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Abstract

Fine-tuning large language models (LMs) for
individual tasks yields strong performance but
is expensive for deployment and storage. Re-
cent works explore model merging to com-
bine multiple task-specific models into a single
multi-task model without additional training.
However, existing merging methods often fail
for models fine-tuned with low-rank adapta-
tion (LoRA), due to significant performance
degradation. In this paper, we show that this
issue arises from a previously overlooked inter-
play between model parameters and data dis-
tributions. We propose Orthogonal Subspaces
for Robust model Merging (OSRM) to con-
strain the LoRA subspace prior to fine-tuning,
ensuring that updates relevant to one task do
not adversely shift outputs for others. Our ap-
proach can seamlessly integrate with most ex-
isting merging algorithms, reducing the unin-
tended interference among tasks. Extensive
experiments on eight datasets, tested with three
widely used LMs and two large LMs, demon-
strate that our method not only boosts merging
performance but also preserves single-task ac-
curacy. Furthermore, our approach exhibits
greater robustness to the hyperparameters of
merging. These results highlight the impor-
tance of data-parameter interaction in model
merging and offer a plug-and-play solution for
merging LoRA models.

1 Introduction

Pre-trained language models (LMs) have achieved
remarkable success across diverse tasks, with fine-
tuning approaches enabling strong downstream per-
formance (Radford et al., 2019; Touvron et al.,
2023). However, maintaining a separate fine-tuned
model for each task becomes prohibitively ex-
pensive in terms of both storage and deployment.
While multi-task learning (Zhang and Yang, 2021)
attempts to address this issue by training a unified
model for multiple tasks, it demands simultane-

ous access to all task data and high computational
overhead, thereby limiting its scalability.

An appealing alternative is model merging,
which combines multiple task-specific models into
a single multi-task model without further training
(Ilharco et al., 2022; Huang et al., 2024; Yadav
et al., 2024). Early merging techniques primar-
ily average parameters, often guided by Fisher
information (Matena and Raffel, 2022) or inner-
product-based metrics (Jin et al., 2022). Another
line of work employs task vectors—the difference
between pre-trained and fine-tuned model weights—
and manipulates them before summation (Yadav
et al., 2024; Du et al., 2024; Jiang et al., 2023).
Despite these promising developments, merging
models that were fine-tuned with low-rank adapta-
tion (LoRA) (Hu et al., 2021), remains challenging
and can severely degrade performance (Stoica et al.,
2024; Tang et al., 2023a).

We argue that this degradation stems from pa-
rameter interference and how each model’s pa-
rameters interact with out-of-task data. While
prior work has focused on preserving orthogo-
nality among task vectors (Ortiz-Jimenez et al.,
2023; Gao et al., 2024; Yoshida et al.) or aligning
them in a shared space (Stoica et al., 2024), these
data-free strategies often overlook the crucial inter-
play between latent features and parameter updates.
Specifically, consider a pre-trained layer W0 and
two sets of learned LoRA blocks {B1, A1} and
{B2, A2}. The merged model is then formulated
as Wm = W0 + B1A1 + B2A2. Given a latent
feature vector h1 from task T1, the merged model
produces Wmh1 = W1h1 + B2A2h1, where the
first term represents the intended response while
the second term is the undesired shift. Notably,
existing data-free approaches that focus solely on
resolving parameter conflicts are insufficient to mit-
igate such interference.

In this paper, we propose a novel approach
named OSRM (Orthogonal Subspaces for Robust
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Figure 1: Overview of OSRM, which seeks a data-
driven subspace to initiate LoRA fine-tuning and thereby
greatly improves model performance when merging
multiple LoRA models from different tasks. W0 is the
pre-trained weight. {Bi, Ai} are LoRA fine-tuned on
the i-th task. Purple: (W0 +B1A1) ∗ h1 is the required
output. Light blue: Decompose the sample covariance
matrix to initialize A2. Dark blue: Reduce the output
shift induced by B2A2.

model Merging) that restricts the LoRA subspace
before fine-tuning, making it largely orthogonal
to irrelevant out-of-task data distributions. Con-
cretely, we aim to reduce the interference between
data and parameters by minimizing ∥A2h1∥F and
derive an analytical solution under the assumption
that A2 has an orthogonal basis. Our method inte-
grates seamlessly with existing merging algorithms
and mitigates the unintentional output shifts that
arise when multiple LoRA modules are combined
(c.f. Fig. 1). We further present practical exten-
sions to ensure robust performance in real-world
scenarios.

Extensive experiments on eight datasets using
three widely used LMs and two large LMs confirm
that our approach consistently outperforms existing
merging baselines on multi-task evaluations, while
preserving strong single-task performance. Addi-
tionally, our empirical results show the robustness
of our method against hyperparameters, such as
the scaling coefficient, the sample size, the num-
ber of tasks, and the choice of learnable blocks.
Our findings highlight the importance of consider-
ing data-parameter interplay in model merging and
demonstrate a generalizable strategy for combining
LoRA models more effectively.

2 Related Work

Model Merging. A significant body of work ex-
plores merging models that have been fine-tuned

independently on different datasets to obtain a uni-
fied multi-task model. Ilharco et al. (2022) intro-
duced Task Arithmetic (TA), which defines task
vectors for models and combines them using a uni-
fied weight. Building on TA, several methods have
been proposed to address weight entanglement in
task-specific models by aligning them before merg-
ing (Gao et al., 2024; Ortiz-Jimenez et al., 2023;
Yoshida et al.; Tam et al., 2024; Stoica et al., 2024;
Hazimeh et al.; Ainsworth et al., 2022). Other ap-
proaches improve TA by designing better weight-
ing schemes for model averaging (Matena and Raf-
fel, 2022; Jin et al., 2022; Wang et al., 2024a;
Zhou et al., 2024). A different research direction
focuses on manipulating task vectors to enhance
merging performance (Yadav et al., 2024; Du et al.,
2024; Jiang et al., 2023; He et al., 2024; Wang
et al., 2024b; Davari and Belilovsky, 2024). Al-
ternatively, some methods perform adaptive model
merging using dynamic inference, employing ei-
ther a router (Lu et al., 2024; Stoica et al., 2023) or
masks (Huang et al., 2024).

