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Abstract

Large Language Models (LLMs) have achieved
remarkable success in natural language process-
ing (NLP), particularly in single-turn question
answering (QA) on short-text. However, their
performance significantly declines when ap-
plied to multi-turn QA over extra-long context
(ELC), as they struggle to capture the logical
correlations across multiple chunks of ELC and
maintain the coherence of multi-turn Questions.
To address the challenges, we propose the
CSTree-SRI framework(Cognitive Semantic
Tree through Summarization, Retrieval, and
Introspection). CSTree-SRI dynamically con-
structs the CSTree to preserve logical coher-
ence within ELC through hierarchical synthe-
sis and introspective validation. Then a logic-
driven traversal strategy on CSTree is designed
to provide efficient information retrieval for
question answering. Additionally, we construct
a suite of multi-turn QA datasets and an eval-
uation benchmark tailored for ELC tasks, and
comprehensive experiments demonstrate the
framework’s superiority in addressing the chal-
lenges of multi-turn QA over ELC.

1 Introduction

The rapid proliferation of digital information has in-
tensified the demand for understanding extra-long
context (ELC) in multi-turn question answering
(MTQA) with LLM. ELC involves both single doc-
uments (e.g., legal contracts) and cross-document
synthesis (e.g., academic literature reviews) that
exceed the context window of LLM (Bai et al.,
2024b). MTQA over ELC scenarios further compli-
cates the problem. Users often engage in iterative
questioning, such as consulting legal clauses or ex-
ploring academic topics. As shown in Fig. 1, such
kind of tasks require capturing the logical correla-
tion among multiple chunks of ELC, the coherence
among multi-turn QA, as well as the alignment be-
tween questions and partially overlapping retrieved
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Figure 1: An Example of MTQA over ELC. The Ist
question of summarizing multiple papers involves the
correlation among multiple chunks of ELC, the 2nd
question of recommending the latest one involves the
coherence among multiple questions, and the follow-
ing two questions of the paper details involve partially
overlapping retrieved segments. We propose a cogni-
tive semantic tree to capture logical relationships and
coherence across MTQA over ELC.
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segments (Zhu et al., 2023), thus placing higher de-
mands on LLMs’ ability to precisely and efficiently
extract key information in ELC.

There are mainly two kinds of approaches in pro-
cessing ELC (Huang et al., 2023): (1) modifying
LLM'’s architecture to extend the context window,
e.g., optimizing attention mechanisms (Chen et al.,
2023b), introducing recurrence (Borgeaud et al.,
2022), or modifying positional encoding (Su et al.,
2024); (2) employing external tools (e.g., RAG and
Agents) to assist LLM in efficient retrieval and in-
formation processing (Topsakal and Akinci, 2023).
These approaches primarily focus on single-turn
tasks, lacking effective mechanisms for maintain-
ing coherence across multi-turn interactions.

Research on multi-turn conversation abilities has
largely been confined to short-text domains, where
evaluation benchmarks have been well-established.
Traditional methods on MTQA simply concatenate
historical turns, where context is utilized ineffi-
ciently (Zhang et al., 2018a), and noise may be
introduced. Moreover, when the context window is
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exceeded, truncation mechanisms may discard crit-
ical information, adversely affecting the model’s
reasoning and comprehension.

In summary, current research on MTQA over
ELC exhibits three key limitations: (1) logical
fragmentation: Existing context window exten-
sion methods address length constraints but fail to
preserve inter-document, across-MTQA relation-
ships (Liao et al., 2024). (2) noise accumulation:
Concatenating multi-turn inputs causes noise ac-
cumulation from redundant information, and in-
creases computational costs (Zhang et al., 2018b).
(3) evaluation gaps: Existing benchmarks focus
on short-text MTQA (Kwan et al., 2024; Wang
et al., 2023; Bai et al., 2024a), lacking datasets
and metrics for evaluating MTQA reasoning per-
formance over ELC.

To address these challenges, we propose
CSTree-SRI(Cognitive Semantic Tree through
Summarization, Retrieval, and Introspection), a
framework for multi-turn QA over extra-long con-
text (ELC), which dynamically constructs a hierar-
chical Cognitive Semantic Tree (CSTree) to orga-
nize ELC into document/paragraph/sentence nodes,
preserving logical coherence for efficient retrieval.
CSTree-SRI integrates four expert modules: (1)
Retrieval Expert (RE), for relevant segments filter-
ing; (2) Summary Expert (SE), which generates
hierarchical summaries; (3) Introspection Expert
(IE), which dynamically makes decisions on re-
trieval and response optimization; and (4) Answer
Expert (AE), produces final responses. To address
challenge 1, CSTree-SRI first dynamically builds
the CSTree through hierarchical synthesis and in-
trospective validation by a collaboration of RE,
SE, and IE. To address challenge 2, it then in-
troduces a logic-driven hierarchical traversal strat-
egy on CSTree to retrieve relevant information for
the next question by RE and IE. Subsequently, the
framework iteratively optimizes responses through
collaboration between AE and IE, ensuring both rel-
evance and grounding in the retrieved information.
To address challenge 3, we construct an MTQA-
ELC benchmark and assess LLM performance in
extra-long context QA tasks. Our contributions
transcend prior work in three dimensions:

(1) Framework Innovation: CSTree-SRI is
the first attempt to construct and utilize the
introspection-driven CSTree through the collabora-
tion of multiple expert modules for understanding
ELC in MTQA precisely and efficiently.

(2) Benchmark Rigor: We introduce the first

MTQA-ELC benchmark, containing over 500 ar-
ticles spanning 391k words, nearly 4k groups of
correlated questions, and new metrics for reasoning
time, accuracy, and LLM-human gaps.

(3) Empirical Superiority: On tasks with 256k+
tokens, CSTree-SRI improves multi-turn QA per-
formance by an average of 21.48%, reduces in-
ference time by 41.11% (ETScore) compared to
RAG/Agent solutions while improving answer ac-
curacy by 44.17%.

2 Related Work
2.1 Long-Text Processing in LLMs

Current challenges in enhancing the long-text pro-
cessing capabilities of LLMs include (Huang et al.,
2023): quadratic complexity in attention compu-
tation, the lack of context memory mechanisms,
and limitations on the maximum length of train-
ing samples. Existing approaches can be broadly
categorized into two classes:

Architectural Optimization. Existing ap-
proaches to enhance Transformer-based LLMs’
long-text processing capabilities focus on the fol-
lowing architectural optimizations: (1) Attention
mechanism refinement improves computational ef-
ficiency through blockwise processing or hierarchi-
cal attention (Qiu et al., 2019; Chen et al., 2023b;
Yang et al., 2016), yet often sacrifices global con-
textual awareness; (2) Recurrent memory augmen-
tation integrates external memory databases to pre-
serve long-term dependencies (Borgeaud et al.,
2022; Tworkowski et al., 2024), but struggles with
precise memory retrieval; (3) Positional encoding
extension employs rotary operations or NTK-aware
scaling to expand context windows (Su et al., 2024;
Chen et al., 2023a; Peng and Quesnelle, 2023), but
they require additional adjustments and optimiza-
tions, potentially increasing training difficulty.

Unlike existing work focused on specific Trans-
former optimizations, we propose CSTree-SRI that
enhances LLMs’ multi-turn QA over ELC beyond
architectural-level improvements.

