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Abstract

While pre-trained multimodal representations
(e.g., CLIP) have shown impressive capabilities,
they exhibit significant compositional vulner-
abilities leading to counterintuitive judgments.
We introduce Multimodal Adversarial Compo-
sitionality (MAC), a benchmark that leverages
large language models (LLMs) to generate de-
ceptive text samples to exploit these vulnerabil-
ities across different modalities and evaluates
them through both sample-wise attack success
rate and group-wise entropy-based diversity.
To improve zero-shot methods, we propose a
self-training approach that leverages rejection-
sampling fine-tuning with diversity-promoting
filtering, which enhances both attack success
rate and sample diversity. Using smaller lan-
guage models like Llama-3.1-8B, our approach
demonstrates superior performance in reveal-
ing compositional vulnerabilities across various
multimodal representations, including images,
videos, and audios.

1 Introduction

Recent advances in multimodal systems have
demonstrated remarkable capabilities in generat-
ing multimodal content from multimodal inputs.
At the core of these developments lies pre-trained
multimodal representations, which can encode rich
information from different modalities. Such rep-
resentations, notably illustrated by Contrastive
Image-Language Pre-Training (CLIP) (Radford
et al., 2021), has become an indispensable compo-
nent in modeling complex contextual understand-
ing in crossmodal settings, finding widespread ap-
plications across retrieval (Luo et al., 2022; Ahn
et al., 2023), generation (Ramesh et al., 2022), and
reward modeling (Yu et al., 2023a; Rocamonde
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Figure 1: Key idea of Multimodal Adversarial Com-
positionality (MAC). MAC benchmarks compositional
vulnerabilities of a pre-trained multimodal representa-
tion (e.g., CLIP, LanguageBind) with a comprehensive
set of criteria. CLIP(·, ·) denotes the cosine similarity
between image and text embeddings from CLIP.

et al., 2024). Moreover, its usage has become com-
monplace across various modalities beyond image-
language pairs.

Contrary to their prevalence in a wide range of
downstream applications, pre-trained multimodal
representations are known to be considerably brit-
tle. This brittleness can be intuitively exemplified
by compounding text elements. As illustrated in
Fig. 1-(b), with an image of a baby sitting, these
systems may assign a high similarity score to an
erroneous description like “a bed is sitting on a
baby” than the correct description. Such counter-
intuitive judgments occur surprisingly often, im-
plying a critical issue where the vulnerabilities in
the embeddings are inherited by the models that
utilize them. Consequently, there have been active
efforts to identify these weaknesses through neg-
ative samples constructed from the perspective of
visual compositional reasoning (i.e., structured re-
lationship between words and their corresponding
visual elements), such as negation, event swapping,
and attribute replacement (Thrush et al., 2022; Ma
et al., 2023). However, developing a comprehen-
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sive understanding of diverse compositional vul-
nerabilities, without assuming specific scenarios,
remains an open challenge.

In this work, we introduce the challenge of large
language models (LLMs) deceiving CLIP, i.e., ex-
ploiting weaknesses in how pre-trained multimodal
representations encode relationships between ob-
jects and attributes in multimodal contents (e.g.,
image). To this end, we propose to benchmark the
Multimodal Adversarial Compositionality (MAC)
of a target representation. Given multimodal data
pairs (e.g., image-caption), LLMs generate decep-
tive captions by slightly modifying ground-truth
captions in a way that misaligns or contradicts
the original content. We then rigorously evalu-
ate whether the target representation mistakenly
prefers these generated captions over the original
ones. Unlike previous studies that address compo-
sitionality within specific modalities (Thrush et al.,
2022; Bansal et al., 2024; Ghosh et al., 2024), our
work highlights a key distinction in deceiving a tar-
get representation in a modality-agnostic manner
(e.g., image, video, audio).

For evaluation, given a set of captions gener-
ated by LLMs for deceiving, we propose a testbed
that assesses their effectiveness through sample-
wise and group-wise evaluation. We first evalu-
ate whether each generated sample successfully
executes an attack (sample-wise). This success
requires meeting multifaceted conditions: the gen-
erated deceptive sample should (i) maintain high
crossmodal similarity with the original multimodal
input, (ii) contain non-entailing content while (iii)
maintaining lexical similarity to the original text,
and (iv) adhere to prescribed instructions without
relying on shortcuts. Furthermore, if they are pre-
dictable or monotonous, they become easily defen-
sible and fail to unravel diverse compositional vul-
nerabilities. Therefore, we design entropy-based
metrics to measure the diversity of composition ele-
ments used in deception across the set of generated
samples (group-wise).

In addition, we leverage the self-training of
LLMs (Huang et al., 2023), particularly rejection
sampling fine-tuning (Touvron et al., 2023) for the
first time, where generated samples are used for
additional training to promote deceptive response
generation. Existing zero-shot sample generation
for compositionality and naïve self-training meth-
ods often fail to elicit diverse compositions using
a limited set of elements. To address this limita-
tion, we propose a diversity-promoting self-training

approach by thorough sampling among sample can-
didates. Even with smaller LLMs centered around
Llama-3.1-8B (Dubey et al., 2024), our simple yet
effective framework can substantially improve both
attack success rates and diversity. We achieve su-
perior deception performance compared to prior
work across various representations for multiple
modalities, including image, video, and audio. In
particular, our method outperforms existing ap-
proaches (Yarom et al., 2023; Momeni et al., 2023;
Ghosh et al., 2024), when evaluated on COCO (Lin
et al., 2014), MSRVTT (Xu et al., 2016), and Au-
dioCaps (Kim et al., 2019), successfully deceiving
target models, notably CLIP (Radford et al., 2021)
and LanguageBind (Zhu et al., 2024).

2 Related Work

Multimodal Compositional Reasoning. Often
studied in the vision-language domain, it refers
to the structured relationship between words and
their corresponding visual elements (Thrush et al.,
2022). It serves as a key indicator of whether
models truly understand multimodal contexts, im-
pacting critical tasks such as negative sample min-
ing (Shekhar et al., 2017; Zhao et al., 2022; Yuksek-
gonul et al., 2022) and hallucination mitigation (Li
et al., 2023b). To evaluate compositional reasoning,
multiple benchmarks have been introduced to focus
on robustness (Park et al., 2024), systematicity (Ma
et al., 2023), and cross-domain alignment (Yarom
et al., 2023). Another line of work enhances compo-
sitional reasoning by curating training data (Doveh
et al., 2023; Li et al., 2024b; Patel et al., 2024) and
regularizing learning objectives (Oh et al., 2024).
Recent efforts have expanded beyond image-text
interactions to explore and improve compositional-
ity in video-language (Liu et al., 2020; Park et al.,
2022; Momeni et al., 2023; Bansal et al., 2024) and
audio-language contexts (Ghosh et al., 2024).

Most closely related to our work is Sugar-
Crepe (Hsieh et al., 2023), which addresses the
limitations of existing benchmarks by filtering non-
sensical and non-fluent text to avoid trivial solu-
tions. NaturalBench (Li et al., 2024a) focuses on
generating challenging visual QA pairs easy for
humans but difficult for models. While both works
employ adversarial filtering for compositional vul-
nerability, they primarily address bias balancing or
human plausibility within image-text interactions.
In contrast, we approach compositionality from a
modality-agnostic perspective and demonstrate this
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Method
Modality

Generation
Text Update Compositionality Criteria

(Image, Video, Audio) (Replace, Swap, Add) Crossmodal Unimodal Lexical Diversity

FOIL (Shekhar et al., 2017) I Rule-based Specific (R) E, F F F -
Winoground (Thrush et al., 2022) I Human-annotated Specific (S) E, F F F -
VL-CheckList (Zhao et al., 2022) I Rule-based Specific (R) E, F F F -
RoCOCO (Park et al., 2024) I Rule-based Specific (R) E, F F F -
ARO (Yuksekgonul et al., 2022) I Rule-based Specific (S) E, F F F -
SVLC (Doveh et al., 2023) I Rule-based Specific (R) E, F F F -
CREPE (Ma et al., 2023) I Rule + LLM Specific (R, S, A) E, F F F -
SugarCrepe (Hsieh et al., 2023) I LLM (ChatGPT) Specific (R, S, A) E, F F F -
SeeTrue (Yarom et al., 2023) I LLM (PaLM) General E, F F - -
LLaVA-Score (Li et al., 2024b) I LLM (GPT-4) Specific (R, S) E, F F F -
FSC-CLIP (Oh et al., 2024) I Rule-based Specific (R, S) E, F F F -
TripletCLIP (Patel et al., 2024) I SLM (Mistral-7B) General E, F F - -
NaturalBench (Li et al., 2024a) I Human-annotated General E, F F F -
VIOLIN (Liu et al., 2020) V Human-annotated General E, F F - -
VLContrastSet (Park et al., 2022) V Rule + LLM Specific (R) E, F F F -
VFC (Momeni et al., 2023) V LLM (PaLM) Specific (R) E, F F F -
VideoCon (Bansal et al., 2024) V LLM (PaLM-2) Specific (R, S, A) E, F F F -
Vinoground (Zhang et al., 2024) V Human + LLM Specific (S) E, F F F -
CompA (Ghosh et al., 2024) A LLM (GPT-4) Specific (R, S) E, F F F -
MATCH (Kuan and Lee, 2025) A Human-annotated Specific (S) E, F F F -

MAC (Ours) I, V, A SLM (Llama3-8B) General, Specific E, F E, F E, F E, F

Table 1: Overview of text-centric frameworks/benchmarks for multimodal compositionality. General/Specific
denotes whether specific types of text operations are requested upon sample generation or not. Lexical indicates
additional sample-wise constraints like instruction-following capability. (E: Evaluate, F: Filter).

across image, video, and audio modalities. While
Tang et al. (2024) uses a claim manipulator model
to contradict these modalities, our work highlights
a key distinction by grounding the contradiction
and diversity in a quantifiable measure of deceiv-
ing the target multimodal representation. Moreover,
we extend our filtering criteria to better generate
such samples in terms of diversity and successful
deception via self-training.