Merging LoRA Models. LoRA (Hu et al., 2021)
has become a widely used technique for parameter-
efficient fine-tuning. However, most existing model
merging methods struggle to effectively transfer
to LoRA models (Stoica et al., 2024; Tang et al.,
2023a). KnOTS (Stoica et al., 2024) highlights
the importance of merging LoRA models within
a shared space, while Tang et al. (2023a) propose
that linearized LoRA models reduce weight entan-
glement. Zhao et al. (2024) and Prabhakar et al.
(2024) further improve LoRA merging by learn-
ing optimal merging weights and clustering LoRA
modules, respectively.

Despite these advancements, existing methods
often overlook the interaction between model pa-
rameters and data, leading to suboptimal merg-
ing performance. Moreover, prior work primar-
ily focuses on the phases during and after fine-
tuning. In contrast, our method explicitly addresses
parameter-data interactions and focuses on the
merging phase before fine-tuning.

3 Preliminaries and Background

Notation. Let f0 be a pre-trained model with L

layers where θ0 = {W (1)
0 , . . . ,W

(L)
0 } is the param-

eters of the model and W
(l)
0 is the weight matrix of

the l-th layer. During adaptation, f0 is individually
fine-tuned on N downstream tasks {T1, . . . , TN}
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with θt the fine-tuned parameters on task Tt where
θt = {W (1)

t , . . . ,W
(L)
t }.

Low-Rank Adaptation. Low-rank adaptation
(LoRA) (Hu et al., 2021) is a popular method for ef-
ficiently fine-tuning a pre-trained model on a down-
stream task. It introduces low-rank subspaces to
contain the parameter updates during fine-tuning.
Specifically, the parameter update for a weight ma-
trix W ∈ Rm×n is represented as ∆W = BA,
where B ∈ Rm×r and A ∈ Rr×n are two learnable
matrices with r ≪ min(m,n). Typically, B and A
are initialized as zeros and random Gaussian noise
before fine-tuning, respectively, and then learned
during the fine-tuning phase. We denote the latent
feature at the l-th layer as:

h(l) = W
(l)
0 h(l−1) +∆W (l)h(l−1)

= W
(l)
0 h(l−1) +B(l)A(l)h(l−1).

Model Merging. We focus on two categories of
model merging: weighted averaging and task vec-
tor manipulations.
Task Arithmetic (TA) (Ilharco et al., 2022) merges
models by linearly summing their parameters as
θ0+λ

∑
t(θt−θ0), where λ is a scaling coefficient

tuned on a validation set. Fisher Merging (Matena
and Raffel, 2022) improves upon TA by modeling
each model’s posterior as a Gaussian distribution,
leveraging Fisher information to weight model av-
erages instead of using a single uniform coefficient.
RegMean (Jin et al., 2022) extends model merging
by drawing inspiration from linear models, aiming
to minimize transformation shifts on data before
and after merging. The design leads to an analytical
solution that generalizes to language models.

TIES (Yadav et al., 2024) further refines TA by
operating at the level of task vectors. It first reduces
redundancy by pruning low-magnitude parameters,
then resolves parameter conflicts by selecting dom-
inant signs, and finally merges only the aligned
parameters. For more flexible merging, Huang
et al. (2024) propose an adaptive approach EMR
that generates a task-specific model at inference
time. Their method selects a unified base model
from a set of candidates and dynamically applies
task-specific masks and rescaling factors.

4 Our Proposed Method

In this section, we first introduce our proposed
method OSRM (Orthogonal Subspaces for Robust

model Merging) for constraining the transforma-
tion capacity of the LoRA subspace before fine-
tuning to improve the performance of model merg-
ing after fine-tuning. We then propose several prac-
tical extensions to facilitate the integration of our
method into real-world scenarios.

4.1 Motivation
Existing approaches often seek to eliminate inter-
ference among multiple models via weight disen-
tanglement, such as orthogonalizing task vectors.
Recently, Stoica et al. (2024) argued that task-
vector orthogonality does not necessarily imply
no interference and proposed a data-free method to
align LoRA modules in a shared space. Despite its
promising empirical results, data-free approaches
ignore how parameters interact with the input fea-
tures in each layer and may be suboptimal in effec-
tively mitigating interference.

Without loss of generality, let us consider merg-
ing two tasks T1 and T2 via task arithmetic as an
illustrative example; we omit the subscript l for the
layer index. The merged weight matrix is:

Wm = W0+∆W1+∆W2 = W0+B1A1+B2A2,

where {Bt, At} denote the LoRA matrices for
task t. During inference, given a latent feature
h1 that arises from a sample of task T1, the trans-
formation of Wm on h1 is:

Wmh1 = (W0 +B1A1 +B2A2)h1

= (W0 +B1A1)h1 +B2A2h1

= W1h1 +B2A2 h1, (1)

where W1 = W0 +B1A1 is the fine-tuned model
for task T1, and B2A2 h1 can be viewed as a “per-
turbation” induced by the knowledge learned for
task T2. To reduce the influence of B2A2 on h1, we
must consider this interaction and limit the trans-
formation capacity of B2A2 when operating on h1.
This motivated us to propose a novel approach.

4.2 Constraining the LoRA Subspace
We first generalize Eq. (1) to the situation where
k > 1 samples (from task T1) are available to char-
acterize the interference. Let H1 ∈ Rk×n be the
matrix whose rows are the latent features of these
k samples. The merged transformation becomes:

WmH⊤
1 = W1H

⊤
1 +B2A2H

⊤
1 .

