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Abstract
The deployment of Large Language Models
(LLMs) in recommender systems for Click-
Through Rate (CTR) prediction requires a care-
ful balance between computational efficiency
and predictive accuracy. This paper intro-
duces OptiRAG-Rec, a comprehensive frame-
work that integrates Retrieval-Augmented Gen-
eration (RAG) with a novel multi-head early
exit architecture to address both challenges.
By leveraging Graph Convolutional Networks
(GCNs) as efficient retrieval mechanisms, the
framework significantly reduces data retrieval
times while maintaining high model perfor-
mance. Additionally, the multi-head early
exit strategy dynamically terminates inference
based on real-time predictive confidence assess-
ments, enhancing responsiveness without sac-
rificing accuracy. Experimental results demon-
strate that OptiRAG-Rec reduces computation
time while preserving the precision required
for reliable recommendations, establishing a
new benchmark for efficient and accurate LLM
deployment in recommendation. 1

1 Introduction

Due to their remarkable capabilities in semantic
understanding and knowledge retention, Large Lan-
guage Models (LLMs) have demonstrated impres-
sive performance across various domains, becom-
ing essential components of various text-based
recommendation systems, such as sequential rec-
ommendation (Wang et al., 2023a; Harte et al.,
2023; Li et al., 2023; Zheng et al., 2024) and rank-
ing (Zhao et al., 2024; Acharya et al., 2023). In
light of this, numerous researchers have sought to
adapt LLMs for Click-Through Rate (CTR) predic-
tion problem (Wang and Lim, 2023; Bao et al.,
2023a; Lin et al., 2024a), leveraging their text-
mining capabilities to analyze textual user behav-
iors for more accurate preference modeling.

1Disclaimer: No internal or proprietary Meta data was
used in this study.

Figure 1: An example of multi-head early exit based
on ratio scores of positive and negative predictions: A:
No early exit due to the significant difference between
the average ratio of previous layers and the exit layer
exceeding the threshold (0.001). B: Early exit achieved
with minimal changes in ratio scores.

The performance of LLM-based CTR predictors
is enhanced by Retrieval-Augmented Generation
(RAG) modules (Lin et al., 2024b; Hajiaghayi et al.,
2024), which integrate diverse and user-relevant
texts into the input contexts. This enrichment al-
lows LLMs to extract more accurate user features
for preference prediction.

However, the integration of RAG modules into
LLMs introduces significant efficiency challenges,
particularly concerning the Inference efficiency.
Two critical bottlenecks arise from the introduction
of RAG modules: ❶ Retrieval Efficiency: The
RAG framework adds a multi-stage process involv-
ing encoding, retrieval, and prefilling steps for re-
trieved contexts. This sequential execution causes
substantial delays due to the time required for re-
trieval, thus hindering the prompt commencement
of the inference process. ❷ Inference Overhead:
With extended input lengths, the computational de-
mand surges, exacerbating the model’s inference
time due to the quadratic time complexity of LLMs
relative to input length. This significant increase
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in computational overhead severely impacts the
real-time responsiveness of the model, limiting its
practical applicability in real-world scenarios.

In the realm of enhancing LLM inference effi-
ciency, prevalent techniques such as model com-
pression through quantization and Fast Decod-
ing Algorithms like Speculative Decoding (e.g.,
Medusa(Cai et al., 2024) and Kangaroo(Liu et al.,
2024b)) are widely employed. These methods aim
to reduce model size and accelerate the decoding
process, thereby shortening overall inference times.
Despite their benefits, these strategies often come
with trade-offs, particularly in terms of model ac-
curacy(Xia et al., 2024; Cai et al., 2024; Jin et al.,
2024). Quantization, for instance, achieves faster
processing by reducing the precision of computa-
tions, which can lead to the loss of critical data
details. Similarly, Fast Decoding Algorithms may
prioritize speed over optimality, potentially select-
ing suboptimal predictive paths in their rush to
generate quick responses. While these approaches
address certain aspects of inference efficiency, they
do not fully resolve the bottlenecks introduced
by RAG modules, such as retrieval delays and in-
creased computational overhead from extended in-
put lengths. Consequently, there remains a need
for more holistic solutions that balance efficiency,
accuracy in RAG-enhanced LLMs.

To address these challenges, we propose
OptiRAG-Rec, a novel framework designed to
enhance the efficiency of LLM-based CTR while
maintaining high recommendation quality. This
framework integrates two innovative acceleration
techniques tailored to the identified bottlenecks:
retrieval efficiency and inference overhead.

First, to address retrieval efficiency (Bottleneck
❶), we introduce GCN-Retriever, a lightweight
yet highly effective retrieval scheme. Leverag-
ing the capabilities of Graph Convolutional Net-
works (GCNs) (Kipf and Welling, 2016; Chen et al.,
2020), GCN-Retriever models structural data in
user-item graphs, capturing multi-order interaction
information to generate precise and informative rep-
resentations. By replacing computationally expen-
sive LLM embedders, GCN-Retriever significantly
reduces retrieval times, minimizing inference de-
lays while maintaining high recommendation per-
formance. Second, to tackle inference overhead
(Bottleneck ❷), we propose a multi-head early exit
strategy integrated with an exit scoring mechanism
tailored for CTR prediction tasks. This strategy
dynamically terminates the inference process when

predictions meet a confidence threshold, reducing
unnecessary computational overhead. By doing
so, the system accelerates response times without
sacrificing recommendation accuracy. The com-
ponents of OptiRAG-Rec—GCN-Retriever, the
LLM-based recommender, and the multi-head early
exit mechanism—are tightly integrated to address
specific challenges: GCN-Retriever enhances re-
trieval efficiency using graph-based representations,
the LLM-based recommender ensures precise pre-
dictions, and the multi-head early exit mechanism
reduces computational overhead during inference.
Together, they synergistically improve the recom-
mender system’s performance by balancing effi-
cient data retrieval, accurate predictions, and opti-
mized throughput. Below, we summarize the key
contributions of our framework:

• Enhanced LLM for CTR Prediction via
RAG: Improves CTR accuracy by integrat-
ing interaction data into LLM models.