Multimodal Adversarial Attack on Text. Ad-
versarial attacks (Szegedy et al., 2014) manipulate
input data to perturb a model’s embedding space
or induce incorrect predictions, systematically re-
vealing vulnerabilities. In continuous domains like
images, attacks typically inject subtle noise to mis-
lead inference or maliciously control model behav-
ior (Dong et al., 2018; Su et al., 2019; Shayegani
et al., 2023a). In discrete domains like text, com-
mon strategies include identifying and replacing
vulnerable words (Li et al., 2020), gradient-based
attacks with Gumbel-softmax (Guo et al., 2021),
masked token perturbations (Li et al., 2021), and
LLM-based refinement (Mehrotra et al., 2024).

Text-based adversarial attacks can be extended
to multimodal data, particularly targeting retrieval
performance in image-text pairs by combining im-
age noise injection and text perturbation. For in-
stance, Co-Attack (Zhang et al., 2022) applies mul-
timodal distribution-aware collaborative perturba-
tions to image-text pairs while maintaining cross-

modal consistency. Other methods enhance attack
transferability via crossmodal guidance (Lu et al.,
2023; Xu et al., 2024; Gao et al., 2024) or iter-
ative search-based black-box attacks (Yin et al.,
2023; Yu et al., 2023b). Recent studies have ex-
panded attacks to video (Yang et al., 2024b) or au-
dio (Bagdasaryan et al., 2024) beyond image-text
pairs. However, these approaches focus on embed-
ding perturbations, often resulting in either simple
paraphrasing or unnatural text modifications with-
out considering their entailment with the original
text. To address these limitations, we instead apply
a compositionality-aware modification that enables
embedding-level perturbations while maintaining
naturalness and semantic plausibility.

3 MAC: Multimodal Adversarial
Compositionality

3.1 Problem Definition

Our Multimodal Adversarial Compositionality
benchmark (MAC) is illustrated in Fig. 2. Given
a target pre-trained multimodal representation that
we want to deceive (e.g., CLIP), MAC evaluates
how effectively we can expose compositional vul-
nerabilities by updating text elements in multi-
modal data pairs. We use text updates as an an-
chor since it allows for modality-agnostic assess-
ment and is more intuitively aligned with human
interpretation than noise injection (Szegedy et al.,
2014). Given a set of paired data D = (ti, xi)

MD
i=1 ,

26384



Dataset

𝒟

(a) Multimodal Adversarial Compositionality (MAC) (b) Diversity-promoting Self-training

Target Model
(e.g., CLIP)

Deception Criteria

Cross Uni Dist Aux Div

ǁ𝑡𝑖
1

✓  ✓ ✓ +.012

ǁ𝑡𝑖
2

✓ ✓ ✓ ✓ +.015

ǁ𝑡𝑖
3

 ✓ ✓ ✓ −.008

…

ǁ𝑡𝑖
𝑁

  ✓  +.002

Language 

Model

Crossmodal

𝑥𝑖 , 𝑡𝑖 ≺ (𝑥𝑖 , ǁ𝑡𝑖)

Unimodal

(𝑡𝑖 , ǁ𝑡𝑖) not entailed

Distance

𝑑𝐸 𝑡𝑖 , ǁ𝑡𝑖 ≺
𝐿

2

Auxiliary

Satisfy prompt ℐ

L
o

R
A

A baby is sitting 

on a bed and 

accidentally 

typing an email.

Language 

Model

F
ilterin

g

Multi-round

Prompt ℐ
Original & 

generated texts

𝑡𝑖 , ǁ𝑡𝑖
𝑛

𝑛=1
𝑁

𝑖=1

𝑀෡𝒟

Diversity Criteria

ǁ𝑡1 I_ADJ_vintage, …

ǁ𝑡2 I_NOUN_ski, …

…

ǁ𝑡𝑀𝒟

D_NOUN_man, 

I_ADJ_vintage, …

Sample ǁ𝑡𝑖

e𝑖

𝐻 = −∑𝑝𝑖log𝑝𝑖

𝑝𝑖 ǁ𝑡𝑖
2

ǁ𝑡𝑖
5

𝐻 ↑

𝐻 ↓

ǁ𝑡𝑖

Input 𝑥𝑖

Text 𝑡𝑖

A baby is sitting 

on a bed and 

reaching for the 

laptop keys.

Figure 2: Overview of (a) multimodal adversarial compositionality and (b) diversity-promoting self-training.

where ti represents text and xi represents a paired
input modality (e.g., images), we aim to generate
a set of adversarial text {t̃i}MD

i=1 that effectively ex-
ploit the compositional vulnerabilities of a target
pre-trained multimodal representation denoted by
f , which encodes both ti and xi into embeddings
yti , yxi = f(ti, xi) ∈ Rd.

The generation of adversarial text {t̃i}MD
i=1 com-

prises two key components: (1) an adversarial sam-
ple generator g that produces up to N adversarial
text samples {t̃ni }Nn=1 under a specified budget con-
straint, and (2) a sample filterer h that identifies the
most effective adversarial text sample t̃i from the
N candidates based on their potential to deceive
the pre-trained model f .

Defining the multimodal compositionality prob-
lem as MAC offers several advantages. First, since
MAC does not assume a specific type of modality,
it can be seamlessly applied to various formats in-
cluding image, video, and audio. Second, previous
compositionality frameworks that utilize rule-based
or LLM-based generators for text updates, as well
as our self-training-based generators (Sec. 4) can be
consistently compared under our testbed to deter-
mine which framework more effectively deceives
the target representation.

3.2 Sample-wise Deception Evaluation

Crossmodal Criterion. First and foremost, the
generated sample should achieve the intended at-
tack. The criterion is to deceive the target model f
such that the model determines the generated adver-
sarial sample is more closely aligned with the input
modality than the original text. For an i-th data
pair (ti, xi) and a generated sample t̃i, crossmodal
attack success is

sci = I(dθ(yti , yxi) < dθ(yt̃i , yxi)), (1)

where I is an indicator function, and dθ is an embed-
ding distance, where we use cosine similarity. For
instance, in Fig. 1-(c), dθ(yti , yxi) and dθ(yt̃i , yxi)
are 0.34 and 0.37, respectively, indicating a suc-
cessful attack on CLIP.
Unimodal Criterion. While the crossmodal dis-
tance is a well-established measure, this criterion
alone may lead to results that merely amount to
paraphrasing, as demonstrated in various adversar-
ial attack scenarios (Zhang et al., 2022; Lu et al.,
2023). To prevent this, another crucial criterion is
that there should be a meaningful semantic distinc-
tion between the generated sample and the original
text. Unimodal attack success for the i-th data pair
is defined as follows:

sui = ΠjI(lj(ti, t̃i) < τ), (2)

where τ is a threshold for similarity and lj indicates
an unimodal text model to measure entailment be-
tween two text samples (Yarom et al., 2023; Ma
et al., 2023). We use the agreement of multiple
off-the-shelf NLI models (Liu et al., 2019; Lewis
et al., 2020; He et al., 2021). We use τ = 0.5, fol-
lowing Bansal et al. (2024). In Fig. 1-(c), all NLI
models assess that the generated caption “acciden-
tally typing an email” does not entail “reaching for
the keys”, indicating a successful unimodal attack.
Note that we perform a preliminary evaluation us-
ing GPT-4 on 1K samples to verify the robustness
of sui , showing a concordance rate of over 93%
with GPT-4.
Distance Criterion. Model-based evaluation of
unimodal gap effectively reflects the differences be-
tween embeddings; however, it may unfairly favor
irrelevant text samples, which goes against the pur-
pose of deceiving the original pair. Therefore, the
generated sample should execute attack with only
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limited lexical deviation from the original sample:

sdi = I(dE(ti, t̃i) < LD/2), (3)

where dE is the Levenshtein distance between orig-
inal and generated samples (Ostrovsky and Rabani,
2007; Andoni and Nosatzki, 2020) and LD is the
average token length of dataset D for providing
a dataset-specific limits in updates. In Fig. 1-(c),
dE(ti, t̃i) = 4 is less than LD/2 ≈ 5.21, satisfying
the distance criterion.
Auxiliary Criterion. Lastly, we evaluate whether a
generated sample follows a set of predefined rules.
For instance, as utilized by several frameworks in
Table 1, if generation should be performed through
specific operations (e.g., swap), failing to comply
with this cannot be considered a successful decep-
tion. Similarly, if trivial solutions are used, e.g.,
negation (Ma et al., 2023), it is desirable for these
to be filtered out as well. The auxiliary attack suc-
cess of i-th pair sai evaluates to true if it satisfies all
predefined constraints (e.g., prompt) through rule-
based lexical validation. In Fig. 1-(b), the generated
sample follows the swap operation by exchanging
only two nouns (‘baby’ and ‘bed’) without addi-
tional modifications.

