladi et al., 2023),
demonstrating that, for a pretrained LLM, the
NTKs derived from a restricted set of rows and
columns closely resemble those computed from the
full parameter set. This substantiates the effective-
ness of our proposed method and further suggests
that most of the critical features for fine-tuning are
already acquired during the pretraining phase.

Our contributions are summarized as follows:
(1) We introduce a new PEFT method called Ro-
CoFT which gives comparable accuracies to state-
of-the-art PEFT methods, while being more ef-
ficient in terms of memory and time complex-
ity.These claims are validated through extensive
experiments on language models of different sizes
and many benchmark datasets. (ii) We analyze our
method with empirical neural tangent kernels and
show that these kernels are close to NTKs defined
on the full parameter set, and they give comparable
accuracies on many tasks when trained with kernel
logistic regression. This explains why our method
has performance close to full finetuning from the
view of kernel methods. (iii) We perform exten-
sive experiments and ablation studies on the design
choices such as which and how many rows and
columns to select to facilitate the implementation
of our method.

2 Related Works

PEFT Methods: Parameter-Efficient Finetun-
ing (PEFT) methods aim to finetune only a small
number of existing or extra parameters of the LLM
to achieve results comparable to finetuning all
the parameters. Recently, numerous PEFT ap-
proaches have been proposed to advance this strat-
egy. LoRA (Hu et al., 2021) and related meth-
ods (Zhang et al., 2023c; Kopiczko et al., 2023;
Dettmers et al., 2024) modify existing weight ma-
trices of the model by introducing trainable low-
rank decomposition matrices, as adapters, into each
layer of the Transformer (Vaswani et al., 2017)

architecture. IA? (Liu et al., 2022) is another
adaptor method that only trains scaling vectors
for the key, value, and feed-forward weight matri-
ces in the attention mechanism for task adaptation.
Prefix-Tuning (Li and Liang, 2021) and Prompt-
Tuning (Lester et al., 2021; Kowsher et al., 2023)
work by adding task-specific continuous vectors as
contexts for inputs and only updates those param-
eters while keeping the original LLM parameters
frozen. MAM adaptors (He et al., 2021) gener-
alize from both LoRA and prefix-tuning under a
unified framework. Our method is closer to LoORA
and IA? in that we modify the weight matrices
in the transformer architecture. However, unlike
these approaches, we introduce no extra parame-
ters and modify the existing parameters in place.
BitFit (Zaken et al., 2021) and LayerNorm Tun-
ing (Zhao et al., 2023) finetune only the bias pa-
rameters and layernorm parameters respectively
and are extremely parameter-efficient. However,
unlike LoRA and our method they cannot increase
the capacity of the finetuning model by increasing
the rank, since the number of bias and layernorm
parameters are fixed in a model.

Apart from low-rank adaptor methods Sparse
Fine-Tuning is another group of PEFT methods
that focuses on directly training only a very small
subset of model parameters during finetuning. Spar-
sity can be achieved in two different ways, either
by pruning after full finetuning or by selecting
a sparse set of masks to train before finetuning.
Diff pruning (Guo et al., 2021) encourages spar-
sity by using /o norm regularization during fine-
tuning, while Ansell et al. (2022) makes use of
the Lottery Ticket Hypothesis (Frankle and Carbin,
2018) to prune the weights after full finetuning. Un-
like our proposed method they both require com-
putational costs close to full finetuning. He et al.
(2024) selects submatrix blocks as masks using
maximal gradient change during warmup as crite-
rion, while Sung et al. (2021) selects masks based
on Fisher information. Both require some precom-
putation before a sparse mask can be selected for
finetuning. Our method can be seen as belonging
to both low-rank adaptor methods and sparse fine-
tuning, as with few rows or columns chosen the
updates are naturally both low-rank and sparse.

Neural Tangent Kernels: Jacot et al. (2018)
and related studies (Lee et al., 2019) show that the
training dynamics of an infinite-width multi-layer
neural network with suitable Gaussian initializa-
tion can be completely described by a fixed kernel
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called the Neural Tangent Kernel (NTK). This re-
sult is further expanded in Yang (2020) to any ar-
chitecture for which forward and backpropagation
can be expressed via nonlinearities and matrix mul-
tiplications. Although these results are asymptotic,
this interesting connection between deep neural net-
works and kernel methods allows many questions
about neural networks to be studied via kernels. For
example, Wei et al. (2022) studied the generaliza-
tion error of representations learned by deep neural
networks through kernel regression with NTKs. Re-
cently Malladi et al. (2023) proposed to study the
effect of finetuning LLMs through their NTKs, and
provided theoretical support to their approach. In
this paper, we continue along this line of work to
use NTKs to analyze PEFT methods.

3 RoCoFT

PEFT is a collection of methods for transferring
pretrained LLMs to downstream tasks by optimiz-
ing only a very small set of (additional) parameters.
Since most modern LL.Ms are based on the trans-
former architecture (Vaswani et al., 2017), there
is a line of work in PEFT focusing on modifying
the transformer block by freezing most of its pa-
rameters and training only a few additional parame-
ters. The method proposed in Houlsby et al. (2019)
adds adaptive layers to the transformer blocks, and
only parameters in those adaptive layers need to be
trained for effective transfer learning. LoRA (Hu
et al., 2021) removes the need for adding adaptive
layers by directly modifying the weight matrices
used in the transformer blocks. There are multiple
linear weight matrices in the transformer block tak-
ing up most of the parameters, including W,, Wy,
W, for the query, key and value matrices in the
attention mechanism, and also the weights W
for the MLP projection layers. LORA makes use of
a low-rank modification of these weight matrices

W = W, + BA, (1)

where Wy, is the pretrained weight matrix, B and
A are low rank matrices of rank r, and W is the
weight matrix after finetuning. In this formulation
only B and A are updated. If W is of dimensions
d x k, B and A will be of dimensions d x r and
r X k respectively. If r < d, k, this can lead to
significant savings in terms of memory and run-
time. IA? in (Liu et al., 2022) also modifies the
weight matrices in the transformer block, but in-
stead of a low-rank modification they rescale the

key and value matrices, and also the MLP layers
using three learned vectors I, 1, and 17 ¢ dedicated
to key, value and feedforward layers.

The success of these PEFT methods leads us to
ask if there are even simpler methods for modifying
the transformer block for effective finetuning. Here,
we propose modifying only a few rows or columns
in the weight matrices of the transformer block, for
query, key, value weight matrices Wy, W, W,
and also the weight matrices in the feedforward
layer W ;. These can be expressed as

W=Wy+R and W =W,+C, (2)
where R and C are restricted weight matrices such
that only at most r of the rows or columns are non-
zero. In practice we don’t need to form these extra
parameters R and C and can directly update the
parameters in place. Our method is the same as
LoRA in its flexibility with increasing the capacity
of the finetuning model by increasing the rank r,
but it is simpler since there is no multiplication of
low-rank matrices and all the parameters can be up-
dated in place. There is also no need to worry about
the initializations of A and B, as studied in (Hayou
et al., 2024). We call our method RoCoFT for Row
and Column-based Fine-Tuning. See Figure 1 for
an illustrative diagram.

4 Experiments

We evaluate the effectiveness of the proposed Ro-
CoFT method across various NLP tasks, including
the General Language Understanding Evaluation
(GLUE) benchmark, question answering, text sum-
marization, common sense reasoning, and math-
ematical reasoning. We select rows or columns
from the beginning of the order. This reduces the
complexity of the selection process, as different se-
lection strategies do not significantly affect perfor-
mance. In other words, any row or column yields
similar results, contributing to robustness. Further
details are provided in Appendix 6.

Baselines: For our baseline comparisons, we
utilize prominent PEFT methods such as Adapter
(Houlsby et al., 2019), Prompt Tuning (Lester et al.,
2021), Prefix-Tuning (Li and Liang, 2021), (IA)?
(Liu et al., 2022), Bitfit (Zaken et al., 2021), LoRA
(Hu et al., 2021), AdaLoRA (Zhang et al., 2023b),
MAM Adapter (He et al., 2021), PROPETL (Zeng
et al., 2023), LoKr (Edalati et al., 2022), (Wu et al.,
2024), SFT (Ansell et al., 2024), Diff Pruning (Guo
et al., 2020), LoORAFA (Zhang et al., 2023a), Vera
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Figure 1: A simplified overview of various PEFT methods and RoCoFT. Snowflake icon indicates frozen parameters

while fire icon indicates trainable parameters.