• Efficient GCN-Retriever: Introduces a
lightweight GCN-based retrieval mechanism,
reducing retrieval latency without compromis-
ing recommendation quality.

• Inference Time Optimization through
Early Exit: Implements a dynamic early
exit strategy, reducing computational costs by
terminating inference at intermediate layers
when predictions meet confidence thresholds.

• Novel Multi-Head Early Exit Adjustment:
Proposes a multi-head architecture for early
exiting, maintaining accuracy while signifi-
cantly improving inference efficiency.

2 Related Work

2.1 Language Models for Recommendation
Building on prior research(Wu et al., 2023), the
integration of language models into recommender
systems often focuses on their distinct functions
within the recommendation process. These roles in-
clude serving as feature extractors(Bian et al., 2022;
Zheng et al., 2023; Zhang et al., 2024a), where
language models analyze item and user data to pro-
duce embeddings or tokens. These embeddings
can be utilized by traditional recommender system
models to enhance task-specific recommendations
through knowledge-aware embeddings.

Furthermore, language models can function
within scoring or ranking mechanisms(Wang et al.,
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2023a; Zhu et al., 2024; Kim et al., 2024). This
approach leverages pre-trained language models to
transform recommendation systems significantly.
Typically, the input sequence includes task instruc-
tions, behavioral prompts, with the output generat-
ing pertinent recommendation results.

Our methodology diverges from previous prac-
tices by employing the language model primarily
within the scoring functions, while using a sim-
ple traditional model, specifically a GNN, as a re-
triever. This model extracts similar user profiles to
construct the prompts for the language model, capi-
talizing on its ability to comprehend and synthesize
user data and interactions, thereby generating per-
sonalized recommendations.

2.2 Efficient Inference
The inference performance of LLMs is often con-
strained by the sequential nature of auto-regressive
decoding, where the generation of each token ne-
cessitates a full network forward pass. To address
the high inference latency inherent in LLMs, sev-
eral strategies have been proposed: Techniques
such as quantization (Fan et al., 2020; Bai et al.,
2022; Tao et al., 2022), pruning (Ma et al., 2023;
Sun et al., 2023; Xia et al., 2023; Frantar and Al-
istarh, 2023a), and knowledge distillation (Liang
et al., 2023; Sahu et al., 2023; Gu et al., 2024),
aim to reduce the memory footprint of LLMs, thus
lowering the computational demands. Early Exit
Strategies allow a model to terminate the compu-
tation at intermediate layers if certain conditions
are met, thereby accelerating inference and reduc-
ing computational overhead. Early exit has been
explored across various machine learning domains,
focusing on designing efficient early exit networks
(Bae et al., 2023; Chen et al., 2023), and refining
exit rules to balance accuracy and computational
efficiency(Zhou et al., 2020; Li et al., 2021).

3 Preliminaries

LLM Architecture and Decoding Process. The
typical architecture of LLMs sequentially consists
of N transformer layers and a language head, de-
noted as Head(·), for decoding the next token.
Given an input sequence of tokens {x1, . . . , xt−1},
the standard decoding process can be formally de-
scribed as follows:

p(xt|x<t) = softmax(Head(h(N)
t−1))xt (1)

where h
(N)
t−1 denotes the final hidden state output

by the N -th (i.e., last) layer, while p(xt|x<t) repre-

sents the conditional distribution for sampling the
next token.
LLM-Based CTR Prediction. We instruct LLMs
to solve CTR prediction as a binary classification
problem. Specifically, each task sample xi is re-
expressed into its natural language form xtext

i . Like-
wise, its corresponding binary label yi ∈ {0, 1}
is mapped into a pair of binary response words
ytext
i ∈ {“yes”, “no”}. To obtain the LLM’s tenden-

cies between these two options, and consistent with
prior work (Wang and Lim, 2023; Bao et al., 2023a;
Lin et al., 2024a), we consider only the binary re-
sponse tokens (i.e., “yes” and “no”) as candidates,
excluding all other tokens in the vocabulary. This
approach enables the extraction of the LLM’s pre-
dictive tendencies between these two responses, as
illustrated below:

p(yes|x<t) =
exp(syes)

exp(syes) + exp(sno)
.

where s denotes the logit score for the given to-
ken, while p(yes|x<t) quantifies the LLM’s pref-
erence for outputting the token “yes”. Naturally,
p(yes|x<t) > 0.5 is an intuitive and appropriate
condition to finalize the outputted token.

4 Retrieval Efficiency: GCN-Retriever

To enable accurate learning and prediction, we con-
struct textual sentences, denoted as Xtext by inte-
grating instructions, representative examples, and
user input data. This process ensures the model
aligns with the specific requirements and contexts
of the task. For instance, in a product recommen-
dation system, Xtext is constructed as follows: 1)
Instruction: Provide clear directives, such as "Pre-
dict whether the user will click on the given item."
2) Examples: include contextual examples, e.g.,
"User A rated Book X with 5 stars." 3) Input: In-
corporate real-time user interactions and queries.
Complete prompt templates for each dataset are
detailed in Appendix A.1.

To address the challenge of time efficiency in rec-
ommendation systems, we propose GCN-Retriever,
a streamlined approach leveraging GCNs. This
model constructs a bipartite graph where nodes
represent users and items, and edges denote in-
teractions between them.Through multi-layer mes-
sage passing, GCN-Retriever refines user embed-
dings by incorporating neighborhood information.
Specifically, the embedding for a user u at the next
layer k +1 is updated by aggregating features from
connected neighbors:
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e(k+1)
u = AGG

(
e(k)u , {e(k)i : i ∈ Nu}

)

where eu is the embedding of user u, Nu denotes
the neighbors of u, and AGG represents the aggre-
gation function which combines features of a node
with those of its neighbors.