In total, the attack success rate R is

R =
1

MD

∑

i

(sci · sui · sdi · sai ). (4)

Although these elements have been partially high-
lighted in previous research, our key contribution
lies in bringing them together to quantify the at-
tack effectiveness. It enables consistent compari-
son across frameworks for revealing compositional
vulnerabilities.

3.3 Group-wise Diversity Evaluation
Another crucial criterion for successfully expos-
ing compositional vulnerability is the diversity of
generated samples. While repeatedly employing
similar and simple attack patterns might boost im-
mediate attack success rates, such approaches are
easily defensible and lack generalizability. Indeed,
when samples are generated without considering
diversity, the attack becomes overly focused on
specific distributional weaknesses of the represen-
tation, resulting in frequently utilizing a limited set
of vocabulary (e.g., man, woman, and vintage in
Fig. 8 in Appendix B.3). Therefore, a thorough
analysis of pre-trained multimodal representation’s
compositional vulnerabilities necessitates the con-
struction and utilization of adversarial samples that

encompass diverse patterns of text updates, which
has largely been overlooked.

To this end, we first construct a set of attribute-
enriched tokens that represents a transformation
from ti to t̃i through a series of insertion and dele-
tion of words from the Levenshtein distance com-
putation. The token eji is defined as OP_POS_LEMMA,
where OP, POS, LEMMA corresponds to an “word-
level” operation (insertion or deletion), a part-of-
speech (POS) tag, and a lemmatized word, respec-
tively (e.g., I_NOUN_man). Such tokens distinguish
which word-level operations or POS tags as well
as words are involved when generating t̃i from ti.

Using a set of attribute-enriched tokens from
all data pairs, i.e., {{eji}Ei

j=1}MD
i=1 , we compute

probability distribution of unique tokens with re-
spect to their frequency to obtain entropy H =
−∑

j pj log pj , which indicates the extent to
which the distribution is spread across different
tokens. pj denotes the probability of a j-th unique
token and Ei is the number of tokens for an i-th
sample. Note that higher H implies a more di-
verse set of lexical operations are involved when
composing deceptive samples. To prevent patho-
logical cases where the generator might produce
arbitrary text to achieve high entropy values, we
only consider samples that meet the edit distance
criterion (Eq. 3) for diversity evaluation, discarding
attribute-enriched tokens from samples that exceed
this threshold. This ensures that our diversity met-
rics reflect meaningful variations in text transfor-
mations rather than random deviations from the
ground truth.

Since H does not account for how many unique
tokens are involved in generation, we also report
two additional complementary measures. Follow-
ing Li et al. (2016) and Zhang et al. (2021), distinct-
1 (D1) captures the ratio of unique tokens out of all
tokens. On the other hand, the normalized entropy
Ĥ compromises H and D1 by normalizing H by
the number of unique tokens.

3.4 Threat Model Categorization

In a nutshell, we can categorize the threat model
of our framework by following the taxonomy es-
tablished in adversarial learning (Zhang et al.,
2020; Laidlaw et al., 2021; Schwinn et al., 2023;
Shayegani et al., 2023b; Vassilev et al., 2024):

• Model knowledge - (i) Gray-box for cross-
modal assessment (e.g., CLIP, Language-
Bind); we use only output embeddings with
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respect to queries without accessing gradients
and model parameters. (ii) Black-box for uni-
modal assessment; we use entailment scores
of off-the-shelf NLI models without other in-
formation.

• Attack target - Untargeted; we induce incor-
rect predictions instead of eliciting specific
responses.

• Attack granularity - Mix of word-level and
sentence-level perturbation

• Perturbation constraint - Distance and aux-
iliary criteria (§3.2) and diversity evaluation
(§3.3) for perceptually plausible attacks

• Evaluation - The sample-wise attack success
rate and group-wise diversity evaluation

• Modality - Language + X, where X can be
image, video, and audio

• Budget - Number of sampling with LLM (N ),
which will be further discussed (§4).

4 Approach

4.1 Motivation
Among diverse generators g (e.g., rule-based,
human-based, LLM-based) in Table 1, we prioritize
LLM-based methods for the following reasons: (1)
Rule-based methods (e.g., word swapping) often
produce nonsensical and non-fluent text. Addition-
ally, these methods tend to yield simplistic text
focused on specific scenarios that models can eas-
ily defend against (Hsieh et al., 2023). (2) While
human-generated annotations provide fluent text,
they are difficult to scale due to resource constraints
and the labor-intensive nature of the annotation pro-
cess. (3) LLMs address these limitations by gen-
erating fluent text at scale. Thanks to these advan-
tages, recent multimodal compositionality studies
have increasingly adopted LLM-based methods in-
stead of relying on rule-based or human-annotated
methods.

4.2 Preliminary: Revealing Compositional
Vulnerabilities via Filtering

While attacks in vision-language compositional-
ity literature typically occur only once (N = 1),
leveraging multiple attempts (N > 1) with sam-
ple selection could be more effective in revealing
such vulnerabilities (Shekhar et al., 2017; Yarom
et al., 2023; Park et al., 2022). To incorporate
sample selection into MAC, we adopt a Best-of-
N strategy—a widely used and general sampling

approach—that selects the best sample. Given N
samples {t̃ni }Nn=1, it prioritizes those that meet all
sample-wise criteria in Sec. 3.2. If such samples
exist, we randomly select from them; otherwise,
we sample randomly from the entire set:

Ti = {t̃ni | (sci · sui · sdi · sai )(t̃ni , ti, xi) = 1}, (5)

t̃i ∼
{
Uniform(Ti), if Ti ̸= ∅,
Uniform({t̃ni }Nn=1), otherwise.

(6)

As demonstrated in Table 2, while the filter-
ing approach with N > 1 shows improved per-
formance compared to baseline methods, this ap-
proach faces several limitations. First, the computa-
tional cost scales linearly with N when generating
samples for each pair, and the time complexity in-
creases significantly when performed sequentially
(see Table 14 in Appendix B.2). Moreover, rely-
ing on larger N masks the true effectiveness of
adversarial strategies by enabling brute-force at-
tempts. Thus, we limit N to evaluate attack effi-
ciency rather than persistence.

4.3 Self-training
To address the limitations of filtering-based ap-
proaches, we propose a learnable method designed
to enhance the exposure of compositional vulner-
abilities for the first time. Given the absence
of annotations or ground truth, we employ self-
training (Huang et al., 2023) by promoting re-
sponses similar to the condition-satisfying samples
generated by the base language model. This ap-
proach falls into the category of rejection sampling
fine-tuning (RFT) (Touvron et al., 2023). From
the training set Dtrain = (ti, xi)

MDtrain
i=1 , we first

generate and filter samples {t̃i}
MDtrain
i=1 using Eq. 6,

then only use MD̂ successful adversarial samples
to train the model using RFT loss:

{t̃i}MD̂
i=1 =

{
t̃i | sci · sui · sdi · sai = 1

}
, (7)

L = − 1

MD̂

∑

i

∑

j

log g(t̃i,j |t̃i,<j , I, ti; Θ), (8)

where I denotes instruction prompt and Θ is a set
of learnable parameters of the generator g.

As shown in Table 2, self-training significantly
improves the attack success rate by learning to fa-
vor samples that effectively attack vulnerabilities
with small N (e.g., N = 4). To further enhance
attack performance beyond naïve self-training, one
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Algorithm 1 Diversity-promoting Self-training
Data Selection
Require: Set of N samples {t̃ni }Nn=1 generated for

each training instance i ∈ [1,MD̂], and diversity
function H

Ensure: Diverse successful samples {t̃i}MD̂
i=1

Initialize {t̃i}MD̂
i=1 randomly from {t̃ni |(sci · sui ·

sdi · sai )(t̃ni , ti, xi) = 1}
for iteration k = 1 to K do

for i = 1 to MD̂ do
Ti ← {t̃ni |(sci · sui · sdi · sai )(t̃ni , ti, xi) = 1}
t̃i ← argmaxt̃ni ∈TiH(t̃1, ..., t̃

n
i , ..., t̃MD̂)

end for
end for
return {t̃i}MD̂

i=1

can either train with a larger N(> 4) or iterate self-
training as needed. While self-training requires
additional computational cost, it can be amortized
during inference and leads to more efficient infer-
ence by reducing the number of attempts N re-
quired to achieve high attack success rates. In our
experiments, we set N = 64 as the default value
for large-N distilled self-training.

4.4 Diversity-promoting Self-training

Although effective at generating successful attacks,
self-training tends to generate monotonous sam-
ples focused on specific distributional weaknesses
rather than maintaining sample diversity, resulting
in decreased diversity. The selection of samples in-
volved in training is therefore more important than
the training process itself from the perspective of
exposing compositional vulnerability. To enhance
diversity while maintaining successful attacks, we
introduce a Gibbs sampling-based selection process
described in Algorithm 1. This approach iteratively
selects sample that maximize diversity among suc-
cessful attacks. While we employ entropy H as a
representative diversity metric, it can be substituted
with any quantifiable diversity measure (e.g., D1).

5 Experiments

5.1 Evaluation Protocol

Target representation. We primarily use
CLIP (Radford et al., 2021) and LanguageBind
(LB) (Zhu et al., 2024) as target multimodal rep-
resentations. They are representative models with
dual-modality and multi-modality pre-training. Ad-
ditionally, to analyze the transferability of decep-
tion across different representations, we also evalu-

ate SigLIP (Zhai et al., 2023), NegCLIP (Yuksek-
gonul et al., 2022), and BLIP (Li et al., 2022).
Sample generation. Our methodology operates
by modifying text (Sec. 3.1). We generate samples
that reveal compositional vulnerability using rep-
resentative multimodal datasets: COCO (Lin et al.,
2014) for image, MSRVTT (Xu et al., 2016) for
video, and AudioCaps (Kim et al., 2019) for audio.