(Kopiczko et al., 2023), LoRA-XS (Batazy et al.,
2024) and LoHa (Hyeon-Woo et al., 2021). The ex-
perimental setup for the GLUE benchmark follows
Xu et al. (2023), while question answering and text
summarization tasks are conducted according to
Zhang et al. (2023b).

Datasets and Model Selection: For the GLUE
benchmark, we evaluate our RoCoFT method on
a diverse set of tasks, including CoLA, SST-2,
MRPC, STS-B, QQP, MNLI, QNLI, and RTE from
Wang et al. (2018), using both RoBERTa Base and
Large models (Liu et al., 2019). For question an-
swering, we utilize the SQuAD v1.1 (Rajpurkar
et al., 2016) and SQuAD v2.0 (Rajpurkar et al.,
2018) datasets with DeBERTa Base v3 (He et al.,
2020). Text summarization is evaluated using the
XSum (Narayan et al., 2018) and CNN/DailyMail
(Hermann et al., 2015) datasets with the BART
Large model (Lewis et al., 2019).

For LLM performance using RoCoFT, we con-
duct an extensive evaluation across thirteen bench-
mark datasets, covering both common sense rea-
soning and mathematical reasoning tasks, utilizing
four LLMs: Bloom 7B (Le Scao et al., 2023), GPT-
J 6B (Wang, 2021), LLaMa2-7B and LLaMA2-13B
from Touvron et al. (2023). For common sense rea-
soning, we employ a wide range of datasets, includ-
ing BoolQ (Clark et al., 2019), PIQA (Bisk et al.,
2020), SIQA (Sap et al., 2019), HellaSwag (Zellers
et al., 2019), WinoGrande (Sakaguchi et al., 2021),
ARC-easy and ARC-challenge (Clark et al., 2018),
and OBQA (Mihaylov et al., 2018), ensuring com-
prehensive coverage of the model’s ability to han-
dle diverse aspects of common sense reasoning.
For mathematical reasoning, we use several special-
ized datasets, including MultiArith (Roy and Roth,
2016), GSMSK (Cobbe et al., 2021), AddSub (Hos-
seini et al., 2014), SingleEq (Koncel-Kedziorski
et al., 2015), and SVAMP (Patel et al., 2021), to
assess the model’s performance on arithmetic rea-
soning tasks. Detailed hyperparameter settings are

provided in Appendix 10. The implementation,
environment setup, and hardware details of the ex-
periments are given in Appendix F.

Performance Analysis: Table 1 presents the
performance of RoCoFT compared with baselines
on the GLUE benchmark tasks (Wang et al., 2018).
ROCoFT,_Row/Column) finetunes the model accord-
ing to Equation (2), where in R and C the first r
rows(columns) are nonzero, respectively. RoOCoFT
achieves competitive or superior results while up-
dating significantly fewer parameters. For instance,
RoCoFT3.row, With only 0.249 million trainable
parameters on RoBERTa-base (Liu et al., 2019)
outperforms methods like LoRA (Hu et al., 2021)
and MAM Adapter (He et al., 2021), which uti-
lize more parameters. Moreover, RoCoFT variants
consistently rank among the top performers across
multiple tasks such as the MRPC, QNLI, and RTE,
demonstrating robustness and versatility.

Table 2 showcases the performance of our pro-
posed RoCoFT across various LLMs and tasks. No-
tably, these methods consistently achieve superior
or competitive results compared to existing PEFT
techniques. For the BLOOMZ;5 model (Muen-
nighoff et al., 2022), the RoCoFT3 g method at-
tains the highest accuracy on Social IQA (SIQA,
73.56%), Al2 Reasoning Challenge (ARC-C,
57.48%), OpenBookQA (OBQA, 72.92%), Mul-
tiArith (M.Ar., 79.76%), Arithmetic Sequence
(A.S., 70.95%), and Single-Math Problems (S.MP,
54.42%). The RoCoFT3.comn Variant also per-
forms exceptionally well, achieving top scores on
WinoGrande (W.Gra., 72.50%) and Grade School
Math 8K (GSMS8K, 71.05%). Similarly, with
the GPT-Jgg model (Wang, 2021), our methods
maintain strong performance. The RoCoFT3 grow
method achieves the best results on Boolean Ques-
tions (BoolQ, 65.92%), MultiArith (89.45%), and
S.MP (56.79%), while the RoCoFT5.coumn method
excels on SIQA (69.96%) and SingleEq (S.eEq,
82.61%).
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LM | PEFT Method |#TTPs CoLA SST2 MRPC STS-B QQpP MNLI QNLI RTE Avg.
FT 124.6M 59.84 92.89 85.24/88.18 90.48/90.16 90.18/87.02 86.27 91.17 72.43 83.56/88.43
Adapter® 7.41M  61.53 94.11 89.81/90.85 90.25/90.09 89.81/86.90 86.27 92.06 73.56 84.67/90.33
Prompt tuning | 0.61M 49.37 92.09 70.83/81.72 82.44/83.11 82.99/78.35 80.57 80.03 58.12 74.55/81.06
Prefix-tuning 0.96M 59.31 93.81 84.25/85.03 88.48/88.32 87.75/84.09 85.21 90.77 54.51 80.51/85.31
(IA)? 0.66M 58.58 93.92 83.00/85.52 90.30/90.32 87.99/84.10 83.95 90.88 71.12 82.46/86.64
= BitFit 0.083M 61.32 93.12 87.22/88.41 90.34/90.27 88.12/84.11 84.64 91.09 77.98 84.22/87.59
% LoRA 0.8OM 60.09 93.31 86.50/88.68 90.66/90.47 88.83/85.21 86.54 92.02 74.92 84.32/87.28
g. AdaLoRA 1.03M  59.82 93.92 86.49/88.03 90.83/90.73 88.58/84.98 86.26 91.43 70.04 84.06/87.21
g MAM Adapter | 1.78M 58.34 94.24 87.31/88.21 90.74/90.42 88.31/83.20 86.63 90.19 72.62 83.54/87.27
® PROPETL pgapeer | 1.87M  64.24 93.85 87.15/87.82 90.33/90.64 89.22/85.79 86.49 91.56 75.54 84.79/88.08
PROPETL prefix | 10.49M  60.11 93.63 86.73/87.98 90.30/90.19 88.54/85.05 86.22 91.51 63.31 82.54/87.74
PROPETL 1ora | 1.77M  57.94 94.11 87.42/88.87 90.66/90.35 88.90/85.55 86.83 92.04 67.39 83.16/88.25
MoSLoRA 1.67TM  60.57 93.95 86.74/87.98 90.05/89.43 88.76/85.62 87.84 90.60 75.10 84.20/88.70
LoRA-XS 0.26M 58.49 93.19 86.65/87.49 89.60/89.33 87.13/84.31 85.34 90.42 76.24 83.26/ 87.04
VeRA 0.043M  60.35 93.89 86.01/87.88 89.27/89.41 87.88/85.65 85.64 90.22 75.32 83.57/87.65
LoRAFA 0.44M  60.49 93.65 88.18/89.98 90.70/90.66 88.90/85.46 86.11 91.42 76.11 84.45/88.70
SFT 0.90M 64.45 94.28 87.74/88.64 89.37/89.12 87.24/85.11 86.64 92.11 78.42 85.03/87.62
Diff Pruning 1.24M 6245 93.77 88.00/89.21 89.72/90.02 88.62/85.54 85.32 92.14 77.90 84.74/88.26
ROCOFT | Rrow |0.083M 60.18 94.06 87.74/88.48 90.70/90.47 88.49/85.35 85.23 90.70 76.61 84.21/89.97
RoCoFT3Rrow | 0.249M  63.53 94.92 89.71/90.74 90.89/90.49 89.97/86.80 86.73 92.12 78.31 85.65/90.61
RoCoFT | coumn |0.083M 60.32 93.88 88.38/89.78 90.23/90.14 88.46/85.84 85.35 90.58 76.74 84.11/89.96
RoCoFT3.column | 0.249M 6295 94.69 89.18/90.94 90.85/90.45 89.86/86.38 86.76 91.89 79.21 85.55/90.69

Table 1: Performance on GLUE tasks.