To make WmH⊤
1 as close as possible to W1H

⊤
1 ,

ideally one wants to force A2H
⊤
1 = 0. If H1 is
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Figure 2: The rank of H1 (y-axis) vs. the number of
samples k (x-axis) with RoBERTa-large (Liu, 2019).
The grey line represents y = x. For each dot, k samples
are randomly selected to concatenate their latent features
as H1.

rank-deficient, we could simply constrain each row
of A2 to be in the null space of H1. However,
Fig. 2 shows that H1 is typically full-rank in real
scenarios due to intrinsic data variability, so we
cannot generally make A2H

⊤
1 = 0. Instead, we

propose to reduce the interference by minimizing
its Frobenius norm:

min
A2

∥∥A2H
⊤
1

∥∥
F
.

We further opt not to constrain B2 because strin-
gent constraints on both matrices could degrade the
representation power needed for task T2. Thus, our
strategy is to disentangle the LoRA matrices so that
A2 is constrained prior to fine-tuning to reduce in-
terference with other tasks, while B2 remains free
to maintain downstream performance.

Directly minimizing ∥A2H
⊤
1 ∥F without con-

straints would trivially yield A2 = 0. In practice,
although {B,A} serve as low-rank approximations
of the fine-tuned weight ∆W , the learned {B,A}
are mostly full-rank. Because any full-rank matri-
ces can be factorized using RQ decomposition, we
can safely set A to be an orthogonal basis.

To balance these considerations, we require A2

to have orthonormal rows, i.e. A2A
⊤
2 = I . This

enforces a full-rank condition on the row space of
A2 while removing the scale ambiguity between
B2 and A2. Indeed, for any non-zero scalar c,
(cB2) (

1
cA2) gives the same product as B2A2. Im-

posing A2A
⊤
2 = I fixes the scaling of A2 and

forces B2 to handle the appropriate scaling. To this
end, we arrive at the following optimization:

Ã2 = argminA
∥∥AH⊤

1

∥∥2
F
, s.t. AA⊤ = I. (2)

We show that it admits an analytical solution.
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Figure 3: The change of Ã (%) after fine-tuning com-
pared to the initialization. A normalized distance is used
as the metric. See Section 4.4 for details.

4.3 Analytical Solution
For brevity, we temporarily drop the subscripts (i.e.
write A instead of A2, and H instead of H1). Let
S = 1

k−1H
⊤H be the sample covariance matrix

of H . Since S is symmetric and positive semi-
definite, we can perform the eigendecomposition:

S = V ΛV ⊤,

where V ∈ Rn×n is an orthogonal matrix and Λ =
diag(λ1, . . . , λn) contains the eigenvalues. With a
descending order of eigenvalues λ1 ≥ λ2 ≥ · · · ≥
λn, the analytical solution to Eq. (2) is:

Ã2 = V ⊤
: , n−r:n, (3)

where V: , n−r:n denotes the last r eigenvectors
of S corresponding to the r smallest eigenvalues.
See Appendix A for detailed derivation. Although
the theory constrains A2, in practice, one might still
update A2 to prevent excessive loss of accuracy on
the target task (c.f. Section 4.4).

Interpretation. Intuitively, ∥A2H
⊤
1 ∥2F =

tr(A2SA
⊤
2 ) measures how A2 amplifies the

principal directions of H1 in its row space. By
choosing directions corresponding to the smallest
eigenvalues of S, we place A2 in the subspace
where H1 has the minimal variance, thereby
reducing the interference term B2A2H

⊤
1 most

effectively. Meanwhile, the row-orthonormal
constraint A2A

⊤
2 = I preserves non-trivial

capacity for B2 to learn scaling factors and ensure
the model can still fit task T2.

4.4 Practical Extensions
We now discuss practical extensions that facilitate
the adaptation of OSRM to real-world applications.
Algorithm 1 summarizes the overall procedure to
merge models with OSRM.
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Algorithm 1 Model merging with OSRM

Input: a pre-trained model f0, tasks [T1, . . . , TN ],
a merging method M, number of layers L.

1: /* Constrain the LoRA subspace */
2: for t = 1, · · · , N do
3: Randomly select k validation samples from

Tt

4: Collect and concatenate latent features
{Ht}Ll=1 for all layers

5: Average sample-wise features to get
{H̄(l)

t }Ll=1 based on Eq. (4)
6: end for
7: /* Fine-tune on downstream tasks */
8: for t = 1, · · · , N do
9: Initialize {A(l)

t }Ll=1 to the solution in Eq. (3)

10: Initialize {B(l)
t }Ll=1 to zeros

11: Fine-tune {B(l)
t , A

(l)
t }Ll=1 on Tt to get θt

12: end for
13: /* Merge fine-tuned models */
14: Merge the fine-tuned models with an existing

method θm = M(θ1, · · · , θN )

Relaxing the Constraint during Fine-Tuning.
To minimize interference among merged models,
our analysis suggests freezing Ã2 at its solution
in Eq. (3) during fine-tuning. Nonetheless, our
empirical results show this can significantly de-
grade single-task accuracy. One possible reason
for the performance drop is that fixing A2 restricts
the model’s adaptation capability and hurts perfor-
mance on T2. To avoid this, we propose that Ã2

should only be used as the initialization of A2, and
allow it to be updated during fine-tuning, which
we show significantly improves single-task perfor-
mance.

To show that Ã2 is still validly orthogonal to the
latent features, we adopt the orthogonal Procrustes
problem (Gower and Dijksterhuis, 2004):

D = minΩ ∥ΩÃft − Ãinit∥F , s.t. Ω⊤Ω = I,

where Ãft and Ãinit are the fine-tuned and initial-
ized matrices of Ã, respectively. Thus, D measures
the distance between two matrices under orthogo-
nal transformations. We then use the normalized
distance as the metric to measure the change of
Ãinit after fine-tuning, denoted as D/∥Ãinit∥F . Re-
sults in Fig. 3 show that the change of Ã is up to
14% approximately, which is marginal, implying
the validity of our relaxation.