Unless mentioned otherwise, we use Llama-3.1-
8B (Dubey et al., 2024) for sample generation and
self-training. We explore its applicability across
different LLMs, including GPT-4o (Achiam et al.,
2023), noting that larger or proprietary models
do not necessarily lead to more effective decep-
tion, as discussed in Appendix B.1. We employ
two instruction prompts (i.e., I in Eq. 8). The
deceptive-general prompt instructs to expose vul-
nerability without constraints on text updates, while
the deceptive-specific prompt instructs to perform
text updates corresponding to replace, swap, and
add based on taxonomy from existing literature, as
in Table 1. See Appendix A.3 for prompt demon-
strations. For better performance, we primarily use
the general prompt.
Evaluation metrics. We conduct sample-wise and
group-wise evaluations as described in Sec. 3. For
sample-wise evaluation, we report the attack suc-
cess rate (ASR) focusing on crossmodal criterion
(Cross) and all criteria (Total), while for group-wise
diversity evaluation, we report entropy (H) and
distinct-1 (D1). Fine-grained performance compar-
isons are discussed in Appendix B.4.
Baselines. We establish a set of competitive
baselines using existing compositionality frame-
works. For models generating with N = 1 bud-
get, we utilize RoCOCO (Park et al., 2024), Sug-
arCrepe (Hsieh et al., 2023), LLaVA-Score (Li
et al., 2024b), TripletClip (Patel et al., 2024), and
VideoCon (Bansal et al., 2024). For filtering-based
models, we employ SeeTrue (Yarom et al., 2023),
VFC (Momeni et al., 2023), and CompA (Ghosh
et al., 2024), using N = 4 for inference. For
the studies that use proprietary models like GPT-4,
we substitute Llama-3.1-8B for it and modify the
prompts to ensure effective sample generation with
this model for fair comparison and cost constraints.
For experimental details, see Appendix A.

5.2 Experimental Results
Table 2 summarizes the overall results, showing our
approach outperforms prior methods in both ASR
and diversity. As evident from RoCOCO’s first
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Method
(a) Image (CLIP/COCO) (b) Video (LB/MSRVTT) (c) Audio (LB/AudioCaps)

ASR↑ Diversity↑ ASR↑ Diversity↑ ASR↑ Diversity↑

Cross Total H D1 Cross Total H D1 Cross Total H D1

N=1
RoCOCOrand-voca (Park et al., 2024) 24.33 1.99 7.642 0.196 - - - - - - - -
RoCOCODanger (Park et al., 2024) 20.24 7.88 4.454 0.052 - - - - - - - -
RoCOCOsame-concept (Park et al., 2024) 17.09 5.29 7.098 0.088 - - - - - - - -
RoCOCOdiff-concept (Park et al., 2024) 17.92 2.75 7.128 0.089 - - - - - - - -
SugarCrepe∗ (Hsieh et al., 2023) 10.84 2.40 7.312 0.103 - - - - - - - -
LLaVA-Score∗ (Li et al., 2024b) 24.81 5.71 7.201 0.110 - - - - - - - -
TripletCLIP (Patel et al., 2024) 12.81 6.34 7.551 0.092 - - - - - - - -
VideoCon∗ (Bansal et al., 2024) - - - - 16.30 7.10 6.702 0.610 - - - -
Deceptive-General Prompt (zero-shot) 28.52 6.88 7.562 0.131 32.20 7.70 6.809 0.638 28.68 10.47 6.572 0.182

N=4
SeeTrue (Yarom et al., 2023) 34.67 23.33 7.168 0.124 - - - - - - - -
VFC∗ (Momeni et al., 2023) - - - - 42.60 36.90 5.929 0.381 - - - -
CompA∗ (Ghosh et al., 2024) - - - - - - - - 49.38† 5.76† 6.009† 0.171†

Deceptive-General Prompt (zero-shot) 37.29 19.19 7.571 0.130 42.40 24.80 6.808 0.626 42.60 29.02 6.566 0.172
+ Self-Train 43.08 34.64 7.507 0.120 48.90 39.70 6.900 0.587 55.37 47.35 6.472 0.157
+ Self-Train + Large-N Distilled 48.29 42.03 7.452 0.117 52.90 44.20 6.839 0.594 58.38 51.57 6.508 0.157
+ Self-Train + Large-N Distilled + Diversity-Promoted (Ours) 47.93 42.10 7.747 0.129 53.50 45.60 7.125 0.667 60.25 52.87 6.868 0.191

Table 2: Main Results. ‘-’ indicates that the method is not applicable. (∗: the prompts from the original papers are
slightly modified. †: the results are computed for a subset to which the method can be applied).

ASRTotal CLIP SigLIP NegCLIP BLIP

CLIP 42.10
(+22.91)

28.63
(+15.68)

24.84
(+12.71)

25.25
(+14.13)

SigLIP 29.37
(+16.13)

41.04
(+21.32)

23.84
(+12.17)

25.01
(+13.76)

NegCLIP 25.40
(+12.68)

23.63
(+11.47)

40.81
(+20.10)

23.77
(+12.33)

BLIP 19.84
(+10.60)

19.11
(+10.04)

18.02
(+8.94)

32.50
(+17.80)

Table 3: Cross-model transfer analysis (N = 4).
Columns are source models for filtering, and rows are
target models for evaluation. Numbers in parentheses
are absolute gains from our proposed self-training com-
pared to the zero-shot baselines.

two variants, there exists a trade-off where maxi-
mizing ASR leads to a sharp decline in diversity
and vice versa, indicating that focusing on either
metric alone is far from optimal. Generating multi-
ple samples and applying filtering improves ASR
across all modalities compared to N = 1, though
this does not translate to enhanced diversity. See
Appendix B.3 (Fig. 8) for qualitative distribution
in terms of diversity.

The last four rows reveal the ablation study of
our method. Using only the deceptive-general
prompt yields performance comparable to exist-
ing methods. Adding self-training for a single it-
eration dramatically increases ASR, i.e., +68% on
average, underscoring its role in addressing com-
positionality. Yet, this alone does not enhance di-
versity and may even reduce it. This implies naïve
self-training, while effective for ASR, falls short
in diverse exposure of compositional vulnerability.
Instead, incorporating diversity-promoting filtering

leads to consistent improvements in both diversity
metrics without sacrificing ASR (+2%), advancing
the pareto front in the attack-diversity trade-off.

Table 3 examines the transferability of deceptive
samples across multimodal representations. The re-
sults show high transferability, often exceeding the
best performing baseline (23.33). Notably, the per-
formance gains from self-training are substantial
across all settings, achieving 2.1× improvement on
average. BLIP shows slightly lower performance
presumably due to its use of yes/no classification
logits instead of embedding similarity.

5.3 Performance Analysis

General vs. specific prompt. As summarized in
Table 1, various compositionality frameworks em-
ploy either general or specific types of prompts, ne-
cessitating an analysis of their effectiveness in ASR.
Fig. 3-(a) compares performance under different in-
struction types for generation budget N . Methods
without specific text update constraints consistently
outperform constrained ones, with this trend per-
sisting as N increases. Notably, our self-training
approach with N = 4 matches the performance of
non-self-training methods with an N = 16 budget.
Influence of multi-round self-training. Self-
training enables multiple iterations by refining fil-
tering models across training rounds. Fig. 3-(b)
shows the relative gains of diversity-promoting
vs. naïve self-training on AudioCaps. Our self-
training significantly improves ASR performance,
reaching saturation by the third round. While en-
tropy degrades with conventional self-training, our
approach sustains continuous improvement. For
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Figure 4: Influence of N in self-training.

(Zero-shot) A lady dancing in the rain carrying a pink 

umbrella

(Self-train) A lady walking in the rain under a broken 

pink umbrella

(Ours) A lady walking in the rain with her pink 

umbrella left behind

Cross Uni Dist

(Zero-shot) The female is speaking with some rustling 

but the other voice is a male

(Self-train) A female speaking with some rustling, 

followed by a male speaking

(Ours) A female speaking with some rustling followed 

by the same female speaking again

A person is looking 

at a camera during a 

wrestling event

(Zero-shot) A person is intensely staring at a camera 

during a dramatic wrestling event

(Self-train) A person is smiling at a camera during a 

wrestling event

(Ours) A person is looking directly at the referee during 

a wrestling event

A lady walking in 

the rain carrying a 

pink umbrella

A female speaking 

with some rustling 

followed by another 

female speaking

Figure 5: Qualitative examples from COCO, MSRVTT,
and AudioCaps datasets (from top to bottom).

MSRVTT results, please refer to Appendix B.5.
Influence of large N in self-training. To better
understand the influence of N in distillation-based
self-training, we report the ASR of our method
using AudioCaps in Fig. 4. While increasing
N does not display a clear signal of saturation,
the relative performance gain with respect to N
(∆ASR/∆N ) does. This diminishing return sug-
gests that N = 64 offers a reasonable balance
between performance improvement and time con-
straint.
Human evaluation. A potential limitation is our re-
liance on the model-based unimodal entailment as-

sessment, necessitating evaluation on human agree-
ment. Fig. 3-(c) compares our criterion against
human evaluation by five annotators on 50 random
MSRVTT test samples. Results show high agree-
ment (F1 > 0.9) regardless of video presence, with
moderate to substantial inter-annotator agreement
κ (Fleiss, 1971). Although κ is slightly lower for
evaluations with videos—likely due to subjective
interpretation of longer contexts—overall agree-
ment remains strong (F1 = 0.9091), confirming the
reliability of our unimodal assessment.
Qualitative examples. Fig. 5 compares generated
samples from variants of our method across differ-
ent modalities. Compared to other variants, our
self-training successfully applies various modifica-
tion without being constrained to specific patterns.
Additional examples are provided in Appendix B.9.