Metrics used: MCC for CoLLA, accuracy for SST-2, accuracy/F1 score for

MRPC and QQP, Pearson/Spearman correlations for STS-B, and accuracy for MNLI, QNLI, and RTE. #TTPs

denotes Total Trainable Parameters.

When scaled to larger models like LLaMA27p
and LLaMA23g (Touvron et al., 2023), our meth-
ods continue to demonstrate their effectiveness.
On LLaMA2+g, the RoCoFT3.gow method secures
the highest accuracy on BoolQ (69.36%), SIQA
(78.09%), OBQA (76.96%), M.Ar. (90.55%), and
GSMBS8K (77.37%). The RoCoFT3_coumn Vvariant
achieves top performance on HellaSwag (H.Sw.,
89.46%) and S.eEq (82.48%). For LLaMA2,3g,
both RoCoFT3.gow and RoCoFT3.coumn methods
attain leading results on multiple tasks, with the
RoCoFT3.rew method achieving the highest ac-
curacy on SIQA (79.54%), ARC-Easy (ARCe,
83.65%), A.S. (88.24%), and S.MP (66.60%).

These results highlight RoCoFT’s state-of-the-
art performance and parameter efficiency, making
it ideal for resource-constrained deployment. Ad-
ditional results on question answering (SQuAD
vl.l & 2.0) and text summarization (Xsum &
CNN/DailyMail) are discussed in Appendix A.

Efficiency Comparison: Our proposed method,
RoCoFT, demonstrates significant parameter ef-
ficiency compared to existing PEFT techniques.
Specifically, RoCoFT variants require substantially
fewer trainable parameters while achieving com-
petitive or superior performance.

For instance, as shown in Table 1, RoCoFTRrow
uses only 0.083 million trainable parameters for
rank one and 0.249 million for rank three on the
GLUE benchmark (Wang et al., 2018), outperform-

ing methods like LoRA (Hu et al., 2021) and MAM
Adapter (He et al., 2021), which use 0.89 million
and 1.78 million parameters, respectively. Sim-
ilarly, in question answering and summarization
tasks (Table 7), our Row and Column methods
utilize just 0.161 million trainable parameters, sig-
nificantly less than LoRA and AdaLLoRA (Zhang
et al., 2023c¢), yet achieve higher or comparable
performance. In terms of computational efficiency
(Table 3), our method exhibits lower space and time
complexity. Specifically, RoOCoFT has a time/space
complexity of O(d x r), compared to LoRA’s
O(2d x r) and Prefix-Tuning’s O(L x d x I),
where 7 is the rank, d is the model dimension, L is
the number of layers, and /,, is the length of the pre-
fix. Moreover, our method does not introduce any
additional parameters into the model architecture,
which also reduces the total number of parameters
and requires less GPU memory and training time,
as illustrated in Figure 2 (Left). RoCoFT variants
have lower memory occupancy during training (ap-
proximately 2.85GB) compared to other methods
like LoRA and AdalLoRA, and consistently require
less training time across various datasets, as shown
in Figure 2 (Right).

These results underscore the efficiency of our ap-
proach in terms of both parameter count and com-
putational resources, highlighting its suitability for
deployment in resource-constrained environments.
In Appendix we present ablation studies on (i) the
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LLM Method #TTPs BoolQ PIQA SIQA H.Sw. W.Gra. ARCe ARCc OBQA M.Ar. G8K A.S. S.eEq S.MP
= Prefix 3337M 58.53 62.24 6541 4832 66.63 68.13 49.32 63.51 |78.41 6645 67.52 66.94 49.10
= AdaLoRA  |24.88M 64.94 74.68 7249 55.89 6830 7321 5659 72.85 |79.43 70.25 68.93 70.93 53.89
8 (1A)? 19.34M 63.30 73.33 71.01 5250 71.60 69.45 54.14 68.60 |78.90 71.17 70.33 70.84 53.95
E LoRA 2422M 65.89 73.92 7333 56.65 71.39 7346 57.15 7231 |79.50 70.93 70.90 70.59 53.85
5 ROCOFT3Rew | 13.37TM 66.33 74.53 73.56 56.60 72.14 73.29 57.48 72.92 |79.76 70.94 70.95 70.90 54.42
RoCoFT3.column | 13:37M 66.34  74.64 73.12 5593 72.50 73.11 57.19 72.90 |79.72 71.05 70.88 70.76 54.38
Prefix 27.83M 62.28 65.04 67.72 44.15 63.71 63.59 4647 5831 |83.12 67.44 7525 78.46 49.12

gé AdaLoRA  |20.77M 65.19 67.58 71.22 45.16 66.03 64.10 47.75 63.92 | 88.51 7245 80.21 82.03 56.14
E (IA)? 16.61IM 63.17 68.51 68.97 4579 66.06 6242 4532 6542 |89.51 72.04 80.50 81.50 55.43
& LoRA 20.02M 65.50 67.63 69.46 4560 66.80 63.56 46.81 63.82 | 88.30 72.82 80.60 81.24 56.73
RoCoFT3Row |11.62M 65.92 68.53 69.90 4597 66.87 6491 45.12 65.07 |89.45 72.80 80.45 82.12 56.79
ROCOFT3.column | 11.62M 65.12  68.22 69.96 4598 66.78 64.89 45.70 64.81 | 89.74 72.24 80.23 82.61 56.70

- Prefix 33.53M 67.33 79.46 75.80 76.04 72.11 71.67 57.33 69.98 | 84.18 68.47 81.04 80.00 52.17
n AdaLoRA |2490M 67.03 78.69 76.06 88.85 7647 76.50 60.36 74.22 |89.81 77.07 86.70 83.01 60.25
Z (IA)? 19.42M 65.02 78.10 78.00 87.57 76.78 75.48 60.54 74.02 | 90.20 76.13 86.55 83.70 59.16
> LoRA 2430M 67.09 79.37 76.15 88.86 77.54 76.54 60.55 74.63 |90.13 75.68 84.67 82.14 59.94
g RoCoFT3Row | 13.47M 69.36 80.01 78.09 89.28 76.73 76.46 60.55 76.96 |90.55 77.37 86.12 82.66 60.75
ROCOFT3.column | 13:47M 69.32 80.08 77.99 89.46 7641 7646 60.59 76.90 |90.42 77.35 86.16 82.48 60.35

- Prefix 61.97M 68.38 80.99 77.80 80.00 76.35 77.62 61.32 7294 |87.22 71.09 84.09 81.28 58.25
I AdaLoRA  45.04M 71.71 82.55 78.88 91.60 83.01 83.04 67.33 81.76 | 90.55 80.19 87.00 87.10 66.03
Z (1A)? 36.02M 71.39 83.33 7832 92.40 83.24 8334 6643 80.99 | 91.88 79.24 88.16 87.08 65.63
E LoRA 4494M 71.19 8399 79.15 91.86 83.24 8335 67.05 81.37 |91.27 78.90 86.89 86.07 65.85
% RoCoFT3Row |24.88M 71.46 8332 79.54 91.86 8322 83.65 67.12 81.54 |90.69 79.70 88.24 87.28 66.60
® ROCOFT3.column | 24.88M  71.44 83.52 79.50 91.84 83.20 83.39 67.06 81.73 | 91.46 79.63 88.11 87.58 66.63

Table 2: Accuracy comparison of commonsense and mathematical reasoning performance across different PEFT

methods using LLMs.
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Figure 2: The left figure shows the memory cost, where blue bars represent the original model weights and green
bars represent optimization memory. The right figure shows the training time (in minutes) per epoch for each

method.

robustness of row-column selection (6), (ii) the op-
timal rank r for RoCoFT (B.1), and (iii) RoCoFT
with random weight selection (B.2).