Extension to Multiple Tasks. When merging
more than two tasks, say T1, . . . , TN , one can
gather latent features from all tasks except Tt to
build Ãt. Concretely, let Hi be the latent feature
matrix of task Ti. For task Tt, we concatenate the
features of the other tasks into

H¬t =
[
H1; · · · ;Ht−1;Ht+1; · · · ;HN

]
.

Then the objective in Eq. (2) becomes:

Ãt = argminA
∥∥AH⊤

¬t
∥∥2
F

s.t. AA⊤ = I.

In large-scale or privacy-sensitive applications, stor-
ing or sharing all latent features can be memory-
intensive or prohibitive. A practical fix is to aver-
age the sample-wise latent features in each task:

H̄i =
1

k

∑k

j=1
Hi;j,:, (4)

where Hi;j,: is the j-th row of Hi. We then replace
H¬t with the concatenation of {H̄i | i ̸= t} to re-
duce memory usage and mitigate privacy concerns.

5 Experiments

5.1 Experimental Settings
Datasets. We evaluate our method using eight
datasets from the GLUE benchmark (Wang et al.,
2019), a widely used suite of natural language
understanding tasks. These tasks encompass
both single-sentence and sentence-pair classifi-
cation, including MRPC (Dolan and Brockett,
2005), QQP (Iyer et al., 2017), QNLI (Rajpurkar
et al., 2016), MNLI (Williams et al., 2018), SST-
2 (Socher et al., 2013), CoLA (Warstadt et al.,
2018), STS-B (Cer et al., 2017), and RTE (Giampic-
colo et al., 2007). Each dataset is split into training,
validation, and test sets.

For evaluation, we use the Matthews correlation
coeff. for CoLA and the average of the Pearson
and Spearman correlation coeff. for STS-B, and
accuracy is used for the remaining tasks. Since our
method is applied before fine-tuning and influences
the training, we report absolute metric values in all
experiments rather than normalized scores.

Models. To assess the effectiveness of our ap-
proach across different architectures, we evalu-
ate three language models: RoBERTa-large (Liu,
2019) (encoder-only), T5-large (Raffel et al., 2020)
(encoder-decoder), and Llama3.2-1B (Dubey et al.,
2024) (decoder-only). Additionally, we test our
method on the larger Llama3.2-3B and Llama3-
8B (Dubey et al., 2024). The main results for these
models are presented in Section 5.2.
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Table 1: Per-task performance (%) of merging fine-tuned RoBERTa-large models. "Individual" refers to the
performance of each fine-tuned model on the dataset on which it was trained. Bold indicates a better performance.

OSRM CoLA MNLI MRPC QNLI QQP RTE SST2 STSB Avg.
No 68.75 89.05 91.67 94.23 89.38 83.03 96.33 91.92 88.05Individual Yes 66.28 88.88 91.67 94.62 89.45 83.75 96.1 92.17 87.87
No 18.57 74.01 77.7 73.75 82.84 71.12 87.16 75.13 70.04TA Yes 32.25 81.24 77.7 86.78 84.99 80.14 91.63 77.96 76.59
No 31.77 66.85 69.61 87.42 83.94 72.56 94.72 36.19 67.88RegMean Yes 40.36 71.45 76.96 72.01 76.59 63.54 92.32 65.28 69.81
No 36.16 53.62 70.1 65.15 71.23 67.15 91.17 64.45 64.88Fisher Yes 39.11 74.85 76.72 62.51 81.64 67.15 93.35 79.56 71.86
No 13.06 70.23 63.73 83.64 83.36 63.18 87.61 25.75 61.32TIES Yes 29.88 77 58.24 83.52 84.39 72.92 90.48 36.75 66.65
No 54.69 83.31 79.66 89.35 85.04 81.95 92.78 82.63 81.18EMR Yes 56.22 88.51 77.21 93.3 87.54 79.78 95.41 88.56 83.32

Table 2: Per-task performance (%) of T5-large. "Individual" refers to the metrics of each fine-tuned model on the
dataset on which it was trained. Bold indicates a better performance.

OSRM CoLA MNLI MRPC QNLI QQP RTE SST2 STSB Avg.
No 60.86 88.17 88.73 94.25 90.42 81.59 95.76 91.25 86.38Individual Yes 62.58 88.31 90.69 94.62 91.04 81.59 95.87 91.36 87.01
No 28.04 68.10 44.85 56.07 35.35 58.48 56.08 76.74 52.96TA Yes 25.24 70.83 28.92 79.21 34.50 65.70 62.16 79.79 55.79
No 41.22 67.92 53.68 84.77 87.02 68.23 93.00 63.51 69.92RegMean Yes 43.67 66.19 69.36 87.24 88.32 70.76 92.89 70.98 73.68
No 13.72 35.45 31.62 49.46 63.18 52.71 49.08 90.60 48.23Fisher Yes 38.91 34.68 68.38 51.22 63.18 49.10 53.56 90.02 56.13
No 36.67 73.13 29.90 62.46 39.78 64.26 63.65 74.07 55.49TIES Yes 40.16 70.27 33.09 82.34 48.51 64.62 65.37 73.57 59.74
No 37.16 87.27 79.66 93.30 88.32 80.14 94.27 88.08 81.02EMR Yes 39.54 88.40 85.78 94.07 89.52 79.90 94.95 88.72 82.61

Baselines. We evaluate the effectiveness of our
method against five widely used model merging
techniques. Ilharco et al. (2022) introduced Task
Arithmetic (TA) to merge models with a unified
weight. Fisher merging (Matena and Raffel, 2022)
and RegMean (Jin et al., 2022) improve upon TA
by incorporating anisotropic weighting, utilizing
Fisher information and the inner product of data
matrices, respectively. TIES (Yadav et al., 2024)
performs merging at the level of task vectors, while
EMR (Huang et al., 2024) represents the state-of-
the-art in adaptive model merging. For additional
background, refer to Section 3.