External Tool Augmentation. These ap-
proaches employ LLMs as black-box processors
combined with external mechanisms: (1) Multi-
agent collaboration frameworks delegate long-text
processing through role specialization and interac-
tion protocols (Zhao et al., 2024), though coordina-
tion overhead increases complexity; (2) Attention
modification techniques like LongHeads adapt at-
tention patterns for extended contexts without archi-
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tectural changes (Lu et al., 2024), but lack dynamic
reasoning adaptation; (3) Retrieval-Augmented
Generation (RAG) enhances inputs through exter-
nal knowledge bases (Gao et al., 2023), with recent
improvements incorporating LLM-guided retrieval
evaluation (Li et al., 2023) and reflection mecha-
nisms (Asai et al., 2023). While effectively circum-
venting context window limitations, such methods
often underutilize LLMs’ native reasoning capaci-
ties for complex textual analysis.

Our work combines chunked retrieval and re-
flective analysis, leveraging multi-module experts
and the Cognitive Semantic Tree to extract and
maintain logical information in ELC. This enables
efficient information filtering and organization, of-
fering a new pathway for MTQA over ELC.

2.2 Benchmarks for MTQA on Long-Context

Evaluating long-context models is challenging due
to the inherent difficulty of collecting and analyz-
ing long texts (Li et al., 2024). Bai et al. (2024b)
introduced the LongBench benchmark, comprising
six major task categories and 21 tasks, covering key
long-text application scenarios. An et al. (2024)
proposed the L-Eval benchmark, which includes
long documents from domains such as law, finance,
academic papers, novels, and conferences, along
with various tasks. However, these benchmarks
primarily evaluate single-turn QA tasks and lack
assessments for MTQA tasks. Zheng et al. (2023)
developed MT-Bench, a dataset of 80 multi-turn
questions, but each dialogue consists of only two
turns. Kwan et al. (2024) increased the number of
turns, proposing MT-Eval, which includes multi-
ple task types within a single dialogue to evaluate
LLMs’ comprehensive multi-turn dialogue capabil-
ities. However, these benchmarks involve relatively
short texts and do not address ELC.

In summary, these works lack evaluations of
LLMs’ reliability and efficiency in MTQA over
ELC, and the distinction between evaluating mod-
els and augmenting long-text processing with ex-
ternal tools remains underexplored. In contrast, our
work evaluates mainstream long-text LLMs and

external tools (e.g., RAG, Agents) in MTQA over
ELC, addressing gaps in existing research.

3 CSTree-SRI

The input to CSTree-SRI consists of a text se-
quence X = {x1,x9,...,2;}, which can be a sin-
gle long document or a collection of documents,
and a sequence of logically dependent queries
Q ={q1,q,...,qm} across multiple rounds. The
framework aims to generate answers for these
queries based on the input X. To handle this,
CSTree-SRI initially segments the input text X
into chunks of a predefined size sz = 512, result-
ingin X = {C1,Cy,...,C;} where t = [l/sz].
These chunks act as the fundamental processing
units, enabling effective multi-turn QA (MTQA)
over extra-long context (ELC) by maintaining and
leveraging historical information throughout the
queries.

3.1 Framework Components

The CSTree-SRI framework comprises a Cognitive
Semantic Tree (CSTree) and four expert modules.

The CSTree is a three-layer tree structure where
the nodes are classified into document-level nodes,
paragraph-level nodes, and sentence-level nodes.
Each node contains a summary or raw text, with
edges between the nodes of various layers formed
due to their common logical relationships.

The four Expert modules include: (1) A Re-
trieval Expert (RE) that filters out relevant text seg-
ments to reduce noise. (2) A Summary Expert (SE)
generates concise summaries after each QA turn
to maintain logical consistency. (3) An Answer
Expert (AE) that produces final responses. (4) An
Introspection Expert (IE) that dynamically refines
retrieval precision. The IE module will conduct
introspection from two aspects: retrieval precision
and response accuracy, with specific introspection
questions detailed in Table 1.

Specifically, for each query ¢;, CSTree-SRI per-
forms two core operations: (1) Dynamic Struc-
ture Construction of the tree through collabora-

Type Specific Question

Relative Are the retrieved text chunks relevant to the current query g¢;?

NodeRetr  For the summarized information of a node, is further retrieval necessary?

ExtraRetr Is the retrieved information from the CSTree sufficient, or is further retrieval from the original text needed?
Support Can the retrieved information support the AE’s answer?

Useful Does the AE’s answer effectively address g;?

Table 1: Introspection Questions for the IE Module (See Appendix C.1 for Detailed Prompts)
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Figure 2: Expert collaborative interaction process of CSTree-SRI. The different shades of the same color in CSTree
represent the step-by-step construction of the CSTree across different QA rounds.

tion among the RE, IE, and SE modules, and (2)
Hierarchical Information Selection on the tree
via collaboration between the RE and IE modules.
After retrieving relevant information blocks, re-
sponses are refined through iterative optimization
between the AE and IE modules to ensure enhanced
answer precision. Appendix C.2 contains specific
prompts for each module. The following sections
describe how these modules interact collaboratively
with the CSTree during each QA round g;.

3.2 Dynamic Structure Construction

Inspired by the hierarchical structure of human
reading notes (paragraph-chapter-book), we pro-
pose a dynamic CSTree construction that mimics
cognitive processes through introspection-driven
hierarchical synthesis. The RE, IE, and SE mod-
ules collaborate to implement the "structured note-
taking" approach. They retrieve context segments,
validate logical coherence through introspection,
and synthesize summaries at paragraph and doc-
ument levels. This process transforms ELC into
navigable information structures. Below, we de-
tail the technical implementation of constructing
paragraph-level and document-level nodes.
Para-Level Node Construction. As shown in
Fig. 2(a), our framework combines flat retrieval
with introspective validation for paragraph-level
construction, known as the flat information re-
trieval strategy. The RE first retrieves candidate
text chunks X using the BM25 algorithm. Mean-
while, the IE assesses whether the retrieved chunks
truly represent the key information Cf,.,, relevant
to the query ¢;, effectively addressing the "key-
word bias" commonly found in traditional sparse
retrieval methods. This two-stage filtering pro-

cess—merging statistical relevance with semantic
introspection—ensures that only logically coherent
fragments proceed to the synthesis phase. The SE
then dynamically creates a hierarchical parent node
Fparq by abstracting the relationships among the
Cley nodes, thereby establishing explicit edges to
maintain content associations and provenance.

Doc-Level Node Construction. The framework
constructs Cy,. through a ratio-controlled trigger-
ing mechanism. When Cp,,, with logical rela-
tionships are identified during CSTree traversal, a
predefined 1:3 doc-to-para ratio threshold governs
the construction process. This ensures that the num-
ber of Cy,. never exceeds one-third of the Cpgrq,
preventing structural redundancy. The proportional
constraint activates the SE module only when suffi-
cient Cpqrq nodes exist. This activation asks the SE
module to generate the doc-level parent node Fy,.
by summarizing relationships across paragraphs.

This hierarchical summarization structure en-
ables dynamic CSTree evolution through progres-
sive QA interactions. Our "structured note-taking"
approach preserves critical relationships within the
ELC, enhancing QA accuracy. Additionally, the
CSTree improves reasoning efficiency by maintain-
ing the logical coherence of the text, which accel-
erates information retrieval. These advantages are
validated in our ablation studies.

3.3 Hierarchical Information Selection

Unlike conventional tree traversal methods with
fixed depth-first or breadth-first strategies, our ap-
proach introduces a logic-driven hierarchical traver-
sal strategy where the IE module evaluates node
relevance at each hierarchy level. The RE and IE
modules collaborate to strategically navigate the
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CSTree, balancing retrieval depth with computa-
tional efficiency to address ELC challenges. This
logic-driven approach mirrors human top-down
comprehension, starting with high-level summaries
and drilling down to details as needed. After re-
trieval, CSTree-SRI uses a sufficiency validation
mechanism to ensure the retrieved information
meets query requirements. The hierarchical infor-
mation selection process is detailed below.