5 Finetuning through the Lens of Neural
Tangent Kernel Regression

In this section, we analyze the effectiveness of the
RoCoFT method from the perspective of kernel
methods. We examine how closely this fine-tuning
approach resembles full fine-tuning by comparing
their respective kernels. Kernel methods are clas-
sic machine learning algorithms that make use of
kernel functions for learning nonlinear mapping
of inputs, with SVMs (Cortes and Vapnik, 1995)
and Gaussian Processes (Williams and Rasmussen,
2006) being the prime examples. A kernel func-

tion K : X x X — R is a similarity function on
the input space X’ that satisfies certain symmetry
and positive semi-definiteness conditions. Kernel
methods differ from deep learning with neural net-
works in that the kernels (and hence the feature
representations) are fixed during learning, while
deep neural networks continuously update their
feature representations during backpropagation. Ja-
cot et al. (2018) made the important discovery that
under certain conditions, in the infinite width limit,
the training of deep neural networks can be de-
scribed by a fixed kernel called the Neural Tan-
gent Kernel (NTK). For a neural network function
fo : X = R parameterized by 6, its NTK is defined
by
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Figure 3: Neural Tangent Kernels for SST-2 on 16-shot training data (plots on more tasks available in Appendix G)

Methods Space Time TTPs  APs Method[SST-2 SST-5 MR CR MPQA  Subj

FT O(d x d) O(d x d) d? 0 k-shot (single) = 16

(1A)? O(lg + 1o +1sy)  Odg +dy+dysp) 3d 3d Full FT [89.0(1.5) 44.6(1.4) 83.2(2.4) 93.3(0.2) 83.3(1.3) 88.5(2.6)
Prompt O(d x 1) O(d x 1) lp-d lp-d Ko 88.3(0.3) 43.6(2.2) 84.7(1.5) 93.2(0.9) 76.4(2.7) 88.6(1.3)
Prefix O(L x dx 1) O(L x d X Ip) Ll,d Lly.d Ko, |88.5(0.4) 42.9(1.9) 83.9(1.2) 93.2(0.5) 77.3(2.1) 85.8(1.2)
LoRA O((d+d)xr)  O((d+d) x r) 2dr 2dr Ko, |88.6(2.4) 42.4(1.9) 84.6(1.0) 93.2(0.5) 77.6(2.0) 85.9(1.2)
LoRA-FA  |\O((d+d) xr)  O((d+d)xr) dr 2dr K. |885(0.7) 42.5(1.6) 84.5(1.4) 93.2(0.5) 78.6(1.4) 87.5(1.6)
AdaLLoRA O((d+d+r)xr) O((d+d+r) xr) 2dr + r2 2dr 412 k-shot (single) = 64

LoHA O@rx(d+d) O@rx(d+d) ddr  ddr Full FT [89.7(0.4) 45.8(2.1) 85.6(1.1) 94.3(0.5) 84.8(0.8) 92.9(0.5)
BitFit 0(d) 0(d) d B Ko 89.2(1.0) 46.0(1.3) 86.4(0.6) 93.7(0.4) 81.2(0.9) 91.4(0.7)
RoCoFTgyy |O(d x7) O(d x) rd 0 Ko, 89.5(0.5) 46.0(1.5) 86.4(0.6) 93.9(0.6) 81.6(0.7) 90.4(0.4)
RoCoFT cotumn|O(d X 1) O(dxr) rd 0

Table 3: Space/Time Complexity; Total Trainable Pa-
rameters (TTPs) and Additional Parameters in the model
(APs) for RoCoFT method and baseline methods for a
single layer W € R?*?. We define Iy, l,,, and [/ ; as the
dimensions of three learned vectors in IA?; and I, as the
length of the prompt added to the input/layers in prompt
tuning and prefix-tuning. For LoRA-type methods, we
use 7 to represent the rank dimension.

/ / Ofe(x) Ofe(x’
Ko(x,x') = (Vfo(x),Vfo(x)) = ezee ];e(i ) faéi ).
where V fg(x) is the Jacobian/gradient, and 6;
are the individual parameters in 6. This asymp-
totic result defines the "lazy’/linear learning regime,
since the features are linear and fixed (defined by
gradients V fg(x)). Although this approximation is
asymptotic, empirically researchers have found that
the results of neural network training and kernel
regression using NTKs can be close for many tasks
in finite-width networks (Wei et al., 2022). Mal-
ladi et al. (2023) extends the NTK theory to model
the finetuning of LLMs. As an alternative to LLM
finetuning by SGD, given training data (x;, y;),
for a classification task, we can instead solve the
following kernel logistic regression problem

n

min

fGHl 1

£(F o), vi) + 2 1B

where H is the Reproducing Kernel Hilbert Space
defined by the NTK Kg, and L(-, -) is the logistic

Ko |89.5(0.6) 45.9(1.5) 86.4(0.4) 93.9(0.6) 81.5(0.5) 90.5(0.6)
SNLI

Method | MNLI QNLI RTE
k-shot (pair) = 16
Full FT |59.2(2.7) 65.7(2.7) 62.1(3.1) 60.0(5.5) 73.9(2.7) 62.1(2.3)
Ky 53.0(3.0) 57.8(2.3) 60.1(3.3) 60.0(4.7) 73.4(5.6) 58.2(0.9)
Ko, 51.1(2.8) 56.0(1.8) 59.6(2.3) 58.6(6.0) 69.3(5.9) 57.1(3.3)
Ko, 51.9(2.7) 56.4(1.8) 59.2(2.6) 58.1(5.6) 69.2(4.7) 58.4(1.7)
52.4(2.4 55.7(2.2) 59.9(3.0) 58.8(4.7) 70.0(4.6) 58.2(2.6)
k-shot (pair) = 64
Full FT |68.7(1.7) 77.3(0.9) 72.8(2.2) 68.9(2.5) 82.8(1.2) 69.2(1.3)
Ky 60.4(1.8) 65.5(1.6) 67.3(1.6) 66.5(2.5) 79.2(2.5) 66.4(1.7)
Koy, 58.0(2.0) 64.7(1.0) 66.2(1.7) 61.1(0.8) 72.2(4.5) 64.2(3.0)
Ko, 58.4(2.5) 64.4(1.4) 66.7(1.8) 62.7(0.9) 73.5(4.6) 64.6(2.4)

MRPC QQP

Table 4: Single-sentence and sentence-pair tasks com-
paring kernels for RoCoFT (1 row and 1 column), ker-
nels for all parameters, and full finetuning.

loss. For a two-class problem with y; € {0, 1},
this is equivalent to

] A n n
min Z a0 Ko (x;,%5) — Z yia; Ko(xi,x))
ij=1 ij=1

+ log(1 +exp(d_ a;Ko(xix;))).
i=1 j=1

This problem is convex in « and therefore has no
local minima. It is also clear that the solution is
completely determined by the value of the NTK
Ky between all training samples x;. Notice that
0 is fixed here (usually set to pretrained model
weights), so the kernel Ky is also fixed.

Below we want to compare the NTKs defined by
the full parameter set 8 and the NTKs defined by
some much smaller set of parameters 6g (can be
subset of @ or new adaptor variables) and show that
they are close. If kernel regression using the full
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16-shot (single) | SST-2 SST-5 MR CR MPQA Subj TREC
Ko, p=1 0.093(0.008) 0.083(0.005) 0.064(0.006) 0.087(0.007) 0.123(0.012) 0.061(0.005) 0.181(0.007)
Ko, p=2 0.130(0.014) 0.113(0.012) 0.092(0.011) 0.126(0.021) 0.182(0.017) 0.073(0.008) 0.197(0.008)
Ko, p=1 0.091(0.008) 0.077(0.004) 0.061(0.006) 0.084(0.006) 0.123(0.014) 0.055(0.005) 0.166(0.007)
Koo, p=2 0.127(0.016) 0.108(0.012) 0.089(0.011) 0.122(0.018) 0.184(0.018) 0.069(0.009) 0.185(0.008)
Kiora,p=1 | 0.090(0.022) 0.092(0.019) 0.086(0.021) 0.108(0.024) 0.081(0.030) 0.069(0.023) 0.140(0.071)
Kiora, p=2 | 0.107(0.028) 0.110(0.024) 0.102(0.027) 0.132(0.036) 0.098(0.034) 0.087(0.028) 0.151(0.078)
16-shot (pair) | MNLI SNLI QNLI RTE MRPC QQP

Koy, p—1 0.177(0.011) 0.198(0.039) 0.076(0.028) 0.140(0.019) 0.073(0.009) 0.046(0.008)

Ko, p=2 0.260(0.043) 0.255(0.069) 0.149(0.071) 0.203(0.039) 0.096(0.016) 0.063(0.013)

Ko, p=1 0.176(0.013) 0.194(0.040) 0.073(0.028) 0.142(0.023) 0.073(0.010) 0.044(0.006)

Koo, p=2 0.262(0.050) 0.253(0.072) 0.146(0.071) 0.212(0.047) 0.096(0.016) 0.061(0.011)

Kiora,p=1 | 0.139(0.031) 0.120(0.032) 0.077(0.018) 0.119(0.027) 0.155(0.060) 0.084(0.021

Kiora, p=2 | 0.163(0.038) 0.137(0.044) 0.103(0.025) 0.150(0.039) 0.213(0.115) 0.106(0.027)

Table 5: Relative difference in kernels (compared to full parameter Ky) on single-sentence and sentence-pair tasks.

