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Abstract

Large language models (LLMs) have shown re-
markable improvements in reasoning and many
existing benchmarks have been addressed by
models such as o1 and o3 either fully or par-
tially. However, a majority of these bench-
marks emphasize deductive reasoning, includ-
ing mathematical and coding tasks in which
rules such as mathematical axioms or pro-
gramming syntax are clearly defined, based
on which LLMs can plan and apply these rules
to arrive at a solution. In contrast, inductive
reasoning, where one infers the underlying
rules from observed data, remains less explored.
Such inductive processes lie at the heart of sci-
entific discovery, as they enable researchers to
extract general principles from empirical ob-
servations. To assess whether LLMs possess
this capacity, we introduce InductionBench,
a new benchmark designed to evaluate the in-
ductive reasoning ability of LLMs. Our ex-
perimental findings reveal that even the most
advanced modelw available struggle to mas-
ter the simplest complexity classes within the
subregular hierarchy of functions, highlight-
ing a notable deficiency in current LLMs’ in-
ductive reasoning capabilities. Coda and data
are available https://github.com/wenyueh/
inductive_reasoning_benchmark.

1 Introduction

The remarkable progress of large language mod-
els (LLMs) in recent years has yielded substan-
tial improvements in their reasoning capabilities.
This progress is most evident in benchmarks in-
volving complex mathematics (Cobbe et al., 2021;
Hendrycks et al., 2021) and coding tasks (Jain et al.,
2024; Jimenez et al., 2023; Chen et al., 2021; Fan
et al., 2023). Beyond these domains, researchers
have also explored the logical reasoning abilities of
LLMs from various angles, including propositional
logic (Zhu et al., 2023), first-order logic (Han et al.,
2022; Parmar et al., 2024), and propositional logic
under different contexts (Hua et al., 2024).

Figure 1: Deductive vs. Inductive Reasoning

Despite significant progress in model capabili-
ties, existing benchmarks predominantly focus on
deductive reasoning, largely overlooking inductive
reasoning. The former requires applying explic-
itly defined premises to derive valid conclusions,
whereas the latter requires inferring the underly-
ing principles, rules, or patterns from observations
(Hawthorne, 2004). Both forms of reasoning are
essential; inductive reasoning, in particular, is criti-
cal in domains such as scientific discovery where
researchers seek to characterize natural laws based
on empirical data (Grünwald, 2007; Hansen and
Yu, 2001) that captures complex phenomena. Fig-
ure 1 illustrates the differences between inductive
and deductive reasoning.

In this paper, we address this gap by introducing
InductionBench, a rigorous benchmark designed
to assess LLMs’ inductive reasoning abilities by
testing whether they can infer a string-to-string
transformation from a finite set of input–output
pairs. A model must hypothesize the underlying
relationship between inputs and outputs based on
a finite set of examples and then extrapolate those
rules to unseen strings. The process of discovering
the underlying function from limited data reflects
the core principles of inductive reasoning.

Our benchmark is grounded in the subregular
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Figure 2: Subregular hierarchy in string-to-string maps

hierarchy (Rogers and Pullum, 2011; Truthe, 2018;
Graf, 2022; Jäger and Rogers, 2012; Heinz, 2018)
(see Figure 2) for string-to-string mappings (Mohri,
1997), focusing on input transformations restricted
to regular functions. By systematically increasing
task complexity across multiple classes in the sub-
regular hierarchy, we gain detailed insights into
how effectively LLMs detect, hypothesize, and
generalize underlying rules from theoretically suf-
ficient datapoints.

We evaluate multiple state-of-the-art LLMs to
understand LLM’s inductive reasoning ability and
identify factors that increase the difficulty of induc-
tive reasoning tasks for LLMs, such as the length
of the minimum-length description, the number of
datapoints, and in-context examples. Through ex-
tensive experiments, we find that even advanced
models such as o3-mini struggle with basic induc-
tive tasks, highlighting a significant shortcoming
in the current generation of LLMs. More detailed
findings are presented in Section 5.

2 Related Work

Deductive Reasoning. One major branch of rea-
soning benchmarks centers on deductive inference,
where models apply established premises to derive
specific conclusions. Notable examples include Re-
Clor (Yu et al., 2020), which evaluates the ability to
solve logical reasoning questions resembling those
found in standardized tests, and various logic-based
benchmarks of increasing complexity, from propo-
sitional logic to first-order logic (Han et al., 2022;
Parmar et al., 2024; Zhu et al., 2023; Hua et al.,
2024). These tasks typically require handling struc-
tured logical relationships with minimal ambiguity
in how premises lead to conclusions.

Another type of reasoning benchmarks is math-
ematical problem solving, including elementary
arithmetic to advanced competition-level questions.
Hendrycks et al. (2021) test both computational

skills and the sequential reasoning steps involved
in mathematics. Cobbe et al. (2021) covers a broad
spectrum of topics, including geometry and higher-
level problem solving. However, most standard
mathematics problem-solving tasks can be framed
as deductive reasoning, as they involve applying
established axioms, definitions, and theorems in a
logically valid sequence to derive a conclusion.

Inductive Reasoning. Despite the diversity of
existing benchmarks, inductive reasoning, where
models hypothesize and generalize patterns from
examples without pre-specified rules, remains com-
paratively underexplored. Current evaluations of
inductive skills have largely been limited to small-
scale symbolic regression, artificial language trans-
lation, and concept learning (Liu et al., 2024b; Lake
et al., 2019; Qiu et al., 2023), which, although im-
portant in real-world scenarios, often lack three
key elements: (1) an explicit analysis of the inher-
ent difficulty of the task (2) a guarantee that the
provided input–output dataset can identify the tar-
get function (3) a mechanism to evaluate whether
models can identify the “best possible hypothesis”
under Occam’s Razor (Blumer et al., 1987; Baker,
2007) principle, i.e., a description with minimal
length (Hansen and Yu, 2001; Grünwald, 2007).

Our Contribution. To address these shortcom-
ings, we introduce a new benchmark targeting on
inductive reasoning skills. Building on subregu-
lar hierarchy and corresponding polynomial time
and data learnability guarantees, our benchmark,
InductionBench, tests how effectively LLMs in-
fer underlying transformation functions from finite
datapoints. We also measure the degree to which
models produce minimal, non-redundant hypothe-
ses, providing a lens into their ability of generaliza-
tion. Through a fine-grained, gradually increasing
level of complexity, our evaluations reveal how cur-
rent LLMs cope with the growing search space.
There are several advantages of our benchmark:
(1) Automated Evaluation: Because the data is
derived from well-defined functions, one can di-
rectly compare the model’s output with the known
ground-truth function, eliminating the need for ex-
pensive human annotations. (2) Dynamic Data
Generation: The dataset is produced randomly
based on specific function classes, allowing peri-
odic “refreshes” to prevent models from relying on
memorized examples. (3) Rigorous Assessment of
Hypothesis Space: As the function is well-defined,
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one can control the size of the hypothesis space
with precision. This control enables a rigorous and
systematic evaluation of LLM performance from a
theoretically grounded perspective.

3 Computational Complexity in Inductive
Reasoning

InductionBench uses string-to-string transforma-
tion/functions as a proxy to study inductive rea-
soning, which has established computational com-
plexity hierarchy(Roche and Schabes, 1997; En-
gelfriet and Hoogeboom, 2001). We focus on the
subregular hierarchy, the hierarchy under regular
functions. Though with limited expressive power,
our experiments show that these classes already
present substantial challenges for LLMs.

Specifically, we limit our attention to three
classes of deterministic regular functions—Left
Output-Strictly-Local (L-OSL), Right Output-
Strictly-Local (R-OSL), and Input-Strictly-Local
(ISL), whose positions in the subregular hierarchy
are illustrated in Figure 2 (Heinz, 2018). These
classes represent the lowest-complexity tier for
string-to-string mappings within the subregular
hierarchy. They are proper subclasses of sub-
sequential function class and, more broadly, of
weakly-deterministic class and non-deterministic
class, which are themselves subsets of the regular
function classes. Although we do not elaborate on
the complete regular function hierarchy here, it is
important to note that the ISL, L-OSL, and R-OSL
classes are among the simplest in this framework.

Strictly local functions can be seen as operat-
ing with a fixed amount of look-ahead, similar to
Markov processes. They are provably learnable
in polynomial time from polynomially sized sam-
ples (Chandlee et al., 2014; De La Higuera, 1997;
Chandlee et al., 2015; Jardine et al., 2014). More-
over, prior work has shown that an algorithm exists
to learn the unique (up to isomorphism) smallest
subsequential finite-state transducer that represents
such ISL, L-OSL, R-OSL functions (Satta and Hen-
derson, 1997; Arasu et al., 2009). This property
allows us to evaluate not only whether LLMs can
discover the correct patterns but also whether they
can identify the simplest or most concise represen-
tation consistent with the data.

3.1 Preliminary

Before providing the definitions of the three func-
tion classes, we first introduce the fundamental

mathematical notations and formal definitions un-
derpinning our discussion of string-to-string trans-
formations and their properties.