Logic-Driven Hierarchical Traversal Strat-
egy As shown in Fig. 2(b), we have implemented
a dynamic hierarchical traversal strategy that ad-
justs exploration depth through semantic introspec-
tion. The process begins with the IE module an-
alyzing the summary information of each non-
leaf node, and a dynamic continuation probability
¢(C) = 1E(q, Cl, NodeRetr) is calculated for
each node chunk C. The hierarchical retrieval auto-
matically terminates at level [ when ¢(Cj) < 7, im-
plementing principled depth control that prevents
over-retrieval while maintaining query relevance.

For the retrieval results across the entire CSTree,
paragraph-level nodes Cp,, Will have their corre-
sponding document-level parent nodes constructed
as outlined in Section 3.2. For sentence-level nodes
Csen, to prevent excessive information retrieval,
the BM25 algorithm is employed to efficiently fil-
ter the top-K most relevant nodes, which are then
used as the retrieved text chunks from the CSTree.
The entire hierarchical information screening pro-
cess can be formalized as follows:

¢(C) > 7 = Select(Child)
Select(Cgoc) = Select(Cpara) = Select(Csen)

Chunkiree = BM25(qi, Csen, topk)

Here, A = B indicates that operation B is
performed based on the result of operation A;
Select(-) represents the selection operation, where
the child nodes C'hild of the selected node become
the target of the next layer of retrieval; Chunkgyee
refers to the text chunks retrieved from the CSTree;
and BM25(-) denotes the retrieval operation using
the BM25 algorithm.

Sufficiency Validation Mechanism After com-
pleting the CSTree retrieval, the IE module intro-
spects the ExtraRetr to evaluate whether the re-
trieved text chunks are sufficient to answer the
query ¢;. If necessary, additional relevant text
chunks are retrieved from the extra-long context us-
ing the flat information retrieval strategy described
in Section 3.2. Finally, all retrieved text chunks

are consolidated and provided to the AE module to
generate the final response.

3.4 Iterative Response Optimization

This step represents the final stage of the frame-
work, synthesizing text chunks retrieved through
the processes detailed in Sections 3.2 and 3.3.
Through iterative collaboration between the IE and
AE modules, the response to query g; is refined.
The IE module evaluates the AE’s output across
two critical dimensions: <Support>, which en-
sures that the response is grounded in the retrieved
text chunks, and <Useful>, which assesses the re-
sponse’s relevance to ¢;. This dual-focused evalu-
ation facilitates iterative optimization, ultimately
leading to the final answer, as formalized below.

Resp = AE(ql, Chunkiree + Chu’l’kalat)
1E(gi, Resp, Support&Use ful) = Iter(Resp)
Resp” = Iter(Resp)

Here, AE(-) denotes the generation of a re-
sponse by the AE, and Chunk ;,; represents the
text chunks retrieved using the flat information re-
trieval method. I E(Support&U se ful) indicates
the IE module performing the <Support> and <Use-
ful> introspection. Iter(-) represents the itera-
tive process of generating and refining responses
through the AE and IE. Resp* refers to the updated
response generated in a new iteration.

4 MTQA-ELC Benchmark

Current benchmarks for evaluating LLMs primarily
focus on language modeling and generation tasks.
However, these benchmarks may not fully capture
the models’ abilities to handle complex, multi-turn
question-answering tasks, particularly with extra-
long contexts. To address this gap, we have devel-
oped a benchmark specifically designed to assess
LLM performance in information retrieval, key in-
formation extraction, and logical reasoning—skills

Benchmark #words in Text #Turns
Max. Avg. Max. Avg.
LongBench(QA task) | 18409 8640 1 1
L-Eval(QA task) 26918 9133 1 1
MT-Bench 330 68 2 2
MT-Eval 2574 760 12 7
MT-Bench-101 817 202 323 67

MTQA-ELC (Ours) | 217273 217264 | 100 100

Table 2: Data Statistics. Detailed data sources are pro-
vided in Appendix A.1.
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that are crucial for real-world applications involv-
ing long-text processing.

4.1 Data Construction

Table 2 shows the key statistics of MTQA-ELC.
Our dataset consists of reading comprehension pas-
sages from major exams such as the NMET, CET,
PGEE, and TPO. Each passage is carefully divided
into paragraphs, with unique identifiers added at
the beginning and end of each segment to indicate
the article and paragraph. This structure enables ex-
plicit tracking of relationships between paragraphs
when multiple segments from different articles are
concatenated into an ELC. These identifiers allow
benchmarks to evaluate LLMs’ ability to process
and integrate information across paragraphs.

To further assess the integration and reasoning
capabilities of models, we generated multi-turn
question sets based on texts of varying lengths (32k,
64k, 128k, 256k). For fair evaluation, we random-
ize paragraph order, shuffle options, and compare
model performance with human test-taker scores,
as detailed in Appendix A.2.

4.2 Task Set

Reading comprehension tasks assess various cog-
nitive skills. To evaluate LLLMs’ capabilities in
multi-turn QA over ELC, we categorize tasks based
on required abilities, including paragraph retrieval,
information integration, detail/main idea compre-
hension, and logical reasoning.

Tasks are divided into four types: Detail Under-
standing (DU), Semantic & Reference (SR), Main
Idea (MI), and Inference & Judgment (1J). The for-
mer two tasks focus on single-paragraph retrieval
and understanding, while the latter two require in-
tegrating information across multiple paragraphs
to grasp the main idea or perform complex reason-
ing. For all tasks, the input consists of an ELC and
a set of questions with multiple choices, and the
output is the correct choice. Appendix D contains
examples of various evaluation tasks.

4.3 Maetrics

Our Benchmark evaluates LLMs using three key
metrics: Accuracy (ACC), Effective Time Score
(ETScore), and Human-Adjusted Overall Score.
Accuracy is a commonly used metric, while
ETScore and Human-Adjusted Overall Score are
newly proposed metrics in our Benchmark.
ETScore measures LLMs’ reasoning time and
their ability to answer correctly within a specific

time frame, addressing the limitation of traditional
accuracy metrics in capturing time efficiency. The
Human-Adjusted Overall Score compares LLM
performance to human test-takers, highlighting
strengths and weaknesses relative to people.

Accuracy is calculated as:

N
ACC = ; w x 100% 0

Here, N is the total number of questions, and
Check(0;, A;) verifies if the model’s output O;
matches the correct answer A;.

ETScore’s calculation formulas are as follows:

Zfil (EndTime; — StartTime;)
M

K
ET =A -_
Score cc X 15 B x AvgTime 3

Here, M is the number of test papers, AvgTime
is the average reasoning time per question, (3
controls time sensitivity, and K scales the score.
We set § = 0.002 and K = 100, with higher
ET Score indicating better performance.

Human-Adjusted Overall Score accounts for
task difficulty by incorporating test-taker accuracy:

AvgTime = 2)

_ Zi\; Wi
Overall = =~ 4)
Q;
i ijs Qigs ki
W, = E]_l f(pij, aiz, ki) % 100 5)
Qq
f(p, a, k}) — eOA5-k' + aek’(OAS—p)a (6)
o 1, Resp;; = Answer;;
%ij = {1, Respij # Answer;; @

Here, Q; is the number of questions in test paper
i, p;;j is the human accuracy for question j, and a;;
indicates correctness (1 for correct, -1 for incor-
rect). Hyperparameter k adjusts sensitivity: higher
difficulty (p;; low) increases rewards for correct
answers and softens penalties for mistakes, while
low-difficulty errors incur heavier penalties.