To effectively capture the multidimensional sig-
nal of users, our GCN-Retriever model employs
a strategy of averaging the embeddings obtained
from different layers of GCNs. This approach
provides a comprehensive representation that in-
tegrates diverse aspects of user behavior and at-
tributes captured at the various levels of graph struc-
ture. The average of user embeddings is described
by the following equation:

eu =
1

K

K∑

k=1

e(k)u .

where eu represents the final averaged embedding
for user u, K is the number of layers from which
embeddings are extracted and averaged, and e

(k)
u

is the embedding of user u at layer k. Finally, co-
sine similarity is used to measure the similarity
between users based on their averaged embeddings.
The complete algorithmic workflow, including em-
bedding aggregation strategies and similar user re-
trieval process, is detailed in Algorithm 1 (see Ap-
pendix A.2).

5 Inference Acceleration: Dynamic
Predictive Exiting

In this section, we introduce Dynamic Predic-
tive Exiting as a solution to Inference Slowdown.
Motivated by (Xin et al., 2021), this mechanism
leverages additional language heads to enable flex-
ible inference termination while maintaining pre-
diction quality. Specifically, during the forward
pass through model layers, these language heads,
attached to designated exit layers, decode the inter-
mediate hidden states into next-token distributions.
We design straightforward yet effective strategies
to dynamically monitor the prediction confidence
at different layers, using it as a real-time criterion to
determine when to terminate inference and accept
these intermediate distributions as final outputs.

This early exit methodology has proven effec-
tive in capturing the evolving dynamics of predic-
tion preferences across different model layers in

LLMs, functioning efficiently even without spe-
cialized training (Chuang et al., 2024; Kao et al.,
2020; Schuster et al., 2022). By applying the lan-
guage head to the immature hidden states of the
intermediate layers, we can calculate the prob-
ability of the next token solely conditioned on
h
(j)
t−1, j ∈ {0, . . . , N − 1}, without finishing the

entire inference process:

p(j)(xt|x<t) = softmax(Head(h(j)t−1))xt (2)

Despite the advantages of this layer-wise predictive
analysis in LLMs, it is widely recognized that inter-
mediate hidden states typically present a significant
information gap (i.e., distribution shift) compared
to the final hidden states, leading to an unaccept-
able trade-off between efficency and response qual-
ity (Elhoushi et al., 2024; Liu et al., 2024a). To
address this issue, in the following section, we in-
troduce additional language heads and propose a
customized fine-tuning scheme for them. These
fine-tuned language head can better “understand”
the hidden states of earlier layers, thereby mitigat-
ing the information gap.

5.1 Workflow of Dynamic Predictive Exiting
After obtaining the set of fine-tuned language head
{Headℓ|ℓ ∈ L} at specified exit layers ℓ, LLMs can
decode intermediate hidden states in real-time to
generate predictive distributions in advance. At this
point, our proposed Dynamic Predictive Exiting
mechanism can be applied to the target model for
inference acceleration. The detailed workflow of
this mechanism involves two steps as follows:
1. Dynamic real-time decoding. When the for-
ward computation of LLMs reaches the ℓ-th de-
coding layer, we decode the hidden states hℓ in
real-time to obtain the immature predictive distri-
bution Pℓ, which reflects the prediction tendencies
of the LLMs at the current layer.
2. Predictive exiting strategies. Each time we
obtain the immature predictive distribution Pℓ at
an exiting layer ℓ, a criterion is needed to decide
whether to accept it as the final prediction and ter-
minate early. To this end, we propose the strat-
egy for LLM early exit for CTR. This strategy are
inspired by an interesting finding (Chuang et al.,
2024) that LLMs progressively refine their hidden
states across decoding layers. For some simple
prediction steps, the hidden states at intermediate
layers have already encoded sufficient information
to predict the next token and remain relatively sta-
ble throughout the rest of the inference process.
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Figure 2: The process of OptiRAG-Rec: Section 1 GCN-Retriever: Constructs a GCN to generate user embeddings
for identifying similar users; Section 2 Construct the Prompt with the Retrieved information: Forms LLM input by
combining interaction data of the query user with similar users’ data; Section 3 Multi-head Early Exit: Implements
an early exit strategy in the LLM by designating potential exit layers and setting probability-based termination
criteria.

The goal of these strategies is to avoid unnecessary
computations on such steps, thereby reducing the
time spent on “over-thinking”. Below, we detail
the Probability-Based Method for CTR.

Probability-Based Method for CTR. We track
the stability of the model’s binary predictions (“yes”
vs. “no”) across layers to determine early-exit
readiness. Let k ∈ {yes, no} be the binary de-
cision token and Pℓ(k) the predicted probability of
token k at layer ℓ. The discrepancy in predictions
between layer ℓ and a previous layer ℓ′ is quantified
by:

D(Pℓ, Pℓ′) = |Pℓ(k)− Pℓ′(k)| ,
where Dℓℓ′ ∈ R measures the absolute differ-

ence in predicted probabilities. In particular, the
distance between consecutive layers ℓ and ℓ− 1 is
represented as Dℓ. A smaller Dℓ indicates greater
consistency in predictions across layers. To assess
stability across multiple layers, we define the mean
discrepancy over a window of m layers as:

D
m
ℓ =

1

m

ℓ+m−1∑

i=ℓ

Di,

If the absolute difference between the current
discrepancy Dℓ and the average discrepancy over
the window is below a predefined threshold τ , i.e.,

∣∣Dℓ −D
m
ℓ−1

∣∣ < τ,

we consider the output at layer ℓ to be stable
and allow early termination of the forward pass.

This logic is implemented in the multi-head early
exit mechanism, as detailed in Algorithm 2 (Ap-
pendix A.2).

5.2 Optimization of Multi Heads

In prior to fine-tuning language models, we pre-
define exit layers L ⊂ {1, . . . , N − 1} and mount
an additional language head Headℓ at each exit
layer ℓ ∈ L, initialized using the LLM’s existing
head. These heads serve two key purposes: decod-
ing intermediate hidden states and approximating
subsequent layer inferences, enabling high-quality
predictive distributions from exited states.

Our fine-tuning process begins with comprehen-
sive instruction-tuning of the entire vanilla model
to align it with the target application. After fine-
tuning, we freeze the model’s parameters and in-
tegrate multi-early-exit heads (i.e., additional lan-
guage heads) at the designated layers. Our empiri-
cal results show that fine-tuning only these heads
improves training stability and leads to a better con-
vergence rate. Specifically, for a given textual input
x and its ground truth token y, the layer-specific
training loss for layer ℓ is defined as:

L
(ℓ)
exit = − log p(ℓ)(y|x),

where p(ℓ)(y|x) is the probability that Headℓ as-
signs to the correct ground truth token y.