NTK Ky is close to the performance of full fine-
tuning (i.e., the linear/lazy approximation is good,
Condition 1), and if the NTK of a PEFT method us-
ing a smaller set of variables O is close to the full
parameter NTK Ky (Condition 2), then directly
finetuning on those variables O is highly likely to
achieve performance close to full finetuning. In the
following we want to show Condition 1 is true for
many (but not all) finetuning tasks, while Condition
2 is true for almost all the tasks we tested. Condi-
tion 1 also implies that good features sufficient for
the downstream task are already contained in the
pretrained model 6.

We compare the kernels of the 1-row and 1-
column version of our RoCoFT method, and
we denote the associated trainable parameters as
0,,0, C 0. The corresponding kernels are de-
fined as

/ a 8 :
Ko, (x,x) :ZQZ'EGR ]:ge(;()jgéz()

dfe(x) 0fe(x’
Ko (x,x') :Zeieoc J;QQ(,») folx)

00;

Notice a priori there is no reason why these ker-
nels might be close to the full parameter kernel
in Equation 5, since the gradient sums are over
a much smaller non-random subset 8z, 8- C 6.
We first compare few-shot learning performance
of these kernels using kernel logistic regression
with prompt-based finetuning, as done in Malladi
et al. (2023). The kernels are computed with the
pretrained RoBERTa-base model. From Table 4 we
can see the performance of kernel logistic regres-
sion using Ky, and Ky, are surprisingly close to
using the kernel for full parameters Kg, usually
within the standard error of 5 runs using different
random seeds. The performance of kernel logistic

regression using Ky is in turn close to full finetun-
ing except for a few tasks including MNLI, SNLI,
QNLI and MPQA, which are related to the prompt
templates used (Gao et al., 2020). We also include
the 16-shot NTK results for LoRA for comparison.
Next we directly compare the kernel matrices Kg,
Ky, and Ky, for these few-shot learning prob-
lems directly. Figure 3 shows the empirical Neu-
ral Tangent Kernel values for the the task SST-2.
More figures for the other tasks are available in
Appendix G. As observed in Figure 3, the NTK for
LoRA is not as close to full parameter kernel as
the row and column parameter kernels. The SST-2
task is a two-class problem and hence their ker-
nel matrices have 2x2 block structure. We can see
that except for the magnitude of the entries in the
kernel matrices, the patterns in the kernel matri-
ces for the full parameter set Kg, 1-row set Ky,
and 1-column set Kg,, are extremely similar. More
quantitatively, Table 5 shows the relative difference
between the 1-row kernel Kg,, and 1-column ker-
nel Kg,. with the full parameter kernel Ky after
normalization in ¢; and {5 norms by flattening the
kernel matrices. For example, the relative differ-
ence for Ky, is computed as

1(Kor /[ Kepllp) — Ko/l Kell)llp,

We can see that except for few tasks like MNLI,
SNLI and TREC, the relative differences between
kernels are between 5 to 15%, which are fairly
small. These results across many tasks from NTK
provide strong support for our proposal that fine-
tuning only a few rows or columns can give perfor-
mance comparable to full finetuning.

p=1,2.

6 Ablation Study

Robustness of Row-Column Selection In this
study, we demonstrate the robustness of our row
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Figure 4: Accuracy comparison of Max, Min, Mixed, and random row and column selection methods across
different datasets. The results show that the proposed selection techniques are robust across various tasks.

and column selection method through a detailed
comparison of four selection strategies: Max, Min,
Mixed, and random. These strategies are applied
to both rows and columns of the weight matrices.
For the Min, Max, and Mixed selection strategies,
we employ a scoring criterion used in the Wanda
method (Sun et al., 2023), a simple yet effective
pruning technique that requires only the forward
pass. Pruning a neural network involves scoring
the weights by importance (e.g., by the absolute
values of weights), and then remove the least im-
portant ones. We can adopt these strategies to rank
rows and columns by importance and evaluate the
effect of finetuning on them. Given a weight ma-
trix W € RdeutXdin and input feature activations
X € R$*%in from a length s sequence, Wanda cal-
culates the importance score S;; of the weight W;;
as

Sij = [Wij| - [1X.j]l2, 3)
where [|X.;||2 is the 2-norm across the jth fea-
ture aggregated across all examples in batch. To
determine the most important rows, we sum S;;
across the columns, yielding a row score vector
Siow € R%n. The rows are then sorted by this
score, and we select the top r rows according to
either the Max or Min scores. The same procedure
is applied to columns by summing across the rows,
producing a column score Scoumn € Rdout | The
Mixed strategy takes half of the rows/columns from
Min and half from Max, while the random strategy
selects rows and columns uniformly at random.
Figure 4 presents the comparative results of these
four strategies on the SST-2, RTE, QNLI, CoLA,
and MNLI datasets for rank r = 4. Across all
datasets, the results show consistent robustness,
indicating that our method performs well regard-
less of the selection criteria—whether based on
Max, Min, MinMax, or random selection of rows

or columns.

7 Conclusions

We present a novel PEFT method, termed Ro-
CoFT, which finetunes selected rows and columns
of model weights. Through an extensive series
of experiments, we demonstrate that our method
achieves competitive performance relative to other
PEFT techniques, while significantly improving
both memory efficiency and training time. Fur-
thermore, by employing kernel methods, we show
that the restricted kernels generated by our ap-
proach achieve comparable accuracy to full fine-
tuning kernels in kernel logistic regression tasks.
This indicates that ROCoFT effectively captures
the most salient features from the full parameter
kernel space. Future works include combining our
RoCoFT method with quantization to achieve more
compressed models during finetuning. We would
also like to extend the kernel approach to the study
and comparison of more PEFT methods.

8 Limitations

While RoCoFT achieves strong empirical perfor-
mance and computational efficiency, it has several
limitations that we acknowledge.

Scope of NTK Analysis. Our theoretical insights
rely on the NTK framework under the lazy training
regime, which assumes minimal parameter updates
during fine-tuning. While this helps explain Ro-
CoFT’s learning behavior, NTK regression does not
fully capture all training scenarios. For instance,
on tasks such as QNLI, MNLI, and QQP (Tables 1
and 4), the NTK approximation diverges signifi-
cantly from actual fine-tuning accuracy, suggesting
that the fixed kernel representation struggles with
task-specific adaptations. In contrast, tasks like
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SST-2, MRPC, and RTE exhibit a stronger align-
ment between NTK predictions and empirical fine-
tuning results, indicating that the effectiveness of
the approximating fine-tuning with NTK regression
depends on the dataset’s complexity and distribu-
tional properties.

Static Row-Column Selection. RoCoFT selects
random rows and columns statically. While this
reduces computational overhead, it lacks adaptabil-
ity to evolving training dynamics, where parame-
ter importance may shift over time. For instance,
early-selected rows or columns may become less
relevant as training progresses, potentially slowing
convergence on tasks that require iterative feature
refinement. A dynamic selection strategy could im-
prove adaptability but would introduce additional
computational costs.

Selective Parameter Coverage. Unlike LoRA-
type methods that adjust all columns via low-rank
updates, RoCoFT modifies only a sparse subset of
rows and columns. While this improves efficiency,
it may lead to under-adaptation in tasks where criti-
cal features are spread across non-selected parame-
ters (e.g., highly compositional tasks like textual en-
tailment). Expanding RoCoFT’s coverage through
hybrid row-column-rank updates could address this
limitation, though at the expense of increased pa-
rameter count.