5 Experiments

In this section, we evaluate the performance of the
CSTree-SRI framework on both single-turn and
multi-turn QA tasks. For single-turn QA, we use
the LongBench benchmarks. For multi-turn QA,
we conduct experiments on the MTQA-ELC to as-
sess the capabilities of various long-text LLMs over
ELC. We also compare CSTree-SRI with main-
stream RAG and Agent methods, demonstrating its
superior performance in MTQA. Additionally, abla-
tion studies validate the contributions of individual
modules within the CSTree-SRI framework.
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Model/Framework Single-Doc QA

Multi-Doc QA

NQA Qspr. MulFi Avg. \ HQA WMQA  Musq. Avg.
Llama-2-7B-chat 18.7 19.2 36.8 24.9 25.4 32.8 9.4 22.6
-LongHeads w/NTK init ¥ | 16.87 30.32 38.59 28.59 36.04 26.72 10.21 24.32
-LongLora 17.36 28.97 38.37 28.30 34.81 32.57 12.72 26.70
-CSTree-SRI 19.42 23.34 41.25 28.00 35.73 35.21 21.23 30.72

Table 3: The results of different methods based on the Llama-2-7B-chat model on LongBench. { means the data are

sourced from the LongBench and LongHeads papers

5.1 Experiments Setting

All evaluations were conducted with float16 pre-
cision on 4 Nvidia V100-32G GPUs. Configuration
details for each benchmark are described below.

LongBench We evaluated six English datasets
from LongBench: NarrativeQA, Qasper, Multi-
FieldQA, HotpotQA, 2WikiMQA, and Musique,
spanning single- and multi-document QA tasks.
The CSTree-SRI framework used Llama-2-7B-
chat as the AE with gpt-3.5-turbo for SE/IE mod-
ules. Baseline included: 1) vanilla Llama-2-7B-
chat, 2) LongLoRA (Chen et al., 2023b, attention-
optimized fine-tuning), and 3) LongHeads (Lu
et al., 2024, attention head selection).

MTQA-ELC We conducted 100-round multi-
turn QA sessions. Vanilla LLMs processed texts
by concatenating the first and last halves of
their context windows due to inherent context
window limitations. We evaluated three open-
source LLMs with 128K context windows (GLM-
4-9B-Chat, Llama-3.1-8B-Instruct, Qwen2.5-7B-
Instruct), all locally deployed. Additionally, we
tested three API-accessed models: gpt-4o-mini
(128K), DeepSeek-chat (64K), and gpt-3.5-turbo
(16K). External tools compared included RAG (us-
ing jina-embeddings-v2-base-en with cosine simi-
larity), LongAgent (with gpt-4o0-mini), and CSTree-
SRI (with gpt-4o-mini for SE/IE), all using Llama-
3.1-8B-Instruct as the QA module. Appendix C.3
contains prompts for evaluation tasks.

5.2 Single-Turn QA Evaluation

Table 3 compares our method with LongHeads and
LongLora on single-turn QA tasks within Long-
Bench. Our method achieves performance that is
comparable to the baseline in single-document QA.
However, in multi-document QA, CSTree-SRI sig-
nificantly outperforms the others in average scores,
demonstrating its effectiveness in handling more
complex long-text QA tasks. This improvement
is due to our framework’s enhanced ability to cap-
ture the logical relationships within lengthy and
intricate texts.

To further validate the generalizability of our
method across different models, we conducted ad-
ditional experiments on the L-Eval benchmark.
The results demonstrate consistent performance
improvements, as detailed in Appendix B.1.

5.3 Multi-Turn QA Evaluation

Table 4 presents the performance comparison of
Long-Context LLMs and external tool-enhanced
methods on MTQA tasks across different context
lengths. For Long-Context LLM with a 128K na-
tive context window, both ACC and ETS decline
significantly when handling texts beyond this limit
(128K, 256K) compared to shorter contexts (32K,
64K), highlighting their constraints in extra-long
context processing.

Comparing the overall performance of CSTree-
SRI (with Qwen-2.5-7B-Instruct as AE) to gpt-4o-
mini and deepseek-chat in Table 4, our method
achieves the highest Overall score (213.78) while
maintaining consistently high ACC and ETS across
different context lengths. This highlights CSTree-
SRI’s effectiveness in mitigating performance
degradation in ELC scenarios.

Table 4 also compares models enhanced with
external tools. Experimental results show that tra-
ditional RAG methods offer minimal gains within
context limits and only slight improvements for
ELC. LongAgent improves long-text QA capability
but incurs high time costs due to excessive inter-
agent interactions, especially at longer contexts
(e.g., ETS of 37.13 at 256K length). In contrast,
CSTree-SRI outperforms these methods across all
context lengths, especially beyond 256K tokens,
boosting MTQA performance by 21.48%, reduc-
ing inference time by 41.11% (ETScore), and in-
creasing accuracy by 44.17% (calculated based on
CSTree-SRI with Llama-3.1-8B-Instruct as AE).
We attribute this improvement to the dynamic con-
struction of CSTree, which preserves key infor-
mation in multi-turn QA, and its logic-driven hi-
erarchical traversal strategy, effectively reducing
retrieval time in extra-long context scenarios and
leading to superior overall performance.
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32k

64k

128k 256k

Model ACC(%) ETS | ACC(%) ETS | ACC(%) ETS | Acc%) Ers | Overall
Locally Deployed Models
Llama-3.1-8B-Instruct 56.00 S51.11 60.33 48.26 48.00 43.31 54.33 48.94 | 157.75
GLM-4-9B-Chat 64.00 57.14 68.33 52.43 56.67 48.68 61.00 52.32 | 173.62
Qwen2.5-7B-Instruct 75.00 69.44 65.33 53.95 64.67 58.98 71.00 62.77 | 187.17
API-Based Models
gpt-3.5-turbo 25.67 25.50 27.33 27.11 26.00 25.77 23.33 23.20 97.66
gpt-40-mini 84.33 83.25 86.33 84.23 75.33 73.15 74.67 69.14 | 208.10
deepseek-chat 93.67 90.17 87.67 84.56 77.33 72.72 75.33 70.71 | 210.38
Models Enhanced with External Tools
RAG 57.33 56.59 56.00 55.02 58.33 56.81 57.00 54.55 | 162.74
LongAgent 66.67 46.69 65.67 51.12 62.67 38.31 65.67 37.13 | 179.26
CSTree-SRI (The Open-Source Model Only as Answer Expert)
Ours (Llama-3.1 as AE) 72.67 65.03 76.33 68.71 78.33 70.45 78.33 69.06 | 202.35
Ours (GLM-4 as AE) 81.00 74.27 79.67 72.86 82.67 73.22 80.67 71.15 | 211.74
Ours (Qwen-2.5 as AE) 83.67 76.21 80.33 72.56 83.00 73.46 81.00 75.79 | 213.78
CSTree-SRI (A Pure Open-Source Configuration)
Ours (Purely Llama-3.1) 68.33 60.69 68.67 59.04 65.33 58.56 69.67 58.77 | 182.85
Ours (Purely GLM-4) 70.33 64.86 72.33 66.21 68.00 61.96 70.67 64.72 | 193.23
Ours (Purely Qwen-2.5) 79.33 73.36 71.00 65.82 73.33 65.96 75.67 70.79 | 198.16

Table 4: Results of MTQA with LLMs and External Tool-Enhanced Methods under Different Context Lengths. The
best performance is shown in bold, while the second best performance is represented with an underline.

The bottom three rows in the table 4 present that
any LLM in our method can be effectively replaced
with purely open-source models. Furthermore, this
configuration of purely open-source models is still
effective for MTQA over ELC compared to the
original locally deployed models. To evaluate the
resource efficiency, we also analyzed the number
of LLM interactions and token consumption across
different configurations. The detailed results are
presented in Appendix B.3.