In training multi-head architectures, a depth-
varying learning rate strategy is beneficial. Shal-
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lower layers, capturing generic features, are as-
signed higher learning rates for aggressive updates,
while deeper layers, adapting to specific features,
benefit from finer updates. The learning rate for
each head n, located at depth dn in the architecture,
is defined as follows:

λn = λ0 · e−β·dℓ ,

where λ0 is the base learning rate, β controls the
decay rate with depth, and dℓ represents the head’s
depth, with shallower heads having a smaller dℓ.

Table 1: Dataset Statistics

Dataset Users Items Samples

Beauty 324,037 32,892 6,525
BookCrossing 278,858 271,375 17,714
Video Games 37,890 17,381 221,465
Movies and TV 297,529 203,766 3,410,019
Yelp 228,195 146,927 2,956,589

6 Experiments

Dataset. We conduct experiments on three real-
world datasets: BookCrossing(boo, 2005), Ama-
zon Beauty, video games, Movies and TV(Ni
et al., 2019) and Yelp. We present the processed
dataset statistics in Figure 1. BookCrossing: The
BookCrossing dataset comprises user ratings and
detailed textual descriptions of books. Amazon
dataset: The Amazon dataset comprises user pur-
chase actions and rating information sourced from
the Amazon platform. For our experiments, we
selected two domains with a substantial number
of overlapping users: Beauty 2018, Video Games
2018 and Movies and TV 2018. The Yelp dataset
includes user-generated ratings, reviews, and check-
ins for businesses such as restaurants, which are
collected from Yelp.com. To prepare the dataset
for the recommender system experiments, we ini-
tially processed the original data by organizing past
interactions chronologically for each user. We then
filtered out samples that had fewer than three past
interactions to ensure sufficient data quality and
reliability in the training set. For the construction
of recommendation tuning samples, we retained
up to 15 interactions that occurred prior to the tar-
get item. We further binarize the ratings accord-
ing to a threshold of 3. The refined dataset was
subsequently divided into training, validation, and
testing sets, maintaining a ratio of 8:1:1.
Baseline Methods. Traditional CTR models are
generally categorized into two types: feature inter-

action models and user behavior models. For our
study, we selected DeepFM (Guo et al., 2017), Au-
toInt(Song et al., 2019), DCNv2(Wang et al., 2020),
WuKong(Zhang et al., 2024b), GDCN(Wang et al.,
2023b) and EulerNet(Tian et al., 2023) as repre-
sentative feature interaction models. For user be-
havior models, we chose GRU4Rec (Hidasi et al.,
2016) and DIN (Zhou et al., 2017). Addition-
ally, we evaluated TALLRec (Bao et al., 2023b)
as a representative LLM-based CTR model. To
further benchmark the efficiency-accuracy trade-
off in LLM-based recommendation, we included
two lightweight and compressed LLMs as addi-
tional baselines: SparseGPT (Frantar and Alistarh,
2023b), a sparsity-aware pruned version of GPT
for efficient inference, and TinyLLaMA (Kan-
dala et al., 2024), a distilled and highly compact
LLaMA variant designed for low-resource deploy-
ment. These models allow us to evaluate perfor-
mance under extreme efficiency constraints.

We also implemented an FM-based retriever,
a classical factorization machine model (Rendle,
2010) that scores user-item similarity based on
learned embeddings. This provides a point of com-
parison to our GCN-retriever and highlights the
benefits of graph-structured retrieval over tradi-
tional embedding similarity methods.
Implementation Details. For our experiments, we
used Vicuna-7B, a model released by FastChat, as
the base large language model. We employed few-
shot training methods (randomly select less than
10% of the training data) to fine-tune the model for
CTR task, while using the entire training dataset
for training the traditional models. In OptiRAG-
Rec, the number of examples was set to four. To
reduce computational overhead in calculating exit
scores, we selected layers (5,10,15, 20, 25, 30) as
the early exit layers. For the multi-head early exit
mechanism, we used a default window size of 3
and a threshold of 0.01. These values were selected
for consistency across datasets in the main compar-
ison. Additional ablation experiments with varying
window sizes (3, 4, 5) and thresholds (0.005, 0.01,
0.05) are provided in Appendix A.4. For the GCN-
retriever, we configured the model with 3 layers, an
embedding dimension of 64, and trained it until the
evaluation loss converged, ensuring optimal per-
formance for recommendation. All methods used
identical input features and preprocessing. Hyper-
parameter tuning followed consistent procedures
across all baselines to ensure fair comparison. The
superior LLM performance despite using only 10%
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Table 2: Performance Comparison of Sequential Recommendation Models: Conventional Baselines, LLM Baseline,
and Our Enhancements with GCN-Retriever and GCN-Early Exit.

Model BookCrossing Beauty Video Games Movies and TV Yelp
AUC Log Loss AUC Log loss AUC Log Loss AUC Log Loss AUC Log Loss

Full-shot

DeepFM 71.15 0.6897 66.67 0.539 57.68 0.5916 80.33 0.3884 83.15 0.4279
DIN 71.17 0.6525 69.93 0.5727 62.96 0.7477 74.88 0.5210 71.59 0.7481
GRU4Rec 60.75 2.1302 64.82 0.6195 58.26 0.9163 70.64 0.5830 63.15 0.9439
AutoInt 58.00 0.6859 70.53 0.3899 63.59 0.8760 79.98 0.3902 83.02 0.4285
DCNv2 58.52 0.6758 69.37 0.5254 67.89 0.5502 79.53 0.3968 83.21 0.4264
WuKong 58.06 0.6798 65.64 0.3327 66.22 0.5926 77.36 0.4274 83.23 0.4261
GDCN 58.03 0.6750 68.51 0.3587 66.27 0.7024 80.19 0.3922 83.08 0.4278
EulerNet 57.86 0.7103 67.78 0.3212 64.14 0.8886 79.19 0.3931 82.97 0.4273

Few-shot

TALLRec 70.74 0.6306 90.37 0.2459 75.41 0.4754 71.14 0.4514 77.38 0.4792
LLM-retriever 70.86 0.6907 89.65 0.2394 75.76 0.4805 73.89 0.7951 80.32 0.4577
GCN-retriever 72.83 0.6158 94.72 0.2216 78.03 0.4850 90.34 0.4081 81.50 0.4692
OptiRAG-Rec 82.11 0.5269 96.37 0.2053 97.86 0.1911 98.46 0.3010 95.28 0.2460

Table 3: AUC Scores and Log Loss by Dataset and Retrieval Layer.