Let Σ be a finite alphabet. We denote by Σ∗

the set of all finite strings over Σ, and by Σ≤n the
set of all strings over Σ of length at most n. The
empty string is denoted as λ. The set of prefixes
of a string w is denoted as PREF(w), defined as
{p ∈ Σ∗ | ∃s ∈ Σ∗s.t.w = ps}, and the set
of suffixes of w denoted as SUFF(w), defined as
{s ∈ Σ∗ | ∃p ∈ Σ∗s.t.w = ps}. The longest
common prefix of a set of strings S is denoted as
LCP(S), defined as

p ∈ ∩w∈SPREF(w) such as

∀p′ ∈ ∩w∈SPREF(w), |p′| < |p|.

For any function f : Σ∗ → Γ∗ and w ∈ Σ∗, let the
tails of w with respect to f be defined as

TAILSf (w) = {(y, v) | f(wy) = uv and

u = LCP(f(wΣ∗))}.

Intuitively, TAILSf (w) collects all possible contin-
uations (y, v) by appending y to w. It summarizes
how f might extend beyond the partial input w.
The total number of distinct tails across all strings
in Σ∗ provides a measure of how many different
non-trivial local transformation f encodes.

3.2 Function Class Definition
Based on the concepts outlined above, we define
the three function classes.

Definition 1 (ISL) A function f is ISL if there is a
k such that for all u1, u2 ∈ Σ∗, if SUFFk−1(u1) =
SUFFk−1(u2), then TAILSf (u1) = TAILSf (u2).

Figure 3: ISL definition

In simpler terms, this means that the output at
each position in the string depends only on the
preceding k− 1 characters of the input, making the
transformation Markovian with respect to the input.
Figure3 illustrates this definition.Below is a simple
example:

Example 3.1 Suppose a function f : {a, b}∗ →
{a, b}∗ rewrites each b to a only if it appears after
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the input substring ba. In this scenario, we have
k = 3, and there are two distinct tails:

TAILSf (w) = {(λ, λ), (b, a), (bb, ab), (ab, ab)...}
∀w ∈ Σ∗ such that ba ∈ SUFF(w)

and

TAILSf (w
′) = {(λ, λ), (a, a), (bb, bb), (ab, ab)...}
∀w′ ∈ Σ∗ such that ba /∈ SUFF(w′)

These tails indicate how the function’s behavior
shifts depending on whether the immediate context
ends in ba. Such context-dependent tails also high-
lights that ISL functions can be effectively charac-
terized or represented by local input constraints.

Definition 2 (L-OSL) A function f is L-OSL if
there is a k such that for all u1, u2 ∈ Σ∗,
if SUFFk−1(f(u1)) = SUFFk−1(f(u2)), then
TAILSf (u1) = TAILSf (u2).

Figure 4: L-OSL definition

In other words, the output at each position in the
transformed string depends only on the preceding
k − 1 characters of the output itself, rather than
on the input. This property can be understood as a
form of Markovian process on the output. Below
is a simple example:

Example 3.2 Suppose a function f rewrites each
b to λ only if it appears after the output substring
ba. In this scenario, we have k = 3, and there are
two distinct tails:

TAILSf (w) = {(λ, λ), (a, a), (b, λ),
(bb, λ), (ab, ab), (ba, a)...}
∀w ∈ Σ∗ such that ba ∈ SUFF(f(w))

and

TAILSf (w) = {(λ, λ), (a, a), (b, b),
(bb, bb), (ab, ab), (ba, ba)...}
∀w ∈ Σ∗ such that ba /∈ SUFF(f(w))

While L-OSL depends preceding output symbols
to the “left”, R-OSL functions depends on a lim-
ited number of future output symbols to the “right”.

Figure 5: R-OSL definition

Conceptually, one can view R-OSL as analogous to
L-OSL, except that the input is processed in reverse
order. Although both belong to the broader OSL
paradigm, they are incomparable classes: each can
express transformations the other cannot. The for-
mal definition of R-OSL follows:

Definition 3 (R-OSL) A function f is R-OSL if
there is a k such that for all u1, u2 ∈ Σ∗,
if SUFFk−1(f(u−1

1 )) = SUFFk−1(f(u−1
2 )), then

TAILSf (u
−1
1 ) = TAILSf (u

−1
2 ).

Intuitively, this class of functions can be viewed
as a rightward Markovian process on the output.
Each output symbol is determined not by the pre-
ceding symbols as in L-OSL but by the next k − 1
symbols that will appear in the output.

The three classes, ISL, L-OSL, and R-OSL, are
each deterministic and exhibit Markovian behav-
ior, yet remain pairwise incomparable within the
broader subregular hierarchy. In this work, we fur-
ther restrict our attention to functions that involve
substitution which replaces one character with an-
other and deletion which maps a character to the
empty string λ.

3.3 Learnability
The three function classes are identifiable in poly-
nomial time using a polynomially sized charac-
teristic sample (Chandlee et al., 2014, 2015). In
other words, there exists a polynomial-time algo-
rithm that, given sufficient data for a target func-
tion f , can produce a representation τ that satisfies
f(w) = τ(w) for every w ∈ Σ∗. In other words,
once sufficient data is presented, one can reliably
recover a function equivalent to f on all possible in-
puts. This learnability property underpins the value
of these classes as testbeds for inductive reasoning,
since the data requirement remains polynomial and
successful inference is theoretically guaranteed.

We formalize “sufficient data” as the minimal set
of input–output pairs needed to learn a k-strictly
local function f , which is known as characteristic
sample. Adapting the original definition1 for clarity
(Chandlee et al., 2014, 2015), we define:

1simplified from original definition
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Definition 4 (Characteristic Sample) For a
given k-ISL f , the characteristic sample S is
defined as {(w,w′) | w ∈ Σ≤k ∧ f(w) = w′}.
For a given k-OSL f , the characteristic sample S
is defined as {(w,w′) | w′ ∈ Σ≤k ∧ f(w) = w′}.

If a provided dataset contains such characteristic
sample, a learning algorithm can reconstruct a rep-
resentation of f that matches its behavior on every
string in Σ. Accordingly, in the context of LLMs,
we expect that providing this dataset as in-context
examples should enable the model to induce the
underlying string-to-string mapping.

For example, the characteristic sample with the
transformation function being an ISL-3 function
as described in Example 3.2: f : {a, b}∗ →
{a, b}∗ rewrites each b to a only if it ap-
pears after the input substring ba is: {(λ, λ),
(a, a), (b, b), (aa, aa), (ab, ab), (ba, ba), (bb, bb),
(aaa, aaa), (aab, aab), (aba, aba), (abb, abb),
(baa, baa), (bab, baa), (bba, bba), (bbb, bbb)}.

3.4 Unique Function Representation

Beyond verifying that a model can accurately dis-
cover a function from data, we also investigate how
succinctly the model describes its inferred rules.
This aspect is of both theoretical and practical inter-
est: a minimal or most concise representation not
only offers interpretability advantages but can also
reflect the model’s capacity for truly generalizable,
rather than merely enumerative, learning.

One function can be represented or written in
a non-unique way. For instance, consider an ISL
function f1 with k = 2 over Σ = {a, b} that maps
the input character a to b when it comes after b, that
rewrites each a to b only if the preceding character
is b, while leaving other substrings unchanged. One
concise description is:

f1(w)=





f1(w1)ba
−1f1(aw2),

if w1 ends with b and w=w1

aw2 for some w1, w2∈Σ∗

w, otherwise

(1)

An alternative yet more verbose description of
the same function might redundantly enumerate

multiple cases:

f ′
1(w)=





f ′
1(w1)ba

−1f ′
1(aw2),

if w1 ends with ab and w =
w1aw2 for some w1, w2 ∈ Σ∗

f ′
1(w1)ba

−1f ′
1(aw2)

if w1 ends with bb and w =
w1aw2 for some w1, w2 ∈ Σ∗

w, otherwise

(2)

Although these two representations encode the
same function, the second contains repetitive con-
ditions and fails to emphasize that the output of f1
depends solely on the single preceding character
instead of the penultimate character.

Because these functions admit a unique mini-
mal representation (up to isomorphism) (Chandlee
et al., 2014; Oncina and Garcia, 1991), we can di-
rectly compare the function produced by an LLM
to the ground-truth minimal form. In doing so,
we evaluate whether the model not only discovers
the correct transformation but also simplifies it to
the most parsimonious description possible—an
essential indicator of robust inductive reasoning.

3.5 Rule-based Representation

To streamline the generation and parsing of func-
tion representations, we employ a simplified no-
tation wherein each transformation is written as
“condition ◦ target character → output of the tar-
get character” (Bird and Ellison, 1994). In this
notation, the condition represents the minimal sub-
string needed to trigger a transformation, while
any input substring not matching this condition
remains unchanged. For instance, in the earlier
example, this approach permits a concise notation
b ◦ a → b, indicating that the input a is mapped
to b when it comes after b; otherwise, the input
string remains unaltered. This concise, rule-based
format simplifies both the model’s output genera-
tion (by reducing complex functional descriptions)
and our subsequent evaluation, as the applicable
transformations can be easily parsible and verified.