6 Conclusion

We explored the compositional vulnerability of pre-
trained multimodal representations using LLMs.
First, we established a testbed by proposing MAC,
which provides a comprehensive set of criteria for
evaluating how effectively and diversely a target
representation can be deceived. Furthermore, we
suggested the application of self-training to multi-
modal compositionality for the first time via itera-
tive RFT with diversity-promoting filtering to im-
prove both ASR and diversity. Lastly, our modality-
agnostic assessment allowed for a thorough analy-
sis of compositional vulnerabilities across image,
video, and audio modalities, where our method
consistently outperformed prior arts across various
target representations. Our benchmark’s modality-
agnostic design opens avenues for extending vul-
nerability analysis to less-explored modalities like
IMU or tactile sensing, even in the absence of mul-
timodal LLMs capable of processing these data
types.
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Limitations

Our work focused on short captions in exploring
multimodal adversarial compositionality. Extend-
ing MAC (i.e., deceiving pre-trained multimodal
representations) to longer, detailed captions (Onoe
et al., 2024; Chen et al., 2024) represents a dis-
tinct but promising research direction, as it would
require more sophisticated attack strategies that
consider long-range dependencies and contextual
relationships throughout the caption to successfully
deceive target representations.

Ethics Statement

Since our work uses language models to generate
adversarial captions to reveal compositional vul-
nerabilities, they might potentially generate biased
or toxic content. We encourage practitioners who
wish to use generated captions to carefully monitor
and filter outputs to prevent unintended harmful
content.

For human evaluation, we worked with anno-
tators primarily from the US, UK, Canada, New
Zealand, and Australia, ensuring fair compensation
above their local minimum wages (averaging $18
per hour). Please refer to Appendix A.5 for details.
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A Experimental Details

A.1 Dataset

We used standard train and test sets commonly
employed in multimodal retrieval tasks as follows.

For COCO (Lin et al., 2014), we adopt the Karpa-
thy test split (Karpathy and Fei-Fei, 2017) as the
test set, which consists of 5,000 images paired with
25,010 captions. The train set corresponds to the
COCO 2014 train split, containing 83,287 images
and 414,113 captions. For MSRVTT (Xu et al.,
2016), we utilize the MSRVTT 1K-A split (Yu
et al., 2018) as the test set, which includes 1,000
videos, each associated with a single caption. The
train set corresponds to the MSRVTT 9K train split,
containing 9,000 videos with 180,000 captions. For
AudioCaps (Kim et al., 2019), we use the test split
from Oncescu et al. (2021), which consists of 816
audio clips with 4,080 captions. The train set corre-
sponds to the train split from Oncescu et al. (2021),
which includes 49,291 audio clips, each paired with
a single caption. All datasets contain English lan-
guage captions and are publicly available, used in
accordance with their respective licenses for re-
search purposes.

Note that each train set (xi, ti) does not include
a label for deceptive caption supervision. This
absence of supervision serves as the primary moti-
vation for our self-training approach, which aims
to generate deceptive captions t̃i.

A.2 Models

Target models. For target pre-trained mul-
timodal representations for evaluating cross-
modal criterion in Sec. 3.2, we utilize: CLIP2,
SigLIP3, NegCLIP4 BLIP5, LanguageBindVideo

6,
and LanguageBindAudio

7.
NLI models. For NLI models for evaluating

the unimodal criterion in Sec. 3.2, we utilize:
RoBERTa8, DeBERTa9, and BART10.

LLMs. For LLMs, we use: Llama-3.1-

2laion/CLIP-ViT-H-14-laion2B-s32B-b79K
3google/siglip-so400m-patch14-384
4https://github.com/mertyg/vision-language-models-are-

bows
5Salesforce/blip-itm-base-coco
6LanguageBind/LanguageBind_Video_FT
7LanguageBind/LanguageBind_Audio_FT
8FacebookAI/roberta-large-mnli
9microsoft/deberta-xlarge-mnli

10facebook/bart-large-mnli

8B11, Llama-3.1-70B (Q4_0)12, Qwen-2.5-7B13,
Gemma-2-9B14, and GPT-4o2024-08-06. Here,
Q4_0 denotes a 4-bit quantized version of the
model.

A.3 Prompt Demonstration
Deceptive-General Prompt. The deceptive-
general prompt is presented in Table 4.

Deceptive-Specific Prompt. The deceptive-
specific prompts, tailored for different modification
types, are presented as follows:

• Replacement Prompts:

– Table 5: Replacing objects.
– Table 6: Replacing attributes.
– Table 7: Replacing relationships.
– Table 8: Replacing numerical counts.

• Addition Prompts:

– Table 9: Adding objects.
– Table 10: Adding attributes.

• Swap Prompts:

– Table 11: Swapping objects.
– Table 12: Swapping attributes.

Deceptive-General Prompt

You will be given a caption describing the {contents_modality}. Your task is to
generate a hard negative caption using the criteria below:

***
[Generation Criteria]
1. Ensure the new caption has higher similarity to the {contents_modality} in
{contents_modality}-text crossmodal model than the given caption.
2. Introduce a contradiction compared to the given caption, but avoid simple
negations (e.g., using words like "no", "not", "empty", or "without").
3. Make fewer than {max_word_distance_plus_one} word-level changes (add,
delete, or substitute words) to the given caption without fully rewriting it to
generate the new caption.

[Given Caption]
- {caption}
***

Write only the new caption starting with "Generated Caption: ", without expla-
nation.

Table 4: Deceptive-general prompt.

A.4 Implementation Details
For generating new captions with LLMs, we ap-
ply nucleus sampling (Holtzman et al., 2020) with
p = 0.95 and a temperature of τ = 0.7 across

11meta-llama/Meta-Llama-3.1-8B-Instruct
12Ollama Llama-3.1-70B (Q4_0)
13Qwen/Qwen2.5-7B-Instruct
14google/gemma-2-9b-it
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Deceptive-Specific Prompt (replace-object)

You will be given a caption describing the {contents_modality}. Your task is
to generate a hard negative caption based on the "object replacement" scenario
using the criteria below:

***
[Generation Criteria]
1. Replace a key object in the given caption with a new object that is not in the
given caption.
2. Ensure the new caption has higher similarity to the {contents_modality} in
{contents_modality}-text crossmodal model than the given caption.
3. Introduce a contradiction compared to the given caption, but avoid simple
negations (e.g., using words like "no", "not", "empty", or "without").
4. Make fewer than {max_word_distance_plus_one} word-level changes (add,
delete, or substitute words) to the given caption without fully rewriting it to
generate the new caption.

[Given Caption]
- {caption}
***

Write only the new caption starting with "Generated Caption: ", without expla-
nation.

Table 5: Deceptive-specific prompt (replace-object).

Deceptive-Specific Prompt (replace-attribute)

You will be given a caption describing the {contents_modality}. Your task is to
generate a hard negative caption based on the "attribute replacement" scenario
using the criteria below:

***
[Generation Criteria]
1. Replace an adjective word in the given caption with a new adjective word
that is not in the given caption.
2. Ensure the new caption has higher similarity to the {contents_modality} in
{contents_modality}-text crossmodal model than the given caption.
3. Introduce a contradiction compared to the given caption, but avoid simple
negations (e.g., using words like "no", "not", "empty", or "without").
4. Make fewer than {max_word_distance_plus_one} word-level changes (add,
delete, or substitute words) to the given caption without fully rewriting it to
generate the new caption.

[Given Caption]
- {caption}
***

Write only the new caption starting with "Generated Caption: ", without expla-
nation.

Table 6: Deceptive-specific prompt
(replace-attribute).

Deceptive-Specific Prompt (replace-relation)

You will be given a caption describing the {contents_modality}. Your task is to
generate a hard negative caption based on the "relation replacement" scenario
using the criteria below:

***
[Generation Criteria]
1. Replace an action or a spatial relationship in the given caption with a new
action or spatial relationship that is not in the given caption.
2. Ensure the new caption has higher similarity to the {contents_modality} in
{contents_modality}-text crossmodal model than the given caption.
3. Introduce a contradiction compared to the given caption, but avoid simple
negations (e.g., using words like "no", "not", "empty", or "without").
4. Make fewer than {max_word_distance_plus_one} word-level changes (add,
delete, or substitute words) to the given caption without fully rewriting it to
generate the new caption.

[Given Caption]
- {caption}
***

Write only the new caption starting with "Generated Caption: ", without expla-
nation.

Table 7: Deceptive-specific prompt
(replace-relation).

Deceptive-Specific Prompt (replace-count)

You will be given a caption describing the {contents_modality}. Your task is to
generate a hard negative caption based on the "counting replacement" scenario
using the criteria below:

***
[Generation Criteria]
1. Replace the numerical count of a key object in the given caption (e.g., from
"two" to "three").
2. Ensure the new caption has higher similarity to the {contents_modality} in
{contents_modality}-text crossmodal model than the given caption.
3. Introduce a contradiction compared to the given caption, but avoid simple
negations (e.g., using words like "no", "not", "empty", or "without").
4. Make fewer than {max_word_distance_plus_one} word-level changes (add,
delete, or substitute words) to the given caption without fully rewriting it to
generate the new caption.