Implementation Details. For training, we fol-
low (Hu et al., 2021) and use the AdamW opti-
mizer (Loshchilov, 2017) with a warmup ratio of
0.06 and a linear learning rate schedule. Follow-
ing (Hu et al., 2021), LoRA is configured with a
rank of r = 8, a scaling factor of α = 16, and is
only applied to the query and value blocks. We
study the effect of different learnable blocks in Sec-
tion 5.3. Other hyperparameters are selected via

grid search as in (Liu, 2019) (c.f. Appendix D).
For model merging, we adopt hyperparameter

settings from prior work (Yadav et al., 2024; Jin
et al., 2022; Matena and Raffel, 2022). Specifically,
we set the scaling coefficient to 0.3 for TA and 1 for
TIES. The non-diagonal multiplier in RegMean is
set to 0.9, except for T5-large, where it is 0.1. For
Fisher-based merging, we use a uniform scaling
factor of 1

8 across all models. For methods requir-
ing validation data, we use up to 1000 samples
from the validation set, following (Jin et al., 2022).
We use 100 samples per task in our method to com-
pute Ht. The effect of hyperparameter variations is
analyzed in Section 5.3. Our code implementation
is adapted from (Huang et al., 2024) and available
at https://github.com/illidanlab/OSRM.

5.2 Main Results
Merging Encoder-Only Models. The perfor-
mance of merging RoBERTa-large models is pre-
sented in Table 1. Our proposed method consis-
tently outperforms all the baselines across all merg-
ing techniques on average.
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Table 3: Per-task performance (%) of Llama3.2-1B. "Individual" refers to the metrics of each fine-tuned model on
the dataset on which it was trained. Bold indicates a better performance.

OSRM CoLA MNLI MRPC QNLI QQP RTE SST2 STSB Avg.
No 59.97 85.44 87.25 91.10 88.34 78.34 94.84 90.10 84.42Individual Yes 61.44 86.91 86.52 92.26 89.07 82.67 95.76 89.56 85.52
No 26.05 72.63 66.91 60.70 82.61 57.04 92.32 67.15 65.68TA Yes 28.20 66.69 66.91 73.48 81.66 68.23 92.20 71.24 68.58
No 30.55 34.08 41.42 48.89 52.48 50.54 48.28 23.31 41.19RegMean Yes 34.96 32.97 43.14 49.99 60.39 53.07 48.62 25.45 43.57
No 19.91 60.47 69.85 60.28 82.18 70.40 92.09 33.29 61.06Fisher Yes 19.40 62.42 69.61 59.93 74.86 71.99 92.34 26.58 59.64
No 41.18 81.77 76.47 87.35 85.08 75.45 92.43 83.04 77.85TIES Yes 42.02 83.03 78.43 87.04 87.35 74.73 94.95 82.62 78.77
No 37.16 87.27 79.66 93.30 88.32 80.14 94.27 88.08 81.02EMR Yes 39.54 88.40 85.78 94.07 89.52 79.90 94.95 88.72 82.61

Table 4: Per-task performance (%) of Llama3.2-3B. "Individual" refers to the metrics of each fine-tuned model on
the dataset on which it was trained. Bold indicates a better performance.

OSRM CoLA MNLI MRPC QNLI QQP RTE SST2 STSB Avg.
No 68.61 89.31 87.01 93.26 89.81 85.92 96.10 90.25 87.54Individual Yes 69.25 89.57 86.52 94.51 90.15 89.89 96.90 89.82 88.33
No 34.80 77.87 72.30 80.03 84.64 68.23 93.46 74.47 73.22TA Yes 35.50 83.79 72.79 84.50 84.79 63.54 92.78 77.20 74.36
No 40.61 33.46 50.74 50.03 50.84 46.21 50.46 41.90 45.53RegMean Yes 44.04 33.51 42.16 50.72 53.72 49.82 51.11 41.10 45.77
No 28.21 34.14 62.50 66.17 73.50 54.15 89.91 29.24 54.73TIES Yes 22.75 41.06 65.20 71.41 75.88 49.82 90.02 42.12 57.28
No 54.74 87.92 84.31 91.34 87.52 84.12 95.64 81.86 83.43EMR Yes 55.57 89.43 80.15 93.61 88.72 79.42 96.56 84.32 83.47

Specifically, for TA merging, our method
achieves performance at least on par with those
baselines. It surpasses the baselines in seven out
of eight tasks, with a notable improvement of
over 13% on CoLA. In the Fisher merging set-
ting, our method slightly underperforms on the
QNLI dataset, with a marginal gap of less than
3%, but outperforms the baseline across all other
tasks, achieving up to a 21% improvement on
MNLI. For TIES and EMR, while the baseline
slightly surpasses our method on two datasets, our
approach yields significantly better overall perfor-
mance across the eight datasets.

Moreover, our method minimally impacts down-
stream task performance, with an average perfor-
mance gap of less than 1%, and even surpasses the
baseline on four datasets.

Merging Encoder-Decoder Models. The results
for T5-large are reported in Table 2. Our method
substantially outperforms the baseline on RegMean,
Fisher, and TIES. On average, it improves Reg-
Mean and Fisher by 3.76% and 7.9%, respectively.
Notably, our approach enhances performance on
MRPC by approximately 16% under RegMean and
on QQP by around 9% under TIES.

Although the baseline slightly outperforms our
method on Fisher merging, the difference is mini-
mal at just 0.07%. Additionally, our method con-
sistently improves downstream task performance
across all eight datasets.