To demonstrate the simplicity of rule-based rep-
resentation: given an ISL function f2 with k = 2,
the input a becomes b when it comes after b and
two consecutive as will be reduced to one single a.
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The minimal function representation is as below:

f2(w)=





f2(w1)ba
−1f2(aw2),

if w1 ends with b and
w=w1aw2 for some
w1, w2∈Σ∗

f2(w1)a
−1f2(aw2),

if w1 ends with a and
w=w1aw2 for some
w1, w2∈Σ∗

w, otherwise

(3)

In the simplified rule-based format, it can be
written as:a ◦ a → λ, b ◦ a → b. In summary, f1
can be minimally expressed with a single rule, f2
requires two rules.

4 Benchmark Construction

In this section, we detail how our benchmark is
constructed from the previously defined function
classes. Each datapoint (D, f) in the benchmark is
a pair of dataset D and function f where D is a set
of input-output pairs generated by f .

Each of ISL, L-OSL, and R-OSL classes can be
further subdivided into incremental levels of com-
plexity, determined by three key parameters: (1)
the context window size k (2) the vocabulary size
|Σ| (3) the minimal representation length of the
function, i.e. the minimal set of rules correspond-
ing to the function. Given k and |Σ|, the search
space is 2|Σ|k ; given the number of rules n addi-
tionally, the search space is

(|Σ|k
n

)
. To rigorously

evaluate LLMs’ inductive capabilities, we system-
atically vary these parameters across ISL, L-OSL,
and R-OSL function classes.

In addition, we examine how performance
changes with different numbers of input–output
pairs in the prompt. Although having the charac-
teristic sample present should theoretically guaran-
tee recoverability of the underlying function, our
empirical results indicate that the overall number
of examples strongly affects performance. While
extra data can provide richer information, it also in-
creases context length considerably and heightens
processing demands (Li et al., 2024). By varying
the number of provided datapoints, we further in-
vestigate the extent to which the model engages
in genuine reasoning and how robust its inductive
abilities remain under changing input sizes.

Function Generation To systematically create
benchmark instances, we first randomly generate

functions f based on the three parameters: k, |Σ|,
and the number of minimal rules describing f by
generating the set of rules that can describe f .
While multiple representations of varying length
can describe the same function, each function has
a unique minimal representation (up to isomor-
phism). During function generation, we therefore
ensure that each function is expressed by a min-
imal, non-redundant rule set. Formally, if a f is
represented by a set of rules Rf = {r1, r2, ..., rn}
where each ri has the form of ci ◦ ui → vi (with
ci as the condition substring, ui the target charac-
ter, and vi the transformed output for ui), there
are several constraints may be applied to functions
belonging to the three classes.

Definition 5 (General Consistency) Given f rep-
resented by a set of rules Rf : ∀ri, rj ∈ Rf , ci ◦
ui /∈ SUFF(cj ◦ uj) and cj ◦ uj /∈ SUFF(ci ◦ ui).

General Consistency ensures that the rules do not
contradict one another or become redundant when
conditions overlap. For instance, a function whose
rule-based representation of r1 : a ◦ b → a and
r2 : aa◦b → a is redundant, as the scenarios where
r1 is applied is a superset of the scenarios where
r2 is applied. For another instance, there does not
exist a deterministic function that can be described
by r1 : a ◦ b → a and r2 : aa ◦ b → λ. Generating
rule-based representations for ISL functions needs
only satisfy this constraint.

Definition 6 (OSL Non-Redundancy Guarantee)
Given f represented by a set of rules R : ∀ri ∈
Rf ,¬∃s′i ∈{si|si∈ci} such that ∃rj ∈ Rf such
that s′i = cj ◦ uj , unless ∃rk ∈ R such that
ck ◦ vk = s′i.

Constraint 2 is specific to the two OSL function
classes because we need to make sure that all output
conditions in the rule actually surface somewhere
in the outputs of some datapoints. If the output
condition c never actually surface as the output,
the rule will never be put into effect. Thereby the
above rule basically requires that condition part of
all rules can surface, either because it will never be
modified by some other rule, or it emerges on the
surface because of the application of other rule. For
instance, a function represented by rules r1 : aa ◦
b → a, r2 : a ◦ a → c is redundant because r1 will
never be applied because the string aa will never
surface as output and thus it will never be put into
effect; For another instance, a function represented
by r1 : aa◦b → a, r2 : a◦a → c, r3 : a◦d → a is
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non redundant because even though into aa string
will be modified into ac, but aa will surface in
some datapoint because ad will be modified into
aa and thus r1 will be able to be applied.

Generating the functions following the two con-
straints, we ensure that the generated function rep-
resentation is minimal, non-reducible guarantees
a clear measure of complexity. One additional re-
quirement is imposed to ensure each function in-
deed requires a look-ahead of size k. Specifically:

Definition 7 (k-Complexity Guarantee) Given
f whose designated context window k = k1,
∃r′ ∈ R such that c′ ◦ u′ → v′ such that
|c′ ◦ u′| = k1.

This condition guarantees that the function is
genuinely k-strictly local (for ISL or OSL), rather
than being representable with a smaller window
size. Consequently, the functions we generate faith-
fully reflect the intended complexity level.

After generating the function f , we generate
the characteristic sample of input-output pairs.
For instance, given a function f with k = 2
and Σ = {a, b}, the characteristic sample is
{(a, f(a)), (b, f(b)), (ab, f(ab)), (aa, f(aa)),
(bb, f(bb)), (ba, f(ba))}, a small set whose size is
6. By expanding this sample set, we can explore
whether providing more than the minimal necessary
examples aids or hinders the model’s performance
to infer the underlying function.

To evaluate how effectively an LLM can induce
the underlying function, we include in the prompt
(1) the function class, (2) context window k, (3) the
alphabet Σ which are information that guarantee
learnability of the function. Then given the sample
dataset, we request LLMs to produce a minimal
rule-based description that reproduces the provided
sample set, revealing whether it can discover and
optimally represent the underlying transformation.

5 Main Experiment

Experiment Setting We evaluate using zero-shot
chain-of-thought prompting on six SOTA LLMs,
including Llama-3.3-70b (Dubey et al., 2024) with
FP8 quantization, Llama-3.1-405b with FP8 quan-
tization, GPT-4o (Hurst et al., 2024), DeepSeek-
V3 (Liu et al., 2024a), o1-mini(Jaech et al., 2024),
and o3-mini. For all models, we evaluate with all
settings including k ∈ {2, 3, 4}, |Σ| ∈ {2, 3, 4},
number of rules ∈ {2, 3, 4}, and sample set size
to be 1, 2, 3, 4 times larger than the characteristic
sample. For each setting, we randomly generate 10

functions f and corresponding input-output sample
D to calculate the result. As o1-mini and o3-mini
perform much better than other models, in addition,
we evaluate on two more complex settings with
k ∈ {4, 5}, |Σ| = 5.

Evaluation Metrics For each experiment setting,
we leverage three metrics to evaluate performance:
Precision, Recall, Compatibility. Let R be the
unique ground-truth rule set of minimal length for
function f , P be the predicted rule set generated by
LLM, D be the provided sample set in the context
on which we evaluate the correctness of P .
Precision measures how many of the predicted
rules are correct relative to all rules the model
generated: |R∩P |

|P | . captures the proportion of the
model’s rules that align exactly with the ground-
truth rules. A higher precision indicates fewer un-
necessary/redundant rules.
Recall measures what fraction of the ground-truth
rules the model successfully recovered: |R∩P |

|R| . A
higher recall reflects the model’s ability to cover
all aspects of the correct transformation.
Compatibility measures whether applying the pre-
dicted rule set P to each input in the sample set D
yields the correct output:

Compatibility(P,D) =





1 if ∀(xi, yi) ∈ D,

P (xi) = yi

0 otherwise

Compatibility is the most fundamental measure,
as it verifies whether the generated function accu-
rately reproduces all observed input–output pairs
in D. A trivial way to achieve perfect compati-
bility is to include every pair (xi, yi[−1]) ∈ D as
an independent rule; however, doing so results in
very low precision, indicating a failure to capture
the underlying generalizable structure of the func-
tion. Note that all results presented are expressed
as percentages.