To further validate CSTree-SRI, we analyzed its
MTQA performance across task types and diffi-
culty levels. CSTree-SRI remains robust as ques-
tion difficulty increases and excels in complex
reasoning and multi-paragraph retrieval, demon-
strating strong logical consistency and long-range
dependency capture. Detailed results are in Ap-
pendix B.2.

5.4 Ablation Study

We conducted ablation experiments to assess the
contributions of the CSTree, SE, and IE modules.
Experiments were performed on the MTQA-ELC
dataset with 256K-length contexts. Results are pre-
sented in Table 5, using Llama-3.1-8B-Instruct as
the AE, gpt-40-mini for SE/IE, and CSTree con-
struction enabled as the default configuration.
Impact of Different LLLMs for Expert Mod-
ules. Replacing gpt-4o0-mini with the more power-
ful gpt-4o or deepseek-chat in the SE/IE improves

. 256k
Model Setting ACC(%) ETS
CSTree-SRI 78.33 69.06
-w SE/IE use deepseek-chat 81.33(+3.8%) 73.35(+6.2%)
-w SE/IE use gpt-4o 79.33(+1.3%) 72.46(+4.9%)

-w SE/IE use gpt-3.5-turbo  73.00(-6.8%) 63.54(-8.0%)

-w/o CSTree 73.67(-6.0%) 64.84(-6.1%)
-w/o SE 70.00(-10.6%) 64.63(-6.4%)
-w/o IE 60.00(-23.4%) 58.60(-15.2%)

Table 5: Ablation Study on MTQA-ELC (256k-length)

both ACC and ETS. Conversely, substituting these
modules with the weaker gpt-3.5-turbo leads to a
decline in overall performance, highlighting the
importance of strong LLMs in expert modules.
Impact of CSTree-SRI Modules. The abla-
tion experiment results in Figure 6 show that re-
moving CSTree results in declines in both ACC
and ETS, as the framework loses logical relation-
ships from historical information, weakening its
ability to process multi-turn questions. Similarly,
excluding the SE module, where non-leaf nodes
store concatenated child node information instead
of summarized data, reduces accuracy by 10.6%
due to redundancy. This redundancy overloads the
IE module’s retrieval process and impairs its abil-
ity to determine further retrieval needs accurately.
Notably, removing the IE module leads to the most
significant performance drop, with ACC decreas-
ing by 23.4% and ETS by 15.2%, as this module
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is essential for guiding the reasoning process. The
introspective questioning mechanism enables the
LLM to process ELC, ensuring successful multi-
turn QA efficiently.

Overall, these results validate the effectiveness
of each CSTree-SRI module in maintaining logi-
cal consistency, reducing retrieval redundancy, and
enhancing multi-turn QA performance.

6 Conclusion

In this paper, we propose CSTree-SRI, a frame-
work to enhance LLM performance on multi-turn
QA tasks over extra-long contexts. CSTree-SRI fol-
lows an introspection-driven way to construct and
search on CSTree, where logical relationships and
coherence within ELC are preserved, through the
collaboration of the Summary, Retrieval, Introspec-
tion and Answer expert modules. We also design
the MTQA-ELC benchmark and conduct compre-
hensive experiments. The results demonstrate the
effectiveness of our proposed CSTree-SRI.

For future work, we will refine the design of
each expert module and integrate mechanisms like
position encoding modifications, pre-training, and
fine-tuning techniques to further improve the accu-
racy and efficiency of relevant context retrieval.

7 Limitations

Dependency on External LLMs for Expert Mod-
ules. The CSTree-SRI framework’s reliance on
third-party LLMs (e.g., gpt-4, gpt-3.5) for criti-
cal modules—Summary Expert (SE), Introspection
Expert (IE), and Answer Expert (AE)—introduces
systemic risks in terms of operational stability and
cost efficiency. Performance bottlenecks may arise
from API latency, model availability fluctuations,
or unexpected service interruptions. To mitigate
these risks, the framework’s modular design inher-
ently supports alternative implementations, includ-
ing open-source LLMs (e.g., Llama-3, Qwen) or lo-
cally deployed models. This flexibility allows users
to reduce dependency on specific vendors and en-
hance robustness against service disruptions. How-
ever, the financial burden of deploying high-tier
LLMs—whether proprietary or self-hosted—could
still render the framework economically impracti-
cal for resource-constrained users or organizations,
particularly in scenarios requiring frequent or large-
scale ELC processing.
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A Data Details

A.1 Data Collection

We collected a large number of English reading
comprehension passages from publicly available
datasets of domestic and international large-scale
exams. For each question, we also obtained addi-
tional data, such as the accuracy rate of test-takers.
The annotators are three undergraduate students
in computer science who are familiar with read-
ing comprehension tasks and exam question types.
The annotation process involved three independent
annotators labeling questions based on the orig-
inal exam materials. Conflicts in labeling were
resolved through discussions with two senior re-
searchers. All exam passages and questions are
publicly available on official educational websites,
and the annotation work was conducted by our
research team to ensure alignment with task re-
quirements. Detailed information about the raw
dataset is provided in Table 6. The abbreviations
in Table 6 are defined as follows: NMET refers
to the National Matriculation Entrance Test, CET
denotes the College English Test, PGEE stands for
the Post-graduate Entrance Examination, and TPO
represents the TOEFL Practice Online.

Category  #Passages #Words #Questions
NMET 118 50k 446

CET 150 92k 750

PGEE 97 57k 478

TPO 207 192k 2197

Total 572 391k 3871

Table 6: Raw data statistics of MTQA-ELC

A.2 Construction Methodology

Preventing Data Leakage. To prevent "data leak-
age," where test data may overlap with training
data, we randomized the paragraph order and shuf-
fled multiple-choice question options. This mini-
mizes the likelihood of LLLMs generating answers
based on prior exposure, ensuring a more accurate
assessment of their understanding and reasoning
capabilities in novel contexts.

Ensuring Fair Evaluation Across Different
Lengths. To fairly evaluate model performance
across varying text lengths without being influ-
enced by data quality, we constructed three distinct
"test papers" for each length. Each length’s final
score is the average accuracy rates and reasoning
times across the three test sets.

Assessing the Gap Between LLMs and Hu-
man Performance. To evaluate the performance
gap between LLMs and humans, we used the accu-
racy rates of test-takers for each question as the "hu-
man performance score," reflecting the real-world
difficulty of the questions. The performance gap
was then calculated using a series of formulas, de-
tailed in Section 4.3.

B Additional Experiments

B.1 Single-Turn QA Evaluation

L-Eval Evaluation Setting For closed-ended tasks,
we selected four datasets: Coursera, QuALITY,
TOEFL, and SFcition. CSTree-SRI employed gpt-
3.5-turbo for SE/IE modules while testing three AE
configurations: Llama-2-7B-chat, Llama-2-13B-
chat and Chatglm2-6b-8k. Baseline models used
these vanilla models.

Table 7 demonstrates that our method achieves
an average improvement of 13.6% when applied
to different base models on the L-Eval benchmark.
This indicates that our method is broadly applicable

Model Crsr. QuA. TOEFL SF |  Avg

Llama2-7B-chat 29.21 37.62 51.67 60.15 44.66
-CSTree-SRI 35.471 43.071 61.341 67.191 51.771
Llama2-13B-chat 35.75 42.57 60.96 54.68 48.49
-CSTree-SRI 40.261 46.531 67.821 64.067 54.671
Chatglm2-6b-8k 43.75 40.59 53.90 54.68 48.23
-CSTree-SRI 48.217 45.841 63.191 59.341 54.151

Table 7: The results of CSTree-SRI based on different model on L-Eval. The experimental data for the original
models are sourced from the results reported in the L-Eval paper.
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Figure 3: The radar chart represents the performance differences between models across task types. The bar chart
represents the performance improvements of CSTree-SRI across task types.