Merging Decoder-Only Models. The results for
Llama3.2-1B are shown in Table 3. On average, our
method surpasses the baseline on TA, RegMean,
TIES, and EMR. Per-task improvements reach up
to 12.78%, 7.91%, and 6.12% for TA, RegMean,
and EMR, respectively.

Importantly, our method consistently enhances
downstream fine-tuning performance on Llama3.2-
1B, demonstrating its effectiveness in decoder-only
model merging.

Merging Large Language Models. Following
the setting of baselines, we further evaluate the ef-
fectiveness of our method on the large language
model Llama3.2-3B, as shown in Table 4. Due to
the large scale of Llama3.2-3B, we focus solely on
gradient-free merging methods and exclude Fisher
merging. On average, our method outperforms the
baseline across all merging techniques, including
downstream task performance. Notably, the per-
task improvement reaches up to 5.92% on TA and
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Table 5: Per-task performance (%) of Llama3-8B. "Individual" refers to the metrics of each fine-tuned model on the
dataset on which it was trained. Bold indicates a better performance.

OSRM CoLA MNLI MRPC QNLI QQP RTE SST2 STSB Avg.
No 67.57 88.74 89.95 94.65 90.26 84.48 96.44 91.40 87.94

Individual
Yes 69.20 90.15 89.46 95.44 90.17 88.09 97.02 90.65 88.77
No 10.00 64.74 31.62 64.74 81.22 80.87 92.89 80.14 63.28

TA
Yes 52.89 82.53 31.62 89.58 72.56 87.00 88.76 77.08 72.75
No 28.28 35.68 41.18 65.62 66.97 61.73 78.67 45.97 53.01

TIES
Yes 27.75 33.54 36.52 71.19 77.10 59.46 74.56 41.36 52.69

12.88% on TIES. Furthermore, compared to previ-
ous results, we observe that although larger mod-
els generally achieve higher average performance
than smaller ones, the performance gain from our
method diminishes. A possible explanation is that
as model size increases, its inherent knowledge
also expands, which naturally enhances merging
performance, thereby reducing the relative impact
of our approach.

Moreover, we present the results of merg-
ing LLaMA3-8B models in Table 5. Given
the large scale of the model and resource con-
straints, we evaluate our proposed OSRM using
two lightweight merging techniques: TA and TIES.
Our method consistently improves both down-
stream task performance and the merging effective-
ness of TA. Notably, it outperforms the baseline
on seven out of eight datasets when combined with
TA, demonstrating its clear advantage.

Discussion. First, we observe that the choice of
the optimal non-adaptive merging method (i.e., ex-
cluding EMR) varies depending on the model. For
example, TA achieves the best performance on
RoBERTa-large, while RegMean outperforms other
methods on T5-large. Even between two decoder-
based models, the most effective merging strategy
can differ. Second, EMR consistently achieves the
highest performance among all methods, perform-
ing close to that of individual models. It implies
the superiority of adaptive merging methods.

5.3 Robustness Analysis

In this section, we evaluate the robustness of our
method to different hyperparameters, including the
scaling coefficient λ, the number of samples k, the
number of tasks N , and the choice of learnable
blocks, using RoBERTa-large.

Impact of Scaling Coefficient λ. We analyze the
effect of different scaling coefficients λ on merging
performance in Fig. 4. We focus on TA and TIES,
both of which require tuning λ before merging. The
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Figure 4: Effect of scaling coefficients on the perfor-
mance of TA and TIES merging. Results are averaged
across eight datasets. The solid line is the merging per-
formance for each scaling coefficient. The dashed line
is the average performance for each method.

Table 6: Effect of the number of samples used to com-
pute Eq. (4). Results are averaged across eight datasets.
Bold indicates the best performance for each merging
method.

2 10 100 1000 5000 w/o OSRM
RegMean 47.66 70.42 69.81 69.21 70.16 67.88

Fisher 66.19 65.22 71.86 62.71 61.71 64.88
EMR 81.73 82.84 83.32 81.47 78.59 81.18

values of λ are sampled from the range [0.1, 1.3]
with a step size of 0.1. The results indicate that our
method consistently outperforms the baseline and
is more robust to variations in λ. Specifically, for
TA, our approach achieves superior performance
across almost the entire range and demonstrates
a significantly higher average performance. Al-
though for λ ∈ [0.3, 0.7], our method is slightly
worse than the baseline on TIES, it still yields sub-
stantial improvements for other values of λ and
achieves a higher average overall. The robustness
of our method suggests its practical efficiency, as it
does not require fine-grained tuning of the scaling
coefficient.

Impact of Sample Size k. We evaluate the in-
fluence of different values of k in Eq. (4) on
merging performance. To minimize the impact
of other hyperparameters, such as the scaling
coefficient, we focus on RegMean, Fisher, and
EMR. Following (Jin et al., 2022), we consider
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Figure 5: Performance of merging different numbers
of tasks with RegMean and EMR. Results are averaged
across eight datasets. The solid line is the merging
performance for each number of tasks. The dashed line
is the average performance for each method.

k ∈ {2, 10, 100, 1000, 5000}. Intuitively, increas-
ing k should result in an initialization of Ã that is
more orthogonal to out-of-task samples, potentially
leading to better performance. However, as shown
in Table 6, the optimal values of k are 10 and 100
for RegMean, Fisher, and EMR, respectively.

This phenomenon can be attributed to two key
factors. First, when k is close to 1, we observe an
ill-conditioned latent feature matrix H , making the
computation of Ã more challenging. Second, as k
increases, the knowledge overlap between in-task
and out-of-task samples also grows. In this case,
enforcing Ã to be orthogonal to these samples may
degrade performance by discarding useful shared
knowledge. Due to the complex interplay between
fine-tuning procedures, model parameters, and data
characteristics, it is challenging to analytically de-
termine the cause of the observed counter-intuitive
results. We believe the exploration of this situation
is interesting. Despite this, Table 6 shows that our
method consistently outperforms the baseline with
as few as 100 samples, highlighting its practical
applicability.