Retriever BookCrossing Beauty Video Games Movies and TV Yelp
AUC Log Loss AUC Log Loss AUC LogLoss AUC Log Loss AUC Log Loss

Average Layer 72.83 0.6158 94.72 0.2216 78.03 0.4850 90.34 0.3850 81.50 0.4692
Last Layer 69.45 0.7151 93.55 0.3774 70.88 0.5461 91.78 0.4062 80.95 0.4654

Weighted Layer 73.05 0.6293 93.64 0.3012 72.48 0.6573 89.86 0.4442 81.38 0.4935

training data validates the effectiveness of our ap-
proach under practical computational constraints.
Measurement. Each configuration’s performance
was assessed using the area under the curve (AUC)
and log loss for accuracy. The retrieval times, in-
dicating computational demand, were normalized
to the baseline (1x) set by the LLM retrievor. Infer-
ence speed was measured in terms of requests per
second (RPS) per NVIDIA A100 GPU.

Figure 3: Speedup Comparison between LLM and
GCN by Dataset.

Q1: Does OptiRAG-Rec Outperform tradi-
tional recommendation Models? Table 2 high-
lights key findings: OptiRAG-Rec significantly out-
performs traditional methods, with AUC improve-
ments of 16.14 for BookCrossing, 11.80 for Yelp,
and 19.59 for Movies and TV(averaged across tra-

ditional baselines). This underscores the efficacy of
our integrated framework combining GCN-based
retrieval with LLM processing. Compared to tradi-
tional models, LLM-based methods excel in CTR
prediction, especially for text-rich datasets like
BookCrossing and Amazon reviews, which include
item details such as titles, years, and prices. Un-
like existing LLM-based approaches like TallRec,
our method incorporates similar users’ interactions,
offering a more comprehensive view of user pref-
erences and outperforming user-only LLM frame-
works in CTR tasks.

Q2: What Are the Advantages of Multi-Head
Early Exit Over Baselines and Efficiency Alter-
natives? Building on the overall framework suc-
cess, we analyze the specific contribution of our
novel multi-head early exit mechanism, a key com-
ponent of OptiRAG-Rec’s efficiency optimization.
We evaluate the effectiveness of this approach by
comparing it against (1) a baseline model without
early exit, (2) a single-head early exit variant, and
(3) other efficiency methods such as SparseGPT
and TinyLLaMA. As shown in Table 4, the multi-
head early exit model achieves consistently strong
results across datasets. For example, on the Beauty
dataset, it achieves an AUC of 96.37 with an RPS of
4.960, outperforming both the single-head variant
(AUC 94.50, RPS 4.680) and the no-exit baseline.

Comparison with other efficiency methods (de-
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Table 4: Ablation Study: Component Analysis.

Model Variant BookCrossing Beauty Video Games Movies and TV Yelp
AUC RPS AUC RPS AUC RPS AUC RPS AUC RPS

Baseline
No Retriever, No Early Exit 70.74 15.765 90.37 15.098 75.41 8.879 71.14 7.585 77.38 11.486

Single Component
Retriever Only 78.03 3.825 94.72 4.781 78.03 3.825 90.34 3.674 80.34 3.821
Early Exit Only 75.98 11.313 92.56 20.318 96.37 7.917 97.40 7.034 79.00 8.216

Combined Components
Single Head Early Exit 81.14 7.191 94.50 4.680 96.13 4.814 98.46 4.977 95.76 4.065
Full Model (Both) 82.11 5.505 96.37 4.960 97.86 4.932 98.46 5.080 95.28 3.838

Note: Four samples were retrieved for each dataset in the retriever. Best values are in bold, second-best are underlined.

Table 5: Performance comparison between GCN-retriever and FM-retriever across datasets.

Model BookCrossing Beauty Video Games Movies and TV Yelp
AUC Log Loss AUC Log Loss AUC Log Loss AUC Log Loss AUC Log Loss

GCN-retriever 72.83 0.6158 94.72 0.2216 78.03 0.4850 90.34 0.4081 81.50 0.4692
FM-retriever 69.33 0.6409 88.03 0.6263 67.82 0.7443 73.17 0.6260 74.01 0.5484

tailed results in Appendix A.3) reveals that our
architectural approach outperforms traditional com-
pression techniques. For instance, our method
achieves 96.37 AUC vs 92.78 for SparseGPT on
Beauty, while maintaining competitive throughput.
Unlike quantization or pruning methods that reduce
model capacity, our multi-head early exit preserves
full precision while achieving efficiency through
intelligent termination decisions.
We attribute the effectiveness of our design to two
core factors:

• Layer-wise specialization: Each exit head is
independently fine-tuned at different layers,
enabling early predictions for simpler inputs
while allowing deeper computation for more
complex cases.

• Robust confidence estimation: A smoothed
token-level scoring mechanism assesses pre-
diction stability over time, supporting reliable
and adaptive exit decisions.

The multi-head architecture provides superior re-
liability by aggregating confidence signals from
multiple specialized perspectives, reducing the vari-
ance in early exit decisions that can occur with
single-head approaches. These results validate that
a multi-head architecture, when paired with a tai-
lored exit criterion, offers a principled and effective
approach to balancing computational efficiency and
predictive performance in LLM-based recommen-
dation systems.