5.1 Model Performance Comparison

Table 1 showcases model performance under partic-
ularly challenging conditions: k = 4, |Σ| = 4 with
3 rules and sample size twice that of the minimal
size of characteristic sample (detailed analysis on
the impact of sample size is presented in Section
5.2). As seen in the table, compatibility scores col-
lapse to 0 for all models except o3-mini, which also
achieves relatively modest compatibility overall.
This pattern highlights the difficulty that current
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Models ISL L-OSL R-OSL

recall precision compatibility recall precision compatibility recall precision compatibility

Llama-3.3 70B 10.00 5.32 0.00 10.00 6.33 0.00 10.00 10.83 0.00
Llama-3.1 405B 10.00 3.75 0.00 6.67 1.10 0.00 13.33 1.85 0.00
GPT-4o 10.00 2.67 0.00 13.33 3.82 0.00 16.67 6.73 0.00
DeepSeek-V3 13.33 2.46 0.00 23.33 2.73 0.00 3.33 0.25 0.00
o1-mini 36.67 22.09 0.00 43.33 32.12 0.00 26.67 17.58 0.00
o3-mini 73.33 59.58 10.00 66.67 69.17 10.00 63.33 62.00 30.00

Table 1: Zero-shot CoT benchmark result with k = 4, |Σ| = 4, number of rules = 3, sample size = 2

rules=1
rules=2

rules=3
rules=1

rules=2
rules=3

rules=1
rules=2

rules=3

0

20

40

60

80

100

k=2 k=3 k=4

re
ca

ll

Vocab size = 2

rules=1
rules=2

rules=3
rules=1

rules=2
rules=3

rules=1
rules=2

rules=3

0

20

40

60

80

100

k=2 k=3 k=4

re
ca

ll

Vocab size = 3

rules=1
rules=2

rules=3
rules=1

rules=2
rules=3

rules=1
rules=2

rules=3

0

20

40

60

80

100

k=2 k=3 k=4

re
ca

ll

Vocab size = 4

Llama-3.3 70B Llama-3.1 405B DeepSeek-V3 GPT-4o o1-mini

rules=1
rules=2

rules=3
rules=1

rules=2
rules=3

rules=1
rules=2

rules=3

0

20

40

60

80

100

k=2 k=3 k=4

pr
ec

is
io

n

Vocab size = 2

rules=1
rules=2

rules=3
rules=1

rules=2
rules=3

rules=1
rules=2

rules=3

0

20

40

60

80

100

k=2 k=3 k=4

pr
ec

is
io

n

Vocab size = 3

rules=1
rules=2

rules=3
rules=1

rules=2
rules=3

rules=1
rules=2

rules=3

0

20

40

60

80

100

k=2 k=3 k=4

pr
ec

is
io

n

Vocab size = 4

rules=1
rules=2

rules=3
rules=1

rules=2
rules=3

rules=1
rules=2

rules=3

0

20

40

60

80

100

k=2 k=3 k=4

co
m

pa
tib

ili
ty

Vocab size = 2

rules=1
rules=2

rules=3
rules=1

rules=2
rules=3

rules=1
rules=2

rules=3

0

20

40

60

80

100

k=2 k=3 k=4

co
m

pa
tib

ili
ty

Vocab size = 3

rules=1
rules=2

rules=3
rules=1

rules=2
rules=3

rules=1
rules=2

rules=3

0

20

40

60

80

100

k=2 k=3 k=4

co
m

pa
tib

ili
ty

Vocab size = 4

Figure 6: ISL results for five models: Llama3.3-70b, Llama3.1-405b, GPT-4o, DeepSeek-V3, o1-mini

LLMs face when required to track slightly broader
contexts window even under very limited vocabu-
lary size = 4. Full results are presented in Tables 3,
4, 5 in Appendix. Table 2 further reports the perfor-
mance of o1-mini and o3-mini under slightly more
challenging settings. Although both models gen-
erally exhibit non-trivial recall and precision, their
compatibility scores consistently remain at or near
zero. It is important to note that ISL, L-OSL, and
R-OSL are the simplest function classes within the
subregular hierarchy of string-to-string mappings.
Thus, despite the strong performance of state-of-
the-art models on benchmarks in coding (Jain et al.,
2024), mathematics (Mirzadeh et al., 2024), and

knowledge-intensive tasks (Wang et al., 2024), they
falter on this elementary inductive reasoning task.

5.2 Impact of Different Factors
Figure 6 shows how five models (Llama3.3-70B,
Llama3.1-405B, GPT-4o, DeepSeek-V3, and o1-
mini) perform on various ISL tasks, organized by
three key parameters: the context window size k,
the vocabulary size |Σ|, and the minimal number
of rules required to describe the function. The
top row of panels presents recall, the middle row
presents precision, and the bottom row presents
compatibility. We did not include o3-mini here
because its performance is way stronger than all
other five models and thereby in order to show the
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Figure 7: Impact of Few-shot Examples under different k.

Models Settings
k = 4 k = 5

R P C R P C

ISL

o1-mini
rules = 4 25.00 12.21 0.00 10.00 9.10 0.00
rules = 5 36.00 40.41 0.00 10.00 3.14 0.00

o3-mini
rules = 4 37.50 49.83 0.00 27.50 30.75 0.00
rules = 5 42.00 58.67 0.00 20.00 38.33 0.00

L-OSL

o1-mini
rules = 4 32.50 37.34 0.00 15.00 29.33 10.00
rules = 5 28.00 23.17 0.00 8.00 4.61 0.00

o3-mini
rules = 4 57.50 58.93 0.00 22.50 39.26 0.00
rules = 5 48.00 71.38 0.00 10.00 23.67 0.00

R-OSL

o1-mini
rules = 4 17.50 22.33 0.00 12.50 7.63 0.00
rules = 5 16.00 15.42 0.00 18.00 22.82 0.00

o3-mini
rules = 4 45.00 43.76 10.00 20.00 50.00 0.00
rules = 5 38.00 55.17 0.00 14.00 36.17 0.00

Table 2: o1-mini and o3-mini results (R = Recall, P
= Precision, C = Compatibility) on harder setting with
k ∈ {4, 5}, |Σ| = 5, sample size = 2

impact of various factors, we omit this model for
better visual clarity. Based on these figures, the
impacts of k, |Σ|, and number of rules are clear:

Impact of k. Across all models, moving from
k = 2 to k = 4 markedly reduces recall, preci-
sion, and compatibility. This trend underscores
how increasing the context window increases the
complexity of the underlying ISL functions and
making it more challenging for current LLMs to
induce patterns. Longer look-ahead requires the
model to track additional input context, which can
overload its capacity to induce reliable rules.

Impact of |Σ|. In contrast, enlarging the vocabu-
lary from |Σ| = 2 to |Σ| = 4 does not consistently
degrade performance to the same degree as increas-
ing k. While some models exhibit slight declines
in recall or precision with a larger alphabet, these
effects are neither as uniform nor as pronounced as
those induced by a bigger Markov window. It sug-
gests that the breadth of symbol variation matters
less than the depth of sequential dependencies.

Impact of the Number of Rules. Notably, the
number of minimal rules can substantially affect

compatibility. When k = 2 and |Σ| = 2, a com-
paratively small search space, changing the num-
ber of rules does not drastically alter compatibility.
However, under more demanding scenarios where
k ∈ {3, 4}, the data indicate that adding rules can
cause compatibility to plummet. In many cases,
having just one rule still yields nontrivial compat-
ibility, whereas introducing a second or third rule
often overwhelms the models, resulting in compati-
bility scores near 0.

Impact of Examples. We further examined
whether few-shot prompting could enhance model
performance. In our experiments with Llama-3.3
70B, we varied the number of in-context examples
(1-shot, 2-shot, and 3-shot) to determine their effect
on the model’s ability to induce the correct func-
tion representation. The results indicate that when
both the vocabulary size and the context window
k are small, adding more examples improves per-
formance across the evaluated metrics. However,
as the complexity increases with larger values of k
and vocabulary sizes, the benefits of additional few-
shot examples become negligible. While few-shot
learning is beneficial for simpler settings, its effi-
cacy diminishes in more complex inductive tasks.
Full experiment results are presented in Tables 6,
7, and 8. More detailed analysis are presented in
Appendix A.

6 Conclusion

We introduced InductionBench, a benchmark de-
signed to evaluate the inductive reasoning abilities
of LLM using subregular function classes that are
provably learnable in polynomial time and data.
By systematically varying the Markov window size
k, vocabulary size |Σ|, and the minimal number
of rules, our experiments reveal that even SOTA
models struggle with inferring underlying transfor-
mations in the simplest complexity class in string-
to-string transformation. These findings highlight
a critical caveat in inductive reasoning ability, un-
derscoring the need for further research.
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Limitations

While our benchmark offers a rigorous, theoreti-
cally grounded approach to evaluating inductive
reasoning in LLMs, it is subject to three notable
constraints:

Synthetic Rather Than Real-World Data. All
tasks and evaluations rely on functions generated
from carefully controlled parameters rather than
naturally occurring texts or real-world datasets. Al-
though this design enables precise measurement
of inductive capabilities, it may not fully capture
the complexity of practical language use, where
ambiguous contexts, noisy inputs, and domain-
specific factors can further challenge inference.

Restricted Access to the o1 Model. Our inves-
tigation into the o1 family of models is hindered
by limited availability and computational resources.
As a result, certain aspects of o1’s inductive behav-
ior may remain unexamined, and a more exhaustive
exploration of variations or fine-tuning strategies
for o1 could further illuminate its performance.