Impact of the Number of Tasks N . We investi-
gate the effect of the number of tasks N on merging
performance in Fig. 5. Although the average per-
formance of our method and the baseline remains
comparable for small N , our approach shows clear
advantages when N increases. Specifically, when
N > 5, our method begins to outperform the base-
line, with improvements becoming more significant
as N grows. This observation suggests that our
method enhances merging performance in large-
scale settings, demonstrating its scalability.

Impact of Learnable Blocks. We evaluate the
effectiveness of our method with various learnable

Table 7: Effect of different learnable blocks. Results
are averaged across eight datasets. Bold indicates better
performance.

OSRM Individual TA RegMean Fisher TIES EMR

Q, K, V
No 87.81 71.24 67.89 65.60 51.61 78.56
Yes 87.76 75.85 67.95 67.81 49.90 82.16

Q
No 86.67 71.95 43.90 58.63 41.63 79.64
Yes 86.26 73.83 52.55 60.04 40.78 78.80

blocks in Table 7. While the main experiments
in Section 5.2 focus on fine-tuning the query (Q)
and value (V) blocks, we further investigate the im-
pact of fine-tuning all three blocks—query (Q), key
(K), and value (V)—as well as fine-tuning the query
blocks alone. Although our method introduces a
slight degradation in downstream task performance,
it consistently outperforms baseline approaches
when integrated with TA, RegMean, and Fisher
merging strategies. Additionally, we observe that
fine-tuning Q, K, and V yields better performance
than fine-tuning Q alone, suggesting that increasing
the number of learnable blocks contributes to more
effective model merging.

5.4 Extension to Merging Existing LoRA
Modules

While there are some cases where the LoRA mod-
ules are obtained externally, such as HuggingFace
checkpoints, we extend our method to merging ex-
isting LoRA modules by decomposing the learned
weight with the OSRM-based solution Ã. Specif-
ically, given a set of learned weights {∆Wt}Nt=1,
we use the analytically-derived Ãt to decompose
and recover ∆Wt by using B̂t = minB ∥BÃt −
∆Wt∥F and ∆Ŵt = B̂tÃt. Then we merge the
recovered {∆Ŵt}Nt=1. While this decomposition
may suffer from degradation of the downstream
task performance, the recovered ∆Ŵt can still
maintain the property as shown in Eq. (2). See Ap-
pendix E.2 for results.

6 Conclusion

We present a novel approach to address perfor-
mance degradation when merging LoRA-based
models. By constraining the LoRA subspace be-
fore fine-tuning, our method decreases harmful out-
put shifts arising from data and parameter interfer-
ence. Empirical results on eight datasets show that
this approach substantially improves upon existing
merging strategies across multiple LMs.
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7 Limitations

While our approach shows significant performance
improvement in model merging, some limitations
should be discussed. First, similar to previous
works, our method relies on the identical model
architecture, which limits its applicability across
different model types. Second, since we only focus
on LoRA models, our method cannot be applied
to merging fully fine-tuned models. Future works
could further investigate the potential application of
our method on models with different architectures
or fully fine-tuned.
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A Proof.

We prove that Eq. (3) is an analytical solution to
the problem Eq. (2).

Proof. Let S = 1
k−1H

⊤
1 H1 be the covariance ma-

trix of H1, which is symmetric and positive semi-
definite. Then

∥AH⊤
1 ∥2F = tr(AH⊤

1 H1A
⊤) = (k−1)tr(ASA⊤).

The eigendecomposition on S yields

S = V ΛV ⊤,

where V ∈ Rn×n is orthogonal and Λ =
diag(λ1, ..., λn) is a diagonal matrix with non-
negative entities in a descending order. Thus,

tr(ASA⊤) = tr(AV ΛV ⊤A⊤).

Let M = AV ∈ Rm×n. Since AA⊤ = I and
V V ⊤ = I , it follows that MM⊤ = I and

tr(ASA⊤) = tr(MΛM⊤).

Considering M = AV , the solution to the problem
argminA tr(MΛM⊤) is spanned by the eigenvec-
tors of S associated with the smallest eigenvalues,
i.e., Ã2 = V ⊤

:,n−r:n, where V:,n−r:n is the last r
eigenvectors associated with the r smallest eigen-
values.

B Dataset Details

The GLUE benchmark 1 is widely used for general
language understanding evaluation. It consists of
eight English datasets. We show the details of the
datasets we use in Table 8.

C Model Details

We use three language models, including
RoBERTa-large 2, T5-large 3, and Llama3.2-1B 4,
and one large language model Llama3.2-3B 5 in
our experiments. Table 9 shows the details of used
models.

1https://huggingface.co/datasets/nyu-mll/glue
2https://huggingface.co/FacebookAI/roberta-large
3https://huggingface.co/google-t5/t5-large
4https://huggingface.co/meta-llama/Llama-3.2-1B
5https://huggingface.co/meta-llama/Llama-3.2-3B

D Hyper-Parameters

We show the hyper-parameters used to fine-tune
language models in Table 10. Similar to (Liu,
2019), we use a grid search for the optimal hyper-
parameters. All the experiments are conducted on
eight NVIDIA RTX A6000 GPUs.

E More Experimental Results

E.1 Averaged Results

We show the averaged performance of each model
across all datasets in Tables 11 to 15, respectively.
Results show that our method outperforms the base-
line in almost all settings on average.

E.2 Results of Extension to Merging Existing
LoRA Modules

In Section 5.4, we extend OSRM to support the
merging of existing LoRA modules, such as ex-
ternally obtained checkpoints from HuggingFace.
The corresponding results are reported in Table 16.
When OSRM is applied after fine-tuning, the origi-
nal LoRA weight matrices cannot be perfectly re-
covered, resulting in a significant drop in the indi-
vidual performance of the models. Nevertheless,
the merged performance remains largely preserved,
demonstrating the effectiveness of our method. Pre-
serving individual performance in the post-fine-
tuning setting poses an interesting yet non-trivial
challenge, which we identify as a promising direc-
tion for future work.