Model DU MI 1 SR Overall
ACC(%) ETS |ACC(%) ETS |ACC(%) ETS |ACC(%) ETS
32k Length
Llama-3.1-7B-Instruct | 67.33 61.53| 5094 46.68| 54.67 50.00| 88.67 80.31| 180.86
-CSTree-SRI 79.00 67.33| 78.87 69.67| 72.00 6597| 89.33 82.26|210.21
GLM-4-9B-Chat 65.67 57.62| 7585 66.76| 63.00 55.34| 88.67 76.92| 196.83
-CSTree-SRI 82.00 71.90| 80.38 72.40| 80.67 73.94| 92.33 86.13|218.42
Qwen-2.5-7B-Instruct | 75.33 68.28| 69.06 63.81| 67.00 58.19| 90.00 82.30|201.08
-CSTree-SRI 85.33 69.41| 81.89 74.50| 78.67 61.77| 92.00 85.86|219.71
gpt-40-mini 86.33 85.29| 8491 8295| 80.00 79.12| 95.67 94.42|224.40
gpt-3.5-turbo-16k 28.00 27.80| 22.64 22.49| 30.67 30.39| 16.67 16.62| 93.74
256k Length
Llama-3.1-7B-Instruct | 45.33 40.87| 42.33 38.17| 43.67 39.40| 84.00 75.58]| 156.35
-CSTree-SRI 78.67 6705 71.00 6144 71.00 63.29| 89.33 83.65| 204.8
GLM-4-9B-Chat 55.00 47.76| 67.17 58.10| 47.33 40.72| 77.67 67.37|199.14
-CSTree-SRI 86.00 7598 79.67 68.79| 81.67 71.73| 93.33 87.09| 220.46
Qwen-2.5-7B-Instruct | 61.00 55.63| 54.67 49.80| 5633 5141| 87.67 79.67|179.05
-CSTree-SRI 84.00 72.99| 76.00 66.73| 78.67 68.86| 90.33 84.43|214.56
gpt-40-mini 69.33 67.71| 6233 61.26| 6533 63.98| 90.00 88.33|192.96
gpt-3.5-turbo-16k 18.00 17.93| 23.67 23.47| 27.00 26.77| 25.67 25.55| 96.46

Table 8: Experimental Results of MTQA for Different Types of Tasks. The best performance is shown in bold,
while the second best performance is represented with an underline.
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Model NMET CET PGEE TPO avg.
ACC(%) ETS Overall| ACC(%) ETS Overall| ACC(%) ETS Overall| ACC(%) ETS Overall|Overall
32k Length
Llama-3.1-7B-Instruct| 66.33 61.66 182.31| 58.67 54.61 170.38| 69.00 64.17 197.41| 47.33 42.38 139.59(172.42
-CSTree-SRI 74.33 67.43 198.72| 77.00 68.19 207.54| 75.67 68.93 210.91| 82.00 75.43 211.30|207.12
GLM-4-9B-Chat 64.33 58.59 178.27| 61.67 55.39 176.50| 55.67 50.75 170.27| 73.33 62.29 193.23|179.57
-CSTree-SRI 83.33 76.24 217.01| 79.67 73.14 212.89| 82.00 73.92 223.76| 89.67 83.09 227.02|220.17
Qwen-2.5-7B-Instruct | 75.67 70.69 201.42| 80.67 74.83 215.17| 77.67 72.87 214.93| 77.67 70.37 202.29|208.45
-CSTree-SRI 79.67 73.18 209.60| 81.00 72.31 215.70| 81.33 71.92 222.33| 86.33 77.08 220.18|216.95
gpt-40-mini 86.67 85.60 223.75| 83.00 81.82 219.83| 82.67 79.84 225.09| 89.67 88.47 226.98223.91
gpt-3.5-turbo-16k 37.00 36.66 122.43| 31.33 31.02 114.82| 26.67 26.40 111.52| 12.33 12.31 67.36 |104.03
256k Length
Llama-3.1-7B-Instruct| 57.33 51.64 165.01| 42.00 37.91 135.65| 45.00 40.59 151.67| 51.67 46.51 146.49|149.71
-CSTree-SRI 68.67 60.27 188.13| 72.33 62.65 197.43| 67.33 58.88 196.88| 88.00 79.05 221.31|200.94
GLM-4-9B-Chat 49.33 4393 151.13| 45.67 40.44 148.81| 43.67 39.26 159.18| 59.67 50.17 152.53]152.91
-CSTree-SRI 79.00 68.20 208.97| 77.67 66.06 208.37| 78.00 70.00 218.43| 86.33 78.19 217.81|213.40
Qwen-2.5-7B-Instruct| 70.33 63.95 191.36| 56.00 51.00 164.13| 58.67 53.45 179.38| 74.67 67.87 193.92|182.20
-CSTree-SRI 76.67 68.94 204.34| 78.67 68.40 210.30| 71.33 64.81 205.05| 88.33 79.82 221.94|210.41
gpt-40-mini 69.00 67.48 188.65| 65.67 64.55 183.80| 62.33 60.95 186.67| 81.67 80.15 208.43|191.89
gpt-3.5-turbo-16k 22.33 22.18 93.68 | 28.33 28.00 107.86| 30.33 30.09 121.96| 31.67 31.49 104.89|107.10

Table 9: Experimental Results of MTQA for Tasks of Different Difficulty Levels. The best performance is shown in

bold, while the second best performance is represented with an underline.

Model Avg. token comsumption Avg.
#Input #Output #Interaction Count
CSTree-SRI (A Pure Open-Source Configuration)
Ours (Purely Llama-3.1) 23570.11 1883.58 37.71
Ours (Purely GLM-4) 22442.74 949.00 18.98
Ours (Purely Qwen-2.5) 18717.58 777.20 15.95
CSTree-SRI (The Open-Source Model Only as Answer Expert)

Ours (Llama-3.1 as AE) 14922.58 1211.91 18.14
Ours (GLM-4 as AE) 11437.21 796.38 13.77
Ours (Qwen-2.5 as AE) 9938.34 471.49 11.81

Table 10: Resource Consumption Study on MTQA-ELC (256k-length). The best performance is shown in bold.

across various models while significantly enhanc-
ing their QA capabilities.

B.2 Multi-Turn QA Evaluation

Due to DeepSeek’s widespread recognition, access
to its API has become challenging, and therefore,
related models were not evaluated in the experi-
ments presented in the appendix. In future work,
we plan to supplement the evaluation of its models.

Fig. 3 visualizes the experimental results of dif-
ferent models across various task types in multi-
turn question answering, while Table 8 provides
the detailed experimental data for this study. Most
LLMs achieve higher accuracy and ETS scores
on DU and SR tasks, indicating their inherent
strength in single-paragraph retrieval. However,
performance degrades significantly on MI and 1J
tasks, revealing limitations in multi-paragraph re-

trieval and cross-context reasoning. The CSTree-
SRI framework mitigates these weaknesses, demon-
strating substantial improvements across all task
types—particularly for MI (31.30%7) and 1IJ
(39.77%1) on ETScore.

Table 9 evaluates MTQA performance on tasks
of different difficulty levels. On the 32k-length task,
gpt-4o-mini still achieves the highest performance;
however, LLLMs augmented with our CSTree-SRI
demonstrate competitive results across all metrics,
narrowing the gap with gpt-4o-mini. Notably, on
the ELC task (256k-length), our framework outper-
forms gpt-40-mini in tasks of all difficulty levels.

B.3 Resource Consumption Study

Table 10 presents the method cost analysis experi-
ment conducted on 256k-length extra-long contexts
from MTQA-ELC. Below, we explain the meaning
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of each statistical metric:

* Avg. #Input token consumption: Represents
the average number of tokens input into all
LLMs (SE/IE/AE) per round in the MTQA
process.