Q3: Why is GCN-Based Retrieval Supe-
rior to LLM and Direct Similarity Methods?
Our analysis (Figure 3 and Table 2) shows that
GCN-retrievers achieve significantly faster retrieval
speeds and higher accuracy than LLM-based re-
trievers. For instance, on the BookCrossing dataset,
the GCN-retriever achieves an AUC of 82.11, out-
performing the LLM retriever’s 72.83. This per-
formance gap reflects fundamental architectural
differences between the two approaches:

• Information Coverage: LLM-based retrievers
are constrained by limited context windows,
incorporating only the 15 most recent interac-
tions due to computational and memory limi-
tations in our analysis. This truncation hinders
the model’s ability to model long-term user
preferences. In contrast, GCN retrievers oper-
ate over the entire user-item interaction graph,
leveraging multi-hop connectivity and graph
structure to identify latent community-level
patterns and indirect user-item relationships.

• Computational Efficiency: GCN retrievers
use lightweight graph operations with linear
complexity, while LLM retrievers require ex-
pensive transformer computations that scale
quadratically with input length, adding over-
head to similarity calculations.

To further isolate the contribution of graph topol-
ogy, we compared our GCN-retriever with an FM-
based retriever, which relies on direct user-item
similarity scores without structural modeling. As
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Figure 4: Comparison of model performance with (w/) and without (w/o) adaptive learning rate.

shown in Table 5, GCN-retriever consistently out-
performs FM across all datasets, with AUC gains
ranging from 2.68 to 17.17 points. These results
confirm that the observed improvements are not
merely due to representation learning, but stem
from the ability of graph-based methods to capture
complex, indirect user-item relationships via the
interaction network.

Q4: How Do Different GCN Layer Aggrega-
tion Strategies Compare? Our analysis (Table 3)
reveals that averaging embeddings from multiple
GCN layers produces more robust representations
compared to using either the final layer or weighted
embeddings. This suggests that embeddings aver-
aged across multiple layers provide a richer, more
generalized representation that captures a broader
spectrum of user-item interaction patterns.

Q5: What is the Impact of Combining Re-
trieval with Early Exit? We analyze the inter-
action effects between retrieval mechanisms and
early exit strategies by examining four system con-
figurations in Table 4: baseline (neither), retrieval
only, early exit only, and the combined approach.

The results demonstrate clear synergistic benefits
when combining both components. The combina-
tion substantially improves computational through-
put across all datasets, with Video Games showing
RPS increases from 3.825 (retrieval only) to 4.932
(combined), representing a 28.9% improvement.
Similarly, Beauty demonstrates RPS improvement
from 4.781 to 4.960, indicating that early exit ef-
fectively mitigates the computational overhead in-
troduced by retrieval processing.

Notably, these efficiency gains do not come at
the expense of accuracy. In fact, combining re-
trieval and early exit often enhances both metrics
simultaneously. On Beauty, AUC increases from
94.72 (retrieval only) to 96.37 (combined), and on
Movies and TV from 90.34 to 98.46. These im-
provements suggest that retrieval enhances input
quality, enabling more confident and earlier predic-
tions by the exit mechanism.

Importantly, the benefits of the combined system

exceed the additive effects of the individual com-
ponents. Retrieval improves representation qual-
ity, while early exit reduces inference cost. Their
integration addresses complementary bottlenecks,
resulting in a more efficient and accurate system
than either component achieves in isolation.

Q6: How Do Key Hyperparameters Affect
Performance? The Figure 4 show that the adap-
tive learning rate (blue line) does not significantly
outperform the non-adaptive learning rate (red line),
as the AUC scores remain closely aligned across all
datasets. This suggests that the adaptive learning
rate may not substantially enhance performance for
the tested data and model configurations. However,
the consistent performance indicates the model’s
robustness to learning rate variations, which could
be advantageous for maintaining stability across
different operational conditions.

7 Conclusion

As LLMs continue to advance, their potential to
transform recommendation systems is becoming
increasingly evident (Bao et al., 2023b). In this
work, we introduced a comprehensive framework
that integrates advanced retrieval mechanisms and
early exit strategies to enhance both the efficiency
and accuracy of LLM-based recommendations. By
incorporating Graph GCNs as efficient retrieval
mechanisms and implementing a multi-head early
exit architecture, our framework significantly re-
duces computation time while maintaining or even
improving system accuracy. This holistic approach
not only accelerates the responsiveness of LLMs
but also preserves their decision-making quality,
making it highly suitable for real-time applications
in commercial systems. Our results demonstrate
the effectiveness of this framework in balancing
performance and efficiency, setting a new standard
for deploying LLMs in recommendation tasks.

8 Limitation

Our framework has several limitations requiring
future consideration. The approach requires sub-
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stantial textual metadata, limiting applicability to
sparse-text domains. The GCN-retriever strug-
gles with cold-start scenarios lacking sufficient
interaction history. Despite efficiency improve-
ments, initial training requires significant computa-
tional resources. Domain transferability beyond e-
commerce and reviews needs additional validation.
The framework lacks real-time graph update mech-
anisms for continuously evolving interactions.
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A Appendix

A.1 Prompt Templates and Examples

Our framework uses dataset-specific prompt tem-
plates that integrate similar users’ interactions with
target user histories. Tables 6, 7, and 8 show
representative examples from each dataset type.
Note that Amazon datasets (Beauty, Video Games,
Movies and TV) share the same prompt structure,
differing only in product-specific details, so we
present only the Beauty example as representative
of all Amazon domains.

A.1.1 Prompt Engineering Considerations

Retrieval Integration: We retrieve 4 similar users
to provide relevant context while maintaining man-
ageable prompt length.

History Limitation: Target user history is lim-
ited to 15 most recent interactions to stay within
LLM context windows while preserving recent
preference signals.

Output Constraint: We restrict LLM output to
binary tokens (“yes”/“no”) and extract prediction
probabilities from logit scores, enabling efficient
CTR prediction without full text generation.
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Instruction: Based on the product of the input user has
reviewed, deduce if the user will like the mentioned product.
Note that more stars the user rated the product, the user
liked the product more. You should ONLY tell me yes or no.