Memory and Runtime Trade-offs. Although
RoCoFT updates only half as many parameters as
LoRA, the actual savings in runtime and memory
usage are lower than 50%. This is due to the over-
head from word embeddings and state parameters
maintained by the optimizer. Future work could ex-
plore optimization strategies to further reduce com-
putational overhead while preserving efficiency.
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A Additional Experiments

The results in Table 6 demonstrate that Ro-
CoFT achieves state-of-the-art performance while
maintaining parameter -efficiency. Notably,
RoCoFTs.Rrew attains the highest accuracy on
SST-2 (96.69%), MRPC (91.05/92.19), and
RTE (87.83%), while RoCoFT5.column leads in
STS-B (92.52/92.31) and QQP (91.38/87.12).
Despite using significantly fewer parameters
(0.222M-0.666M), RoCoFT consistently outper-
forms or matches larger PEFT methods such as
LoRA, PROPETL, and MoSLoRA. Compared to
MAM Adapter, which excels in CoLA (67.39
MCC), RoCoFTj3.rew achieves equivalent perfor-
mance while surpassing it in other tasks. More-
over, ROCoFT | row and RoCoFT . coumn provide
an optimal balance between efficiency and effec-
tiveness, significantly outperforming BitFit with a
similar parameter budget. These results highlight
RoCoFT’s effectiveness in enhancing performance
across diverse GLUE tasks while maintaining min-
imal computational overhead.

As shown in Table 7, our proposed methods
demonstrate superior performance on both question
answering and summarization tasks while utilizing
significantly fewer trainable parameters. Specifi-
cally, on the SQuAD v1.1 dataset (Rajpurkar et al.,
2016), the RoCoFT3_rew method achieves the high-
est Exact Match (EM)/F1 scores of 81.70/88.15,
outperforming other PEFT methods such as LoRA
and AdaLoRA (Zhang et al., 2023c), which require
more parameters. Similarly, on SQuAD v2.0 (Ra-
jpurkar et al., 2018), the RoOCoFT3.coumn attains
the top ROUGE-2 score of 18.54 on XSum, show-
casing its effectiveness in handling text summariza-
tion.

B More Ablation Study
B.1 Optimal Rank r for RoOCoFT

We investigate the impact of varying the rank r
on the performance of ROCoFT (Row and Column
Fine-Tuning) and compare it with the widely used
LoRA method within the RoBERTa-base attention
block. We assess key metrics such as training time,
accuracy, number of parameters, and memory con-
sumption for each rank r € {1,2,4,8,64} using
the SST2 dataset. The results are summarized in
Table 8.

From the table, we observe that as the rank r in-
creases, both ROCoFT and LoRA exhibit improved
accuracy. For lower ranks, suchasr = landr = 2,

RoCoFT,ew and RoCoFT oumn consistently outper-
form LoRA in terms of both training time and pa-
rameter efficiency, while maintaining competitive
accuracy. Specifically, for rank » = 1, RoCoFT;oy
achieves an accuracy of 0.913 while using only
0.022 million parameters, which is significantly
fewer than LoRA’s 0.055 million parameters for
the same rank, with a slight increase in accuracy.
This demonstrates the parameter efficiency of Ro-
CoFT at lower ranks.

As the rank increases to » = 8, both RoCoFT
variants continue to show slight improvements in
accuracy while maintaining a faster training time
compared to LoRA. Notably, at higher ranks like
r = 64, RoCoFT,.y achieves the highest accuracy
of 0.934 with a significantly lower memory foot-
print compared to LoRA (2.656 GB vs. 2.993 GB).

B.2 RoCoFT with random weight selection

To test our hypothesis that finetuning LLMs can
work as long as there are sufficient number of free
parameters spread throughout the LLLM model for
training, we implement a version RoCoFT where
instead of rows and columns, we uniformly sam-
ple entries with probability p from the weight ma-
trices for updates and freeze the rest. Note that
this method is not computationally efficient com-
pared to updating only rows and columns and is
only meant for ablation studies. From Tables 11
and 12 we can see that updating random entries
in the weight matrix is competitive with all other
PEFT methods (we use p = 0.1 and p = 0.01 in
these experiments). This gives further evidence
that most good features are already acquired during
pretraining and little learning is required during the
finetuning stage.

C Implementation

In Algorithm 1, we present a simplified PyTorch im-
plementation of RoOCoFT (row version). The main
idea is to replace the linear layers in transformer
model with the shown module, where r rows are
selected to be trainable weights and the remaining
ones are frozen and converted to buffers (so that
their gradients are not computed during backward
pass). The forward function is simply the same as
the original linear layer with the weights a concate-
nation of trainable and frozen weights. The version
for columns are implemented similarly.
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LM | PEFT Method | #TTPs CoLA SST2 MRPC STS-B QQP MNLI QNLI RTE
FT 3553M 65.78 95.50 92.22/94.28 91.74/91.96 90.83/88.68 89.21 93.19 81.40

Adapter’ 19.77M 6533 96.37 89.88/90.23 92.58/92.42 91.19/87.11 91.00 94.31 85.25
Prompt-tuning | 1.07M 61.13 94.61 73.04/76.29 78.51/78.99 80.74/75.16 68.15 89.13 60.29
Prefix-tuning 2.03M  59.01 95.76 88.24/89.37 90.92/91.07 88.88/85.45 89.30 93.32 74.01

(1A)? 1.22M  61.15 94.61 86.45/87.53 92.22/86.25 89.45/86.25 88.63 94.25 81.23

? Bitfit 0.222M  67.01 96.10 90.93/92.13 91.93/93.38 89.48/86.43 89.98 94.47 87.73
3 LoRA 1.84M 6447 96.67 87.50/88.19 91.66/91.44 90.15/86.91 90.76 95.00 79.78
g» AdaLoRA 223M  65.85 94.95 89.46/90.34 92.05/91.80 89.60/86.30 90.36 94.62 77.98
b MAM Adapter | 420M  67.39 95.81 90.12/92.07 92.44/92.18 90.87/86.65 90.62 94.31 86.62
® PROPETL Agapter | 5:40M  65.55 96.27 89.71/91.15 91.92/91.67 90.67/87.74 91.37 94.80 87.69
PROPETL prefix | 26.85M  62.24 96.17 90.04/91.92 90.70/90.49 89.30/86.30 90.33 94.73 179.71
PROPETL 14ra | 4.19M 6190 95.93 87.31/89.87 91.66/91.38 90.93/88.05 90.53 94.93 83.57
MoSLoRA 323M  67.27 96.17 89.96/92.67 90.97/91.72 90.12/87.68 90.29 94.73 82.41
ROCOFT | Row | 0.222M  65.70 96.63 89.97/90.79 91.81/92.07 90.17/86.15 90.73 94.20 85.31
ROCOFT3.Row | 0.666M 67.39 96.69 91.05/92.19 92.10/92.10 90.82/86.11 90.98 94.85 87.83
RoCoFT .column | 0.222M  64.89 96.60 89.12/90.24 91.96/92.10 90.17/85.83 90.81 94.17 85.71
RoCoFT3.column | 0.666M  67.18 96.67 89.88/91.47 92.52/92.31 91.38/87.12 91.13 94.85 87.82

Table 6: RoBERTa-large models performance on GLUE tasks: Metrics used are MCC for CoL A, accuracy for
SST-2, accuracy/F1 score for MRPC and QQP, Pearson/Spearman correlations for STS-B, and accuracy for MNLI,

QNLL and RTE.

DeBERTaV3-base BART-large
PEFT Method -y SQUADVI.I  SQUADvZ.0 | #TTPs XSum CNN/DailyMail
FT 184M  82.83/88.14 82.92/83.75 | 460M 40.73/16.19/30.13 39.16/18.92/37.04
Prompt tuning | 0.650M 7452/ 7842 73.59/76.72 | 0.755M 38.24/ 14.46/27.89 37.42/ 17.43134.92
Prefix-tuning | 1.733M  78.38/82.94 74.94/79.04 | 2.983M 38.24/15.16/28.84 38.32/17.72/35.76
LoKr 0.815M  80.64/86.45 80.14/81.96 | 1.089M 39.03/16.14/30.42 40.83/19.10/38.75
Bitfit 0.172M  80.53/86.25 79.06/83.75 | 0.672M  39.10/16.87/30.43 39.93/18.12/38.85
LoHa 0.765M  81.43/88.02 81.67/85.01 | 1.285M 40.12/18.08/32.39 39.98 / 18.84/38.01
LoRA 0.740M 81.64/87.16 82.56/85.75 | 1.242M 40.63/18.44/32.15 40.74/19.10/39.24
AdaLoRA 0.810M 81.16/87.75 82.63/85.82 | 1.663M 40.95/18.28/31.84 40.53/18.24/39.63
RoCoFTrow | 0.16IM 81.70/88.15 82.76/85.14 | 0.597M 40.12/18.48/31.93 40.83/19.12/39.55
ROCOFTcowmn | 0.161IM  81.63/88.11 82.60/85.05 | 0.597M  40.62/18.54/32.17 40.18/19.10/39.21

Table 7: Results of DeBERTaV3-base on SQUAD vl.1, v2.0 benchmarks, reported using EM/F1 scores and BART-
large on XSum and CNN/Daily Mail, reported using ROUGE metrics as ROUGE-1/ROUGE-2/ROUGE-L.