Existence of Provably Correct Algorithms. A
potential concern is that the benchmark could
be trivially “hacked” by implementing known
polynomial-time learning algorithms for the classes
we study, rather than testing genuine inductive rea-
soning. However, we deliberately select function
classes with established provable learnability pre-
cisely so that performance can be measured against
a well-understood theoretical baseline. To address
the possibility of artificially inflating scores, we
provide an additional variant of the benchmark that
omits explicit information on the function class
(ISL, L-OSL, or R-OSL) and the parameter k.
Furthermore, we introduce an alternate class on
another version of the benchmark, Input-Output
Strictly Local (IOSL), for which no known algo-
rithm can reliably learn the underlying functions
from finite samples. By doing so, we aim to evalu-
ate whether LLMs can truly demonstrate inductive
reasoning skills—even in the absence of a well-
documented learning procedure—thereby mitigat-
ing concerns that performance gains merely reflect
a “hack” rather than robust inference.
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A More Analysis

Robustness We assess the stability of inductive
reasoning by varying the number of input–output
pairs provided to the model. The x-axis represent
|D|
|S| where S is the minimal set of examples needed
to guarantee learnability of the underlying function.
The hypothesis is that if the model were performing
genuine logical or inductive reasoning, we would
expect performance to remain stable or even im-
prove as more data points become available, since
these points should further clarify the underlying
function. Figure 8 illustrates how average com-
patibility decreases steeply as the number of pro-
vided input–output examples increases. This drop
suggests that the LLM’s reasoning process is not
robustly inductive: rather than refining its hypoth-
esis with additional data, the model appears to be-
come confused or overwhelmed, leading to poorer
overall performance. Consequently, these findings
highlight the limited robustness of current LLMs’
inductive reasoning, particularly in scenarios where
increasing the available data should theoretically
facilitate, rather than hinder, function inference.

Moreover, to isolate the influence of context
length from the effect of adding genuinely new data,
we conduct an additional experiment in which we
simply extending the context size by repeating the
minimal characteristic sample without introducing
novel input–output pairs. Comparing Figures 8 and
9 reveals that while compatibility does diminish
with increased context length (e.g., at a multiple
of 2), the decline is relatively small when scaling
further to multiples of 3, 4, or 5. By contrast, when
truly new datapoints are added (and not just re-
peated), compatibility plummets nearly to zero for
multiples of 4 and 5. These results confirm that the
primary driver of performance degradation is the
inclusion of additional, distinct datapoints rather
than simply lengthening the context.

Error Type Analysis We further examined the
specific types of errors made by LLMs when their
predicted functions failed to match the ground-truth
dataset. At a high level, we distinguish between
missing rules (leading to low recall) and wrong
rules (leading to low precision).

Missing Rules: These refer to ground-truth rules
that do not appear in the model’s predicted rule set.
We classify missing rules into three subtypes:

1. Too General. Although a certain ground-truth
rule r : c ◦ u → v was missed, there exists a

corresponding predicted rule r′ : c′ ◦ u′ → v′

that over-generalizes. Specifically, the condition
c′ is a proper suffix of c, causing r′ to apply more
broadly than intended.

2. Too Specific. The opposite of the above: a pre-
dicted rule condition c′ is a proper extension of c,
thus applying too narrowly and failing to match
some instances that should have been captured
by the ground-truth rule.

3. Completely Missed. No predicted rule over-
generalizes or under-generalizes the ground-
truth rule; in other words, this pattern is simply
absent from the predicted rule set altogether.

Wrong Rules: These refer to rules present in
the model’s predicted set that do not exist in the
ground truth. We categorize such rules into four
types:

1. Too General. The rule r′ : c′ ◦ u′ → v′ is overly
broad, applying in contexts where the ground
truth does not. This typically arises when c′ is a
proper suffix of some genuine condition c and
thus fails to capture necessary constraints.

2. Too Specific. The rule narrowly addresses only
a subset of the intended patterns (e.g., by em-
ploying a condition c′ that is an extension of the
legitimate condition c), thereby missing broader
contexts that should have matched.

3. Correct Condition but Wrong Transformation.
Here, the predicted rule accurately identifies the
correct condition c′ and target input character
u′, but the transformation v′ is incorrect.

4. Completely Wrong. None of the above criteria
apply: the rule’s condition and transformation
are both inconsistent with the ground truth, indi-
cating a fundamental misunderstanding.

We present a breakdown of error types for three
models in Figure10: Llama3.3-70B, o1-mini, and
o3-mini. Among missing rules, the most common
issue is completely missed, where the model fails
to identify the relevant pattern at all. The sec-
ond most frequent error is too general, suggesting
that the predicted condition is shorter than needed,
thereby overgeneralizing the intended behavior. In
contrast, too specific errors in this category are
relatively rare. Among wrong rules, the major-
ity are completely wrong, followed by a notable
fraction of too general. Although there is also a
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Figure 8: Impact of Sample Size based with Different Sample Size Multiples.
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Figure 10: Error Type Analysis
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non-negligible number of too specific errors, these
tend to occur when a single ground-truth rule (e.g.,
ab ◦ c → b is replaced by multiple subcases (e.g.,
aab ◦ c → b, bab ◦ c → b, cab ◦ c → b, indicating
the model has uncovered individual instances but
failed to unify them into a concise representation.
Finally, correct condition but wrong transforma-
tion occurs relatively infrequently, implying that
once the model infers the correct condition pattern,
it typically produces the correct transformation.

B Summary of findings

Overall, our experiments reveal four main insights
into the inductive reasoning performance of current
LLMs:

• Context window size k dominates complexity:
Increasing k from 2 to 4 significantly degrades
recall, precision, and compatibility, underscoring
how longer look-ahead windows intensify the
complexity of ISL functions.

• Number of Rules increases difficulty under large
hypothesis space: The number of minimal rules
required can drastically lower compatibility in
more challenging settings with large k adn |Σ|,
indicating that managing multiple interacting
rules overwhelms many models.

• Few-shot examples do not help much: Few-
shot examples help in simpler configurations
but yield diminishing returns as k adn |Σ|
grows—suggesting that, past a certain complex-
ity threshold, additional examples do not compen-
sate for the model’s limited inductive capacity.

• Current LLMs are very unrobust: Providing more
novel data should theoretically clarify function
patterns, yet performance often plummets, re-
flecting a fragility in inductive reasoning.

• Error analysis shows that missing rules are most
frequently “completely missed” or “too general,”
while wrong rules often end up “completely
wrong” or again “too general.” Only a small
fraction are “too specific” or feature a “correct
condition but wrong transformation,” indicating
that once models identify the right condition, they
typically produce the correct transformation.

Taken together, these findings highlight funda-
mental limits in current LLMs’ inductive reasoning.
Even state-of-the-art models often fail as complex-
ity grows, or when confronted with more data than

their inductive mechanisms appear able to system-
atically absorb.

C Full Result
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Models Settings
k = 2 k = 3 k = 4

recall precision compatibility recall precision compatibility recall precision compatibility

vocab size = 2

Llama-3.3 70B
rules = 1 60.00 55.00 60.00 30.00 23.33 20.00 10.00 10.00 10.00
rules = 2 60.00 65.00 50.00 45.00 60.00 30.00 15.00 8.25 0.00
rules = 3 53.33 68.33 20.00 30.00 46.67 10.00 16.67 8.54 0.00

Llama-3.1 405B
rules = 1 30.00 25.00 30.00 50.00 35.00 30.00 20.00 15.00 10.00
rules = 2 55.00 50.00 40.00 10.00 6.67 0.00 10.00 7.50 0.00
rules = 3 56.67 44.17 20.00 10.00 9.50 0.00 0.00 0.00 0.00

DeepSeek-V3
rules = 1 90.00 60.00 60.00 50.00 32.50 50.00 50.00 12.33 30.00
rules = 2 80.00 60.00 40.00 40.00 19.89 10.00 15.00 3.82 0.00
rules = 3 70.00 54.83 40.00 40.00 26.15 0.00 33.33 10.61 0.00

GPT-4o
rules = 1 60.00 43.33 40.00 50.00 22.00 40.00 10.00 2.00 0.00
rules = 2 60.00 37.50 50.00 35.00 18.43 20.00 15.00 5.63 10.00
rules = 3 73.33 68.33 60.00 36.67 19.30 0.00 13.33 2.50 0.00

o1-mini
rules = 1 50.00 45.00 50.00 70.00 45.83 40.00 30.00 16.67 10.00
rules = 2 75.00 75.00 75.00 70.00 60.00 40.00 50.00 28.67 0.00
rules = 3 66.67 61.67 60.00 43.33 34.00 0.00 40.00 38.52 0.00

o3-mini
rules = 1 100.00 100.00 100.00 100.00 100.00 100.00 80.00 58.33 40.00
rules = 2 90.00 90.00 90.00 90.00 90.67 90.00 85.00 80.00 50.00
rules = 3 100.00 97.50 100.00 83.33 71.83 60.00 70.00 63.81 20.00

vocab size = 3

Llama-3.3 70B
rules = 1 70.00 60.00 60.00 20.00 20.00 20.00 20.00 8.33 10.00
rules = 2 85.00 83.33 60.00 10.00 7.50 0.00 5.00 2.50 0.00
rules = 3 66.67 74.17 20.00 33.33 35.36 0.00 6.67 3.43 0.00

Llama-3.1 405B
rules = 1 20.00 10.00 10.00 20.00 10.00 10.00 10.00 10.00 10.00
rules = 2 45.00 32.58 20.00 10.00 7.50 0.00 0.00 0.00 0.00
rules = 3 50.00 38.45 20.00 6.67 3.10 0.00 10.00 5.27 0.00

DeepSeek-V3
rules = 1 70.00 65.00 60.00 70.00 45.00 60.00 50.00 13.93 50.00
rules = 2 80.00 56.00 40.00 40.00 13.23 0.00 25.00 1.89 0.00
rules = 3 80.00 60.76 50.00 56.67 21.64 0.00 40.00 5.88 0.00