Similar Users’ Examples:
1. The similar user reviewed the following
products and rated them: [‘Mederma Scar Gel, 20
Grams. (5.0 stars)’, ‘Avalon Organics Wrinkle
Therapy CoQ10 Cleansing Milk, 8.50 oz. It’s
price is $8.27 (5.0 stars)’, ...]
2. The similar user reviewed the following
products and rated them: [‘Caswell-Massey -
Newport Soap on a Rope. (5.0 stars)’, ‘Deep
Steep 3 Piece Gift Set, Grapefruit Bergamot.
(5.0 stars)’, ...]
3. The similar user reviewed the following
products and rated them: [‘Dinur Cosmetics
Bio Clean Drying Lotion 0.67 oz. (5.0 stars)’,
‘Avalon Organics Vitamin C Renewal Creme, 2 oz.
(5.0 stars)’, ...]
4. The similar user reviewed the following
products and rated them: [‘Plant Therapy Tea
Tree Organic Essential Oil (5.0 stars)’, ‘Avalon
Organics Vitamin C Renewal Moisture Plus Lotion
SPF 15 (1.0 star)’, ...]

Target User Input: The user reviewed the follow-
ing products in order in the past, and rated them: [‘Avalon
Organics Wrinkle Therapy CoQ10 Cleansing Milk, 8.50
oz. (5.0 stars)’, ‘Organic Fiji Raw Organic Coconut Oil,
13-Ounce Jars (5.0 stars)’, ...]

Question: Deduce if he will like the product ***(3
Pack) KLEANCOLOR Retractable Waterproof Lip & Eye
Liner - Fuschia***. You should ONLY tell me yes or no.

Table 6: Amazon Beauty dataset prompt example.

Algorithm 1 GCN-Based User Retriever
Require: H (user histories), METHOD ∈ {‘MEAN’, ‘FI-

NAL’, ‘WEIGHT’}, TOP_K
1: G ← GCN(H)
2: H

(l)
u ← G.get_embeddings() for all users u ∈ U and

layers l = 1, . . . , L
3: // Aggregate layer-wise embeddings
4: if METHOD == ‘MEAN’ then
5: Hu ← 1

L

∑L
l=1 h

(l)
u

6: else if METHOD == ‘FINAL’ then
7: Hu ← h

(L)
u

8: else
9: Hu ←

∑L
l=1 αlh

(l)
u {αl are layer weights}

10: end if
11: // Normalize user embeddings
12: Hu ← Hu

∥Hu∥2 for all u ∈ U

13: // Generate prompts using top-k similar users
14: prompts← [ ]
15: for each user u ∈ U do
16: su ← Hu ·H⊤

U

17: su[u]← −∞ {Exclude self-matching}
18: similar_users← ArgSort(su)[: TOP_K]
19: prompt← Format(u, similar_users,H)
20: prompts.append(prompt)
21: end for
22: return prompts

Instruction: Deduce if the user will like the candidate
book based on the user’s past history. You can refer to the
books rating history of other users. Note that more stars
the user rated the book, the user liked the book more. You
should ONLY tell me yes or no.

Similar Users’ Reading History:
1. The user’s location is USA. The user’s age
is unknown. The user read the following books
and rated them: [‘Face the Fire (Three Sisters
Island Trilogy) (6 stars)’, ‘The Sigma Protocol
(9 stars)’, ...]
2. The user’s location is Netherlands. The
user’s age is 35-39. The user read the following
books and rated them: [‘The Home DIY Expert (7
stars)’, ‘Firefly Summer (7 stars)’, ‘The Girls’
Guide to Hunting and Fishing (9 stars)’, ...]
3. The user’s location is USA. The user’s age is
unknown. The user read the following books and
rated them: [‘Daughter of Fortune (8 stars)’,
‘Ship of Gold in the Deep Blue Sea (5 stars)’,
‘Thin Air (5 stars)’, ...]
4. The user’s location is USA. The user’s age
is 25-29. The user read the following books
and rated them:[‘Chasing the Dime (9 stars)’,
‘Border Bride (10 stars)’, ‘Murder at the
Library of Congress (8 stars)’, ...]

Target User Input: The user’s location is USA.
The user’s age is 45-49. The user read the following books
and rated them: [‘Dress Codes: Of Three Girlhoods (8
stars)’, ‘What Would Buddha Do? (5 stars)’, ‘Are You
Somebody? (8 stars)’, ...]

Question: Based on the books the user has read,
deduce if the user will like the book ***Big Fish***. You
should ONLY tell me yes or no.

Table 7: BookCrossing dataset prompt example.

Algorithm 2 Multihead Early-Exit

Require: L: Exit layers; h(ℓ): hidden states; Headℓ: classi-
fier head at layer ℓ;

m: window size (≥ 3); τ : threshold for exit
Ensure: True if early exit condition is met, else False
1: Initialize multiheads: {Headℓ ← Copy(LM Head) | ℓ ∈
L}

2: for each ℓ ∈ L do
3: Select m+1 most recent hidden states: Hℓ ←

{h(ℓ−m), ..., h(ℓ)}
4: Initialize empty ratio listR
5: for each h ∈ Hℓ do
6: p← Softmax(Headℓ(h))
7: Compute ratio: r ← ppos

pneg

8: Append: R.append(r)
9: end for

10: Compute deltas: δi = |R[i]−R[i+ 1]| for i = 0 to
m−1

11: D
m
ℓ ← 1

m−1

∑m−2
i=0 δi

12: Dℓ ← |R[−1]−R[−2]|
13: if |Dℓ −D

m
ℓ | < τ then

14: return True
15: end if
16: end for
17: return False
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Instruction: Based on the Yelp store the user has visited,
determine if the user will like the mentioned store. Note:
The more stars the user rated the store, the more they liked
it.You should ONLY tell me yes or no.