[Given Caption]
- {caption}
***

Write only the new caption starting with "Generated Caption: ", without expla-
nation.

Table 8: Deceptive-specific prompt (replace-count).

Deceptive-Specific Prompt (add-object)

You will be given a caption describing the {contents_modality}. Your task is to
generate a hard negative caption based on the "object addition" scenario using
the criteria below:

***
[Generation Criteria]
1. Generate a new plausible but uncommon object that’s not in the given caption,
and then add the new object to make a new caption.
2. Ensure the new caption has higher similarity to the {contents_modality} in
{contents_modality}-text crossmodal model than the given caption.
3. Introduce a contradiction compared to the given caption, but avoid simple
negations (e.g., using words like "no", "not", "empty", or "without").
4. Make fewer than {max_word_distance_plus_one} word-level changes (add,
delete, or substitute words) to the given caption without fully rewriting it to
generate the new caption.

[Given Caption]
- {caption}
***

Write only the new caption starting with "Generated Caption: ", without expla-
nation.

Table 9: Deceptive-specific prompt (add-object).

Deceptive-Specific Prompt (add-attribute)

You will be given a caption describing the {contents_modality}. Your task is
to generate a hard negative caption based on the "attribute addition" scenario
using the criteria below:

***
[Generation Criteria]
1. Add a new plausible but uncommon attribute for the object in the given
caption.
2. Ensure the new caption has higher similarity to the {contents_modality} in
{contents_modality}-text crossmodal model than the given caption.
3. Introduce a contradiction compared to the given caption, but avoid simple
negations (e.g., using words like "no", "not", "empty", or "without").
4. Make fewer than {max_word_distance_plus_one} word-level changes (add,
delete, or substitute words) to the given caption without fully rewriting it to
generate the new caption.

[Given Caption]
- {caption}
***

Write only the new caption starting with "Generated Caption: ", without expla-
nation.

Table 10: Deceptive-specific prompt (add-attribute).
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Deceptive-Specific Prompt (swap-object)

You will be given a caption describing the {contents_modality}. Your task is to
generate a hard negative caption based on the "object swapping" scenario using
the criteria below:

***
[Generation Criteria]
1. First locate two swappable nouns in the given caption, and then swap them
to make a new caption (e.g., from "woman looking at elephant" to "elephant
looking at woman")
2. Ensure the new caption has higher similarity to the {contents_modality} in
{contents_modality}-text crossmodal model than the given caption.
3. Introduce a contradiction compared to the given caption, but avoid simple
negations (e.g., using words like "no", "not", "empty", or "without").
4. Make fewer than {max_word_distance_plus_one} word-level changes (add,
delete, or substitute words) to the given caption without fully rewriting it to
generate the new caption.

[Given Caption]
- {caption}
***

Write only the new caption starting with "Generated Caption: ", without expla-
nation.

Table 11: Deceptive-specific prompt (swap-object).

Deceptive-Specific Prompt (swap-attribute)

You will be given a caption describing the {contents_modality}. Your task is
to generate a hard negative caption based on the "attribute swapping" scenario
using the criteria below:

***
[Generation Criteria]
1. First locate two swappable adjectives in the given caption describing different
objects, and then swap them to make a new caption (e.g., from "a red apple and
a purple grape" to "a purple apple and a red grape").
2. Ensure the new caption has higher similarity to the {contents_modality} in
{contents_modality}-text crossmodal model than the given caption.
3. Introduce a contradiction compared to the given caption, but avoid simple
negations (e.g., using words like "no", "not", "empty", or "without").
4. Make fewer than {max_word_distance_plus_one} word-level changes (add,
delete, or substitute words) to the given caption without fully rewriting it to
generate the new caption.

[Given Caption]
- {caption}
***

Write only the new caption starting with "Generated Caption: ", without expla-
nation.

Table 12: Deceptive-specific prompt
(swap-attribute).

Instructions
This is the Qualification HIT for "Are two sentences contradictory?"
We'll review your answers thoroughly before accepting them. So please read the explanations carefully before
writing the hit.
If you are not proficient in English, please do not participate in this HIT. Please read the instructions carefully
and submit your own answer.
In this HIT, you will be given two sentences. Your task is to determine whether these sentences contradict each
other.

Steps:
1. Read both sentences carefully.
2. Decide if they contradict each other or convey similar meanings.
3. Provide a short explanation for your choice.

Your Task
Sentence A:

a police officer drives his white car onto a grassy field and then back on to the street

Sentence B:

a police officer drives his white car onto a grassy field and then drives away from the street.

Q. Do the two sentences contradict each other?

 

Explain your choice (required):

 

(Optional) Any feedback or issues?

 

Yes (Contradiction) No (Not a Contradiction)

Submit

Figure 6: User interface for human evaluation: Task 1
(without video).

all LLMs, except for GPT-4o, where we use the
default hyperparameters provided by the OpenAI
API. For self-training LLMs, we use a batch size of
16, a LoRA (Hu et al., 2022) rank of 16, a LoRA
alpha of 32, and a learning rate of 2× 10−4. Each
LLM is trained for 3 epochs per round. During
multi-round training, we reset the LLM to its orig-
inal checkpoint at the start of each round, rather
than continuing from the last checkpoint, to miti-
gate overfitting (Zelikman et al., 2022; Singh et al.,
2024). All experiments are conducted on a single
NVIDIA RTX A6000 GPU. All reported results
are based on a single run per experiment.

A.5 Human Evaluation

We provide a detailed explanation of the human
evaluation process described in Sec. 5.3 (Fig. 3-
(c)). Two user interfaces were designed for eval-
uation on Amazon Mechanical Turk (AMT): one
without video input (Fig. 6) and one with video
input from MSRVTT (Fig. 7). For each data point,
we collected five annotations to ensure reliability.
To maintain annotation quality, annotators were
required to provide a short explanation for their
responses. Additionally, we ensured that AMT
workers were fairly compensated at approximately
$18 per hour ($0.5 per HIT).
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Instructions
This is the Main HIT for "Are two sentences contradictory based on the video?"
We'll review your answers thoroughly before accepting them. So please read the explanations carefully before
writing the hit.
If you are not proficient in English, please do not participate in this HIT. Please read the instructions carefully
and submit your own answer.
In this HIT, you will be given two sentences. Your task is to determine whether these sentences contradict each
other.

Steps:
1. Watch a video.
2. Read both sentences carefully.
3. Decide if they contradict each other or convey similar meanings based on the video.
4. Provide a short explanation for your choice.

Your Task
Sentence A:

a police officer drives his white car onto a grassy field and then back on to the street

Sentence B:

a police officer drives his white car onto a grassy field and then drives away from the street.

Q. Do the two sentences contradict each other based on the video?

Yes (Contradiction)

Entailment (Not a contradiction)

Explain your choice (required):

 

(Optional) Any feedback or issues?

 

Submit

Figure 7: User interface for human evaluation: Task 2
(with video).

Method ASR↑ Diversity↑

Cross Total H D1

Qwen-2.5-7B 18.80 4.50 6.454 0.538
Llama-3.1-8B 32.20 7.70 6.809 0.638
Gemma-2-9B 19.80 8.30 6.472 0.507
Llama-3.1-70B 20.80 9.10 6.416 0.520
GPT-4o2024-08-06 21.10 14.40 6.440 0.502

Table 13: Attacking LanguageBind in MSRVTT test set
with diverse LLMs (N=1). All LLMs use the deceptive-
general prompt.

B Further Analyses

B.1 MAC Performance Across LLMs

We examine the applicability across different lan-
guage models, such as Qwen 2.5 (Yang et al.,
2024a) and Gemma 2 (Team et al., 2024), as well

Method ASR↑ Diversity↑

Time Cross Total H D1

N = 4
Sequential O(N) 38.50 20.10 6.809 0.658
Parallel O(1) 42.40 24.80 6.808 0.626
N = 8
Sequential O(N) 45.40 28.50 6.764 0.675
Parallel O(1) 49.20 36.40 6.773 0.601

Table 14: Attacking LanguageBind in MSRVTT test set
with parallel/sequential generation in TTC with Best-
of-N budget. All methods use Llama-3.1-8B with the
deceptive-general prompt.

as GPT-4o (Achiam et al., 2023). As shown in Ta-
ble 13, larger or proprietary models do not necessar-
ily lead to more effective deception. For instance,
while GPT-4o achieves the highest ASR, its diver-
sity is lower than that of Llama-3.1-8B. Moreover,
Llama-3.1-8B with N = 4 achieves a significantly
higher ASR (24.80 in Table 2) compared to GPT-4o
(14.40). This suggests that using a smaller model
with a Best-of-N(> 1) approach is more effective
than relying on a proprietary model with a budget
of N = 1.

B.2 MAC Performance Across Generation
Strategies

LLMs can generate N multiple candidates using
two main approaches: sequential generation and
parallel generation. Sequential generation involves
iteratively refining responses based on the output
from the previous turn (Shinn et al., 2023; Madaan
et al., 2023), whereas parallel generation produces
N responses simultaneously without a refinement
process. While the sequential approach achieves
slightly higher diversity in Table 14, it underper-
forms parallel generation in terms of ASR. Addi-
tionally, sequential generation has a time complex-
ity of O(N), whereas parallel generation operates
with a constant time complexity of O(1). This
makes sequential generation less practical for self-
training and inference, as it significantly increases
computational overhead. Therefore, we adopt par-
allel generation as the default method for generat-
ing N multiple candidates.