F Discussion

F.1 Elaborate Discussion on Limitations

As we have briefly discussed limitations in the
main text, we further give elaborate discussion
on limitations in this section. First, as LoRA has
been widely used for fine-tuning LLMs in many
areas such as finance, healthcare, and code genera-
tion (Gang et al., 2025), there is still a performance
gap in merging LoRA-fine-tuned models (Stoica
et al., 2024). Thus, many methods have been pro-
posed to improve the merging performance of mod-
els specifically fine-tuned with LoRA (Stoica et al.,
2024; Tang et al., 2023b; Prabhakar et al., 2024).
Second, the identical model architecture is a com-
mon assumption in the area of model merging, such
as our baselines, and has many realistic applica-
tions, such as one-shot FL (Tao et al., 2024) and
LLM agents (Kuroki et al., 2024). We also believe
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Table 8: Dataset details in the GLUE benchmark. Acc. and cc. mean accuracy and correlation coefficient,
respectively.

Dataset #Train (K) #Val (K) #Test (K) Metric
CoLA 8.55 1.04 1.06 Matthews cc.
MNLI 393 9.82 9.8 Acc.
MRPC 3.67 0.408 1.73 Acc.
QNLI 105 5.46 5.46 Acc.
QQP 364 40.4 391 Acc.
RTE 2.49 0.277 3 Acc.
SST2 67.3 0.872 1.82 Acc.
STSB 5.75 1.5 1.38 Avg. of Pearson and Spearman cc.

Table 9: Details of used models.

Model #Params Architecture
RoBERTa-large 355M Encoder-only

T5-large 738M Encoder-decoder
Llama3.2-1B 1.24B Decoder-only
Llama3.2-3B 3.21B Decoder-only

model merging under various architectures is an
interesting problem, but out of this paper’s scope.

F.2 Comparison with Multi-task Learning
There are two main differences between OSRM-
based training followed by merging and standard
multi-task learning (MTL) (Sener and Koltun,
2018; Zhang and Yang, 2021). First, standard MTL
is a data-collecting paradigm while merging with
OSRM is a model-collecting paradigm. Specifi-
cally, standard MTL requires the samples from all
datasets to be collected together to train a multi-task
model. Instead, OSRM allows each data source to
train its own model and merges the models together.
Second, while standard MTL requires the collec-
tion of all the original samples, OSRM only re-
quires a small number of latent features from each
task (100 samples per task in our experiments).

Compared to MTL, our method can be applied
to cases where full data access has memory issues
or privacy concerns, such as model merging and
one-shot FL (Tao et al., 2024), or other paradigms
such as training LLM agents (Kuroki et al., 2024).
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Table 10: Hyper-parameters for fine-tuning language models.

Hyper-param RoBERTa-large T5-large Llama3.2-1B Llama3.2-3B
Learning rate {3e-5, 2e-4, 4e-4} {3e-5, 2e-4, 4e-4} {1e-4, 2e-4, 4e-4} {2e-4, 4e-4}

Batch size {32, 64} {32, 64} {16, 32} {16, 32}
Weight decay {0, 0.01, 0.1} {0, 0.01, 0.1} {0, 0.1} {0, 0.1}
Max #epochs 10 10 10 5

Table 11: Averaged performance (%) across eight tasks of RoBERTa-large. "Individual" refers to the metrics of
each fine-tuned model on the dataset on which it was trained. Bold indicates a higher accuracy.

OSRM Individual TA RegMean Fisher TIES EMR Avg.
No 88.05 70.04 67.88 64.88 61.32 81.18 72.22
Yes 87.87 76.59 69.81 71.86 66.65 83.32 76.02

Table 12: Averaged performance (%) across eight tasks of T5-large. "Individual" refers to the metrics of each
fine-tuned model on the dataset on which it was trained. Bold indicates a higher accuracy.

OSRM Individual TA RegMean Fisher TIES EMR Avg.
No 86.38 52.96 69.92 48.23 55.49 81.02 65.67
Yes 87.01 55.79 73.68 56.13 59.74 82.61 69.16

Table 13: Averaged performance (%) across eight tasks of Llama3.2-1B. "Individual" refers to the metrics of each
fine-tuned model on the dataset on which it was trained. Bold indicates a higher accuracy.

OSRM Individual TA RegMean TIES EMR Avg.
No 84.42 65.68 41.19 61.06 77.85 66.04
Yes 85.52 68.58 43.57 59.64 78.77 67.22

Table 14: Averaged performance (%) across eight tasks of Llama3.2-3B. "Individual" refers to the metrics of each
fine-tuned model on the dataset on which it was trained. Bold indicates a higher accuracy.

OSRM Individual TA RegMean TIES EMR Avg.
No 87.54 73.22 45.53 54.73 83.43 68.89
Yes 88.33 74.36 45.77 57.28 83.47 69.84

Table 15: Averaged performance (%) across eight tasks of Llama3-8B. "Individual" refers to the metrics of each
fine-tuned model on the dataset on which it was trained. Bold indicates a higher accuracy.

OSRM Individual TA TIES Avg.
No 87.94 63.28 53.01 68.08
Yes 88.77 72.75 52.69 71.4

Table 16: Extension to merging existing LoRA modules. "Post" indicates applying OSRM after fine-tuning
(c.f. Section 5.4). Performance (%) is averaged across eight tasks of RoBERTa-large. "Individual" refers to the
metrics of each fine-tuned model on the dataset on which it was trained.

OSRM Individual TA RegMean Fisher TIES EMR Avg.
No 88.05 70.04 67.88 64.88 61.32 81.18 72.22

Post 35.07 35.26 35.46 35.11 35.17 35.14 35.2
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