GPT-4o
rules = 1 50.00 33.33 50.00 50.00 18.33 40.00 20.00 4.17 10.00
rules = 2 60.00 40.42 30.00 25.00 6.00 0.00 30.00 6.39 0.00
rules = 3 66.67 64.33 40.00 30.00 9.61 0.00 10.00 1.72 0.00

o1-mini
rules = 1 80.00 80.00 80.00 50.00 43.33 40.00 30.00 0.00 0.00
rules = 2 90.00 90.00 80.00 40.0 25.11 10.00 55.00 24.82 10.00
rules = 3 80.00 77.33 60.00 63.33 36.25 10.00 30.00 20.44 0.00

o3-mini
rules = 1 100.00 100.000 100.00 100.00 95.00 90.00 90.00 78.33 70.00
rules = 2 100.00 100.000 100.00 95.00 91.67 80.00 75.00 75.00 50.00
rules = 3 96.67 97.50 80.00 93.33 91.67 90.00 83.33 85.17 50.00

vocab size = 4

Llama-3.3 70B
rules = 1 60.00 60.00 60.00 30.00 30.00 30.00 10.00 10.00 10.00
rules = 2 40.00 40.00 30.00 15.00 11.67 0.00 0.00 0.00 0.00
rules = 3 53.33 68.33 20.00 6.67 5.00 0.00 10.00 5.32 0.00

Llama-3.1 405B
rules = 1 40.00 35.00 30.00 10.00 5.00 0.00 10.00 10.00 10.00
rules = 2 75.00 52.33 10.00 10.00 5.83 0.00 0.00 0.00 0.00
rules = 3 40.00 34.33 10.00 13.33 1.54 0.00 10.00 3.75 0.00

DeepSeek-V3
rules = 1 80.00 52.50 60.00 50.00 17.00 40.00 40.00 14.58 40.00
rules = 2 85.00 57.15 50.00 65.00 18.66 20.00 45.00 5.30 0.00
rules = 3 76.67 63.12 40.00 50.00 16.05 10.00 13.33 2.46 0.00

GPT-4o
rules = 1 50.00 40.00 40.00 50.00 16.67 20.00 50.00 21.67 20.00
rules = 2 45.00 29.00 10.00 45.00 12.62 0.00 0.00 0.00 0.00
rules = 3 56.67 38.62 0.00 33.33 20.60 0.00 10.00 2.67 0.00

o1-mini
rules = 1 80.00 70.00 80.00 60.00 50.00 50.00 40.00 15.00 10.00
rules = 2 75.00 63.33 60.00 50.00 29.93 10.00 35.00 35.00 0.00
rules = 3 93.33 91.67 80.00 46.67 37.72 10.00 36.67 22.09 0.00

o3-mini
rules = 1 100.00 100.00 100.00 100.00 95.00 100.00 60.00 60.00 60.00
rules = 2 100.00 100.00 100.00 95.00 91.67 80.00 75.00 76.67 40.00
rules = 3 96.67 95.00 90.00 93.33 93.33 80.00 73.33 59.58 10.00

Table 3: Input Strictly Local with sample size = 2
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Models Settings
k = 2 k = 3 k = 4

recall precision compatibility recall precision compatibility recall precision compatibility

vocab size = 2

Llama-3.3 70B
rules = 1 50.00 45.00 50.00 0.00 0.00 0.00 0.00 0.00 0.00
rules = 2 25.00 25.00 20.00 10.00 8.33 10.00 5.00 10.00 0.00
rules = 3 56.67 65.00 0.00 6.67 8.33 0.00 13.33 12.83 0.00

Llama-3.1 405B
rules = 1 70.00 45.83 70.00 30.00 9.33 10.00 10.00 1.67 10.00
rules = 2 50.00 33.33 10.00 25.00 11.39 0.00 10.00 3.00 0.00
rules = 3 63.33 53.83 0.00 10.00 6.67 0.00 6.67 5.00 0.00

GPT-4o
rules = 1 30.00 12.50 30.00 30.00 10.83 10.00 10.00 5.00 10.00
rules = 2 75.00 63.17 60.00 20.00 7.42 0.00 15.00 6.35 0.00
rules = 3 66.67 60.00 50.00 30.00 19.00 10.00 10.00 4.16 0.00

DeepSeek-V3
rules = 1 100.00 75.00 70.00 50.00 32.50 40.00 40.00 12.78 40.00
rules = 2 60.00 44.17 30.00 10.00 15.00 10.00 20.00 11.94 0.00
rules = 3 83.33 77.67 50.00 20.00 12.92 0.00 23.33 13.97 0.00

o1-mini
rules = 1 90.00 90.00 90.00 70.00 55.00 40.00 10.00 10.00 10.00
rules = 2 80.00 80.00 80.00 60.00 60.00 50.00 65.00 53.83 10.00
rules = 3 90.00 82.50 50.00 66.67 60.67 20.00 50.00 54.22 10.00

o3-mini
rules = 1 100.00 100.00 100.00 90/00 90.00 90.00 90.00 90.00 90.00
rules = 2 100.00 100.00 100.00 95.00 100.00 100.00 85.00 78.33 70.00
rules = 3 100.00 100.00 100.00 86.67 85.00 80.00 56.67 50.33 40.00

vocab size = 3

Llama-3.3 70B
rules = 1 50.00 50.00 50.00 20.00 12.50 10.00 20.00 13.33 10.00
rules = 2 35.00 33.67 10.00 20.00 6.93 10.00 25.00 15.00 0.00
rules = 3 40.00 65.00 20.00 20.00 18.33 0.00 10.00 2.78 0.00

Llama-3.1 405B
rules = 1 60.00 45.00 40.00 10.00 3.33 10.00 10.00 1.11 0.00
rules = 2 30.00 20.00 0.00 15.00 13.33 0.00 5.00 0.53 0.00
rules = 3 66.67 57.83 30.00 20.00 8.39 0.00 10.00 2.36 0.00

GPT-4o
rules = 1 40.00 27.50 40.00 20.00 8.33 20.00 40.00 11.00 30.00
rules = 2 55.00 46.50 10.00 45.00 25.67 0.00 30.00 6.50 10.00
rules = 3 60.00 50.00 10.00 33.33 15.95 0.00 20.00 6.21 0.00

DeepSeek-V3
rules = 1 80.00 70.00 60.00 50.00 22.00 40.00 50.00 16.11 30.00
rules = 2 90.00 60.32 60.00 70.00 13.82 20.00 30.00 5.04 0.00
rules = 3 66.67 53.50 40.00 23.33 16.42 0.00 30.00 7.54 10.00

o1-mini
rules = 1 100.00 95.00 90.00 80.00 63.33 70.00 30.00 17.50 30.00
rules = 2 90.00 83.33 80.00 70.00 49.42 40.00 35.00 29.52 20.00
rules = 3 96.67 96.00 90.00 70.00 56.15 30.00 50.00 33.58 0.00

o3-mini
rules = 1 100.00 100.00 100.00 90.00 90.00 90.00 80.00 80.00 80.00
rules = 2 100.00 100.00 100.00 90.00 75.15 70.00 80.00 72.50 50.00
rules = 3 96.67 94.17 90.00 96.67 87.50 90.00 63.33 68.43 40.00

vocab size = 4

Llama-3.3 70B
rules = 1 50.00 29.00 30.00 20.00 13.33 10.00 10.00 10.00 10.00
rules = 2 50.00 50.00 10.00 20.00 15.96 0.00 0.00 0.00 0.00
rules = 3 50.00 52.50 20.00 6.67 6.00 0.00 10.00 6.33 0.00

Llama-3.1 405B
rules = 1 60.00 34.50 30.00 10.00 5.00 10.00 10.00 5.00 10.00
rules = 2 50.00 29.00 0.00 10.00 3.13 0.00 10.00 2.90 0.00
rules = 3 43.33 30.73 20.00 16.67 5.83 0.00 6.67 1.10 0.00

GPT-4o
rules = 1 40.00 35.00 30.00 60.00 25.33 40.00 40.00 12.50 10.00
rules = 2 75.00 45.50 30.00 55.00 20.47 10.00 20.00 9.44 0.00
rules = 3 70.00 48.22 20.00 33.33 10.77 0.00 13.33 3.82 0.00

DeepSeek-V3
rules = 1 100.00 82.50 80.00 50.00 23.67 30.00 40.00 16.11 40.00
rules = 2 70.00 50.67 30.00 25.00 8.01 0.00 15.00 3.24 0.00
rules = 3 60.00 48.36 30.00 50.00 12.81 20.00 23.33 2.73 0.00

o1-mini
rules = 1 90.00 85.00 90.00 50.00 38.33 30.00 40.00 28.33 20.00
rules = 2 100.00 93.33 80.00 60.00 36.92 20.00 50.00 31.92 10.00
rules = 3 80.00 72.25 60.00 70.00 43.04 10.00 43.33 32.12 0.00

o3-mini
rules = 1 100.00 100.00 100.00 100.00 100.00 100.00 60.00 60.00 60.00
rules = 2 100.00 100.00 100.00 85.00 81.67 70.00 45.00 58.33 20.00
rules = 3 100.00 100.00 100.00 76.67 76.67 70.00 66.67 69.17 10.00