* Avg. #Output token consumption: Repre-
sents the average number of tokens output by
all LLMs (SE/IE/AE) per round in the MTQA
process.

* Avg. #Interaction Count: Represents the av-
erage number of times each LLM (SE/IE/AE)
is invoked per round during MTQA, indicat-
ing the interaction frequency between differ-
ent modules in our framework.

We find that after applying our CSTree-SRI
method, even when handling 256k-length extra-

long contexts, the token consumption remains ex-
ceptionally low—input token consumption is under
24k, and output token consumption is under 2k.
Moreover, when using Qwen-2.5-7B-Instruct as
AE and GPT-40-mini as SE/IE, the token consump-
tion is even lower—input token consumption drops
below 10k, and output token consumption falls
below 0.5k, while the average interaction count
among modules is only 11.81.

In table 10, we did not include the token con-
sumption data for the Locally Deployed Models,
because these models directly feed the entire 256k-
length text into the LLM for every query. As a
result, the average token consumption per round
in multi-turn question answering is guaranteed to
exceed 256k tokens, which further highlights the
significant efficiency advantage of our method in
terms of token consumption.
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C

Prompts

C.1 The Prompts for Introspective Question
C.1.1 Relative

\

~

Instruction: Please evaluate the relevance of the provided evidence to the
question from the following aspects.

1. If the evidence relate to the same article as the question, respond with
[Relevant]

2. If the evidence relate to the same topic, or theme as the question, respond
with [Relevant]

3. If the evidence provide background knowledge or context that may help in
understanding the question or related concepts, respond with [Relevant]

4.1f the evidence include information could offer relevant context or serve as a
contrast that helps clarify the question, respond with [Relevant]

Please judge whether the evidence is relevant to the question in order
according to my standards. If it meets the standards, please return directly to the
[Relevant]. Otherwise, respond with [Irrelevant].

I will provide you with multiple pieces of evidence and a question. Please
indicate whether each piece of evidence is relevant to the question, separated by
an (@ sign. The output example is [Relevant] @ [Irrelevant] @ [Irrelevant]

Instruction: {instruction}{question}
Evidence: {retrieval content}
Judgment:

Figure 4: The Prompt for <Relative> Introspection

C.1.2 ExtraRetr

)

-

Instruction: Based on the multiple retrieval text I found regarding this question,
do you think I should continue searching for more text?

If you believe the existing text is insufficient to answer the question, please
respond with [Yes] otherwise respond with [No].

Retrieval Text: {retrieval content}
Question: {question}
Judgment:

\

Figure 5: The Prompt for <ExtraRetr> Introspection
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C.1.3 NodeRetr

4 N

Instruction: You are an intelligent information retrieval assistant. You will be
provided an instruction and a summary of an article. Your task is to determine
whether it is necessary to retrieve the full content of the article based on the
provided summary. There are three cases:

- If the summary relate to the same article as the question, respond with [ Yes].

- If the summary suggests some similarity to the question or indicates that the
article may potentially answer the question, respond with [Yes].

- If the summary already sufficiently answers the question, respond with [Yes].

If the information in the [Summary] is likely to be useful for any of these
cases, please respond with [ Yes]. Otherwise, respond with [No].

Summary: {retrieval summary}
Instruction: {instruction}{question}
Judgment:

- )

Figure 6: The Prompt for <NodeRetr> Introspection

C.1.4 Support

Instruction: You will receive an instruction, evidence, and output. Your task is to
evaluate whether the output is supported by the information provided in the
evidence. There are three cases:

[3-Fully supported] - All information in output is supported by the evidence,
or extractions from the evidence. This is only applicable when the output and part
of the evidence are almost identical.

[2-Partially supported] - The output is supported by the evidence to some
extent, but there is some information in the output that is not discussed in the
evidence. For instance, if the output covers multiple concepts and the evidence
only discusses some of them, it should be considered a [Partially supported].

[1-No support] - The output completely ignores evidence, is unrelated to the
evidence, or contradicts the evidence.

Please select from the following three options [3], [2], [1].

Instruction: {instruction}{question}
Evidence: {retrieval content}
Output: {answers}

Judgment:

Figure 7: The Prompt for <Support> Introspection
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C.1.5 Useful

Instruction: You are a teacher. You will receive an instruction and an output.
Your task is to evaluate the student‘s output based on the provided instruction.
You should score it according to the criteria outlined below.

Scoring Criteria:
[1-Unrelated answer]: Serious errors, confusing, Unclear and worthless.
[2-Partially related]: weak response, Multiple inaccuracies, misleading.
Confusing, lacks logic.
[3-Somewhat related]: partial answer, some mistakes, Moderate clarity,
includes vague parts.
[4-Relevant and mostly complete]: Generally accurate, no major errors, Clear
and logical, easy to understand.
[5-Fully relevant and comprehensive answer]: Highly accurate, rich
information, Very clear, logical, and valuable.
Additional Suggestions:
For higher scores, it is best to include examples and explanations that help
illustrate key points. Meanwhile, Encourage thoroughness and critical thinking in
responses. Please select from the following five options [5], [4], [3], [2], [1].

Instruction: {instruction}{question}
Output: {answers}
Score:

-

Figure 8: The Prompt for <Useful> Introspection

C.2 The Prompts for Expert Modules
C.2.1 AE Module

Instruction: {content}{query}. Provide the answers directly, without
any introductory phrases or explanations.
Your Answer:

Figure 9: The Prompt for AE Module

Instruction: {content!{query/}. This answer is wrong [{preanswer/}]. Don't
apologize, only provide the answers directly, without any introductory phrases
or explanations.

Figure 10: The Prompt for AE Module to Regenerate Response
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C.2.2 SE Module

Instruction: Please summarize the content in concise sentences, while retaining
logical locators (such as unique IDs that represent paragraphs) and key
information.

Content: {}

Figure 11: The Prompt for SE Module

C.3 The Prompts for Dataset Evaluation

C.3.1 Mixed Tasks

-

~

Instruction: Please answer the following questions based on the following
information.

The content within the angle brackets <> represents paragraph IDs from
various articles. These IDs are used to identify specific sections of text within
different articles.

Information: {ELC}{queries}

Provide the answers directly, without any introductory phrases or
explanations.

Your Answer:
\ )

Figure 12: The Prompt for Mixed Tasks

C.3.2 DU Task

/ Instruction: Please answer the following questions based on the following \
information.

The content within the angle brackets <> represents paragraph IDs from
various articles. These IDs are used to identify specific sections of text within
different articles.

The following questions are about understanding the details of paragraphs.

Information: {ELC}{queries}

Provide the answers directly, without any introductory phrases or
explanations.

K Your Answer: /

Figure 13: The Prompt for DU Task
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C.3.3 MI Task

/ Instruction: Please answer the following questions based on the following
information.

The content within the angle brackets <> represents paragraph IDs from
various articles. These IDs are used to identify specific sections of text within
different articles.

The following questions require you to grasp the main idea of the entire
article.

Information: {ELC}{queries}

Provide the answers directly, without any introductory phrases or
explanations.

K Your Answer:

~

Figure 14: The Prompt for MI Task

C.3.4 1) Task

/ Instruction: Please answer the following questions based on the following
information.

The content within the angle brackets <> represents paragraph IDs from
various articles. These IDs are used to identify specific sections of text within
different articles.

The following questions require you to pay attention to the logical

Information: {ELC}{queries}
Provide the answers directly, without any introductory phrases or
explanations.

K Your Answer:

relationship of the information in the paragraph, testing your reasoning ability.