B.3 Group-wise Diversity Analysis
Fig. 8 presents the distributions of attribute-
enhanced tokens generated by different meth-
ods, including RoCOCODanger, LLaVA-Score,
deceptive-specific prompt (zero-shot), and our
diversity-promoted self-trained approach. No-
tably, in the first three methods, certain tokens ap-
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(a) RoCOCODanger (b) LLaVa-Score (c) Deceptive-specific prompt (d) Ours
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D_NOUN_train

D_NOUN_grass

I_ADJ_white

D_ADJ_wooden

D_NOUN_baseball

I_NOUN_bicycle

D_NOUN_tennis

D_NOUN_skateboard

I_NOUN_child

D_NOUN_building

I_NOUN_skateboard

D_NOUN_front

D_NOUN_snow

I_NOUN_couch

I_VERB_stand

I_NOUN_metal

D_NOUN_beach

D_NOUN_bed

1% 2% 3% 1% 2% 3%

I_ADJ_vintage

I_NOUN_vintage

D_NOUN_man

I_ADJ_antique

I_NOUN_bicycle

I_NOUN_harmonica

D_VERB_sit

I_NOUN_man

I_NOUN_skateboard

D_ADJ_white

I_ADJ_vibrant

I_NOUN_typewriter
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I_NOUN_piano

I_ADJ_rare

I_NOUN_woman

D_NOUN_woman

D_NOUN_people

I_VERB_stand

I_NOUN_guitar

D_VERB_stand

D_NOUN_dog

D_ADJ_red
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D_ADJ_large

I_NOUN_iridescent

I_NOUN_dog

D_ADJ_small

I_VERB_weather

D_NOUN_cat
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D_NOUN_tennis

I_NOUN_horse

D_NOUN_horse

D_ADV_next

D_NOUN_giraffe

I_VERB_hold

I_ADJ_lush

D_NOUN_clock

D_VERB_walk

D_ADJ_blue

I_NOUN_surfboard

D_NOUN_bathroom

I_VERB_sit

D_NOUN_person

I_NOUN_elephant

I_ADJ_majestic

1% 2% 3%

D_VERB_sit

D_VERB_stand

I_VERB_sit

I_ADV_actually

I_VERB_stand

I_ADJ_large

I_ADJ_broken

D_ADJ_small

I_ADJ_lush

I_ADJ_small

D_ADV_next

D_VERB_walk

D_VERB_lay

D_ADJ_white

I_ADJ_few

D_NOUN_top

D_VERB_look

D_ADJ_large

I_ADV_away

I_NOUN_front

I_ADJ_green

D_NOUN_table

D_NOUN_snow

D_NOUN_front

I_ADJ_single

I_NOUN_top

D_NOUN_grass

D_VERB_eat

I_VERB_lie

I_VERB_miss

I_VERB_struggle

D_ADJ_different

D_NOUN_side

D_NOUN_field

D_VERB_fly

I_NOUN_floor

D_ADJ_open

D_NOUN_board

D_VERB_play

D_VERB_ride

I_VERB_fail

I_NOUN_foreground

I_ADJ_barren

I_VERB_devour

I_ADJ_cluttered

D_ADV_outside

I_ADJ_short

D_ADJ_green

I_ADV_surprisingly

I_ADV_inside

1% 2% 3%

I_NOUN_weapon (27.99%)

I_ NOUN_minefield (5.73%)

I_ADJ_criminal (5.36%)

I_NOUN_criminal (4.46%)

D_NOUN_man

D_NOUN_people

I_NOUN_crime

I_VERB_commit

D_NOUN_top

D_NOUN_person

D_NOUN_woman
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D_NOUN_street

D_NOUN_room

D_NOUN_side

D_NOUN_table

D_NOUN_field
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D_NOUN_bathroom

D_NOUN_food

D_NOUN_area
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D_NOUN_front

I_NOUN_commiting

D_VERB_sit

D_NOUN_city

D_NOUN_fire

D_NOUN_tennis

I_NOUN_standing

D_NOUN_player

D_NOUN_plate

D_NOUN_track

D_NOUN_water

D_NOUN_living

D_NOUN_cell

D_NOUN_computer

I_VERB_live

D_NOUN_grass

D_NOUN_cat

D_NOUN_boy

D_NOUN_building

D_NOUN_board

D_NOUN_girl

I_ADJ_minefield

D_NOUN_ball

D_NOUN_dog

D_NOUN_bear

D_NOUN_sky

D_NOUN_game

D_NOUN_train

Figure 8: Distribution of attribute-enhanced tokens from different methods.

pear with extremely high frequency. For instance,
I_NOUN_weapon occurs in more than 25% of the
generated outputs, while other frequent tokens like
I_ADJ_vintage exceed 3%. In contrast, our ap-
proach produces a much more balanced token dis-
tribution, with the most frequent token appearing
in less than 1% of cases.

B.4 Ablation Study
We conduct an ablation study on our method using
fine-grained metrics, as shown in Table 15.

ASR. As expected, setting N = 4 improves
cross-modal ASR by 10% points and unimodal
ASR by 15.7% points, compared to N = 1. Naïve
self-training particularly enhances unimodal ASR
(+19.3 % points) and the distance-based criterion
(+14.4 % points), followed by cross-modal ASR
(+6.5 % points). Finally, self-training with large-
N and our final method further boost cross-modal
ASR, achieving the highest total ASR.

Diversity. While standard self-training and
large-N self-training produce mixed results com-
pared to the deceptive-general prompt (e.g., higher
entropy H but lower normalized entropy Ĥ
and distinct-1 D1), our diversity-promoting self-

0.8
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1.2

1.4

1.6

1.8

2

0 1 2 3

Relative

Gain

⚫ ASR    ⚫ Entropy

⋅⋅⋅ Self-train   − Ours

Figure 9: Influence of multi-round self-training in
MSRVTT.

training with large-N consistently outperforms the
deceptive-general prompt across all diversity met-
rics.

B.5 Multi-round Self-training

In addition to the results on AudioCaps shown in
Fig. 3-(b), we further evaluate multi-round self-
training on MSRVTT, as demonstrated in Fig. 9.
Similarly, the results demonstrate that our approach
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Method
ASR↑ Diversity↑

Cross Uni Dist Aux Total H Ĥ D1

N=1
Deceptive-General Prompt (zero-shot) 32.20 40.80 74.90 98.10 7.70 6.809 0.958 0.638

N=4
Deceptive-General Prompt (zero-shot) 42.40 56.50 80.90 97.90 24.80 6.808 0.953 0.626
+ Self-Train 48.90 75.80 95.30 99.90 39.70 6.900 0.952 0.587
+ Self-Train + Diversity-Promoted 49.00 77.00 94.00 99.80 40.60 6.882 0.953 0.598
+ Self-Train + Large-N Distilled 52.90 80.10 93.30 100.00 44.20 6.839 0.951 0.594
+ Self-Train + Large-N Distilled + Diversity-Promoted (Ours) 53.50 76.60 95.50 100.00 45.60 7.125 0.965 0.667

Table 15: Ablation study: Fine-grained attack evaluation on the MSRVTT test set for LanguageBind. The Self-Train
method is applied with a single iteration.

achieves a significant improvement in ASR, yield-
ing over a 2× relative gain by the third round. More-
over, while entropy typically decreases with self-
training, our approach continues to show consis-
tent improvement, indicating sustained diversity
enhancement across different datasets.

B.6 MAC Performance Across Diverse
Configurations

Beyond the COCO, MSRVTT, and AudioCaps
datasets, we further explore other datasets:
Flickr30K (Young et al., 2014) for image-text,
LSMDC (Rohrbach et al., 2017) for video-text, and
Clotho (Drossos et al., 2020) for audio-text.

For Flickr30K, we adopt the Karpathy test
split (Karpathy and Fei-Fei, 2017) as the test set,
which consists of 1,000 images paired with 5,000
captions. The train set contains 29,000 images
and 145,000 captions. For LSMDC, we utilize the
test split from Li et al. (2023a), which includes
1,000 videos, each associated with a single caption.
The train set contains 101,020 videos with 101,020
captions. For Clotho, we use the test split from On-
cescu et al. (2021), which consists of 1,045 audio
clips with 5,225 captions. The train set includes
2,314 audios with 11,570 captions.

Table 16 shows that LLMs effectively deceive
the target representations across diverse datasets.
Furthermore, our method consistently outperforms
baseline methods in terms of both ASR and diver-
sity.

Lastly, to demonstrate that MAC can be readily
extended to other target models, we evaluate the
performance of our framework using CLAP (Wu
et al., 2023) as the target model for the audio-text
dataset and compare the results with LanguageBind.
As shown in Table 17, we observe that the trends
confirmed in the LanguageBind-based experiments

(Original) There is a red truck in a parking lot. It is 

next to a white car. There is a lot of chrome on the 

truck. there are many cars in the parking lot. There are 

trees at the end of the parking lot. There are signs in 

the parking lot. The sun is shining on the car. There is 

a sidewalk by the truck. There is a big windshield in 

the truck. There is a building in the background.

(Ours) There is a red truck in a parking lot. It is next to 

a white car with a cracked windshield. There is a lot 

of chrome on the truck. there are few cars in the 

parking lot. There are trees at the end of the parking lot. 

There are signs in the parking lot. The sun is shining 

on the truck. There is a sidewalk by the car. There is a 

big windshield in the truck. There is a dilapidated 

building in the background.