Table 4: Left Output Strictly Local with sample size = 2
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Models Settings
k = 2 k = 3 k = 4

recall precision compatibility recall precision compatibility recall precision compatibility

vocab size = 2

Llama-3.3 70B
rules = 1 40.00 40.00 40.00 20.00 10.00 10.00 20.00 10.00 10.00
rules = 2 40.00 40.00 30.00 15.00 18.33 10.00 20.00 18.67 10.00
rules = 3 63.33 76.67 30.00 23.33 24.17 0.00 10.00 7.83 0.00

Llama-3.1 405B
rules = 1 20.00 8.33 0.00 40.00 18.33 0.00 0.00 0.00 0.00
rules = 2 60.00 51.67 40.00 25.00 12.50 0.00 10.00 6.25 10.00
rules = 3 63.33 54.72 30.00 20.00 14.33 10.00 6.67 4.50 0.00

GPT-4o
rules = 1 50.00 30.00 30.00 10.00 5.00 10.00 0.00 0.00 0.00
rules = 2 70.00 61.67 60.00 45.00 16.93 10.00 30.00 15.83 20.00
rules = 3 83.33 71.83 30.00 43.33 24.10 0.00 20.00 10.00 0.00

DeepSeek-V3
rules = 1 60.00 38.33 20.00 40.00 14.17 20.00 20.00 7.00 10.00
rules = 2 75.00 51.67 40.00 35.00 18.33 0.00 25.00 13.00 20.00
rules = 3 86.67 72.56 50.00 40.00 27.00 0.00 23.33 3.68 0.00

o1-mini
rules = 1 50.00 38.33 40.00 20.00 5.83 0.00 20.00 11.67 10.00
rules = 2 55.00 38.33 30.00 35.00 17.50 0.00 15.00 8.70 0.00
rules = 3 46.67 46.67 10.00 33.33 24.17 0.00 10.00 4.41 0.00

o3-mini
rules = 1 90.00 90.00 90.00 100.00 95.00 90.00 70.00 50.00 30.00
rules = 2 100.00 100.00 100.00 90.00 85.00 60.00 45.00 41.67 20.00
rules = 3 96.67 92.67 80.00 86.67 78.33 50.00 46.67 46.67 30.00

Llama-3.3 70B
rules = 1 40.00 40.00 40.00 30.00 25.00 30.00 30.00 7.26 0.00
rules = 2 30.00 60.00 10.00 20.00 10.93 0.00 25.00 19.17 10.00
rules = 3 30.00 45.00 0.00 26.67 22.67 10.00 10.00 4.58 0.00

Llama-3.1 405B
rules = 1 20.00 11.43 10.00 10.00 5.00 0.00 20.00 4.17 0.00
rules = 2 30.00 20.83 10.00 15.00 4.17 0.00 10.00 3.41 0.00
rules = 3 16.67 9.11 0.00 10.00 4.75 0.00 0.00 0.00 0.00

GPT-4o
rules = 1 60.00 50.00 40.00 50.00 27.50 20.00 50.00 15.33 20.00
rules = 2 60.00 41.67 30.00 50.00 27.50 20.00 30.00 8.82 0.00
rules = 3 66.67 57.83 30.00 40.00 21.88 0.00 13.33 6.33 0.00

DeepSeek-V3
rules = 1 80.00 60.83 60.00 50.00 29.17 40.00 40.00 9.42 20.00
rules = 2 80.00 63.19 50.00 55.00 26.67 20.00 40.00 10.10 0.00
rules = 3 70.00 42.95 50.00 23.33 15.28 0.00 20.00 3.56 0.00

o1-mini
rules = 1 60.00 60.00 60.00 20.00 13.33 10.00 20.00 13.33 10.00
rules = 2 15.00 15.00 10.00 40.00 25.00 0.00 30.00 19.50 0.00
rules = 3 53.33 45.83 20.00 30.00 17.63 0.00 13.33 8.43 0.00

o3-mini
rules = 1 90.00 90.00 90.00 100.00 95.00 100.00 50.00 40.00 30.00
rules = 2 90.00 83.33 70.00 80.00 61.67 30.00 60.00 59.50 40.00
rules = 3 100.00 100.00 100.00 83.33 64.11 50.00 43.33 41.83 20.00

vocab size = 4

Llama-3.3 70B
rules = 1 40.00 25.00 30.00 40.00 23.33 20.00 10.00 10.00 10.00
rules = 2 45.00 47.33 10.00 50.00 45.83 10.00 5.00 1.67 0.00
rules = 3 33.33 39.50 10.00 30.00 23.85 0.00 10.00 10.83 0.00

Llama-3.1 405B
rules = 1 10.00 10.00 10.00 0.00 0.00 0.00 0.00 0.00 0.00
rules = 2 15.00 12.00 0.00 10.00 13.33 0.00 5.00 0.26 0.00
rules = 3 33.33 22.67 0.00 3.33 16.67 0.00 13.33 1.85 0.00

GPT-4o
rules = 1 70.00 49.17 50.00 60.00 19.50 50.00 50.00 23.10 10.00
rules = 2 80.00 78.10 40.00 40.00 16.02 0.00 20.00 10.00 0.00
rules = 3 66.67 43.00 0.00 20.00 11.02 0.00 16.67 6.73 0.00

DeepSeek-V3
rules = 1 80.00 65.00 70.00 50.00 18.83 20.00 60.00 19.77 40.00
rules = 2 70.00 59.17 30.00 45.00 27.79 20.00 10.00 0.88 0.00
rules = 3 73.33 60.17 40.00 43.33 13.45 0.00 3.33 0.25 0.00

o1-mini
rules = 1 70.00 53.33 40.00 30.00 18.33 10.00 40.00 40.00 40.00
rules = 2 70.00 66.67 50.00 50.00 47.50 20.00 40.00 34.00 0.00
rules = 3 90.00 79.17 50.00 23.33 23.33 0.00 26.67 17.58 0.00

o3-mini
rules = 1 90.00 90.00 90.00 100.00 93.33 90.00 50.00 50.00 50.00
rules = 2 100.00 100.00 100.00 80.00 75.00 60.00 70.00 69.17 40.00
rules = 3 100.00 100.00 100.00 76.67 78.33 50.00 63.33 62.00 30.00

Table 5: Right Output Strictly Local with sample size = 2

26543



Models Settings
k = 2 k = 3 k = 4

recall precision compatibility recall precision compatibility recall precision compatibility

vocab size = 2

rules = 1
0-shot 60.00 55.00 60.00 30.00 23.33 20.00 10.00 10.00 10.00
1-shot 60.00 60.00 60.00 50.00 35.00 40.00 10.00 5.00 0.00
2-shot 70.00 70.00 70.00 70.00 50.00 60.00 20.00 10.00 10.00
3-shot 80.00 80.00 80.00 60.00 55.00 60.00 10.00 5.00 10.00

rules = 2
0-shot 60.00 65.00 50.00 45.00 60.00 30.00 15.00 8.25 0.00
1-shot 65.00 70.00 60.00 40.00 53.00 30.00 20.00 18.33 10.00
2-shot 85.00 85.00 80.00 45.00 56.67 20.00 25.00 23.33 0.00
3-shot 60.00 65.00 40.00 35.00 36.67 10.00 20.00 20.00 0.00

rules = 3
0-shot 53.33 68.33 20.00 30.00 46.67 10.00 16.67 8.54 0.00
1-shot 76.67 83.33 60.00 43.33 57.67 0.00 20.00 18.33 0.00
2-shot 86.67 86.67 60.00 26.67 28.33 0.00 13.33 16.67 0.00
3-shot 90.00 93.33 70.00 46.67 52.50 20.00 16.67 21.17 0.00

vocab size = 3

rules = 1
0-shot 70.00 60.00 60.00 20.00 20.00 20.00 20.00 8.33 10.00
1-shot 90.00 90.00 90.00 50.00 50.00 50.00 30.00 30.00 30.00
2-shot 70.00 70.00 70.00 30.00 20.00 20.00 10.00 10.00 10.00
3-shot 40.00 40.00 40.00 40.00 35.00 40.00 30.00 18.33 20.00

rules = 2
0-shot 85.00 83.33 60.00 10.00 7.50 0.00 5.00 2.50 0.00
1-shot 90.00 95.00 80.00 10.00 13.33 0.00 5.00 2.50 0.00
2-shot 65.00 65.00 40.00 30.00 28.33 10.00 5.00 2.00 0.00
3-shot 65.00 75.00 30.00 5.00 3.33 0.00 5.00 2.50 0.00

rules = 3
0-shot 66.67 74.17 20.00 33.33 35.36 0.00 6.67 3.43 0.00
1-shot 70.00 69.17 40.00 20.00 22.50 0.00 10.00 13.33 0.00
2-shot 76.67 76.67 50.00 33.33 43.33 0.00 10.00 13.33 0.00
3-shot 60.00 60.83 10.00 23.33 31.67 0.00 16.67 19.76 0.00

vocab size = 4

rules = 1
0-shot 60.00 60.00 60.00 30.00 30.00 30.00 10.00 10.00 10.00
1-shot 40.00 40.00 40.00 50.00 31.67 50.00 20.00 13.33 20.00
2-shot 70.00 57.00 60.00 30.00 25.00 30.00 10.00 5.00 0.00
3-shot 60.00 60.00 60.00 20.00 15.00 20.00 10.00 10.00 10.00

rules = 2
0-shot 40.00 40.00 30.00 15.00 11.67 0.00 0.00 0.00 0.00
1-shot 60.00 60.00 30.00 15.00 23.33 0.00 0.00 0.00 0.00
2-shot 80.00 90.00 60.00 15.00 12.50 0.00 15.00 10.67 0.00
3-shot 70.00 70.00 70.00 15.00 18.33 0.00 10.00 10.00 0.00

rules = 3
0-shot 53.33 68.33 20.00 6.67 5.00 0.00 10.00 5.32 0.00
1-shot 66.67 70.83 30.00 30.00 47.50 0.00 3.00 5.00 0.00
2-shot 66.67 73.33 30.00 30.00 55.00 0.00 3.33 3.33 0.00
3-shot 60.00 71.67 10.00 20.00 39.24 0.00 0.00 0.00 0.00