‘\\\

/

Figure 15: The Prompt for 1J Task
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C.3.5 SR Task

/ Instruction: Please answer the following questions based on the following \
information.

The content within the angle brackets <> represents paragraph IDs from
various articles. These IDs are used to identify specific sections of text within
different articles.

The following questions require you to understand the meaning of phrases,
sentences, or demonstrative pronouns, testing your comprehension of the
entire article.

Information: {ELC}{queries}

Provide the answers directly, without any introductory phrases or
explanations.

K Your Answer: j

Figure 16: The Prompt for SR Task
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D Examples For Multi-turn QA over Extra-Long Context
D.1 Example For DU Task

Example of DU Task

Extra-Long Context: <article NMET 66 paragraph 1> In 1916, two girls of wealthy families, best
friends from ...(84 words)... Dorothy Woodruff's granddaughter. </article NMET 66 paragraph 1>

...(256k words)...

<article TOEFL TPO 6 paragraph 5> In one example of organizing the allocation ...(117 words)...
will receive insufficient moisture. </article TOEFL TPO 6 paragraph 5>

Question1: This is a question about article TOEFL TPO 120. Please choose the correct answer
from options A, B, C, and D below to answer the question. According to paragraph 5, Hubbell and
Johnson determined:

A. the level of aggressiveness of each of the nine species

B. the number of colonies of each of the nine species

C. the order in which the colonies in the study area had been established

D. the distribution pattern of the nests of five of the nine species

Ground Truth: D ...

Question2: This is a question about article TOEFL TPO 120. Please choose the correct answer
from options A, B, C, and D below to answer the question. According to paragraph 2, some species of
stingless bees are aggressive mainly toward

A. Bees from their own colony

B. Bees of their own species from different colonies

C. Nonaggressive bees that forage on the same flowers

D. Aggressive bees of other species

Ground Truth: B ...

Question3: This is a question about article CET 119. Please choose the correct answer from
options A, B, C, and D below to answer the question. What makes Chris Cocalis believe there is a
greater opportunity for ebike sales?

A. The younger generation's pursuit of comfortable riding.

B. The increasing interest in mountain climbing.

C. The public's concern for their health.

D. The further lowering of ebike prices.

Ground Truth: A ...

Question4: This is a question about article CET 119. Please choose the correct answer from
options A, B, C, and D below to answer the question. What is the prospect of the bike industry
according to Ryan Rzepecki ?

A. It will profit from ebike sharing.

B. More will be invested in bike battery research.

C. The sales of ebikes will increase.

D. It will make a difference in people's daily lives.

Ground Truth: D ...

Figure 17: The Example for DU Task
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D.2 Example For MI Task

Example of Ml Task

Extra-Long Context: <article NMET 67 paragraph 1> Can a small group of ...(54
words)... on a 24/7 basis. </article NMET 67 paragraph 1>

...(256k words)

<article PGEE 68 paragraph 7> The sharp hit to growth predicted around the ...(44 words)...
may even see progress. </article PGEE 68 paragraph 7>

Question1: This is a question about article PGEE 82. Please choose the correct answer
from options A, B, C, and D below to answer the question. Van Oosten believes that certain
plastic objects are

A. complex in structure.

B. immune to decay.

C. inherently flawed.

D. improperly shaped.

Ground Truth: C ...

Question2: This is a question about article PGEE 82. Please choose the correct answer
from options A, B, C, and D below to answer the question. The author thinks that preservation
of plastics is

A. unpopular.

B. challenging.

C. costly.

D. unworthy.

Ground Truth: B ...

Question3: This is a question about article CET 113. Please choose the correct answer
from options A, B, C, and D below to answer the question. What does Maryanne Taylor think
of self-imposed sleeplessness ?

A. It may symbolise one's importance and success.

B. It may be practiced only by certain tech heads.

C. It may well serve as a measure of self-discipline.

D. It may turn out to be key to a successful career.

Ground Truth: A ...

Question4: This is a question about article CET 113. Please choose the correct answer
from options A, B, C, and D below to answer the question. How does Dr. Sophie Bostock look
at the 20-hour daily work schedule?

A. One should not adopt it without consulting a sleep expert.

B. One must be duly self-disciplined to adhere to it.

C. The general public should not be encouraged to follow it.

D. The majority must adjust their body clock for it.

Ground Truth: C ...

Figure 18: The Example for MI Task
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D.3 Example For 1J Task

Example of 1) Task

Extra-Long Context: <article CET 143 paragraph 1> Have you ever wondered ...(35
words)... in interpersonal relationships. </article CET 143 paragraph 1>

...(256k words)

<article CET 77 paragraph 11> "We're learning that student success requires ...(43 words)...
feedback loops." </article CET 77 paragraph 11>

Question1: This is a question about article TOEFL TPO 193. Please choose the correct
answer from options A, B, C, and D below to answer the question. Why does the author
mention “Indian mustard”?

A. To warn about possible risks involved in phytoremediation

B. To explain how zinc contamination can be reduced

C. To show that hyperaccumulating plants grow in many regions of the world

D. To help illustrate the potential of phytoremediation

Ground Truth: D ...

Question2: This is a question about article TOEFL TPO 193. Please choose the correct
answer from options A, B, C, and D below to answer the question. It can be inferred from
paragraph 6 that compared with standard practices for remediation of contaminated soils,
phytoremediation

A. is less suitable for soils that need to be used within a short period of time

B. does not allow for the use of the removed minerals for industrial purposes

C. can be faster to implement

D. is equally friendly to the environment

Ground Truth: A ...

Question3: This is a question about article PGEE 22. Please choose the correct answer
from options A, B, C, and D below to answer the question. The text suggests that immigrants
now in the U.s.

A. are hardly a threat to the common culture.

B. constitute the majority of the population.

C. exert a great influence on American culture.

D. are resistant to homogenization.

Ground Truth: A ...

Question4: This is a question about article PGEE 22. Please choose the correct answer
from options A, B, C, and D below to answer the question. Why are Arnold Schwarzenegger
and Garth Brooks mentioned in Paragraph 5?

A. To prove their popularity around the world.

B. To show the powerful influence of American culture.

C. To reveal the public's fear of immigrants.

D. To give examples of successful immigrants.

Ground Truth: B ...

Figure 19: The Example for 1J Task
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D.4 Example For SR Task

Example of SR Task

Extra-Long Context: <article TOEFL TPO 154 paragraph 1> While some European
countries ...(75 words)... to understand the sources of their success. </article TOEFL TPO 154
paragraph 1>

...(256k words)

<article TOEFL TPO 166 paragraph 11> Regarding the appearance of celebrities ...(83
words)... like the celebrity in question. </article TOEFL TPO 166 paragraph 11>

Question1: This is a question about article TOEFL TPO 111. Please choose the correct
answer from options A, B, C, and D below to answer the question. The word "simultaneously"
in the passage is closest in meaning to

A. merely

B. spontaneously

C. at the same time

D. without limits

Ground Truth: C ...

Question2: This is a question about article TOEFL TPO 111. Please choose the correct
answer from options A, B, C, and D below to answer the question. The word "differing" in the
passage is closest in meaning to

A. increasing

B. varying

C. high

D. necessary

Ground Truth: B ...

Question3: This is a question about article TOEFL TPO 67. Please choose the correct
answer from options A, B, C, and D below to answer the question. The word "comprising" in
the passage 4 is closest in meaning to

A. made up of

B. covering

C. taken from

D. suggesting

Ground Truth: A ...

Question4: This is a question about article TOEFL TPO 67. Please choose the correct
answer from options A, B, C, and D below to answer the question. The word "crucial" in the
passage is closest in meaning to

A. established

B. understood

C. important

D. interesting

Ground Truth: C ...

Figure 20: The Example for SR Task
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