Rank| Algorithm |Time Accuracy Parameters Memory
LoRA 3:12 0910 0.055 2762
1 RoCoFTyoy |3:00 0913 0.022 2372
ROCOFTcolymn | 2:59 0912 0.022 2373
LoRA 3:25  0.922 0.110 2768
2 | RoCoFT,, |3:00 0.920 0.055 2410
ROCOFTopymn | 3:00  0.922 0.055 2414
LoRA 3:27  0.925 0.221 2771
4 | RoCoFTry |3:01  0.923 0.110 2450
RoCOoFTcoiymn | 3:01  0.922 0.110 2451
LoRA 3:29 0929 0.442 2783
8 RoCoFTyoy |3:03  0.930 0.221 2336
ROCOFTcolymn | 3:02  0.928 0.221 2335
LoRA 3:33 0.928 3.538 2993
64 | RoCoFTy,y, |3:06 0.934 1.769 2656
ROCOFTcolymn | 3:05  0.933 1.769 2653

Table 8: Comparison with LoRA in terms of rank, train-
ing time (minutes), accuracy, number of parameters, and
memory usage (MB).

D AW Representation

A comparison of the AW representations across
different PEFT methods is provided in Table 9.

E Hyper-parameters for RoOCoFT

The hyperparameters used in RoOCoFT are provided
in Table 10.

F Environmental Setup and
Implementation Details

In order to implement RoCoFT, we have set up a
comprehensive environment using key frameworks
and tools to ensure efficient training and evalua-
tion. We utilized PyTorch 2.4.1 as our primary
deep learning framework, along with Hugging-
face’s Transformers library version 4.44.1, which
provides a wide array of pre-trained models and
tokenizers, ensuring seamless integration with the
RoCoFT method. To optimize the training process,
we leveraged Accelerate 0.34.2, which is particu-
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class RoCoFTRow(nn.Module):

# inputs: F is the Linear Layer to be converted

# r is the rank (number of rows/columns to be selected)
# use_bias decides whether to train bias term

def __init__(self, F, r, use_bias):

# Set rows 1 to rank r as trainable weights
self.trainable_W = nn.Parameter(F.weight[:r, :].clone())

# Set rows r and above as non-trainable and move to buffer
self.register_buffer('non_trainable_W', F.weight[r:, :].clone().detach())

# Handle bias
if F.bias is not None:

self.bias = nn.Parameter(F.bias.clone().detach(), requires_grad=use_bias)
else:

self.bias = None

def forward(self, x):
full_weight = torch.cat([self.trainable_W, self.non_trainable_W], dim=1)
out = torch.nn.functional.linear(x, full_weight, self.bias)
return out

Algorithm 1: PyTorch pseudocode for replacing a linear layer in transformer model (row version)

Method AW Reparameterization Notes

Intrinsic SAID | AW = F(WT) F:R" — RY W’ ¢ R are parameters to be optimized, and
r<d.

LoRA AW = Wioun Wy Waown € RT¥T Wy € R4 and r < {k,d}.

KronA AW = Wyown ® Wy, rank(W gown ® Wp) = rank(Wgown) X rank(Wyp).

DyLORA AW = Wdownibwupib Wdownib = Wdown[37 b, :]7 Wup,Lb = Wup[37 5 b]7 b €
{7'min7 ) 7"max}~

AdaLoRA AW =PAQ PPT=P P#1I=QQ" =Q'Q, A = diag(c1,02,...,0,).

IncreLoRA AW = Woun AWy A =[A1,Ag, ..., \] with \; being an arbitrary constant.

DeltaLoRA | AW = WounWop WD« WO (WEEIWET - wi wi)).

LoRAPrune | AW = Wyoun Wy © M 6 = (W+WiomWy) © M, M €
{0,1}™¢ @G is group number

QLoRA AW = ngwlgwf§1° YBFI6  — XBFI6{oubleDequant(cl 32, 5P WNFL) 1
XPPOW LWL,

QA-LoRA AW = Wiown Wyp Wown € RTXT, W, € R" XL T, is the quantization group num-
ber of W.

LoFTQ AW = SVD(W — Q) , Q: =gy (W — Wg;\}mWf,;l) ,  Qy is N-bit quantization function

0
Kernel-mix AW" = [B! ., B" Alora Biora is shared across all heads, B:! provides rank r update in
LoRA Ah' h

each head.

LoRA-FA AW = Wyoun Wy = QRWy, | Wown is frozen, and only Wy, is updated.

RoCoFT W=Wo+R R and C are restricted weight matrices such that only at most r of

W=W;,+C

the rows or columns are non-zero.

Table 9: Comparison of reparameterization of various PEFT methods.
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Dataset | Learning Epochs Batch DropoutWeight Warmup Learning Bias Pruning Layer Rank Gradient

Rate size Decay Steps Scheduler Norm Accumul.
CoLA 2e-4 20 32 0.10 0.10 100 cosine  True min le-05 3 0
SST2 2e-4 3 32 0.10 0.00 100 cosine False max le-05 3 0
MRPC 2e-3 10 32 0.10 0.00 100 cosine  False random le-05 3 0
STS-B le-3 10 32 0.10 0.00 100 cosine  False random le-05 3 0
QQP le-4 2 32 0.01 0.00 100 cosine  False random le-05 3 0
MNLI le-3 2 16 0.10 0.001 100 cosine  False random le-05 3 0
QNLI le-3 2 16 0.10 0.00 100 cosine  False random le-05 3 0
RTE 2e-3 30 32 0.10 0.00 100 cosine  True random le-05 3 0
SQuADvl1.] le-4 4 16 0.10 0.00 100 cosine  True random le-05 3 0
SQuADvV2.0 le-4 4 16 0.10 0.00 100 cosine  True random 1le-05 3 0
XSum le-4 4 16 0.10 0.01 100 cosine  True random le-05 3 0
DailyMail le-4 4 16 0.10 0.01 100 cosine  True random le-05 3 0
BoolQ 2e-3 2 3 0.10 0.00 100 cosine  True random le-05 3 3
PIQA 2e-3 2 3 0.10 0.00 100 cosine  True random le-05 3 3
SIQA 2e-3 2 3 0.10 0.00 100 cosine  True random le-05 3 3
Hellaswag | 2e-3 2 3 0.10 0.00 100 cosine  True random le-05 3 3
W.Gra. 2e-3 2 3 0.10 0.00 100 cosine  True random le-05 3 3
ARCe 2e-3 2 3 0.10 0.00 100 cosine  True random le-05 3 3
ARCc 2e-3 4 3 0.10 0.00 100 cosine  True random le-05 3 3
OBQA 2e-3 1 3 0.10 0.00 100 cosine  True random le-05 3 3
MultiArith le-3 2 8 0.10 0.00 500 cosine  True random le-05 3 2
Gsm8k le-3 2 8 0.10 0.00 500 cosine  True random le-05 3 2
AddSub le-3 2 8 0.10 0.00 500 cosine  True random le-05 3 2
SingleEq le-3 2 8 0.10 0.00 500 cosine  True random le-05 3 2
SVAMP le-3 2 8 0.10 0.00 500 cosine  True random le-05 3 2

Table 10: Hyperparameters for RoCoFT (row and column)

larly helpful for distributed training across multiple
GPUs and scaling large model deployments. This
tool enabled us to efficiently manage computational
resources and fine-tune the performance of large
language models.

For our hardware setup, we utilized two distinct
types of GPUs to optimize training based on the
task requirements. For tasks like GLUE, question
answering, and text summarization, we deployed
NVIDIA A100 GPUs. These tasks, which are less
computationally intensive compared to full LLM
training, were efficiently handled by the A100s.
For larger and more demanding tasks such as evalu-
ating the performance of LLMs, we used NVIDIA
H100 GPUs with 80 GB of VRAM. The H100
provided the necessary memory and computational
power to handle the fine-tuning of LLMs, espe-
cially given the large model sizes and extensive
data required for these tasks. This configuration
allowed us to achieve significant speedups during
both training and inference, while also managing
memory-intensive processes with ease.