Table 6: Input Strictly Local with sample size = 2 with few-shot example
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Models Settings
k = 2 k = 3 k = 4

recall precision compatibility recall precision compatibility recall precision compatibility

vocab size = 2

rules = 1
0-shot 50.00 45.00 50.00 0.00 0.00 0.00 0.00 0.00 0.00
1-shot 80.00 80.00 80.00 40.00 33.33 30.00 20.00 5.00 20.00
2-shot 80.00 75.00 70.00 30.00 25.00 30.00 30.00 13.33 10.00
3-shot 80.00 80.00 80.00 20.00 15.00 20.00 20.00 15.00 20.00

rules = 2
0-shot 25.00 25.00 25.00 10.00 8.33 10.00 5.00 10.00 0.00
1-shot 80.00 85.00 70.00 30.00 30.83 10.00 30.00 19.00 10.00
2-shot 85.00 85.00 80.00 20.00 21.67 10.00 25.00 27.90 0.00
3-shot 75.00 80.00 60.00 25.00 20.83 10.00 20.00 20.83 0.00

rules = 3
0-shot 56.67 65.00 0.00 6.67 8.33 0.00 13.33 12.83 0.00
1-shot 80.00 80.00 80.00 40.00 42.00 0.00 10.00 11.67 0.00
2-shot 80.00 75.00 70.00 33.33 48.33 0.00 13.33 28.33 0.00
3-shot 80.00 80.00 80.00 33.33 39.17 0.00 16.67 26.67 0.00

vocab size = 3

rules = 1
0-shot 50.00 50.00 50.00 20.00 12.50 10.00 20.00 13.33 10.00
1-shot 100.00 100.00 100.00 40.00 23.33 40.00 0.00 0.00 0.00
2-shot 70.00 70.00 70.00 30.00 23.33 20.00 10.00 5.00 0.00
3-shot 80.00 75.00 80.00 20.00 20.00 20.00 20.00 20.00 20.00

rules = 2
0-shot 35.00 33.67 10.00 20.00 6.93 10.00 25.00 15.00 0.00
1-shot 80.00 76.67 80.00 30.00 30.33 10.00 10.00 15.00 0.00
2-shot 50.00 55.00 30.00 30.00 38.33 0.00 25.00 21.67 0.00
3-shot 70.00 70.00 70.00 20.00 30.00 0.00 20.00 35.00 0.00

rules = 3
0-shot 40.00 65.00 20.00 20.00 18.33 0.00 10.00 2.78 0.00
1-shot 70.00 66.67 40.00 30.00 24.83 0.00 10.00 20.30 10.00
2-shot 83.33 90.00 60.00 33.33 40.83 0.00 30.00 43.33 0.00
3-shot 70.00 78.33 30.00 23.33 44.50 0.00 16.67 18.33 0.00

vocab size = 4

rules = 1
0-shot 50.00 29.00 30.00 20.00 13.33 10.00 10.00 10.00 10.00
1-shot 50.00 50.00 50.00 50.00 50.00 50.00 20.00 15.00 20.00
2-shot 60.00 60.00 60.00 10.00 10.00 10.00 20.00 20.00 20.00
3-shot 20.00 20.00 20.00 30.00 25.00 30.00 20.00 20.00 20.00

rules = 2
0-shot 50.00 50.00 10.00 20.00 15.96 0.00 0.00 0.00 0.00
1-shot 55.00 56.67 30.00 20.00 28.33 0.00 0.00 0.00 0.00
2-shot 55.00 50.00 20.00 35.00 55.00 10.00 5.00 10.00 0.00
3-shot 10.00 20.00 0.00 30.00 33.33 10.00 10.00 20.00 0.00

rules = 3
0-shot 50.00 52.50 20.00 6.67 6.00 0.00 10.00 6.33 0.00
1-shot 56.67 68.33 20.00 20.00 36.25 0.00 16.7 22.83 0.00
2-shot 66.67 67.50 50.00 16.67 26.67 0.00 6.67 15.00 0.00
3-shot 3.33 3.33 0.00 23.33 40.83 0.00 3.33 3.33 0.00

Table 7: Left Output Strictly Local with sample size = 2 with few-shot example
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Models Settings
k = 2 k = 3 k = 4

recall precision compatibility recall precision compatibility recall precision compatibility

vocab size = 2

rules = 1
0-shot 40.00 40.00 40.00 20.00 10.00 10.00 20.00 10.00 10.00
1-shot 60.00 60.00 60.00 50.00 40.00 50.00 30.00 18.33 10.00
2-shot 60.00 60.00 60.00 40.00 35.00 40.00 30.00 25.00 20.00
3-shot 60.00 60.00 60.00 50.00 40.00 50.00 10.00 2.50 10.00

rules = 2
0-shot 40.00 40.00 30.00 15.00 18.33 10.00 20.00 18.67 10.00
1-shot 60.00 60.00 50.00 40.00 42.50 20.00 30.00 33.33 0.00
2-shot 70.00 80.00 60.00 45.00 43.33 30.00 20.00 27.50 0.00
3-shot 90.00 90.00 90.00 45.00 41.67 30.00 15.00 15.00 0.00

rules = 3
0-shot 63.33 76.67 30.00 23.33 24.17 0.00 10.00 7.83 0.00
1-shot 60.00 60.00 60.00 40.00 47.83 0.00 20.00 24.17 0.00
2-shot 60.00 60.00 60.00 50.00 48.33 20.00 16.67 18.33 0.00
3-shot 60.00 60.00 60.00 43.33 46.67 10.00 16.67 25.00 0.00

vocab size = 3

rules = 1
0-shot 40.00 40.00 40.00 30.00 25.00 30.00 30.00 7.26 0.00
1-shot 70.00 65.00 60.00 40.00 35.00 40.00 20.00 15.00 10.00
2-shot 80.00 75.00 70.00 50.00 50.00 50.00 30.00 18.33 30.00
3-shot 70.00 65.00 60.00 40.00 35.00 40.00 20.00 15.00 10.00

rules = 2
0-shot 30.00 60.00 10.00 20.00 10.93 0.00 25.00 19.17 10.00
1-shot 65.00 70.00 40.00 30.00 45.00 10.00 15.00 11.67 0.00
2-shot 60.00 70.00 40.00 50.00 44.17 10.00 20.00 20.00 0.00
3-shot 65.00 70.00 40.00 30.00 45.00 10.00 15.00 11.67 0.00

rules = 3
0-shot 30.00 45.00 0.00 26.67 22.67 10.00 10.00 4.58 0.00
1-shot 80.00 80.83 40.00 30.00 37.59 0.00 13.33 11.00 0.00
2-shot 73.33 71.67 30.00 26.67 34.50 0.00 33.33 47.00 0.00
3-shot 80.00 80.83 40.00 30.00 37.60 0.00 13.33 11.00 0.00

vocab size = 4

rules = 1
0-shot 40.00 25.00 30.00 40.00 23.33 20.00 10.00 10.00 10.00
1-shot 60.00 60.00 60.00 50.00 31.67 50.00 10.00 10.00 10.00
2-shot 80.00 68.33 80.00 60.00 33.33 30.00 20.00 20.00 20.00
3-shot 70.00 70.00 70.00 40.00 19.50 40.00 20.00 20.00 20.00

rules = 2
0-shot 45.00 47.33 10.00 50.00 45.83 10.00 5.00 1.67 0.00
1-shot 80.00 70.00 40.00 45.00 61.67 10.00 5.00 10.00 0.00
2-shot 65.00 65.00 40.00 45.00 52.50 20.00 0.00 0.00 0.00
3-shot 75.00 75.00 70.00 45.00 48.33 20.00 15.00 30.00 0.00

rules = 3
0-shot 33.33 39.50 10.00 30.00 23.85 0.00 10.00 10.83 0.00
1-shot 66.67 71.83 30.00 23.33 30.83 0.00 3.33 2.50 0.00
2-shot 83.33 86.50 50.00 26.67 37.50 0.00 13.33 28.83 0.00
3-shot 76.67 80.00 50.00 40.00 51.67 10.00 13.33 20.00 0.00

Table 8: Right Output Strictly Local with sample size = 2 with few-shot example

26546