Figure 10: Qualitative examples for MAC on Stanford
Image Paragraph test set. Bold phrases denote text
updates.

are also evident in the CLAP-based experiments.
However, CLAP exhibits consistently lower ASR
across all metrics. We presume this occurs because
LanguageBind, which binds multiple modalities at
once, may expose greater vulnerability compared
to models that focus exclusively on audio-text align-
ment.

B.7 MAC Performance Across Long Captions
We further extend our benchmark with long cap-
tioning corpora by exploring two different data
sources: Stanford Image Paragraph (Krause et al.,
2017) for image-text and ActivityNet Captions (Kr-
ishna et al., 2017) for video-text, whose average
word lengths are 60 and 48, respectively. Following
Zhang et al. (2018); Gabeur et al. (2020), we aggre-
gate all sentences from each video in chronological
order to obtain long captions from ActivityNet cap-
tions.

For Stanford Image Paragraph, the test set con-
sists of 2,489 images paired with 2,489 captions.
The train set contains 14,575 images and 14,575
captions. For ActivityNet Captions, the test split in-
cludes 4,429 videos, each associated with a single
caption. The train set contains 9,032 videos with
9,032 captions.

Table 18 summarizes the results of long cap-
tion scenarios, where we can observe similar re-
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Method
(a) Image (CLIP/Flickr30K) (b) Video (LB/LSMDC) (c) Audio (LB/Clotho)

ASR↑ Diversity↑ ASR↑ Diversity↑ ASR↑ Diversity↑

Cross Total H D1 Cross Total H D1 Cross Total H D1

N=1
Deceptive-General Prompt (zero-shot) 23.70 6.12 7.437 0.290 39.90 15.20 6.842 0.642 34.97 14.18 7.158 0.225

N=4
Deceptive-General Prompt (zero-shot) 32.90 17.42 7.479 0.290 54.70 37.30 6.922 0.632 50.37 36.15 7.174 0.217
+ Self-Train 39.04 29.34 7.350 0.285 58.30 50.70 6.788 0.585 54.07 44.08 7.017 0.201
+ Self-Train + Large-N Distilled 41.88 33.66 7.489 0.287 61.40 54.20 6.841 0.575 57.51 47.90 7.061 0.200
+ Self-Train + Large-N Distilled + Diversity-Promoted (Ours) 41.82 34.42 7.716 0.314 61.30 54.80 7.141 0.655 57.72 49.09 7.410 0.233

Table 16: Additional results on diverse datasets using Llama-3.1-8B: Flickr30K, LSMDC, Clotho.

Method
Audio (LB/AudioCaps) Audio (CLAP/AudioCaps)
ASR↑ Diversity↑ ASR↑ Diversity↑

Cross Total H D1 Cross Total H D1

N=4
Deceptive-General Prompt (zero-shot) 42.60 29.02 6.566 0.172 37.65 24.07 6.852 0.173
+ Self-Train 55.37 47.35 6.472 0.157 36.45 29.98 6.478 0.160
+ Self-Train + Large-N Distilled 58.38 51.57 6.508 0.157 38.33 32.70 6.476 0.159
+ Self-Train + Large-N Distilled + Diversity-Promoted (Ours) 60.25 52.87 6.868 0.191 38.41 33.11 6.829 0.186

Table 17: Attacking LanguageBind/CLAP in AudioCaps test set using Llama-3.1-8B.

Method
Image (CLIP/ImageParagraph) Video (LB/ActivityNet)

ASR↑ Diversity↑ ASR↑ Diversity↑

Cross Total H Cross Total H

N=4
Deceptive-General Prompt (zero-shot) 26.56 4.82 6.651 40.23 6.07 7.306

N=16
Deceptive-General Prompt (zero-shot) 33.71 14.34 6.822 46.42 16.80 7.474
+ Self-Train + Large-N Distilled + Diversity-Promoted (Ours) 57.98 48.45 6.983 67.10 54.78 7.777

Table 18: Results on long captions: Stanford Image Paragraph and ActivityNet Captions. We used N = 32 for the
Large-N .

ASRTotal CLIP SigLIP NegCLIP BLIP LLaVA

N=4
Zero-shot 19.19 19.72 20.71 14.70 15.30
Ours 42.10 41.04 40.81 32.50 36.38

Table 19: Attacking five target models in COCO test set
using Llama-3.1-8B.

sults with the short caption setup (i.e., COCO and
MSRVTT).

For a more comprehensive view of our bench-
mark for longer text inputs, we further share a qual-
itative example that successfully deceived CLIP
from Stanford Image Paragraph in Fig. 10.

B.8 MAC Performance on Vision Language
Models

In Table 3, we show that LLMs such as Llama-
3.1-8B can successfully deceive pre-trained mul-
timodal representations, including CLIP, SigLIP,
NegCLIP, and BLIP in COCO. To further extend
these pre-trained multimodal representations to re-

cent vision language models (VLMs), we include
LLaVA-1.5-7B15 (Liu et al., 2023, 2024) as a tar-
get representation. Following Li et al. (2024b),
we adapt LLaVA-1.5-7B as an image-text match-
ing score calculator by employing the following
prompt format:

“Does this image I match the following
caption T? Answer Yes or No directly.”

Then, we extract the logits associated with the re-
sponses “Yes” and “No” for the next word predic-
tion. We then define the matching score as:

score =
eP (Yes|prompt)

eP (Yes|prompt) + eP (No|prompt) (9)

As shown in Table 19, LLaVA-1.5-7B surpris-
ingly demonstrates a high susceptibility to decep-
tion, performing even worse than “smaller” BLIP
in our experiments on COCO (ASR 36.38% vs.

15llava-hf/llava-1.5-7b-hf
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32.50%). Even without self-training, the ASR re-
mains at 15.30%, indicating that LLaVA-1.5-7B
possesses inherent compositional vulnerabilities,
too. These findings suggest that recent VLMs can
be deceived by carefully crafted text inputs, under-
scoring a critical challenge in their robustness.

B.9 Qualitative Results
Fig. 11-(a), Fig. 11-(b), and Fig. 11-(c) compare
generated samples from different variants of our
method across image, video, and audio modalities.
Additionally, Fig. 11-(d) presents a comparison
between our method and prior works (i.e., Sug-
arCrepe, SeeTrue). Compared to other variants
and prior arts, our self-training method effectively
applies diverse modifications without being con-
strained to specific patterns.

Cross Uni Dist

(Zero-shot) A laptop computer on a cluttered desk with 

family photos on the wall behind it

(Self-train) A laptop computer on a desk with a single, 

large poster on the wall behind it

(Ours) A laptop computer on a desk with posters on the 

wall in front of it

(Zero-shot) two police officers are taking a break in the 

road

(Self-train) two police officers directing traffic on the 

sidewalk

(Ours) two police officers in the parking lot

(Zero-shot) A man sitting on a bench next to a wild 

horse

(Self-train) A man standing next to a horse on a bench

(Ours) A man is sitting on a horse next to a bench

A laptop computer on 

a desk with posters on 

the wall behind it

A man sitting on a 

bench next to a horse

an image of two 

police officers in the 

road

(a) Qualitative examples on COCO.
Cross Uni Dist

(Zero-shot) Two wrestlers are engaging in a fierce 

friendly sparring session on the mat

(Self-train) Two wrestlers are competing on a smooth 

mat

(Ours) Two wrestlers are fighting on a basketball court 

(Zero-shot) A woman wearing a white tank top in a 

crowded city

(Self-train) A woman talking about a black tank top

(Ours) A woman talking about a white tank top that's 

actually a dress

(Zero-shot) A mother cat is feeding a kitten

(Self-train) A cat is nursing a baby

(Ours) A baby is licking a cat

Two wrestlers are 

fighting on a mat

A cat is licking a baby

A woman talking 

about a white tank top

(b) Qualitative examples on MSRVTT.
Cross Uni Dist

(Zero-shot) A child is speaking, and a cat is meowing

(Self-train) A cat is meowing, and a child is laughing 

(Ours) A cat is speaking, and a child is meowing

(Zero-shot) A power tool plays soothing background 

music

(Self-train) A power tool drilling in perfect harmony 

with the rock music

(Ours) A power tool drilling as mellow music plays

(Zero-shot) Distant humming accompanied by men 

speaking on the radio

(Self-train) Distant humming accompanied by women 

speaking over a radio

(Ours) Distant humming followed by men speaking 

over a live TV broadcast

A cat is meowing, and 

a child is speaking

Distant humming 

followed by men 

speaking over a radio

A power tool drilling 

as rock music plays

(c) Qualitative examples on AudioCaps.
Cross Uni Dist

(SugarCrepe) A teddy bear, doll, and stuffed toy frog 

are displayed on a vintage wooden shelf

(SeeTrue) A teddy bear, doll, and stuffed toy snake

(Ours) A teddy bear, doll, and a real frog

(SugarCrepe) A dog standing on the back of a boat

(SeeTrue) A cat sitting in the passenger seat of a car

(Ours) A dog is driving the car in the passenger seat

(SugarCrepe) Several people leaning over a fence 

towards some giraffes

(SeeTrue) Several people leaning over a fence towards 

some giraffes

(Ours) Several giraffes leaning over a fence towards 

their long-lost relatives

A teddy bear, doll, 

and stuffed toy frog

Several giraffes 

leaning over a fence 

towards some people

A dog sitting in the 

passenger seat of a 

car

(d) Comparison of prior approaches on COCO.

Figure 11: More qualitative examples.

26402