In addition to the hardware and software setup,
special attention was given to the data pipeline
to ensure smooth loading and processing of large
datasets required for RoCoFT. Data preprocessing
steps, such as tokenization and sequence padding,
were handled by the Huggingface library, stream-
lining the preparation of input for the models. The
combination of these tools and hardware resources
ensured that we could efficiently implement Ro-
CoFT across a variety of tasks while maintaining

high performance and scalability.

G Additional Neural Tangent Kernel
Results

Here we include additional results on our Neural
Tangent Kernel experiments. Figure 5 shows the
eigenvalue distribution of the full kernel Kg, 1-row
kernel Kg,, and 1-column kernel Kg, on different
datasets. The eigenvalues are rescaled per dataset
and we can see the eigenvalue distributions are
very similar for the three NTK kernels. Table 13
shows the /1 and ¢ norm difference between the
kernel matrices of the 64-shot tasks, and the results
are largely similar to the 16-shot results. The dif-
ference is mostly within 5-15%, but with smaller
standard deviation than the 16-shot results over 5
random seeds. In Figure 6, we include a few more
visualizations of the kernel matrices for the 16-shot
tasks. We can see the three type of NTK matrices
show very similar patterns across all tasks.

H Dataset Description

The datasets used in this study are listed in Table 14
and Table 15.

I Evaluation Metrics

We employ specific evaluation metrics tailored to
each task within the GLUE benchmark suite (Wang
et al., 2018) to assess the performance of our mod-
els comprehensively.

For the Corpus of Linguistic Acceptability
(CoLLA) task, we use the Matthews Correlation
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LM #TTPs | COLA SST2

MRPC

STS-B

QQP MNLI QNLI RTE

Robertag,,. | 12.4M
Robertagarge | 35.5M

63.15 94.96 88.03/89.18 90.57/90.07 89.29/86.94 87.22 92.60 80.01
65.32 96.59 90.93/92.03 92.10/92.05 90.97/86.78 90.89 95.06 87.91

Table 11: RoBERTa models performance on GLUE tasks using 10% random sampling of trainable parameters from

each weight matrix (p = 0.1).

LLM

#TTPs | BoolQ PIQA SIQA H.Sw. W.Gra.

ARCe ARCc OBQA MAr. G.8K A.S. S.eEq S.MP

BLOOMz;p | 70.4M | 65.76 74.62 73.50 56.39
GPT-Jsp 60.3M | 65.75 68.63 69.12 45.50
LLaMA2;p | 71.2M | 69.30 80.12 77.95 89.40

LLaMA235 | 129.8M | 71.44 83.37 79.32 91.95

72.11
66.47
76.52
83.32

72.89 56.88 7243 |79.78 71.11 70.76 7091 54.37
64.99 4691 65.37 | 89.34 72.62 80.64 82.14 55.90
76.57 60.62 76.92 |90.46 77.32 86.13 82.49 60.72
83.99 66.92 81.32 |91.49 80.04 87.71 87.64 66.83

Table 12: Accuracy comparison of commonsense and mathematical reasoning performance across different datasets
using LLMs, using 1% random sampling of total trainable model parameters from each weight matrix (p = 0.01).
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-4 Full FT ® ONLI
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Index

Figure 5: Eigenvalue spectrum of K, K¢, and K"c .
The eigenvalues with respect to each task are scaled
with 8,  for better representation.

task

Coefficient (MCC) as the evaluation metric. MCC
is suitable for binary classification tasks, especially
with imbalanced datasets, as it takes into account
true positives (TP), true negatives (TN), false posi-
tives (FP), and false negatives (FN):

MCC = (4)
TP x TN — FP x EN
/(TP 4 FP)(TP + FN)(TN + FP)(TN + FN)
&)

For the Microsoft Research Paraphrase Cor-
pus (MRPC) and Quora Question Pairs (QQP)
tasks, which evaluate the model’s ability to de-
termine semantic equivalence between sentence
pairs, we use both Accuracy and F1 Score as evalu-
ation metrics. Accuracy measures the proportion
of correctly identified paraphrase pairs, while the
F1 score balances precision and recall:

TP + TN
TP + TN + FP 4+ FN’

Accuracy =

(6)

Fl — 9 x Prec%s%on X Recalla 7
Precision + Recall

where precision and recall are defined as:

TP TP

Precision = ————, Recall = ———.
recision TP - EP’ eca TP—l—FN(S)

For the Multi-Genre Natural Language In-
ference (MNLI) task, which involves classifying
sentence pairs into entailment, contradiction, or
neutral, we report the Average Matched Accuracy.
This metric measures the model’s accuracy on the
matched validation set (in-domain data), reflecting

its ability to generalize across different genres.

For the Semantic Textual Similarity Bench-
mark (STS-B) task, which requires predicting the
degree of semantic similarity between sentence
pairs, we use both the Pearson and Spearman cor-
relation coefficients. These metrics evaluate the
linear and rank-order relationships between the pre-
dicted scores (z;) and the ground-truth scores (y;),
respectively:

>y (@i —2)(yi — )

Pearson’s r = ©
earson’s Vi (@i = 2)2/ 300 (yi — 9)?
, 630, d;
Spearman’s p =1 — —=3=—, 19
n(n? —1)

where Z and ¢ are the means of the predicted and
ground-truth scores, d; is the difference between
the ranks of x; and y;, and n is the number of data
points.

These evaluation metrics provide a comprehen-
sive assessment of our models across diverse lin-
guistic tasks, enabling us to measure both classifi-
cation accuracy and the ability to capture semantic
nuances.
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64-shot (single) | SST-2 SST-5 MR CR MPQA Subj TREC
Ko, p=1 0.091(0.007) 0.084(0.002) 0.067(0.005) 0.084(0.005) 0.126(0.014) 0.061(0.002) 0.184(0.003)
Ko, p=2 0.126(0.012) 0.113(0.002) 0.100(0.015) 0.115(0.013) 0.176(0.025) 0.076(0.008) 0.202(0.004)
Ko, p=1 0.088(0.007) 0.079(0.002) 0.064(0.005) 0.080(0.005) 0.125(0.015) 0.055(0.002) 0.169(0.003)
Ko, p=2 0.124(0.012)  0.108(0.003) 0.098(0.014) 0.110(0.011) 0.178(0.026) 0.071(0.004) 0.191(0.004)
64-shot (pair) | MNLI SNLI QNLI RTE MRPC QQr

Ko p=1 0.181(0.012) 0.205(0.013) 0.074(0.013) 0.128(0.004) 0.073(0.009) 0.049(0.007)

Ky, p=2 0.251(0.037) 0.259(0.033) 0.179(0.069) 0.180(0.011) 0.093(0.004) 0.099(0.065)

Koo, p=1 0.179(0.013)  0.200(0.014) 0.071(0.013) 0.125(0.005) 0.073(0.003) 0.048(0.007)

Ko, p=2 0.254(0.040) 0.257(0.034) 0.172(0.065) 0.186(0.013) 0.093(0.004) 0.099(0.067)

Table 13: Relative difference in kernels (compared to full parameter Ky) on single-sentence and sentence-pair tasks
for 64-shot tasks
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Dataset Domain Train Test
MultiArith Math - 600
AddSub Math - 395
GSM8K Math 8.8K 1,319
AQuA Math 100K 254
SingleEq Math - 508
SVAMP Math - 1,000
BoolQ CS 94K 3,270
PIQA CS 16.1K 1,830
SIQA CS 334K 1,954
HellaSwag CS 399K 10,042
WinoGrande | CS 632K 1,267
ARC-e CS 1.1IK 2,376
ARC-c CS 2.3K 1,172
OBQA CS 5.0K 500

Table 14: Overview of Datasets for Mathematical and
Commonsense Reasoning

Dataset Train Validation Test
SQuAD v1.1 | 87.6k 10.6k -
SQuAD v2.0 | 130k 11.9k -

XSum 204k 11.3k 11.3k

DailyMail 287k 13.4k 11.5k
CoLA 8.55k 1.04k 1.06k
SST2 67.3k 872 1.82k
MRPC 3.67k 408 1.73k
STS-B 5.75k 1.5k 1.38k
QQP 364k 40.4k 391k
MNLI 393k 9.8k 9.8k
QNLI 105k 5.46k 5.46k
RTE 2.49k 277 3k

Table 15: Summary of Datasets for GLUE, Question
Answering, and Text Summarization
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