Similar Users’ Store Visits:
1. The similar user joined Yelp in 2016-07-20.
They have 0 fans and typically rate stores with
3.82 stars average. The user recently visited
the following stores and rated them: [‘Matt
& Marie’s, Philadelphia PA (1.0 star)’, ‘The
Caketeria, Newtown PA (5.0 stars)’, ‘Kensington
Quarters, Philadelphia PA (5.0 stars)’, ...]
2. The similar user joined in 2011-02-21. They
have 27 fans and rate at 3.86 stars average. The
user recently visited the following stores and
rated them: [‘Brick House Tavern + Tap, Tampa
FL (3.0 stars)’, ‘Brio Italian Grille, Tampa
FL (5.0 stars)’, ‘Kona Grill - Tampa, Tampa FL
(5.0 stars)’, ...]
3. The similar user joined in 2014-06-04. They
have 15 fans and rate at 3.97 stars average.
The user recently visited the following stores
and rated them: [‘Mini Doughnut Factory, Tampa
FL (5.0 stars)’, ‘Green Lemon, Tampa FL (5.0
stars)’, ‘Catch Twenty Three, Tampa FL (5.0
stars)’, ...]
4. The similar user joined in 2014-09-27. They
have 21 fans and rate at 4.42 stars average. The
user recently visited the following stores and
rated them: [‘The Red Lion Pub, Indian Rocks
Beach FL (4.0 stars)’, ‘Hai Street Kitchen &
Co, Philadelphia PA (5.0 stars)’, ‘The Mütter
Museum, Philadelphia PA (4.0 stars)’, ...]

Target User Input: The user has been on Yelp since
2016-07-20. They have 0 fans and rate stores at 3.82 stars
average. The user recently visited the following stores and
rated them:[‘Cross Culture, Doylestown PA (3.0 stars)’,
’Dan Dan, Philadelphia PA (5.0 stars)’, ‘Giwa Korean
Kitchen, Philadelphia PA (5.0 stars)’, ...]

Task: Deduce if the user will like the store ***Jamba
located in Willow Grove PA***. Remember: You should
ONLY respond with yes or no.

Table 8: Yelp dataset prompt example.

A.2 Algorithmic Details

Algorithm 2 and Algorithm 1 provide detailed pseu-
docode for our core components.

A.3 Comprehensive Efficiency Analysis

To address concerns about efficiency trade-offs,
we conducted comprehensive experiments compar-
ing OptiRAG-Rec with prominent alternative effi-
ciency techniques. Table 9 presents detailed results
across all datasets.

A.3.1 Experimental Setup
We evaluated two efficiency approaches:

SparseGPT + GCN-Retriever: We applied
structured pruning via SparseGPT (Frantar and Al-

istarh, 2023b) to our backbone LLM while main-
taining the GCN-Retriever architecture. Specif-
ically, we introduced a sparsity level of 0.5 for
the projection layers (‘q_proj’, ‘k_proj’, ‘v_proj’,
‘o_proj’) in each transformer layer, targeting the
most computationally intensive components.

TinyLlama + Fine-tuned GCN-Retriever: We
replaced the backbone LLM with TinyLlama (Kan-
dala et al., 2024) while retaining our GCN-
Retriever component, representing the model com-
pression approach to efficiency optimization.

A.3.2 Key Findings and Analysis
Pruning Trade-offs: As shown in Tables 9 and 5,
SparseGPT achieves higher throughput (up to 7.99
RPS vs 4.96 on Beauty) but suffers significant ac-
curacy degradation. BookCrossing shows a 15.27-
point AUC decrease (82.11 vs 66.84), demonstrat-
ing that static pruning cannot preserve the quality-
efficiency balance of dynamic computation.

Model Compression Limitations: TinyLlama
achieves the highest throughput (up to 17.60 RPS)
but experiences catastrophic accuracy loss of 30-
45% compared to OptiRAG-Rec. This reveals fun-
damental limitations of capacity reduction for rec-
ommendation requiring sophisticated reasoning.

Dynamic Efficiency Advantage: OptiRAG-
Rec simultaneously enhances accuracy (9.28-point
average improvement over baseline) while main-
taining competitive throughput (3.84-5.51 RPS).
Unlike static methods with fixed trade-offs, our dy-
namic approach adapts computational allocation
based on sample complexity.

These results validate our design philosophy: ar-
chitectural innovations in dynamic computation
allocation provide superior efficiency gains com-
pared to traditional model compression approaches.
OptiRAG-Rec offers the optimal balance for pro-
duction recommendation systems where both ac-
curacy and latency are critical constraints, while
alternative methods force suboptimal trade-offs be-
tween these competing objectives.

A.4 Hyperparameter Sensitivity Analysis

Figure 6 presents comprehensive analysis of key
hyperparameters affecting system performance.

Retrieval Examples Impact: Figure 7 shows
the trade-off between retrieval quantity and perfor-
mance. AUC generally improves with more ex-
amples up to 4-5, after which diminishing returns
occur. This indicates an optimal balance between
context richness and computational overhead, with
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4 examples providing the best accuracy-efficiency
trade-off across datasets.

Early Exit Configuration: Figures 8 and 9
show the effects of varying early exit thresholds
and window sizes. Results show that using a thresh-
old of 0.01 with a window size of 3 consistently
achieves the best trade-off between accuracy and ef-
ficiency (e.g., 96.37 AUC on BookCrossing, 97.86
on Video Games). Higher thresholds (0.05, 0.1)
lead to premature exits with poor accuracy, while
larger windows reduce throughput without clear
gains. We adopt threshold=0.01 and window=3 as
our default setting.
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Table 9: Efficiency Method Comparison: Accuracy and Quality Metrics

Method BookCrossing Beauty Video Games Movies and TV Yelp
AUC Log Loss AUC Log Loss AUC Log Loss AUC Log Loss AUC Log Loss

GCN-retriever 72.83 0.6158 94.72 0.2216 78.03 0.4850 90.34 0.4081 81.50 0.4692
OptiRAG-Rec 82.11 0.5269 96.37 0.2053 97.86 0.1911 98.46 0.1911 95.28 0.2460
SparseGPT 66.84 0.6632 92.78 0.2631 69.59 0.6348 90.61 0.3854 77.48 0.3854
TinyLlama 52.81 0.8754 66.61 0.3699 54.71 0.5534 78.86 0.4458 50.70 0.4456

Figure 5: Throughput Performance Comparison (RPS) Across Datasets

Figure 6: Hyperparameter Sensitivity Analysis across Different Configurations

Figure 7: AUC and RPS by retrieval examples.

Figure 8: AUC and RPS by threshold.

Figure 9: AUC and RPS by windows.
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